Value Back-Propagation versus Backtracking in Real-Time Heuristic Search

Sverrir Sigmundarson and Yngvi Bjornsson
Department of Computer Science
Reykjavik University
Ofanleiti 2
103 Reykjavik, ICELAND
{sverrirsO1l,yngvi} @ru.is

Abstract

One of the main drawbacks of the LRTA* real-time heuris-
tic search algorithm is slow convergence. Backtracking as
introduced by SLA* is one way of speeding up the conver-
gence, although at the cost of sacrificing first-trial perfor-
mance. The backtracking mechanism of SLA* consists of
back-propagating updated heuristic values to previously vis-
ited states while the algorithm retracts its steps. In this paper
we separate these hitherto intertwined aspects, and investi-
gate the benefits of each independently. We present back-
propagating search variants that do value back-propagation
without retracting their steps. Our empirical evaluation shows
that in some domains the value back-propagation is the key
to improved efficiency while in others the retracting role is
the main contributor. Furthermore, we evaluate learning per-
formance of selected search variants during intermediate trial
runs and quantify the importance of loop elimination for such
a comparison. For example, our results indicate that the first-
trial performance of LRTA* in pathfinding domains is much
better than previously perceived in the literature.

Introduction

Learning Real-Time A* (Korf 1990), or LRTA* for short,
is probably the most widely known real-time search algo-
rithm. A nice property of the algorithm is that it guarantees
convergence to an optimal solution over repeated trials on
the same problem instance (given an admissible heuristic).
In practice, however, convergence to an optimal solution
may be slow, both in terms of the number of trials required
and the total traveling cost. Over the years researchers
have proposed various enhancements aimed at overcom-
ing this drawback. These improvements include: doing
deeper lookahead (Russell & Wefald 1991; Bulitko 2004;
Koenig 2004), using non-admissible heuristics, although at
the cost of forsaking optimality (Shimbo & Ishida 2003;
Bulitko 2004), using more elaborate successor-selection
criteria (Furcy & Koenig 2000), or incorporating a back-
tracking mechanism (Shue & Zamani 1993; 1999).
Backtracking affects the search in two ways. First, back-
tracking algorithms may choose to retract to states visited
previously on the current trial instead of continuing further
along the current path, resulting in an exploration strategy

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

that differs substantially from LRTA*’s. Secondly, during
this retracting phase changes in heuristic value estimates (h-
values) get propagated further back. As these two aspects
of backtracking have traditionally been closely intertwined
in the real-time search literature, it is not fully clear how
important role each plays. Only recently has the propa-
gation of heuristic values been studied in real-time search
as a stand-alone procedure (Koenig 2004; Herndndez &
Meseguer 2005b; 2005a; Rayner et al. 2006), building in
part on earlier observations by Russell and Wefald (Russell
& Wefald 1991) and the CRTA* and SLRTA* algorithms
(Edelkamp & Eckerle 1997).

It can be argued that in some application domains value
back-propagation cannot easily be separated from back-
tracking, because one must physically reside in a state to
update its value. However, this argument does not apply for
most agent-centered search tasks. For example, a typical ap-
plication of real-time search is agent navigation in unknown
environments. Besides the heuristic function used for guid-
ing the search, the agent has initially only limited knowledge
of its environment: knowing only the current state and its
immediate successor states. However, as the agent proceeds
with navigating the world it gradually learns more about its
environment and builds an infernal model of it. Because this
model is kept in the agent’s memory it is perfectly reason-
able to assume that the agent may update the model as new
information become available without having to physically
travel to these states, for example to update the states’ h-
value. In that case, great care must be taken not to assume
knowledge of successor of states not yet visited.

In this paper we take a closer look at the benefits of value
back-propagation in real-time single-agent search. The main
contributions of this paper are: 1) new insights into the
relative effectiveness of back-propagation vs. backtracking
in real-time search; in particular, in selected domains the
effectiveness of backtracking algorithms is largely a side-
effect of the heuristic value update, whereas in other do-
mains their more elaborate successor-selection criterion is
the primary contributor 2) an algorithmic formulation of
back-propagating LRTA* search that assumes knowledge of
only previously visited states; it outperforms LRTA* as well
as its backtracking variants in selected application domains
3) quantification of the effects transpositions and loops have
on real-time search solution quality in selected domains; for

example, after eliminating loops LRTA* first-trial solution
quality is far better than it has generally been perceived in
the literature.

In the next section we briefly explain LRTA* and its
most popular backtracking variants, using the opportunity
to introduce the notation used throughout the paper. The
subsequent section provides a formulation of value back-
propagating LRTA* variants that use information of only
previously seen states. The results of evaluating these and
other back-propagating and backtracking real-time search
algorithms are reported in our empirical evaluation section,
but only after discussing some important issues pertaining to
performance measurement. Finally we conclude and discuss
future work.

LRTA* and Backtracking

Algorithm 1 LRTA*

s «— initial start state sq
solutionpath «— ()
while s ¢ S, do
h/(S) — mins’ésucc(s) (C(S7 5/) + h(sl))
if 1/ (s) > h(s) then
update h(s) « h/(s)
end if
push s onto top of solutionpath
8 argmins’ésucc(s) (C(S, S/) + h(sl))
end while

—_

SN AR A

—

LRTA* is shown as Algorithm 1; s represents the state
the algorithm is currently exploring, succ(s) retrieves all the
successor states of state s, and ¢(s1, $2) is the transitional
cost of moving from state s; to state ss. At the beginning
of each trial s is initialized to the start state sg, and the al-
gorithm then iterates until a goal state is reached (S, is the
set of all goal states). At each state s the algorithm finds
the lowest estimated successor cost to the goal (line 4), but
before moving to this lowest cost successor (line 9) the al-
gorithm checks if a better estimate of the true goal distance
was obtained, and if so updates the h-value of the current
state (line 6). The variable solutionpath keeps the solution
found during the trial, which in LRTA* case is the same path
as traveled (see discussion later in the paper). The LRTA*
algorithm is run for multiple trials from the same start state,
continually storing and using updated heuristic values from
previous trials. The algorithm converges when no heuris-
tic values (h-values) are updated during a trial. When used
with an admissible heuristic it has, upon convergence, ob-
tained an optimal solution. One of the main problems with
LRTA* is that it can take many trials and much traveling for
it to converge.

Search and Learning A* (SLA*), shown as Algorithm 2,
introduced backtracking as an enhancement to LRTA* (Shue
& Zamani 1993). It behaves identically to LRTA* when no
h-value update is needed for the current state s. However,
when a value update occurs SLA* does not move to the
minimum successor state afterwards (as LRTA*), but rather
backtracks immediately to the state it came from (lines 7 and

Algorithm 2 SLA*

1: s « initial start state sq
2: solutionpath « ()
3: while s ¢ S, do

4: h/(s) — mins’Esucc(s) (0(57 S/) + h(sl))
5. if A/(s) > h(s) then
6: update h(s) « h'(s)
7: s «— top state of solutionpath
8: pop the top most state off solutionpath
9: else
10: push s onto top of solutionpath
11: 5 = argMing e syce(s)(c(s,s8") + h(s"))
12: endif

13: end while

8). It continues the backtracking while the current state’s
heuristic value gets updated. Note that because of the back-
tracking SLA*’s solutionpath does not store the path trav-
eled but the best solution found during the trial.

The main benefit of the SLA* algorithm is that its to-
tal travel cost to convergence it typically much less than
LRTA*’s. Unfortunately, this comes at the price of very poor
first-trial performance as all the traveling and learning takes
place there. This is particulary problematic since a good
first-trial performance is a crucial property of any real-time
algorithm. SLA*T (Shue & Zamani 1999) somewhat allevi-
ates this problem by introducing an user-definable learning
threshold. The threshold, 7', is a parameter which controls
the cumulative amount of heuristic updates that must occur
before backtracking is allowed. That is, SLA*T only back-
tracks after it has overflowed the 7' parameter. Although
this does improve the first-trial behavior compared to SLA*,
the first-trial performance is still poor when compared to
LRTA*.

LRTA* and Value Back-Propagation

Algorithm 3 PBP-LRTA*

1: s « initial start state sg
2: solutionpath «— ()
3: while s ¢ S, do

4: h/(S) — mins’Esucc(s) (C(Sv S/) + h(sl))

5: if A'(s) > h(s) then

6: update h(s) < h'(s)

7: for all states s; in LIFO order from the
solutionpath do

8: B! (sp) < Ming csuce(s,) (c(sp, ") + h(s"))

9: if h(Sb) >= h/(Sb) then

10: break for all loop

11: end if

12: h(sb) — h’(sb)

13: end for

14: endif

15: push s onto top of solutionpath
16: 5 — argming csyce(s)(c(s, ') + h(s'))
17: end while

SLA*’s backtracking mechanism serves two roles: firstly
to back-propagate newly discovered information (in the
form of updated h-values) as far back as possible and sec-
ondly to offer the search the chance to reevaluate its previous
actions given the new information. A natural question to ask
is how important part each of the two roles plays in reducing
the overall traveling cost.

An algorithm that only performs the value back-
propagation role of SLA*, not the backtracking itself, is
illustrated as Algorithm 3. The algorithm, which we call
partial back-propagating LRTA* (PBP-LRTA¥*), is identical
to LRTA* except with additional code for back-propagating
changes in heuristic values (lines 5 to 14). This code is in-
voked when a heuristic value is updated in the current state
s. It back-propagates the heuristic values as far up the so-
lution path as needed, before continuing exploration from
state s in the same fashion as LRTA* does.

PBP-LRTA* stops the back-propagation once it reaches
a state on the solutionpath where the heuristic value does
not improve. This may, however, be misguided in view of
transpositions in the state space. It could be beneficial to
continue the back-propagation further up the solution path
even though no update takes place in a given state; an up-
date might occur further up the path (Figure 1 shows an ex-
ample illustrating this). An algorithm for doing full back-
propagation is identical to PBP-LRTA* except that lines 9
to 11 are removed. We call such a search variant full back-
propagating LRTA*, or FBP-LRTA* for short. Since both
PBP-LRTA* and FBP-LRTA* use the original LRTA* poli-
cies for successor selection and heuristic value updating they
retain the same properties as LRTA* regarding completeness
and optimality.

Initial h: 5 4 5 5
Expands,: 7 <J--------- 6

Expands,: 7 <l------e-- 8 ererenen 7

Expands,: 9 <J--------- 8 <rennenn- 9 eeeennn 8

This last update is only
performed by FBP-LRTA*

Figure 1: Back-propagation stopping criteria example
The search starts in state s; and travels through to state sy4, the initial heuristic for
each state is given in the first line below the image. Edges imply connectivity between
states, all edges have unit-cost. (1) When state s is first expanded its h-value is
updated from 4 to 6. This update is then back-propagated and s; updated to 7. (2)
Next s3 is expanded, its h-value gets updated from 5 to 7 and back-propagation is
again triggered. An important thing happens now when the back-propagation updates
s1 since the estimated h-value of s, determines that the h-value of s; becomes 7.
(3) When the search finally expands state s4 its h-value is updated to 8, the back-
propagation phase then updates s3 to 9. However so does not require an update since
it uses s1 estimate and keeps its value of 8. Here our PBP-LRTA* terminates its back-
propagation (the point is marked with an asterisks). However since s; h-value was
based on a now outdated h-estimate of state s4 it still needs updating. When running

FBP-LRTA*, state s; however gets updated to a more correct value of 9.

Table 1: First-Trial Statistics
The numbers represent the cost of the returned solution. A detailed description of the

experimental setup is found in the experimental result section.

Baldur’s Gate Maps

Average Solution Cost
With Loops ~ No Loops | % of Cost
FBP-LRTA* 508 89 17.5%
PBP-LRTA* 3,139 97 3.1%
LRTA* 3,610 90 2.5%
SLA* 71 71 100.0%
SLA*T(100) 110 80 72.7%
SLA*T(1000) 314 85 27.1%

8-puzzle

Average Solution Cost
With Loops ~ No Loops | % of Cost
FBP-LRTA* 388 111 28.6%
PBP-LRTA* 275 81 29.5%
LRTA* 380 61 16.1%
SLA* 20 20 100.0%
SLA*T(100) 96 41 42.7%
SLA*T(1000) 380 61 16.1%

Although formulated very differently, the FBP-LRTA* al-
gorithm is closely related to the recently published
LRTA*(o0) algorithm (Herndndez & Meseguer 2005b). For
the special case of undirected state spaces both algorithms
would update heuristic values in the same set of states (the
number of back-propagation steps in FBP-LRTA* could
similarly be parameterized to be bounded by a constant).

Measuring Performance

When evaluating the performance of a real-time search al-
gorithm it is important to measure both its computational
efficiency and the quality of the solutions it produces.

Efficiency is typically measured as the agent’s travel (or
execution) cost. This cost does not include state expansions
done in the planning phase, only the cost of the actions ac-
tually performed by the agent in the real world. Note that
in all our discussion we make the assumption that this travel
cost dominates the execution time, and the time overhead of
the additional back-propagation will therefore be negligible.
The number of trials to convergence is also typically used
as a metric of efficiency, but the accumulated traveling cost
over all trials is more representative in our view. Further-
more, it is an important criterion for a real-time algorithm to
be able to produce a solution reasonably fast. This is mea-
sured by the first-trial travel cost metric.

Different real-time algorithms may produce solutions of
different cost; the quality of the produced solutions can be
measured by their relative cost compared to an optimal so-
Iution. Similarly as for the efficiency, we are interested in
the quality of produced solutions both after the first and the
final trial. All the algorithms we experiment with here use
an admissible heuristic and are guaranteed to converge to
an optimal solution. Consequently their final solution qual-
ity is the same. However, the intermediate solution qual-
ity may differ significantly from one algorithm to the next.

Solution Quality of the LRTA* algorithm (8-Puzzle)

Solution Length
~
o
3

150

10

3

fiy M\Mlﬂm
S i

50 +

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Trials

Figure 2: Effects of solution path loop elimination in the 8-puzzle.

The cost of the path traveled in a trial is not a good met-
ric of the quality of the solution found in that trial. One
reason for this is that real-time algorithms may wander in
loops and repeatedly re-expand the same states (Korf 1990;
Shimbo & Ishida 2003). Whereas the cost of traversing
these loops rightfully count towards the travel cost, the loops
themselves are clearly superfluous in the solution path and
should be removed. Not all algorithms are affected equally
by loops. For example, the SLA* algorithm is immune be-
cause of its backtracking scheme, whereas LRTA* is partic-
ularly prone. Therefore, when comparing solution quality of
different algorithms it is important to eliminate loops from
the solution path to ensure a fair comparison. This can be
done either online or as a post-processing step after each
trial.

Table 1 shows clearly how profound the effect of loop
elimination can be. The extreme case in our experiments
was LRTA* pathfinding game maps. After eliminating loops
from the first-trial solutions, the remaining solution path
length became only 2.5% of the path traveled. The result-
ing paths were then on average only sub-optimal by 27%. In
this domain the true first-trial solution quality of LRTA* is
clearly much better than it has generally been reported in the
literature.

Similar effect, although not as profound, is also seen in
other domains as shown in Figure 2. In the early trials there
is a large difference in solution costs depending on whether
loops are eliminated or not, although on later trials the two
gradually converge to the same optimal path. For compari-
son, we include a line showing the best solution found so
far. If the algorithm were to stop execution at any given
moment, this would be the best solution path it can return.

A direct performance comparison of different algorithms
can be problematic, even when run on the same problem set.
For example, some algorithm may produce sub-optimal so-
lutions, either because they are inadmissible or they do not
converge in time. Because the final solution quality may
then differ, one cannot look at the travel cost in isolation
— there is a trade-off. The same applies if one wants to

Learning Performance
(The 8-Puzzle domain)

FBP-LRTA*

LRTA*

Solution Length

SLA*T (T=100)
M AAMNASEE A~

aw |

0 10 20 30 40 50 60 70 80 90 100
Thousands

Travel Cost

Figure 3: FBP-LRTA*, LRTA* and SLA*T(100) learning perfor-
mance on the 8-puzzle domain.

compare the relative efficiency of different algorithms dur-
ing intermediate trials. To be able to do this we look at the
solution cost as a function of the accumulated travel cost.
This learning performance metric is useful for relative com-
parison of different algorithms and is a indicator of the algo-
rithms’ real-time nature. For example, in the domain shown
in Figure 3 the SLA* T(100) algorithm quickly establishes
a good solution but then converges slowly, whereas both
LRTA* and FBP-LRTA* although starting off worse, in the
end learn faster given the same amount of traveling. The
figure also shows that FBP-LRTA* makes a better use of its
learned values than LRTA* (the steep decent in its solution
length is a clear indicator).

Experimental Results

To investigate the relative importance of backtracking
vs. value back-propagation we empirically evaluated the
PBP-LRTA* and FBP-LRTA* algorithms and contrasted
them with LRTA*, SLA* and SLA*T in three different do-
mains. The SLA*T algorithm was run with T" values of 100
and 1000, respectively.

The first domain was path-finding in the Gridworld.
The grids were of size 100x100 using three different
obstacle ratios: 20%, 30%, 40%. One hundred randomly
generated instances were created for each obstacle ratio.
The second domain was also a path-finding task, but now
on eight maps taken from a commercial computer game to
provide a more realistic evaluation (Bjornsson ef al. 2003).
Figure 4 shows some of the pathfinding maps that were
used. For each of the eight maps 400 randomly chosen
start-goal state pairs were used. The third domain used was
the sliding tile puzzle (Korf 1985); 100 different puzzle
instances were used. In all domains the Manhattan-distance
heuristic was used (in the path-finding domains we only
allowed 4-way tile-based movement). The above domains
were chosen because they have all been used before
by other researches for evaluating real-time algorithms
and thus serve as a good benchmark for our research
(Shimbo & Ishida 2003; Korf 1990; Bulitko & Lee 2005).

Table 2: Results from the pathfinding domains

Baldur’s Gate Maps
Averaged Totals First-trial
Travel Cost Trials Conv. Travel Cost Sol. Len.
SLA* 17,374 1.81 17,308 71
FBP-LRTA* 19,695 63.40 508 89
SLA*T(100) 29,518 49.10 15,621 80
PBP-LRTA* 32,724 69.93 3,139 97
SLA*T(1000) 51,559 109.63 14,026 85
LRTA* 59,916 167.10 3,610 90
Gridworld with random obstacles
Averaged Totals First-trial
Travel Cost Trials Conv. Travel Cost Sol. Len.
FBP-LRTA* 8,325 35.32 389 102
SLA* 11,030 1.98 10,947 82
PBP-LRTA* 17,055 43.87 1,384 103
SLA*T(100) 17,705 46.67 9,223 91
SLA*T(1000) 24,495 69.90 8,404 97
LRTA* 29,760 90.67 2,237 102

Table 3: Results from the sliding-tile domains

8-puzzle
Averaged Totals First-trial
Travel Cost ~ Trials Conv. Travel Cost Sol. Len.
SLA* 2,226 1.95 2,205 20
FBP-LRTA* 39,457 141.61 388 111
PBP-LRTA* 40,633 146.71 275 81
LRTA* 73,360 256.44 380 61
SLA*T(1000) 77,662 253.99 380 61
SLA*T(100) 149,646 202.77 651 41

Table 2 shows how the real-time search algorithms per-
form in the two path-finding domains. For each algorithm
we report the total travel cost, the number of trials to con-
vergence, the first-trial travel cost, and the solution length
(with loops removed). Each number is the average over all
test instances of the respective domain.

Both our value back-propagation algorithms outperform
LRTA* significantly in the pathfinding domains, converg-
ing faster in terms of both number of trials and total travel
cost. For example, FBP-LRTA* reduces the average number
of trials to convergence on the Baldur’s Gate maps by more
than 100 (reduction of 62%). Its first-trial performance is
also much better than LRTA*’s; an equally good solution is
found on average using only a fraction of the search effort.
Overall the FBP-LRTA* total traveling cost is roughly the
same as SLA*’s, which is somewhat surprising because in
the literature SLA* has been shown to consistently outper-
form LRTA*. Our result indicates however that the back-
propagation of heuristic values, as opposed to backtrack-
ing, is largely responsible for the improved performance in
pathfinding domains. Furthermore, FBP-LRTA* achieves
this, unlike SLA*, while keeping its real-time characteristics
by amortizing the learning over many trials. The new value
back-propagation algorithms successfully combine the good
properties of SLA* and LRTA*: SLA*’s short travel cost

b) G
stacles stacles

(c) A large open-space Bal-
dur’s Gate map

(d) A corridor-room based
Baldur’s Gate map

Figure 4: A sample of the maps used for the pathfinding
domains. Above is a sample of the Gridworld domain, below
two of the eight Baldur’s Gate maps used. The black areas
represent obstacles.

and fast convergence and LRTA*’s short first-trial delay and
iterative solution approach.

Table 3 gives the same information as found in the pre-
vious table, but for the sliding-tile puzzle. In the 8-puzzle
domain SLA* is clearly superior to the other algorithms
when evaluated by total travel cost. This result is consis-
tent with what has previously been reported in the literature
(Bulitko & Lee 2005). In this domain backtracking, as
opposed to only doing value back-propagation, is clearly
advantageous. Also of interest is that the FBP-LRTA* and
PBP-LRTA* algorithms perform almost equally well, con-
trary to the pathfinding domains where FBP-LRTA* is su-
perior. This can be explained by the fact that there are rel-
atively few transpositions in the sliding-tile-puzzle domain
compared to the two pathfinding domains. Thus, the ben-
efit of continuing the back-propagation is minimal. Also,
somewhat surprisingly the first-trial cost of PBP-LRTA* is
superior to FBP-LRTA*. We have currently no solid expla-
nation for this. Preliminary results using the 15-puzzle also
indicate that the overall benefits of value back-propagation
are relatively small. SLA* was the only algorithm that was
successful in that domain. It converged in 95 out of the 100
15-puzzle test cases using an upper-limit of 50 million states
traveled, whereas the other algorithms all failed to converge
even on a single problem.

Conclusions

In this paper we studied the effectiveness of backtracking
versus value back-propagation in selected single-agent
search domains. The good performance of backtracking
algorithms like SLA* has often been contributed to the more
elaborate successor-selection criteria. We showed that this
is not true in general. For example, in pathfinding domains
the performance improvement is mainly due to the effects of
back-propagating updated heuristics, not the backtracking.
The FBP-LRTA* search variant exhibited the best overall
performance of all the real-time search algorithms we
tried. Furthermore, in this domain the back-propagation
variants successfully combine the nice properties of
SLA* and LRTA*: SLA*’s low travel cost and LRTA*’s
short first-trial delay and iterative solution approach.

On the other hand, contrary to the pathfinding domains,
back-propagation is much less effective in the sliding tile
puzzle. It showed some benefits on the 8-puzzle, but our
preliminary results on the 15-puzzle indicate diminishing
benefits. The different exploration criterion used by back-
tracking seems to be have far more impact than value up-
dating. This poses an interesting research question of what
properties of a problem domain favor backtracking versus
value back-propagation. We suspect that complexity of the
domain and the frequency of transpositions is in part respon-
sible, but based on the evidence we have at this stage it is too
premature to speculate much and we leave that for future re-
search.

We also discussed the importance of eliminating loops
from solutions paths prior to comparing different algo-
rithms, and quantified the effects this had in our test do-
mains. For example, LRTA* first-trial performance is much
better in pathfinding domain than has generally been per-
ceived in the literature. We also looked at the learning per-
formance of selected real-time algorithms on intermediate
trials.

There is still much more work that needs to be done to
better understand the mutual and separate benefits of back-
propagation and backtracking. Such investigation opens up
many new interesting questions. There is clearly scope for
new search variants that better utilize the benefits of both
approaches by adapting to different problem domains.

Acknowledgments

This research has been supported by grants from The Ice-
landic Centre for Research (RANNIS) and by a Marie Curie
Fellowship of the European Community programme Struc-
turing the ERA under contract number MIRG-CT-2005-
017284. We also thank the anonymous reviewers for their
comments.

References

Bjornsson, Y.; Enzenberger, M.; Holte, R.; Schaeffer, J.;
and Yap, P. 2003. Comparison of different abstractions for
pathfinding on maps. Nineteenth International Joint Con-
ference on Artificial Intelligence (IJCAI 03) 1511-1512.

Bulitko, V., and Lee, G. 2005. Learning in real time search:
A unifying framework. Journal of Artificial Intelligence
Research 24.

Bulitko, V. 2004. Learning for adaptive real-time search.
Technical report, Computer Science Research Repository
(CoRR).

Edelkamp, S., and Eckerle, J. 1997. New strategies in
learning real time heuristic search. S. Edelkamp, J. Eck-
erle, New strategies in learning real time heuristic search,
in: On-line Search: Papers from AAAI Workshop, Provi-
dence, RI, AAAI Press, 1997, pp. 30-35.

Furcy, D., and Koenig, S. 2000. Speeding up the con-
vergence of real-time search. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI/IAAI),
891-897.

Hernandez, C., and Meseguer, P. 2005a. Improving con-
vergence of LRTA*(k). In In Proceedings of Workshop on
Planning and Learning in A Priori Unknown or Dynamic
Domains IJCAI-05.

Hernandez, C., and Meseguer, P. 2005b. LRTA*(k). In In
Proceedings of the 19th International Joint Conference on
Artificial Intelligence, IJCAI-05.

Koenig, S. 2004. A comparison of fast search methods for
real-time situated agents. In AAMAS '04: Proceedings of
the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, 864-871. Washington,
DC, USA: IEEE Computer Society.

Korf, R. E. 1985. Depth-first iterative-deepening: an
optimal admissible tree search. Artificial Intelligence
27(1):97-109.

Korf, R. E. 1990. Real-time heuristic search. Artificial
Intellicence 42(2-3):189-211.

Rayner, D. C.; Davison, K.; Bulitko, V.; and Lu, J. 2006.
Prioritized-LRTA*: Speeding up learning via prioritized
updates. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), Workshop on Learning For
Search.

Russell, S., and Wefald, E. 1991. Do the right thing:
studies in limited rationality. Cambridge, MA, USA: MIT
Press.

Shimbo, M., and Ishida, T. 2003. Controlling the learning
process of real-time heuristic search. Artificial Intelligence
146(1):1-41.

Shue, L.-Y., and Zamani, R. 1993. An admissible heuris-
tic search algorithm. In Komorowski, J., and Ras, Z. W.,
eds., Methodologies for Intelligent Systems: Proc. of the
7th International Symposium ISMIS-93. Berlin, Heidel-
berg: Springer. 69-75.

Shue, L.-Y., and Zamani, R. 1999. An intelligent search
method for project scheduling problems. Journal of Intel-
ligent Manufacturing 10:279-288.

