
April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

New Mathematics and Natural Computation
c© World Scientific Publishing Company

ENHANCED REALIZATION PROBABILITY SEARCH

MARK H.M. WINANDS

MICC-IKAT Games and AI Group, Faculty of Humanities and Sciences
Universiteit Maastricht, P.O. Box 616 6200MD Maastricht, The Netherlands

m.winands@micc.unimaas.nl

YNGVI BJÖRNSSON

Department of Computer Science, Reykjav́ık University
Ofanleiti 2 IS-103 Reykjav́ık, Iceland

yngvi@ru.is

In this paper we show that Realization Probability Search (RPS) significantly improves
the playing strength of a world-class Lines-of-Action (LOA) computer program, even
when used in combination with existing state-of-the-art αβ search enhancements. In
a 600-game match a RPS-based version of the program defeats the original one with a
winning score of 62.5%. The main contribution of the paper, however, is the introduction
of a much improved variant of RPS, called Enhanced Realization Probability Search
(ERPS). The new algorithm addresses two weaknesses of RPS and overcomes them by
using a better focussed re-searching scheme, resulting in both more robust tactical play
and reduced search overhead. Our experiments in the domain of LOA show that ERPS
offers just as significant improvement over regular RPS, as the latter improves upon
regular search. More specifically, the ERPS-based variant scores 62.1% against the RPS
variant, and an impressive 72.2% score against the original program. This represents an
improvement of over 100 ELO points over the original state-of-the-art player.

Keywords: Search; heuristics; games.

1. Introduction

The alpha-beta (αβ) algorithm14 is the standard search procedure for playing board
games such as chess and checkers (and many others). The playing strength of pro-
grams employing the algorithm depends greatly on how deep they search critical
lines of play. Therefore, over the years, many techniques for augmenting alpha-beta
search with a more selective tree-expansion mechanism have been developed, so
called variable-depth search techniques.4 Promising lines of play are explored more
deeply (search extensions), at the cost of others less interesting that are cut off pre-
maturely (search reductions or forward pruning). Examples of widely used variable-
depth search techniques are: singular extensions,2 null-move,9 (multi-)probcut ,8

multi-cut,5 and late-move reductions.20 Although all the aforementioned techniques
aim at being domain independent, there are often specific search-space properties
that make particular methods better suited than others for use in a given domain.

1

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

2 M.H.M. Winands and Y. Björnsson

For example, the null-move technique has proven very successful in chess, whereas
multi-probcut is the method of choice in Othello. Sometimes, new insights lead
to ways for generalizing particular schemes such that they become applicable to a
wider range of search domains.

One recent addition to the family of variable-depth search techniques is Realiza-
tion Probability Search (RPS), introduced by Tsuruoka et al.23 in 2002. Using this
technique his program, Gekisashi, won the 2002 World Computer Shogi Cham-
pionship, resulting in the algorithm gaining a wide acceptance in computer Shogi.
Although researchers have experimented with the algorithm in other game domains
with some success,10 the question still remains how well the RPS enhancement
works in other domains when used in a state-of-the-art game-playing program in
combination with existing search enhancement schemes.

In this paper we investigate the use of RPS in the game of Lines of Action (LOA).
The contributions of this work are twofold. First, we demonstrate the usefulness
of the RPS scheme in the domain of LOA by successfully incorporating it into
a world-class program, effectively raising the level of state-of-the-art game-play
in that domain. Secondly, we introduce two important enhancements to the RPS
algorithm to overcome problems it has with endgame positions. This improvement,
which we label Enhanced Realization Probability Search (ERPS), greatly improves
the effectiveness of RPS in our game domain. We conjecture that the enhancements
may offer similar benefits in other game domains as well.

The paper is organized as follows. Section 2 briefly explains the RPS algorithm.
In Section 3 we experiment with the RPS algorithm in the domain of LOA, and
highlight its strengths and weaknesses. In Section 4 we introduce Enhanced Re-
alization Probability Search, and we empirically evaluate it in Section 5. Finally,
Section 6 gives conclusions and an outlook for future research.

2. Realization Probability Search

In this section we explain Realization Probability Search (RPS).23 Move categories
and fractional-ply extensions are explained in Subsection 2.1, probability-based frac-
tional plies are explained in Subsection 2.2, and the RPS algorithm is outlined in
Subsection 2.3.

2.1. Fractional plies and move categories

When making a move decision, game-playing programs typically search in an itera-
tive fashion. From the current game position they start by searching one ply ahead,
then two, and so on until the allotted time is up. The lookahead depth of each
iteration, i.e., the numbers of plies, is called the nominal search depth. However, in
each iteration most modern programs do not explore all lines of play to the exact
nominal depth — some are explored more deeply whereas others are terminated
prematurely.

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

Enhanced Realization Probability Search 3

1.0

1.0

0.5

1.0

2.0

Fig. 1. Fractional-ply example.

A common framework for achieving such selectivity is the use of so-called
fractional-ply extensions.13,16 In this framework, instead of counting each move al-
ways as one ply towards the nominal search depth, moves are classified into different
categories each with a different fractional ply-depth (or weight). This is illustrated
in Figure 1. In the example there are three move categories, with weights 0.5, 1.0,
and 2.0, respectively. The game tree is traversed in a left-to-right depth-first man-
ner. Each line of play is expanded until the summed weights of the moves on the
path from the root to the current node reaches (or exceeds) the nominal depth of
3.0. Because of the different weights, some lines of play are explored deeper than
others. For example, in the figure the line of play to the left gets explored only
2-ply deep whereas the one to the right is explored 4-ply deep. This approach thus
combines both search extensions (i.e., allows lines to be explored deeper than the
nominal depth) and reductions (i.e., terminates lines before the nominal depth is
reached) into a unified scheme. The name fractional-ply extensions, although an
established term, is thus somewhat misleading. The reason for the name is that
when the scheme was first introduced the fractional-plies where constrained to be
less or equal to one, thus only resulting in extensions.

The moves are classified as belonging to different categories based on game-
dependent features. For example, in chess, one category could be checking moves,
another recaptures, etc. In other games different categories are used, for example,
we describe the categories for LOA in Subsection 3.2. The categories are typically
constructed manually. The same is true for the weights, although recently machine
learning approaches have been used successfully to automatically tune them.4,15

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

4 M.H.M. Winands and Y. Björnsson

2.2. Realization probabilities

The RPS algorithm is a new way of using fractional-ply extensions. The algorithm
uses a probability-based approach to assign fractional-ply weights to move cate-
gories, and then uses re-searches to verify selected search results.

First, for each move category one must determine the probability that a move
belonging to that category will be played. This probability is called the transition
probability. This statistic is obtained from game records of matches played by expert
players. The transition probability for a move category c is calculated as follows:

Pc =
nplayed(c)

navailable(c)
(2.1)

where nplayed(c) is the number of game positions in which a move belonging to
category c was played, and navailable(c) is the number of positions in which moves
belonging to category c were available.

Originally, the realization probability of a node represented the probability that
the moves leading to the node will be actually played. By definition, the realization
probability of the root node is 1. The transition probabilities of moves were then
used to compute the realization probability of a node in a recursive manner (by
multiplying together the transition probabilities on the path leading to the node).
If the realization probability would become smaller than a predefined threshold, the
node would become a leaf. Since a probable move has a large transition probabil-
ity while an improbable has a small probability, the search proceeds deeper along
probable move sequences than improbable ones.

Instead of using the transition probabilities directly, we transform them into
fractional plies as suggested by Tsuruoka et al.23 The fractional ply FP of a move
category is calculated by taking the logarithm of equation 2.1 in the following way:

FP =
log(Pc)
log(C)

(2.2)

where C is a constant between 0 and 1. Experiments that we performed with our
engine indicate that a value of 0.25 is a good setting for C in our game domain.
Note that this setting is probably domain dependent, and a different value could
be more appropriate in a different game or even game engine.

The fractional-ply values will be calculated off-line for all the different move
categories, and used on-line by the search (as shown in Figure 1). We note that
in the case where FP is larger than 1 it means the search is reduced while in the
case FP is smaller than 1 the search is extended. By converting the transition
probabilities to fractional plies, move weights now get added together instead of
being multiplied. This has the advantage that we can use RPS alongside popular
variable-search depth methods like null-move or multi-cut, which measure depth
similarly.

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

Enhanced Realization Probability Search 5

2.3. RPS algorithm

In the previous subsection we saw that the FP values of the move categories are
used to set the depth of the move to be explored. If one would naively implement
this cut-off criterion simply based on the weights of the move categories one runs
into difficulties because of the horizon effect. Move sequences with high FP values
(i.e., low transition probability) get terminated quickly. Thus, if a player experiences
a significant drop in its positional score as returned by the search, it is eager to play
a possibly inferior move with a higher FP value, simply to push the inevitable score
drop beyond its search horizon.

To avoid this problem, the algorithm is instructed to performs a deeper re-
search for a move whose value is larger than the current best value (i.e., the α

value). Instead of reducing the depth of the re-search by the fractional-ply value
of the move (as is generally done), the search depth is decreased only by a small
predefined FP value. In here we refer to it as minFP, and set it equal to the lowest
move category value.

Apart from how the ply depth is determined, and the re-search, the algorithm is
otherwise almost identical to NegaScout/PVS.18,19 Figure 2 shows a C-like pseudo-
code. Since the purpose of the preliminary search is only to check whether a move
will improve upon the current best value, a null-window may be used.

3. RPS in LOA

In this section we investigate the application of RPS in LOA. First, we explain
the game of LOA in Subsection 3.1; then, in Subsection 3.2, we shortly discuss the
program MIA, and finally provide experimental evaluation of RPS in Subsection
3.3.

3.1. LOA

LOA (Lines of Action)21 is a checkers-like game, but with a connection-based goal.
The game is played on an 8 × 8 board by two sides, Black and White. Each side
has twelve pieces at its disposal. The starting position is shown in Figure 3a. The
players take turns moving a piece, starting with Black. A piece moves in a straight
line, exactly as many squares as there are pieces of either color anywhere along the
line of movement (see Figure 3b). A player may jump over its own pieces. A player
may not jump over the opponent’s pieces, but can capture them by landing on
them. The goal of a player is to be the first to create a configuration on the board
in which all own pieces are connected in one unit (see Figure 3c). The connections
within the unit may be either orthogonal or diagonal. In the case of simultaneous
connection, the game is drawn. If a player cannot move, the player must pass. If a
position with the same player to move occurs for the third time, the game is drawn.

Recently, LOA was used as a domain to test several new search and various
other AI techniques.3,12,25

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

6 M.H.M. Winands and Y. Björnsson

RPS(node, alpha, beta, depth){

//Transposition table lookup, omitted

.....................................

if(depth == 0)

return evaluate(pos);

//Do not perform forward pruning in a potential principal variation

if(node.node_type != PV_NODE){

//Forward-pruning code, omitted

.....................................

if(forward_pruning condition holds) return beta;

}

next = firstSuccessor(node);

while(next != null){

alpha = max(alpha, best);

decDepth = FP(next);

//Preliminary Search Null-Window Search Part

value = -RPS(next, -alpha-1, -alpha, depth-decDepth);

//Re-search

if(value > alpha)

value = -RPS(next, -beta, -alpha, depth-minFP);

if(value > best){

best = value;

if(best >= beta) goto Done;

}

next = nextSibling(next);

}

Done: //Store in Transposition table, omitted

.....................................

}

Fig. 2. Pseudo code for Realization Probability Search.

3.2. MIA

MIA (Maastricht In Action) is a world-class LOA program, which won the LOA
tournament at the eighth (2003), ninth (2004), and eleventh (2006) Computer
Olympiad. It is considered the best LOA-playing entity in the world. All our exper-
iments were performed in the latest version of the program, MIA 4.5.a The program
is written in Java.

aThe program and test sets can be found at: http://www.cs.unimaas.nl/m.winands/loa/.

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

Enhanced Realization Probability Search 7

Fig. 3. (a) The initial position. (b) An example of legal moves. (c) Terminal position: Black wins.

MIA performs an αβ depth-first iterative-deepening search in the PVS frame-
work. A two-deep transposition table7 is applied to prune a subtree or to narrow
the αβ window. At all interior nodes that are more than 2 ply away from the leaves,
it generates all moves to perform Enhanced Transposition Cutoffs (ETC).22 Next,
a null-move9 is performed adaptively.11 Then, an enhanced multi-cut is performed.
5,27 For move ordering, the move stored in the transposition table (if applicable)
is always tried first, followed by two killer moves.1 These are the last two moves
that were best, or at least caused a cutoff, at the given depth. Thereafter follow:
(1) capture moves going to the inner area (the central 4× 4 board) and (2) capture
moves going to the middle area (the 6×6 rim). All the remaining moves are ordered
decreasingly according to the relative history heuristic.28 At the leaf nodes of the
regular search, a quiescence search is performed to get more accurate evaluations.
For additional details on the search engine and the evaluation function used in MIA,
we refer to the Ph.D. thesis Informed Search in Complex Games.25

RPS is applied in MIA in the following way. First, we classify moves as captures
or non-captures. Next, moves are further sub-classified based on the origin and
destination of the move’s from and to squares. The board is divided into five different
regions: the corners, the 8× 8 outer rim (except corners), the 6× 6 inner rim, the
4 × 4 inner rim and the central 2 × 2 board. Finally, moves are further classified
based on the number of squares traveled away from or towards the center-of-mass.
In total 277 move categories can occur in the game according to this classification.
The FP values of the move categories are between 0.5 and 4.0 (inclusive).

Table 1 gives the FP values of Black’s moves in the position depicted in Figure
3b. On the one hand, a move that puts a piece further away from the center-of-
mass (e.g., d3-b5) or puts a center piece in a corner (e.g., e4-h1) has a relatively
high FP value. This indicates that the moves are improbable and therefore only a
shallow search has to be performed. On the other hand, moves capturing pieces in
the opponent’s center-of-mass (e.g., d3xd5 or c3xc6) have a low FP value. This
indicates that the moves are promising and therefore a deeper search has to be
performed.

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

8 M.H.M. Winands and Y. Björnsson

Table 1. FP values of Black’s moves in Figure 3b.

Move FP value
h2-g1 1.90
h7-g8 3.10
g4xe2 1.22
g4-h3 3.39
g4-f5 1.97
h2-f4 1.12
e4-h1 4.00
h7-f7 1.70
d3-b5 4.00

Move FP value
c3xc6 0.95
c3-d2 1.57
c3-b4 3.14
d3-d1 3.73
d3xd5 0.78
e4xe2 1.50
e4-e6 3.30
e4-c4 4.00
c3-f3 1.43

Move FP value
d3-g3 2.33
d3xa3 4.00
g4-g3 1.80
g4-g5 1.80
h2-f2 1.70
c3-d4 1.79
c3-b2 3.14
h7-h5 1.67
h2-h4 1.90

3.3. Experiments

In the first experiment we tested how RPS affects the program’s playing strength.b

Two versions of MIA were matched against each other, one using RPS and the
other not (called “Classic”). The programs are otherwise identical, and use all the
enhancements described in Subsection 3.2. The programs played 600 games against
each other, playing both colors equally. They always started from the same stan-
dardized set of 100 three-ply positions.3 The thinking time was limited to 10 seconds
per move, simulating tournament conditions. To prevent the programs from repeat-
ing games, a small random factor was included in their evaluation function.

Table 2. 600-game match results.

Score Winning % Winning ratio

RPS vs. Classic 375-225 62.5% 1.67

The results are given in Table 2. The RPS version outplayed the original program
with a winning score of 62.5% of the available points. The winning ratio is 1.67,
meaning that it scored 67% more points than the opponent, showing that RPS
improves the playing strength of MIA significantly. This experiment confirms the
findings of Hashimoto et al.10

In the next experiment, Classic and RPS were tested on a set of 286 forced-
win LOA positions. The maximum number of nodes evaluated is 50,000,000. The
results are given in Table 3. The first column gives the names of the algorithms,
the second the number of positions solved, and the third and fourth the number of
nodes searched and the time it took, respectively. In the second column we see that
186 positions are solved by Classic, 130 positions by RPS. In the third and fourth

bThe experiments were run on an AMD Opteron 2.6 GHz processor.

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

Enhanced Realization Probability Search 9

column the number of nodes and the time consumed are given for the subset of
120 positions, which both algorithms are able to solve. We see that not only does
Classic solve more problems, but for those problems that both algorithms solve
it explores three times smaller trees (in half the time). This shows that Classic,
although performing worse in game play, is still the better tactical endgame solver.

Table 3. Comparing the search algorithms on 286 test positions with a limit of 50,000,000 nodes.

Algorithm # of positions solved 120 positions
(out of 286) Total # of nodes Total time (ms.)

Classic 186 557,663,533 1,245,883
RPS 130 1,400,473,146 2,400,466

Also of interest in Table 3 is that RPS is searching faster, that is, it explores
20-30 percent more nodes per second (nps) than its Classic counterpart. There are
two reasons for this. First, RPS performs more re-searches than Classic. Re-visited
nodes are often faster to generate and evaluate because of cached information. For
example in MIA incremental move generation is implemented. The complete move
list will be generated only after we have tried the transposition-table move and killer
moves first. Moreover, in the evaluation function of MIA computations of certain
features are cached, which can be used in other (deeper) positions.26 Second, RPS
searches deeper and narrower than Classic.10,24 The deeper the search goes, the
fewer the pieces are on the board, and the faster the nodes are evaluated in MIA.

We would like to remark that the potential difference in nps between RPS and
Classic may depend on the game domain and program implementation.

4. Enhanced Realization Probability Search

In the previous section we saw that RPS outplays Classic in actual game-play, de-
spite it solving fewer of the positions in our tactical test-suit. The added positional
understanding gained with a deeper nominal search depth (because of the prun-
ing) does apparently more than compensate for the tactics the program overlooks
(because of the pruning). In this section we introduce Enhanced Realization Proba-
bility Search (ERPS), an improved variant that is tactically much safer than regular
RPS, while still maintaining its positional advantages.

We identify two problems with RPS:

(1) A move causing a fail-low (i.e., the value returned from the search is less or
equal to the lower bound of our search window) will always be ignored. A
tactical move belonging to a move category with a high reduction factor may
be wrongly pruned away because of a horizon effect. In this case there is a risk
that the best move will not be played.

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

10 M.H.M. Winands and Y. Björnsson

(2) A move causing a fail-high (i.e., the value returned from the search is greater
or equal to the upper bound of our search window) will always be re-searched
with minimal FP. A weak move may be unnecessarily extended because of a
horizon effect. In this case valuable computing resources are wasted, resulting
in a shallower nominal search depth.

Our enhancements aim at overcoming the aforementioned problems with RPS.
The first one is based on an idea proposed by Björnsson et al.;6 they suggest that
pruning should take place only after the first m moves have been searched (i.e.,
looking at the rank of the move in the move ordering). This principle is applied
in recent pruning techniques, such as LMR and RankCut.17 Thus, to alleviate the
first of the aforementioned problems of RPS, we cap the reduced depth of the first
m moves to a maximum value t. This avoids aggressive reductions for early moves.

The second enhancement improves on how re-searches are done. Instead of per-
forming a re-search right away to a full depth, we first interleave a shallower in-
termediate re-search (using a depth reduction that is the average of the original
reduce depth and minFP). If that re-search also results in a fail-high, only then
is the full-depth re-search performed. We restrict these intermediate re-searches to
cases where there is a substantial difference between the original and full re-search
depths (the averaged decrease depth is larger than a predefined threshold delta).
This prevents insignificant explorations.

A pseudo code of ERPS is provided in Figure 4, providing the details of the
implementation.

5. Experiments

In this section we empirically evaluate ERPS. The setup is similar to the earlier
experiments: first the tactical strength is tested in Subsection 5.1, then the overall
playing-strength in Subsection 5.2. In both cases we use parameter setting of (t=1,
m=5, and delta=1.5), determined by trial and error.

5.1. Tactical strength of ERPS

In this experiment Classic and ERPS are tested on the same 286 forced-win LOA
positions. The results are given in Table 4. In the first column the algorithms are
mentioned. In the second column we see that 186 positions are solved by Classic,
and 215 positions by ERPS. In the third and fourth column the number of nodes
and the time consumed are given for the common subset of 174 positions that both
algorithms solved. A look at the third column shows that ERPS search is a little
bit more efficient than Classic in number of nodes explored. However, we see that
ERPS is much faster than Classic in CPU time in the fourth column. For the same
reasons as discussed in Subsection 3.3 ERPS generates faster nodes than Classic.
Next, ERPS solves significantly more positions and is faster than Classic. As seen in
Subsection 3.3 Classic was a superior solver compared to RPS. Thus, this suggests
that ERPS search is a better endgame solver than RPS.

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

Enhanced Realization Probability Search 11

.....................................

while(next != null){

alpha = max(alpha, best);

decDepth = FP(next);

//Enhancement 1

if(decDepth > t && moveCounter <= m)

decDepth = t;

//Preliminary Search Null-Window Search Part

value = -RPS(next, -alpha-1, -alpha, depth-decDepth);

//Re-search

if(value > alpha){

//Enhancement 2

dec_depth = (minFP + dec_depth)/2;

if(dec_depth>delta)

value = -RPS(next, -alpha-1, -alpha, depth-decDepth);

if(value > alpha)

value = -RPS(next, -beta, -alpha, depth-minFP);

}

if(value > best){

best = value;

if(best >= beta) goto Done;

}

next = nextSibling(next);

}

.....................................

Fig. 4. ERPS: Two enhancements for Realization Probability Search.

Table 4. Comparing the search algorithms on 286 test positions with a limit of 50,000,000 nodes.

Algorithm # of positions solved 174 positions
(out of 286) Total # of nodes Total time (ms.)

Classic 186 1,224,042,920 2,848,431
ERPS 215 1,148,726,418 2,011,530

Since ERPS is a combination of two enhancements, we also tested the perfor-
mance of each enhancement separately. The results are given in Table 5, where
RPS-E1 indicates a RPS equipped with only the first enhancement and RPS-E2 a
RPS equipped with only the second enhancement. Both enhanced variants of RPS
are again compared to Classic. We see that RPS-E1 solved 175 positions and RPS-
E2 183 positions, compared to 130 positions by RPS (as seen in Table 3). Thus,

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

12 M.H.M. Winands and Y. Björnsson

both enhancements seem to be equally important. Moreover, the performance im-
provement of the enhancements seems to be additive because, as noted in Table 4,
they solve 215 positions when used collectively.

Table 5. Comparing the search algorithms on 286 test positions with a limit of 50,000,000 nodes.

Algorithm # of positions solved 152 positions
(out of 286) Total # of nodes Total time (ms.)

Classic 186 911,024,108 2,097,086
RPS-E1 175 1,753,947,068 2,970,302

Algorithm # of positions solved 156 positions
(out of 286) Total # of nodes Total time (ms.)

Classic 186 963,640,832 2,181,385
RPS-E2 183 1,426,659,510 2,391,106

5.2. Playing strength of ERPS

In the last experiment we tested the playing strength of ERPS in actual game play.
ERPS was matched against both the Classic version and the RPS version of MIA.
All programs played under the same tournament conditions as used before. The
results are given in Table 6. For a comparison the result of RPS against Classic is
included as well.

The ERPS version outplays the original RPS version with a score of 62.1% (and
a winning ratio of 1.63). This is similar level of improvement as RPS was over
the Classic version. We also tested the ERPS version against the Classic version.
ERPS, as expected, beats Classic with an even higher winning score (i.e., 72.2%).
The results show that ERPS in a genuine improvement, significantly improving
upon RPS.

Table 6. 600-game match results.

Score Winning % Winning ratio
ERPS vs. RPS 372.5-227.5 62.1% 1.63

ERPS vs. Classic 433-167 72.2 % 2.59
RPS vs. Classic 375-225 62.5% 1.67

6. Conclusions and Future Research

In this paper we demonstrated the effectiveness of Realization Probability Search
(RPS) in the game LOA, using a world-class LOA-playing program for our exper-

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

Enhanced Realization Probability Search 13

iments. We showed that RPS offers significant benefits, even when used in con-
junction with other well-established state-of-the-art search enhancements. Further-
more, we introduced an improved variant of RPS: Enhanced Realization Probability
Search (ERPS). The new algorithm is more robust tactically, resulting in much im-
proved playing strength (in our test domain the improvement over regular RPS is of
the same magnitude as the improvement RPS shows over regular search). A version
of the LOA program enhanced with ERPS defeats the original LOA program by a
winning score of 72.2%. This represents an improvement of over 100 ELO points,
which is even more so impressive given that the original version was already playing
at world-class level. The enhanced search variant may also offer benefits in other
game-playing domains, as it does not rely on domain-specific knowledge.

As for future work, further refinement of the various parameters used in the
ERPS algorithm may offer even further improvement, e.g., by allowing for a
smoother transition when deciding to the decrease depth. The natural next step
would be to test the ERPS algorithm in Shogi, a domain where RPS is already
widely used. An even more aspiring goal would be to try it in chess. The search
engines used in LOA programs are much similar to those used in a chess program,
and share many of the same search enhancements. We have shown here that ERPS
offers great benefits, even when used in conjunction with those other search en-
hancements. What makes this a somewhat more difficult task, is that additional
work is required in defining a broad classification of possible move categories for
chess.

Acknowledgments

This research was supported by grants from The Icelandic Centre for Research
(RANNÍS) and by a Marie Curie Fellowship of the European Community pro-
gramme Structuring the ERA under contract number MIRG-CT-2005-017284. We
would also like to thank Jahn-Takeshi Saito and Erik van der Werf for proof-reading
the paper.

References

1. S.G. Akl and M.M. Newborn. The principal continuation and the killer heuristic. In
1977 ACM Annual Conference Proceedings, pages 466–473. ACM Press, New York,
NY, USA, 1977.

2. T.S. Anantharaman, M. Campbell, and F.-h. Hsu. Singular extensions: Adding selec-
tivity to brute-force searching. ICCA Journal, 11(4):135–143, 1988. Also published
(1990) in Artificial Intelligence, Vol. 43, No. 1, pp. 99–109.

3. D. Billings and Y. Björnsson. Search and knowledge in lines of action. In H.J. van den
Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer Games 10: Many
Games, Many Challenges, pages 231–248. Kluwer Academic Publishers, Boston, MA,
USA, 2003.

4. Y. Björnsson. Selective Depth-First Game-Tree Search. PhD thesis, University of Al-
berta, Edmonton, Canada, 2002.

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

14 M.H.M. Winands and Y. Björnsson

5. Y. Björnsson and T.A. Marsland. Multi-cut alpha-beta pruning. In H.J. van den
Herik and H. Iida, editors, Computers and Games, volume 1558 of Lecture Notes in
Computing Science (LNCS), pages 15–24. Springer-Verlag, Berlin, Germany, 1999.

6. Y. Björnsson, T.A. Marsland, J. Schaeffer, and A. Junghans. Searching with uncer-
tainty cut-offs. ICCA Journal, 20(1):29–37, 1997.

7. D.M. Breuker, J.W.H.M. Uiterwijk, and H.J. van den Herik. Replacement schemes
and two-level tables. ICCA Journal, 19(3):175–180, 1996.

8. M. Buro. Experiments with multi-probcut and a new high-quality evaluation function
for othello. In H.J. van den Herik and H. Iida, editors, Games in AI Research, pages
77–96. Universiteit Maastricht, Maastricht, The Netherlands, 2000.

9. C. Donninger. Null move and deep search: Selective-search heuristics for obtuse chess
programs. ICCA Journal, 16(3):137–143, 1993.

10. T. Hashimoto, J. Nagashima, M. Sakuta, J.W.H.M. Uiterwijk, and H. Iida. Automatic
realization-probability search. Internal report, Dept. of Computer Science, University
of Shizuoka, Hamamatsu, Japan, 2003.

11. E.A. Heinz. Adaptive null-move pruning. ICCA Journal, 22(3):123–132, 1999.
12. B. Helmstetter and T. Cazenave. Architecture d’un programme de lines of action. In

T. Cazenave, editor, Intelligence artificielle et jeux, pages 117–126. Hermes Science,
2006. In French.

13. R.M. Hyatt. Crafty - chess program. 1996. ftp.cis.uab.edu/pub/hyatt.
14. D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial Intelli-

gence, 6(4):293–326, 1975.
15. L. Kocsis, Cs. Szepesvári, and M.H.M. Winands. Rspsa: Enhanced parameter optimi-

sation in games. In H.J. van den Herik, S.-C. Hsu, T.-S. Hsu, and H.H.M.L. Donkers,
editors, Advances in Computer Games Conference (ACG 2005), volume 4250 of Lec-
ture Notes in Computer Science (LNCS), pages 39–56. Springer-Verlag, Berlin, Ger-
many, 2006.

16. D. Levy, D. Broughton, and M. Taylor. The sex algorithm in computer chess. 12(1):10–
21, 1989.

17. Y.J. Lim and W.S. Lee. Rankcut - a domain independent forward pruning method for
games. In Proceedings of the AAAI 2006, 2006.

18. T.A. Marsland. Relative efficiency of alpha-beta implementations. In Proceedings of
the 8th International Joint Conference on Artificial Intelligence (IJCAI-83), pages
763–766. Karlsruhe, Germany, 1983.

19. A. Reinefeld. An improvement to the Scout search tree algorithm. ICCA Journal,
6(4):4–14, 1983.

20. T. Romstad. An introduction to late move reductions. 2006. www.glaurungchess.com
/lmr.html.

21. S. Sackson. A Gamut of Games. Random House, New York, NY, USA, 1969.
22. J. Schaeffer and A. Plaat. New advances in alpha-beta searching. In Proceedings of

the 1996 ACM 24th Annual Conference on Computer Science, pages 124–130. ACM
Press, New York, NY, USA, 1996.

23. Y. Tsuruoka, D. Yokoyama, and T. Chikayama. Game-tree search algorithm based on
realization probability. ICGA Journal, 25(3):132–144, 2002.

24. Y. Tsuruoka, D. Yokoyama, T. Maruyama, and T. Chikayama. Game-tree search al-
gorithm based on realization probability. In Proceedings of Game Programming Work-
shop 2001, pages 17–24, 2001.

25. M.H.M. Winands. Informed Search in Complex Games. PhD thesis, Universiteit Maas-
tricht, Maastricht, The Netherlands, 2004.

26. M.H.M. Winands, H.J. van den Herik, and J.W.H.M. Uiterwijk. An evaluation func-

April 28, 2008 9:38 WSPC/INSTRUCTION FILE article

Enhanced Realization Probability Search 15

tion for lines of action. In H.J. van den Herik, H. Iida, and E.A. Heinz, editors,
Advances in Computer Games 10: Many Games, Many Challenges, pages 249–260.
Kluwer Academic Publishers, Boston, MA, USA, 2003.

27. M.H.M. Winands, H.J. van den Herik, J.W.H.M. Uiterwijk, and E.C.D. van der Werf.
Enhanced forward pruning. Information Sciences, 175(4):315–329, 2005.

28. M.H.M. Winands, E.C.D. van der Werf, H.J. van den Herik, and J.W.H.M. Uiterwijk.
The relative history heuristic. In H.J. van den Herik, Y. Björnsson, and N.S. Ne-
tanyahu, editors, Computers and Games, volume 3846 of Lecture Notes in Computer
Science (LNCS), pages 262–272. Springer-Verlag, Berlin, Germany, 2006.

