
Monte-Carlo Tree Search Solver

Mark H.M. Winands1, Yngvi Björnsson2, and Jahn-Takeshi Saito1

1 Games and AI Group, MICC, Universiteit Maastricht,
Maastricht, The Netherlands

{m.winands,j.saito}@micc.unimaas.nl
2 School of Computer Science, Reykjav́ık University, Reykjav́ık, Iceland

yngvi@ru.is

Abstract. Recently, Monte-Carlo Tree Search (MCTS) has advanced
the field of computer Go substantially. In this article we investigate the
application of MCTS for the game Lines of Action (LOA). A new MCTS
variant, called MCTS-Solver, has been designed to play narrow tacti-
cal lines better in sudden-death games such as LOA. The variant differs
from the traditional MCTS in respect to backpropagation and selection
strategy. It is able to prove the game-theoretical value of a position given
sufficient time. Experiments show that a Monte-Carlo LOA program us-
ing MCTS-Solver defeats a program using MCTS by a winning score
of 65%. Moreover, MCTS-Solver performs much better than a program
using MCTS against several different versions of the world-class αβ pro-
gram MIA. Thus, MCTS-Solver constitutes genuine progress in using
simulation-based search approaches in sudden-death games, significantly
improving upon MCTS-based programs.

1 Introduction

For decades αβ search has been the standard approach used by programs for
playing two-person zero-sum games such as chess and checkers (and many oth-
ers). Over the years many search enhancements have been proposed for this
framework. However, in some games where it is difficult to construct an accurate
positional evaluation function (e.g., Go) the αβ approach was hardly success-
ful. In the past, Monte-Carlo (MC) methods have been used as an evaluation
function in a search-tree context [1, 6, 7]. A direct descendent of that approach
is a new general search method, called Monte-Carlo Tree Search (MCTS) [10,
14]. MCTS is not a classical tree search followed by a MC evaluation, but rather
a best-first search guided by the results of Monte-Carlo simulations. In the last
two years MCTS has advanced the field of computer Go substantially. Moreover,
it is used in other games as well (Phantom Go [8], Clobber [15]), even for games
where there exists already a reasonable evaluation function (e.g., Amazons [13]).
Although MCTS is able to find the best move, it is not able to prove the game-
theoretic value of (even parts of) the search tree. A search method that is not
able to prove or estimate (quickly) the game-theoretic value of a node may run
into problems. This is especially true for sudden-death games, such as chess,
that may abruptly end by the creation of one of a prespecified set of patterns

Monte-Carlo Tree Search Solver 27

[2] (e.g., checkmate in chess). In this case αβ search or a special endgame solver
(i.e., Proof-Number Search [3]) is traditionally preferred above MCTS.

In this article we introduce a new MCTS variant, called MCTS-Solver, which
has been designed to prove the game-theoretical value of a node in a search tree.
This is an important step towards being able to use MCTS-based approaches
effectively in sudden-death like games (including chess). We use the game Lines of
Action (LOA) as a testbed. It is an ideal candidate because its intricacies are less
complicated than those of chess. So, we can focus on the sudden-death property.
Furthermore, because LOA was used as a domain for various other AI techniques
[5, 12, 20], the level of the state-of-the-art LOA programs is high, allowing us to
look at how MCTS approaches perform against increasingly stronger evaluation
functions. Moreover, the search engine of a LOA program is quite similar to the
one of a chess program.

The article is organized as follows. Section 2 explains briefly the rules of
LOA. In Sect. 3 we discuss MCTS and its application to Monte-Carlo LOA. In
Sect. 4 we introduce MCTS-Solver. We empirically evaluate the method in Sect.
5. Finally, Sect. 6 gives conclusions and an outlook on future research.

2 Lines of Action

Lines of Action (LOA) [16] is a two-person zero-sum connection game with per-
fect information. It is played on an 8× 8 board by two sides, Black and White.
Each side has twelve pieces at its disposal. The black pieces are placed in two
rows along the top and bottom of the board, while the white pieces are placed in
two files at the left and right edge of the board. The players alternately move a
piece, starting with Black. A move takes place in a straight line, exactly as many
squares as there are pieces of either color anywhere along the line of movement.
A player may jump over its own pieces. A player may not jump over the oppo-
nent’s pieces, but can capture them by landing on them. The goal of a player is
to be the first to create a configuration on the board in which all own pieces are
connected in one unit (i.e., the sudden-death property). In the case of simulta-
neous connection, the game is drawn. The connections within the unit may be
either orthogonal or diagonal. If a player cannot move, this player has to pass.
If a position with the same player to move occurs for the third time, the game
is drawn.

3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [10, 14] is a best-first search method that
does not require a positional evaluation function. It is based on a randomized
exploration of the search space. Using the results of previous explorations, the
algorithm gradually builds up a game tree in memory, and successively becomes
better at accurately estimating the values of the most promising moves.

MCTS consists of four strategic steps, repeated as long as there is time left.
The steps are as follows. (1) In the selection step the tree is traversed from the

28 M.H.M. Winands, Y. Björnsson, and J-T. Saito

root node until we reach a node E, where we select a position that is not added
to the tree yet. (2) Next, during the play-out step moves are played in self-play
until the end of the game is reached. The result R of this “simulated” game is
+1 in case of a win for Black (the first player in LOA), 0 in case of a draw, and
−1 in case of a win for White. (3) Subsequently, in the expansion step children
of E are added to the tree. (4) Finally, R is propagated back along the path
from E to the root node in the backpropagation step. When time is up, the move
played by the program is the child of the root with the highest value.

3.1 The four strategic steps

The four strategic steps of MCTS are discussed in detail below. We will demon-
strate how each of these steps is used in our Monte-Carlo LOA program.

Selection. Selection picks a child to be searched based on previous gained
information. It controls the balance between exploitation and exploration. On
the one hand, the task often consists of selecting the move that leads to the best
results so far (exploitation). On the other hand, the less promising moves still
must be tried, due to the uncertainty of the evaluation (exploration).

We use the UCT (Upper Confidence Bounds applied to Trees) strategy [14],
enhanced with Progressive Bias (PB [9]). UCT is easy to implement and used in
many Monte-Carlo Go programs. PB is a technique to embed domain-knowledge
bias into the UCT formula. It is successfully applied in the Go program Mango.
UCT with PB works as follows. Let I be the set of nodes immediately reachable
from the current node p. The selection strategy selects the child k of the node p
that satisfies Formula 1:

k ∈ argmaxi∈I

(
vi +

√
C × ln np

ni
+

W × Pc

ni + 1

)
, (1)

where vi is the value of the node i, ni is the visit count of i, and np is the visit
count of p. C is a coefficient, which has to be tuned experimentally. W×Pc

ni+1 is the
PB part of the formula. W is a constant, which has to be set manually (here
W = 100). Pc is the transition probability of a move category c [17].

For each move category (e.g., capture, blocking) the probability that a move
belonging to that category will be played is determined. The probability is called
the transition probability. This statistic is obtained from game records of matches
played by expert players. The transition probability for a move category c is
calculated as follows:

Pc =
nplayed(c)

navailable(c)
, (2)

where nplayed(c) is the number of game positions in which a move belonging to
category c was played, and navailable(c) is the number of positions in which moves
belonging to category c were available.

Monte-Carlo Tree Search Solver 29

The move categories of our Monte-Carlo LOA program are similar to the
ones used in the Realization-Probability Search of the program MIA [21]. They
are used in the following way. First, we classify moves as captures or non-
captures. Next, moves are further sub-classified based on the origin and des-
tination squares. The board is divided into five different regions: the corners, the
8×8 outer rim (except corners), the 6×6 inner rim, the 4×4 inner rim, and the
central 2 × 2 board. Finally, moves are further classified based on the number
of squares traveled away from or towards the center-of-mass. In total 277 move
categories can occur according to this classification.

This selection strategy is only applied in nodes with visit count higher than a
certain threshold T (here 50) [10]. If the node has been visited fewer times than
this threshold, the next move is selected according to the simulation strategy
discussed in the next strategic step.

Play-out. The play-out step begins when we enter a position that is not a part
of the tree yet. Moves are selected in self-play until the end of the game. This
task might consist of playing plain random moves or – better – pseudo-random
moves chosen according to a simulation strategy. It is well-known that the use of
an adequate simulation strategy improves the level of play significantly [11]. The
main idea is to play interesting moves according to heuristic knowledge. In our
Monte-Carlo LOA program, the move categories together with their transition
probabilities, as discussed in the selection step, are used to select the moves
pseudo-randomly during the play-out.

A simulation requires that the number of moves per game is limited. When
considering the game of LOA, the simulated game is stopped after 200 moves and
scored as a draw. The game is also stopped when heuristic knowledge indicates
that the game is probably over. The reason for doing this is that despite the
use of an elaborate simulation strategy it may happen that the game-theoretical
value and the average result of the Monte-Carlo simulations differ substantially
from each other in some positions. In our Monte-Carlo LOA program this so-
called noise is reduced by using the MIA 4.5 evaluation function [23]. When the
evaluation function gives a value that exceeds a certain threshold (i.e., 1,000
points), the game is scored as a win. If the evaluation function gives a value that
is below a certain threshold (i.e., -1,000 points), the game is scored as a loss. For
speed reasons the evaluation function is called only every 3 plies, determined by
trial and error.

Expansion. Expansion is the strategic task that decides whether nodes will be
added to the tree. Here, we apply a simple rule: one node is added per simulated
game [10]. The added leaf node L corresponds to the first position encountered
during the traversal that was not already stored.

Backpropagation. Backpropagation is the procedure that propagates the re-
sult of a simulated game k back from the leaf node L, through the previously tra-

30 M.H.M. Winands, Y. Björnsson, and J-T. Saito

1

Fig. 1. White to move

versed node, all the way up to the root. The result is scored positively (Rk = +1)
if the game is won, and negatively (Rk = −1) if the game is lost. Draws lead to
a result Rk = 0. A backpropagation strategy is applied to the value vL of a node.
Here, it is computed by taking the average of the results of all simulated games
made through this node [10], i.e., vL = (

∑
k Rk)/nL.

4 Monte-Carlo Tree Search Solver

Although MCTS is unable to prove the game-theoretic value, in the long run
MCTS equipped with the UCT formula is able to converge to the game-theoretic
value. For a fixed termination game like Go, MCTS is able to find the optimal
move relatively fast [25]. But in a sudden-death game like LOA, where the main
line towards the winning position is narrow, MCTS may often lead to an erro-
neous outcome because the nodes’ values in the tree do not converge fast enough
to their game-theoretical value. For example, if we let MCTS analyze the posi-
tion in Fig. 1 for 5 seconds, it selects c7xc4 as the best move, winning 67.2% of
the simulations. However, this move is a forced 8-ply loss, while f8-f7 (scoring
48.2%) is a 7-ply win. Only when we let MCTS search for 60 seconds, it selects
the optimal move. For a reference, we remark that it takes αβ in this position
less than a second to select the best move and prove the win.

We designed a new variant called MCTS-Solver, which is able to prove the
game-theoretical value of a position. The backpropagation and selection mecha-
nisms have been modified for this variant. The changes are discussed in Subsec-
tions 4.1 and 4.2, respectively. Moreover, we discuss the consequences for final
move selection in Subsection 4.3. The pseudo-code of MCTS-Solver is given in
Subsection 4.4.

Monte-Carlo Tree Search Solver 31

4.1 Backpropagation

In addition to backpropagating the values {1,0,−1}, the search also propagates
the game-theoretical values ∞ or −∞.3 The search assigns ∞ or −∞ to a won or
lost terminal position for the player to move in the tree, respectively. Propagating
the values back in the tree is performed similar to negamax in the context of
minimax searching in such a way that we do not need to distinguish between
MIN and MAX nodes. If the selected move (child) of a node returns ∞, the node
is a win. To prove that a node is a win, it suffices to prove that one child of that
node is a win. Because of negamax, the value of the node will be set to −∞.
In the minimax framework it would be set to ∞. In the case that the selected
child of a node returns −∞, all its siblings have to be checked. If their values
are also −∞, the node is a loss. To prove that a node is a loss, we must prove
that all its children lead to a loss. Because of negamax, the node’s value will be
set to ∞. In the minimax framework it would have been set to −∞. In the case
that one or more siblings of the node have a different value, we cannot prove the
loss. Therefore, we will propagate −1, the result for a lost game, instead of −∞,
the game-theoretical value of a position. The value of the node will be updated
according to the backpropagation strategy as described in Subsection 3.1.

4.2 Selection

As seen in the previous subsection, a node can have the game-theoretical value
∞ or −∞. The question arises how these game-theoretical values affect the
selection strategy. Of course, when a child is a proven win, the node itself is a
proven win, and no selection has to take place. But when one or more children
are proven to be a loss, it is tempting to discard them in the selection phase.
However, this can lead to overestimating the value of a node, especially when
moves are pseudo-randomly selected by the simulation strategy. For example, in
Fig. 2 we have three one-ply subtrees. Leaf nodes B and C are proven to be
a loss, indicated by −∞; the numbers below the other leaves are the expected
pay-off values. Assume that we select the moves with the same likelihood (as
could happen when a simulation strategy is applied). If we would prune the loss
nodes, we would prefer node A above E. The average of A would be 0.4 and 0.37
for E. It is easy to see that A is overestimated because E has more good moves.

If we do not prune proven loss nodes, we run the risk of underestimation.
Especially, when we have a strong preference for certain moves (because of a
bias) or we would like to explore our options (because of the UCT formula), we
could underestimate positions. Assume that we have a strong preference for the
first move in the subtrees of Fig. 2. We would prefer node I above A. It is easy
to see that A is underestimated because I has no good moves at all.

Based on preliminary experiments, selection is here performed in the follow-
ing way. In case Formula (1) is applied, child nodes with the value −∞ will never
3 Draws are in general more problematic to prove than wins and losses. Because draws

only happen in exceptional cases in LOA, we took the decision not to handle proven
draws for efficiency reasons.

32 M.H.M. Winands, Y. Björnsson, and J-T. Saito

A

B C D

E

F G H

I

J K L

- - 0.4 0.3 0.4 0.4 -0.1 -0.1 -0.1

Fig. 2. Monte-Carlo Subtrees

be selected. For nodes of which the visit count is below the threshold, moves are
selected according to the simulation strategy instead of using Formula (1). In
that case, children with the value −∞ can be selected. However, when a child
with a value −∞ is selected, the search is not continued at that point. The results
are propagated backwards according to the strategy described in the previous
subsection.

For all the children of a leaf node (i.e., the visit count equals one) we check
whether they lead to a direct win for the player to move. If there is such a move,
we stop searching at this node and set the node’s value (negamax: −∞; minimax:
∞). This check at the leaf node must be performed because otherwise it could
take many simulations before the child leading to a mate-in-one is selected and
the node is proven.

4.3 Final move selection

For standard MCTS several ways exist to select the move finally played by the
program in the actual game. Often, it is the child with the highest visit count,
or with the highest value, or a combination of the two. In practice, there is
no significant difference when a sufficient amount of simulations for each root
move has been played. However, for MCTS-Solver it does matter. Because of the
backpropagation of game-theoretical values, the score of a move can suddenly
drop or rise. Therefore, we have chosen a method called Secure child [9]. It is
the child that maximizes the quantity v + A√

n
, where A is a parameter (here, set

to 1), v is the node’s value, and n is the node’s visit count.
Finally, when a win can be proven for the root node, the search is stopped

and the winning move is played. For the position in Fig. 1, MCTS-Solver is able
to select the best move and prove the win for the position depicted in less than
a second.

Monte-Carlo Tree Search Solver 33

4.4 Pseudo Code for MCTS-Solver

A C-like pseudo code of MCTS-Solver is provided in Fig. 3. The algorithm is
constructed similar to negamax in the context of minimax search. select(Node
N) is the selection function as discussed in Subsection 4.2, which returns the
best child of the node N . The procedure addToTree(Node node) adds one more
node to the tree; playOut(Node N) is the function which plays a simulated
game from the node N , and returns the result R ∈ {1, 0,−1} of this game;
computeAverage(Integer R) is the procedure that updates the value of the
node depending on the result R of the last simulated game; getChildren(Node
N) generates the children of node N .

5 Experiments

In this section we evaluate the performance of MCTS-Solver. First, we matched
MCTS-Solver against MCTS, and provide results in Subsection 5.1. Next, we
evaluated the playing-strength of MCTS and MCTS-Solver against different
versions of the tournament LOA program MIA, as shown in Subsection 5.2.
All experiments were performed on a Pentium IV 3.2 GHz computer.

5.1 MCTS vs. MCTS-Solver

In the first series of experiments MCTS and MCTS-Solver played 1,000 games
against each other, playing both colors equally. They always started from the
same standardized set of 100 three-ply positions [5]. The thinking time was
limited to 5 seconds per move.

Table 1. 1,000-game match results

Score Win % Winning ratio

MCTS-Solver vs. MCTS 646.5 - 353.5 65% 1.83

The results are given in Table 1. MCTS-Solver outplayed MCTS with a
winning score of 65% of the available points. The winning ratio is 1.83, meaning
that it scored 83% more points than the opponent. This result shows that the
MCTS-Solver mechanism improves the playing strength of the Monte-Carlo LOA
program.

5.2 Monte-Carlo LOA vs. MIA

In the previous subsection, we saw that MCTS-Solver outperformed MCTS. In
the next series of experiments, we further examine whether MCTS-Solver is su-
perior to MCTS by comparing the playing strength of both algorithms against

34 M.H.M. Winands, Y. Björnsson, and J-T. Saito

Integer MCTSSolver(Node N){

if(playerToMoveWins(N))

return INFINITY

else (playerToMoveLoses(N))

return -INFINITY

bestChild = select(N)

N.visitCount++

if(bestChild.value != -INFINITY AND bestChild.value != INFINITY)

if(bestChild.visitCount == 0){

R = -playOut(bestChild)

addToTree(bestChild)

goto DONE

}

else

R = -MCTSSolver(bestChild)

else

R = bestChild.value

if(R == INFINITY){

N.value = -INFINITY

return R

}

else

if(R == -INFINITY){

foreach(child in getChildren(N))

if(child.value != R){

R = -1

goto DONE

}

N.value = INFINITY

return R

}

DONE:

N.computeAverage(R)

return R

}

Fig. 3. Pseudo code for MCTS-Solver

Monte-Carlo Tree Search Solver 35

a non-MC program. We used three different versions of MIA, considered being
the best LOA playing entity in the world.4 The three different versions were
all equipped with the same latest search engine but used three different eval-
uation functions (called MIA 2000 [19], MIA 2002 [22], and MIA 2006 [23]).
The search engine is an αβ depth-first iterative-deepening search in the En-
hanced Realization-Probability Search (ERPS) framework [21] using several for-
ward pruning mechanisms [24]. To prevent the programs from repeating games,
a small random factor was included in the evaluation functions. All programs
played under the same tournament conditions as used in Subsection 5.1. The
results are given in Table 2. Each match consisted of 1,000 games.

Table 2. 1,000-game match results

Evaluator MIA 2000 MIA 2002 MIA 2006

MCTS 585.5 394.0 69.5

MCTS-Solver 692.0 543.5 115.5

In Table 2 we notice that MCTS and MCTS-Solver score more than 50%
against MIA 2000. When competing with MIA 2002, only MCTS-Solver is able
to outperform the αβ program. Both MC programs are beaten by MIA 2006,
although MCTS-Solver scores a more respectable number of points. Table 2 in-
dicates that MCTS-Solver when playing against each MIA version significantly
performs better than MCTS does. These results show that MCTS-Solver is a
genuine improvement, significantly enhancing MCTS. The performance of the
Monte-Carlo LOA programs in general against MIA — a well-established αβ
program — is quite impressive. One must keep in mind the many man-months
of work that are behind the increasingly sophisticated evaluation functions of
MIA. The improvement introduced here already makes a big leap in the playing
strength of the simulation-based approach, resulting in MCTS-Solver even win-
ning the already quite advanced MIA 2002 version. Admittedly, there is still a
considerable gap to be closed for MTCS-Solver before it will be a match for the
MIA 2006 version. Nonetheless, with continuing improvements it is not unlikely
that in the near future simulation-based approaches may become an interesting
alternative in games that the classic αβ approach has dominated. This work is
one step towards that goal being realized.

6 Conclusion and Future Research

In this article we introduced a new MCTS variant, called MCTS-Solver. This
variant differs from the traditional MC approaches in that it can prove game-

4 The program won the LOA tournament at the eighth (2003), ninth (2004), and
eleventh (2006) Computer Olympiad.

36 M.H.M. Winands, Y. Björnsson, and J-T. Saito

theoretical outcomes, and thus converges much faster to the best move in nar-
row tactical lines. This is especially important in tactical sudden-death-like
games such as LOA. Our experiments show that a MC-LOA program using
MCTS-Solver defeats the original MCTS program by an impressive winning
score of 65%. Moreover, when playing against a state-of-the-art αβ-based pro-
gram, MCTS-Solver performs much better than a regular MCTS program. Thus,
we may conclude that MCTS-Solver is a genuine improvement, significantly en-
hancing MCTS. Although MCTS-Solver is still lacking behind the best αβ-based
program, we view this work as one step towards that goal of making simulation-
based approaches work in a wider variety of games. For these methods, to be
able to handle proven outcomes is one essential step to make. With continu-
ing improvements it is not unlikely that in the not so distant future enhanced
simulation-based approaches may become a competitive alternative to αβ search
in games dominated by the latter so far.

As future research, experiments are envisaged in other games to test the per-
formance of MCTS-Solver. One possible next step would be to test the method in
Go, a domain in which MCTS is already widely used. What makes this a some-
what more difficult task is that additional work is required in enabling perfect
endgame knowledge - such as Benson’s Algorithm [4, 18] - in MCTS. We have
seen that the performance of the Monte-Carlo LOA programs against MIA in
general indicates that they could even be an interesting alternative to the classic
αβ approach. Parallelization of the program using an endgame specific evalua-
tion function instead of a general one such as MIA 4.5 could give a performance
boost.

Acknowledgments. The authors thank Guillaume Chaslot for giving valuable
advice on MCTS. Part of this work is done in the framework of the NWO Go
for Go project, grant number 612.066.409.

References

1. B. Abramson. Expected-outcome: A general model of static evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(2):182–193, 1990.

2. L.V. Allis. Searching for Solutions in Games and Artificial Intelligence. PhD
thesis, Rijksuniversiteit Limburg, Maastricht, The Netherlands, 1994.

3. L.V. Allis, M. van der Meulen, and H.J. van den Herik. Proof-number search.
Artificial Intelligence, 66(1):91–123, 1994.

4. D.B. Benson. Life in the Game of Go. In D.N.L. Levy, editor, Computer Games,
volume 2, pages 203–213. Springer-Verlag, New York, NY, 1988.

5. D. Billings and Y. Björnsson. Search and knowledge in Lines of Action. In H.J.
van den Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer Games
10: Many Games, Many Challenges, pages 231–248. Kluwer Academic Publishers,
Boston, MA, USA, 2003.

6. B. Bouzy and B. Helmstetter. Monte-Carlo Go Developments. In H.J. van den
Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer Games 10: Many
Games, Many Challenges, pages 159–174. Kluwer Academic Publishers, Boston,
MA, USA, 2003.

Monte-Carlo Tree Search Solver 37

7. B. Brügmann. Monte Carlo Go. Technical report, Physics Department, Syracuse
University, 1993.

8. T. Cazenave and J. Borsboom. Golois Wins Phantom Go Tournament. ICGA
Journal, 30(3):165–166, 2007.

9. G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy. Progressive strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation, 4(3):343–357, 2008.

10. R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search.
In H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Proceedings of
the 5th International Conference on Computer and Games, volume 4630 of Lecture
Notes in Computer Science (LNCS), pages 72–83. Springer-Verlag, Heidelberg,
Germany, 2007.

11. S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In
Z. Ghahramani, editor, Proceedings of the International Conference on Machine
Learning (ICML), number 227 in ACM International Conference Proceeding Series,
pages 273–280. ACM, 2007.

12. B. Helmstetter and T. Cazenave. Architecture d’un programme de Lines of Action.
In T. Cazenave, editor, Intelligence artificielle et jeux, pages 117–126. Hermes
Science, 2006. In French.

13. J. Kloetzer, H. Iida, and B. Bouzy. The Monte-Carlo Approach in Amazons. In
H.J. van den Herik, J.W.H.M. Uiterwijk, M.H.M. Winands, and M.P.D. Schadd,
editors, Proceedings of the Computer Games Workshop 2007 (CGW 2007), pages
185–192, Universiteit Maastricht, Maastricht, The Netherlands, 2007.

14. L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. In J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, editors, Machine Learning: ECML 2006, volume
4212 of Lecture Notes in Artificial Intelligence, pages 282–293, 2006.

15. L. Kocsis, C. Szepesvári, and J. Willemson. Improved Monte-Carlo Search, 2006.
http://zaphod.aml.sztaki.hu/papers/cg06-ext.pdf.

16. S. Sackson. A Gamut of Games. Random House, New York, NY, USA, 1969.
17. Y. Tsuruoka, D. Yokoyama, and T. Chikayama. Game-tree search algorithm based

on realization probability. ICGA Journal, 25(3):132–144, 2002.
18. E.C.D. van der Werf, H.J. van den Herik, and J.W.H.M. Uiterwijk. Solving Go on

small boards. ICGA Journal, 26(2):92–107, 2003.
19. M.H.M. Winands. Analysis and implementation of Lines of Action. Master’s thesis,

Universiteit Maastricht, Maastricht, The Netherlands, 2000.
20. M.H.M. Winands. Informed Search in Complex Games. PhD thesis, Universiteit

Maastricht, Maastricht, The Netherlands, 2004.
21. M.H.M. Winands and Y. Björnsson. Enhanced realization probability search. New

Mathematics and Natural Computation, 4(3):329–342, 2008.
22. M.H.M. Winands, L. Kocsis, J.W.H.M. Uiterwijk, and H.J. van den Herik. Tem-

poral difference learning and the Neural MoveMap heuristic in the game of Lines
of Action. In Q. Mehdi, N. Gough, and M. Cavazza, editors, GAME-ON 2002,
pages 99–103, Ghent, Belgium, 2002. SCS Europe Bvba.

23. M.H.M. Winands and H.J. van den Herik. MIA: a world champion LOA program.
In The 11th Game Programming Workshop in Japan (GPW 2006), pages 84–91,
2006.

24. M.H.M. Winands, H.J. van den Herik, J.W.H.M. Uiterwijk, and E.C.D. van der
Werf. Enhanced forward pruning. Information Sciences, 175(4):315–329, 2005.

25. P. Zhang and K. Chen. Monte-Carlo Go tactic search. In P. Wang et al., editors,
Proceedings of the 10th Joint Conference on Information Sciences (JCIS 2007),
pages 662–670. World Scientific Publishing Co. Pte. Ltd., 2007.

