
Evaluation Function Based Monte-Carlo LOA

Mark H.M. Winands1 and Yngvi Björnsson2

1 Games and AI Group, Department of Knowledge Engineering,
Faculty of Humanities and Sciences,

Maastricht University, Maastricht, The Netherlands
m.winands@maastrichtuniversity.nl

2 School of Computer Science, Reykjav́ık University, Reykjav́ık, Iceland
yngvi@ru.is

Abstract. Recently, Monte-Carlo Tree Search (MCTS) has advanced
the field of computer Go substantially. In the game of Lines of Action
(LOA), which has been dominated in the past by αβ, MCTS is making
an inroad. In this paper we investigate how to use a positional evaluation
function in a Monte-Carlo simulation-based LOA program (MC-LOA).
Four different simulation strategies are designed, called Evaluation Cut-
Off, Corrective, Greedy, and Mixed, which use an evaluation function
in several ways. Experimental results reveal that the Mixed strategy is
the best among them. This strategy draws the moves randomly based on
their transition probabilities in the first part of a simulation, but selects
them based on their evaluation score in the second part of a simulation.
Using this simulation strategy the MC-LOA program plays at the same
level as the αβ program MIA, the best LOA playing entity in the world.

1 Introduction

The αβ search algorithm has for decades been the standard technique used by
game programs for playing two-person zero-sum games, such as chess and check-
ers (and many others). Furthermore, over the years, many search enhancements
have been proposed to further improve its effectiveness. However, for some games
this approach has been less successful, either because of a large branching factor
preventing a deep look-a-head, or because of complications in constructing an
effective evaluation function.

In recent years a new paradigm for game-tree search has emerged, so-called
Monte-Carlo Tree Search (MCTS) [9, 12]. In the context of game playing, Monte-
Carlo simulations were first used as a mechanism for dynamically evaluating the
merits of leaf nodes of a traditional αβ-based search [1, 3, 4], but under the new
paradigm MCTS has evolved into a full-fledged best-first search procedure that
replaces traditional αβ-based search altogether. MCTS has in the past couple
of years substantially advanced the state-of-the-art in several game domains
where αβ-based search has had difficulties, in particular computer Go, but other
domains include General Game Playing [10], Phantom Go [5], and Amazons [13].
These are, however, all examples of game domains where either a large branching



2 M.H.M. Winands and Y. Björnsson

factor or a complex static state evaluation do restrain αβ search in one way or
another.

In this paper we introduce an improved MCTS variant that performs at
the same level as a world-class αβ-based player in the game Lines of Action
(LOA) [14]. This is an important milestone for MCTS, because up until now the
traditional game-tree search approach has generally been considered to be better
suited for LOA, which features both a moderate branching factor and good
state evaluators (the best LOA programs use highly sophisticated evaluation
functions). The previously best game-playing programs for this game, MIA [16],
Bing, YL [2], and Mona [2], are all αβ based. Recent work on using a special
MCTS-solver variant in the world-class LOA program MIA did improve the
program’s tactical ability, although it still lacked the overall robustness to play
against its αβ-based counterpart on close to an equal footing [18]. In this work
our MCTS-solver variant enriched with a positional evaluation function, is able
to hold its own. Moreover, it is easily parallelizable and when allowed to use
more than one processor it does handily outperform the best αβ-based LOA
programs.

The article is organized as follows. Section 2 explains briefly the rules of LOA.
In Sect. 3 we discuss the application of MCTS in the game of LOA. In Sect. 4
we present several play-out strategies for MC-LOA. We test them in Sect. 5.
Finally, Sect. 6 gives conclusions and an outlook on future research.

2 Lines of Action

Lines of Action (LOA) is a two-person zero-sum connection game with perfect
information. It is played on an 8× 8 board by two sides, Black and White. Each
side has twelve pieces at its disposal. The black pieces are placed along the top
and bottom rows of the board, while the white pieces are placed in the left- and
right-most files of the board (see Fig. 2a). The players alternately move a piece,
starting with Black. A piece moves in a straight line, exactly as many squares
as there are pieces of either color anywhere along the line of movement (see Fig.
2b). A player may jump over its own pieces, but not the opponent’s, although
opponent’s pieces are captured (and removed from the board) by landing on
them. The goal of the players is to be the first to create a configuration on the
board in which all own pieces are connected in one unit (e.g., see Fig. 2c). The
connections within the unit may be either orthogonal or diagonal. In the case of
simultaneous connection, the game is drawn.

3 Monte-Carlo LOA

In this section we discuss how we applied MCTS in LOA. First, we briefly sketch
MCTS and its variant MCTS-Solver in Subsect. 3.1. Next, we explain MCTS(-
Solver) in detail in Subsect. 3.2. Finally, we explain how we parallelized the
search in Subsect. 3.3.



Evaluation Function Based Monte-Carlo LOA 3

Fig. 1. (a) The initial position. (b) Example of possible moves. (c) A terminal position.

3.1 Overview

Monte-Carlo Tree Search (MCTS) [9, 12] is a best-first search method that does
not require a positional evaluation function. It is based on a randomized ex-
ploration of the search space. Using the results of previous explorations, the
algorithm gradually builds up a game tree in memory, and successively becomes
better at accurately estimating the values of the most promising moves.

MCTS consists of four strategic steps, repeated as long as there is deliberation
time left. The steps are as follows. (1) In the selection step the tree is traversed
from the root node until we reach a node E, where we select a position that is
not added to the tree yet. (2) Next, during the play-out step moves are played in
self-play until the end of the game is reached. The result R of this “simulated”
game is +1 in case of a win for Black (the first player in LOA), 0 in case of a
draw, and −1 in case of a win for White. (3) Subsequently, in the expansion step
children of E are added to the tree. (4) Finally, R is propagated back along the
path from E to the root node in the backpropagation step. When time is up, the
move played by the program is the child of the root with the highest value.

MCTS is unable to prove the game-theoretic value. However, in the long run
MCTS equipped with the UCT formula [12] converges to the game-theoretic
value. For a fixed termination game such as Go, MCTS is able to find the optimal
move relatively fast in endgame positions [20]. But in a sudden-death game such
as LOA, where the main line towards the winning position is narrow, MCTS may
often lead to an erroneous outcome because the nodes’ values in the tree do not
converge fast enough to their game-theoretical value. We use therefore a newly
proposed variant called Monte-Carlo Tree Search Solver (MCTS-Solver) [18] in
our MC-LOA program, which is able to prove the game-theoretical value of a
position. The backpropagation and selection mechanisms have been modified for
this variant.

3.2 The Four strategic Steps

The four strategic steps of MCTS-Solver are discussed in detail below. We will
demonstrate how each of these steps is used in our MC-LOA program.



4 M.H.M. Winands and Y. Björnsson

Selection. Selection picks a child to be searched based on previously gained
information. It controls the balance between exploitation and exploration. On
the one hand, the task often consists of selecting the move that leads to the best
results so far (exploitation). On the other hand, the less promising moves still
must be tried, due to the uncertainty of the evaluation (exploration).

We use the UCT (Upper Confidence Bounds applied to Trees) strategy [12],
enhanced with Progressive Bias (PB [7]). UCT is easy to implement and used in
many Monte-Carlo Go programs. PB is a technique to embed domain-knowledge
bias into the UCT formula. UCT with PB works as follows. Let I be the set of
nodes immediately reachable from the current node p. The selection strategy
selects the child k of the node p that satisfies Formula 1:

k ∈ argmaxi∈I

(
vi +

√
C × ln np

ni
+

W × Pmc

ni + 1

)
, (1)

where vi is the value of the node i, ni is the visit count of i, and np is the visit
count of p. C is a coefficient, which must be tuned experimentally. W×Pmc

ni+1 is
the PB part of the formula. W is a constant, which must be set manually (here
W = 10). Pmc is the transition probability of a move category mc [15].

For each move category (e.g., capture, blocking) the probability that a move
belonging to that category will be played is determined. The probability is called
the transition probability. This statistic is obtained off-line from game records of
matches played by expert players. The transition probability for a move category
c is calculated as follows:

Pmc =
nplayed(mc)

navailable(mc)
, (2)

where nplayed(mc) is the number of game positions in which a move belonging to
category mc was played, and navailable(mc) is the number of positions in which
moves belonging to category mc were available.

The move categories of our MC-LOA program are similar to the ones used in
the Realization-Probability Search of the program MIA [17]. They are applied
in the following way. First, we classify moves as captures or non-captures. Next,
moves are further sub-classified based on the origin and destination squares. The
board is divided into five different regions: the corners, the 8×8 outer rim (except
corners), the 6 × 6 inner rim, the 4 × 4 inner rim, and the central 2 × 2 board.
Finally, moves are further classified based on the number of squares traveled
away from or towards the center-of-mass.

This selection strategy is applied only at nodes with a visit count higher than
a certain threshold T (here 5) [9]. If the node has been visited fewer times than
this threshold, the next move is selected according to the simulation strategy
discussed in the next strategic step.

For all the children of a current leaf node we check whether they lead to a
direct win for the player to move. If there is such a move, we stop searching at
this node and set the node’s value. This check at the leaf node must be performed
because otherwise it could take many simulations before the child leading to a



Evaluation Function Based Monte-Carlo LOA 5

mate-in-one is selected and the node is proven. Experiments conducted in the
past revealed that this check improved both the playing and solving strength of
the engine.

Play-out. The play-out step begins when we enter a position that is not yet a
part of the tree. Moves are selected in self-play until the end of the game. This
task might consist of playing plain random moves or – better – pseudo-random
moves chosen according to a simulation strategy. It is well-known that the use of
an adequate simulation strategy improves the level of play significantly [10, 11].
The main idea is to play interesting moves according to heuristic knowledge. We
describe the simulation strategies in detail in the next section.

Expansion. Expansion is the strategic task that decides whether nodes will be
added to the tree. Here, we apply a simple rule: one node is added per simulated
game [9]. The added leaf node L corresponds to the first position encountered
during the traversal that was not already stored.

Backpropagation. Backpropagation is the procedure that propagates the re-
sult of a simulated game k back from the leaf node L, through the previously tra-
versed node, all the way up to the root. The result is scored positively (Rk = +1)
if the game is won, and negatively (Rk = −1) if the game is lost. Draws lead to
a result Rk = 0. A backpropagation strategy is applied to the value vL of a node.
Here, it is computed by taking the average of the results of all simulated games
made through this node [9], i.e., vL = (

∑
k Rk)/nL.

In addition to backpropagating the values {1,0,−1}, MCTS-Solver also prop-
agates the game-theoretical values ∞ or −∞. The search assigns ∞ or −∞ to
a won or lost terminal position for the player to move in the tree, respectively.
Propagating the values back in the tree is performed similar to negamax. If the
selected move (child) of a node returns ∞, the node is a win. To prove that a
node is a win, it suffices to prove that one child of that node is a win. Because of
negamax, the value of the node will be set to −∞. In the case that the selected
child of a node returns −∞, all its siblings have to be checked. If their values are
also −∞, the node is a loss. To prove that a node is a loss, we must prove that
all its children lead to a loss. Because of negamax, the node’s value will be set
to ∞. In the case that one or more siblings of the node have a different value,
we cannot prove the loss. Therefore, we will propagate −1, the result for a lost
game, instead of −∞, the game-theoretical value of a position. The node will be
updated according to the backpropagation strategy as described previously.

3.3 Parallelization

The parallel version of our MC-LOA program uses the so-called “single-run” par-
allelization [6], also called root parallelization [8]. It consists of building multiple
MCTS trees in parallel, with one thread per tree. These threads do not share



6 M.H.M. Winands and Y. Björnsson

information with each other. When the available time is up, all the root children
of the separate MCTS trees are merged with their corresponding clones. For each
group of clones, the scores of all games played are added. Based on this grand
total, the best move is selected. This parallelization method only requires a min-
imal amount of communication between threads, so the parallelization is easy,
even on a cluster. For a small number of threads, root parallelization performs
remarkably well in comparison to other parallelization methods [6, 8].

4 Simulation Strategies

In both the selection and the play-out steps move categories together with their
associated transition probabilities are used to bias the move selection. In this
section we introduce four simulation strategies for further biasing and enhancing
the simulation roll-outs. They are Evaluation Cut-Off, Corrective, Greedy, and
Mixed, and are discussed in detail in Subsect. 4.1 to 4.4, respectively.

4.1 Evaluation Cut-Off

The Evaluation Cut-Off strategy stops a simulated game before a terminal state
is reached if, according to a heuristic knowledge, the game is judged to be ef-
fectively over. In general, once a LOA position gets very lopsided, an evaluation
function can return a quite trustworthy score, more so than even elaborate sim-
ulation strategies. The game can thus be safely terminated both earlier and with
a more accurate score than if continuing the simulation (which might e.g. fail to
deliver the win).

We use the MIA 4.5 evaluation function [19] for this purpose. When the eval-
uation function gives a value that exceeds a certain threshold (e.g., 700 points),
the game is scored as a win. Conversely, if the evaluation function gives a value
that is below a certain threshold (e.g., −700 points), the game is scored as a
loss. For efficiency reasons the evaluation function is called only every 3 plies,
starting at the second ply (thus at 2, 5, 8, 11 etc.). This strategy is applied only
in the play-out phase. We remark that a similar strategy was already described
by Winands et al. in [18]. The Amazons program InvaderMC [13] also ter-
minates simulations early based on an evaluation score. The difference is that
in InvaderMC the simulation stops after a fixed length (and subsequently is
scored based on the value of the evaluation function), whereas in our approach
the simulation may terminate at any time.

4.2 Corrective

One known disadvantage of simulation strategies is that they may draw and
play a move which immediately ruins a perfectly healthy position. Embedding
domain knowledge, e.g. by the use of Progressive Bias, somewhat alleviates the
problem.



Evaluation Function Based Monte-Carlo LOA 7

correctiveStrategy(board){

defaultValue = evaluate(board);

moveList = generateMoves();

scoreSum = 0;

foreach(Move m in moveList){

value = evaluate(board, m);

if (value > bound)

return m;

else if (value <= defaultValue)

m.score = Epsilon;

else

m.score = m.getMoveCategoryWeight(board);

scoreSum += m.score;

}

scoreSum = scoreSum*random();

foreach(Move m in moveList){

scoreSum -= m.score;

if(scoreSum <= 0)

return m;

}

}

Fig. 2. Pseudo code for the Corrective strategy

In the Corrective strategy we use the evaluation function to further bias the
move selection towards minimizing the risk of choosing an obviously bad move.
This is done in the following way. First, we evaluate the position for which we
are choosing a move. Next, we generate the moves and scan them to get their
weights. If the move leads to a successor which has a lower evaluation score than
its parent, we set the weight of a move to a preset minimum value (close to zero).
If a move leads to a win, it will be immediately played. The pseudo code for this
strategy is given in Fig. 2.

4.3 Greedy

In the Greedy strategy the evaluation function is more directly applied for se-
lecting moves: the move leading to the position with the highest evaluation score
is selected. However, because evaluating every move is time consuming, we eval-
uate only moves that have a good potential for being the best. For this strategy
it means that only the k -best moves according to their transition probabilities
are fully evaluated. As in the Evaluation Cut-Off strategy, when a move leads
to a position with an evaluation over a preset threshold, the play-out is stopped
and scored as a win. Finally, the remaining moves — which are not heuristically
evaluated — are checked for a mate. The pseudo code for the Greedy strategy
is given in Fig. 3.



8 M.H.M. Winands and Y. Björnsson

Greedy(Board b){

moveList = generateMoves();

assignAndSort(moveList);

counter = 0;

foreach(Move m in moveList){

if(counter < k){

value = evaluate(board, m);

if(value > bound){

return m;

}

if(value > max){

best = m;

max = value;

}

}

else {

if(evaluateWin(board, m)) {

return m;

}

}

counter++;

}

return best;

}
Fig. 3. Pseudo code for the Greedy strategy

4.4 Mixed

A potential weakness of the Greedy strategy is that despite a small random factor
in the evaluation function, it is too deterministic. The Mixed strategy combines
the Corrective strategy and the Greedy strategy. The Corrective strategy is used
in the selection step, i.e., at tree nodes where a simulation strategy is needed
(i.e., n < T ), as well as in the first position entered in the play-out step. For the
remainder of the play-out the Greedy strategy is applied.

5 Experiments

In this section we evaluate the performance of the four aforementioned simula-
tion strategies by letting them play against themselves and the LOA program
MIA. First, we briefly explain MIA in Subsect. 5.1. Next, several settings of the
Evaluation Cut-Off strategy are tested in Subsect. 5.2. Subsequently, in order
to test the quality of the four simulation strategies, we match them in a round-
robin tournament in Subsect. 5.3. Finally, in Subsect. 5.4 we evaluate the playing
strength of a MC-based LOA program, using the best settings found in previous
subsections, against the αβ-based program MIA.



Evaluation Function Based Monte-Carlo LOA 9

Table 1. 1000-game match results

Bound 0 100 200 400 600 700 800 1000 1200 1400 No-Bound

No-Bound 150.5 149.0 155.5 118.0 112.0 99.0 86.5 57.0 47.0 22.0 X

MIA III 246.0 246.0 227.5 231.5 218.0 253.5 247.5 335.0 398.0 510.5 998

MIA 4.5 794.0 795.0 776.0 768.5 720.0 717.0 754.0 781.0 834.5 868.0 999

Avg. Game Len. 2 2.67 3.56 5.85 8.45 9.83 11.17 13.94 16.65 19.18 53.7

Games per Sec. 10074 9242 8422 6618 5260 4659 4211 3507 2995 2611 2060

In the following experiments each match data point represents the result of
1,000 games, with both colors played equally. A standardized set of 100 three-
ply starting positions [2] was used, with a small random factor in the evaluation
function preventing games from being repeated. The thinking time was set to 1
second per move. All experiments were performed on an AMD Opteron 2.2 GHz
computer.

5.1 MIA

MIA is a world-class LOA program, which won the LOA tournament at the
eighth (2003), ninth (2004), and eleventh (2006) Computer Olympiad. It is con-
sidered the best LOA-playing entity in the world. All our experiments were
performed using the latest and strongest version of the program, MIA 4.5.3

MIA performs an αβ depth-first iterative-deepening search in the Enhanced-
Realization-Probability-Search framework [17]. The program uses state-of-the-
art αβ enhancements [16].

5.2 Parameter Tuning

In the first series of experiments we tested different cut-off bounds for the Eval-
uation Cut-Off strategy. For each setting a program using the strategy played
a match against three other programs. The results are given in Table 1. The
No-Bound strategy draws the moves as the Evaluation Cut-Off strategy, but
always plays simulations out to the end. As we see, such a strategy loses the
majority of its games against every setting of the Evaluation Cut-Off strategy:
the higher the bound the more the No-Bound strategy loses. Of interest is the
relatively good performance of even a bound value of 0, meaning practically
that every simulation is cut-off and scored after 2-ply. Nonetheless, under this
setting Evaluation Cut-Off still wins most of its games against the No-Bound
strategy. The early termination allows more simulations to be performed in the
same amount of time, e.g., using a cut-off value of 700 results in over twice as
many simulations.

Tuning the bound parameter against a similar (weaker) MC-LOA program
may lead to a suboptimal value. Therefore we also played the program against
two MIA versions. The first used the MIA III evaluator and the second the MIA
4.5 evaluator. Both versions used the latest search engine. We see in Table 1
3 The program can be found at: http://www.personeel.unimaas.nl/m-winands/loa/.



10 M.H.M. Winands and Y. Björnsson

that the best bound parameter is somewhere around 600–700. The value of 700
for the bound parameter will be used for the remaining experiments. Moreover,
the relative good performance of the 0 setting is again remarkable. What is
different from the runs against the No-Bound strategy is that the performance
starts to deteriorate when the bound exceeds 1000. Next, the Evaluation Cut-Off
strategy significantly improves how well simulations do against an αβ program.
For example, whereas the two versions of MIA win 99% of their games against
the No-Bound strategy, MIA III and MIA 4.5 only win 22% and 72% of the
games against the best settings of the Evaluation Cut-Off strategy. Finally, the
average length and the speed of the play-outs are given in the last two rows of
Table 1, respectively.

5.3 Round-Robin Experiments

In the second series of experiments we quantify the performance of the four sim-
ulation strategies in a round-robin tournament. The results are given in Table
2. Surprisingly, the heavily evaluation-function based Greedy strategy was the
weakest of the four. The Corrective strategy was better than the Evaluation Cut-
Off and Greedy strategy. But, the Mixed strategy, a combination of Corrective
and Greedy, outperformed the other ones. The latter result shows that the eval-
uation function can be directly used for selecting moves as done by Greedy, but
not at the start of a simulation. The first moves should be highly randomized.

5.4 MC-LOA vs. MIA

Finally, in the third series of experiments we matched the MC-LOA program
using the Mixed strategy against the αβ-based program MIA. The thinking
time was set to 5 seconds per move.

The results are given in Table 3. We see from row two that the regular MC-
LOA program played almost as well as MIA, receiving a 46% winning score.
One nice benefit of MCTS is that it can be parallelized quite easily compared
to αβ search. We tested a two- and four-threaded MC-LOA program against
(a single-threaded) MIA and they won 56% and 60%, respectively. We do not
have a parallel version of MIA, however, we ran an experiment where the two-
threaded MC-LOA program competed against MIA, where MIA was given 50%
more time (simulating a search efficiency increase of 50% if MIA were to be given
two processors). A 1,000 game match resulted in a 52% winning percentage for
MC-LOA.

Table 2. Tournament results

Strategy Evaluation Cut-Off Corrective Greedy Mixed

Evaluation Cut-Off - 442.5 598.0 325.5

Corrective 557.5 - 674.0 362.0

Greedy 402.9 326.0 - 167.0

Mixed 674.5 638.0 833.0 -



Evaluation Function Based Monte-Carlo LOA 11

Table 3. 1,000-game match results

Score Win % Winning ratio

1 × MC-LOA vs. MIA 4.5 458.0 - 542.0 46% 0.85

2 × MC-LOA vs. MIA 4.5 563.5 - 436.5 56% 1.29

4 × MC-LOA vs. MIA 4.5 602.5 - 397.5 60% 1.52

It is beyond the scope of paper to investigate in how far MCTS scales better
than αβ. To give an indication, experiments revealed that for 1 second per move
MC-LOA won 42% of the games, whereas for 5 seconds per move MC-LOA
already won 46% of the games.

6 Conclusion and Future Research

In this paper we investigated how to use a positional evaluation function to
enhance a simulation based LOA program. Four different simulation strategies
were designed, called Evaluation-Cut Off, Corrective, Greedy, and Mixed.

Our experimental results showed that the Mixed strategy of playing greedily
in the play-out phase, but exploring more in the earlier selection phase, although
in a way such that it avoids moves that immediately deteriorate the position,
works the best. Experiments also showed that applying an evaluation function
to stop simulations when a game is judged to be effectively over, resulted in a
significant increase in both the number of simulations and playing strength.

Collectively, these enhancements resulted in our simulation based MC-LOA
program to play at a comparable level as the world-class αβ-based program MIA.
Moreover, equipped with a simple root parallelization the MC-LOA program
outperformed MIA both when using two and four threads. Based on the greatly
improved playing strength we witnessed in the MC-LOA program when adding
the enhancements proposed here, we believe that it is only a matter of time until
simulation-based programs will significantly outperform αβ-based programs in
the game LOA. This is an important milestone for MCTS, because up until now
the traditional game-tree search approach has generally been considered to be
better suited for the game LOA.

As a future research we plan to further work on enhancing the simulation
strategies both by tuning the various parameters involved and by combining the
strategies in more elaborate ways.

References

1. B. Abramson. Expected-outcome: A general model of static evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(2):182–193, 1990.

2. D. Billings and Y. Björnsson. Search and knowledge in Lines of Action. In H.J.
van den Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer Games
10: Many Games, Many Challenges, pages 231–248. Kluwer Academic Publishers,
Boston, MA, USA, 2003.



12 M.H.M. Winands and Y. Björnsson

3. B. Bouzy and B. Helmstetter. Monte-Carlo Go Developments. In H.J. van den
Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer Games 10: Many
Games, Many Challenges, pages 159–174. Kluwer Academic Publishers, Boston,
MA, USA, 2003.

4. B. Brügmann. Monte Carlo Go. Technical report, Physics Department, Syracuse
University, 1993.

5. T. Cazenave and J. Borsboom. Golois Wins Phantom Go Tournament. ICGA
Journal, 30(3):165–166, 2007.

6. T. Cazenave and N. Jouandeau. On the parallelization of UCT. In H.J. van den
Herik, J.W.H.M. Uiterwijk, M.H.M. Winands, and M.P.D. Schadd, editors, Pro-
ceedings of the Computer Games Workshop 2007 (CGW 2007), pages 93–101. Uni-
versiteit Maastricht, Maastricht, The Netherlands, 2007.

7. G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy. Progressive strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation, 4(3):343–357, 2008.

8. G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van den Herik. Parallel monte-carlo
tree search. In H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands, editors,
Computers and Games (CG 2008), volume 5131 of Lecture Notes in Computer
Science (LNCS), pages 60–71.

9. R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search.
In H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Comput-
ers and Games (CG 2006), volume 4630 of Lecture Notes in Computer Science
(LNCS), pages 72–83. Springer-Verlag, Heidelberg, Germany, 2007.

10. H. Finnsson and Y. Björnsson. Simulation-based approach to general game play-
ing. In D. Fox and C.P. Gomes, editors, Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008, pages 259–264, 2008.

11. S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In
Z. Ghahramani, editor, Proceedings of the International Conference on Machine
Learning (ICML), pages 273–280. ACM, 2007.

12. L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. In J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, editors, Machine Learning: ECML 2006, volume
4212 of Lecture Notes in Artificial Intelligence, pages 282–293, 2006.

13. R.J. Lorentz. Amazons discover monte-carlo. In H.J. van den Herik, X. Xu, Z. Ma,
and M.H.M. Winands, editors, Computers and Games (CG 2008), volume 5131 of
Lecture Notes in Computer Science (LNCS), pages 13–24, 2008.

14. S. Sackson. A Gamut of Games. Random House, New York, NY, USA, 1969.
15. Y. Tsuruoka, D. Yokoyama, and T. Chikayama. Game-tree search algorithm based

on realization probability. ICGA Journal, 25(3):132–144, 2002.
16. M.H.M. Winands. Informed Search in Complex Games. PhD thesis, Universiteit

Maastricht, Maastricht, The Netherlands, 2004.
17. M.H.M. Winands and Y. Björnsson. Enhanced realization probability search. New

Mathematics and Natural Computation, 4(3):329–342, 2008.
18. M.H.M. Winands, Y. Björnsson, and J-T. Saito. Monte-carlo tree search solver. In

H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands, editors, Computers and
Games (CG 2008), volume 5131 of Lecture Notes in Computer Science (LNCS),
pages 25–36.

19. M.H.M. Winands and H.J. van den Herik. MIA: a world champion LOA program.
In The 11th Game Programming Workshop in Japan (GPW 2006), pages 84–91,
2006.

20. P. Zhang and K-H. Chen. Monte Carlo Go capturing tactic search. New Mathe-
matics and Natural Computation, 4(3):359–367, 2008.


