
From Minimax to Manhattan 5

FROM MINIMAX TO MANHATTAN

T.A. Marsland and Y. Björnsson1

University of Alberta
Edmonton, Alberta, Canada

Abstract

The thinking process for playing chess by computer is significantly
different from that used by humans. Although computer hardware
and software have evolved considerably, computers still have
difficulties to understand the more elaborate chess concepts. In this
paper we look at the technology behind today’s chess programs, its
current status and how it has developed. Finally, we explore some
directions for the future.

1. INTRODUCTION

One of the most spectacular shows ever hosted on Broadway took place in May
1997. Human supremacy in chess was challenged by a computer. Garry
Kasparov, the World Champion and one of the greatest chess players in history,
defended the honor of mankind. The challenger, DEEP BLUE, was a computer
specially designed for playing chess, a masterpiece of science and engineering.
Independent of the outcome of the match, the significance of this event would be
the same. A combined effort of research in artificial intelligence (AI) and
computer hardware development, has made it possible for computers to match
humans in a game that has for centuries been considered a measure of human
intelligence.

Problem solving in AI often reduces to a process of tackling three main issues:
representing knowledge, searching for solutions, and using knowledge to direct
the search. A hallmark of intelligence is the use of knowledge to make search
problems more tractable. The most studied search problems are those that arise
in game playing. For decades chess has been viewed as an important testbed for

1 Department of Computing Science, University of Alberta, Edmonton, Alberta,

Canada T6G 2H1. Email: {tony, yngvi}@cs.ualberta.ca.

6 T.A. Marsland and Y. Björnsson

machine intelligence, with some researchers regarding computer-chess as its
Drosophila (cf. Michie, 1980). Early chess programs were inspired by concepts
from human thinking. However, with steadily increasing computer power –
making brute-force methods more attractive – and with the difficulties of
implementing human-like reasoning, computer-chess research took a different
direction. Most of the effort went into search techniques, while less attention
was paid to the acquisition and use of knowledge.

This paper opens with a brief history of computer chess, followed by an
overview of the current methodology. Finally, we consider the future of
computer chess and its technology, and offer some direction for future work on
software aspects.

2. THE PAST: A BRIEF HISTORY

Development of computer-chess techniques has been strongly influenced by
advances in search algorithms and computer hardware. The evolution of these
two has often gone together, more powerful hardware allowing more complex
search strategies.

2.1 Search Algorithms

Half a century ago von Neumann and Morgenstern (1944) proposed minimax as a
method to decide which move to make in chess. Using the negamax framework,
the minimax algorithm is described recursively as

MinMax (n) = MAXi(-MinMax(ni))

where the set {ni} are the successors of node n. If n does not have successors,
then it is a leaf node and MinMax(n) is defined as the merit of node n from the
perspective of the side that has the move. In principle, minimax can be used to
determine an optimal action in every chess position, simply by expanding all
continuations to the end and backing up the precise value of the outcome; in this
case a win, a loss, or a draw. In practice, this is of course infeasible because of
the astronomical number of possible continuations.

In the 1950s early pioneers of computer chess, like Claude Shannon (1950) and
Alan Turing (1953), proposed various search strategies based on the minimax
principle, and laid the foundation of an active research area. Faced with the large
search space, early chess programs used highly selective search methods,
expanding just a few plausible moves in each position. This human-like
approach proves difficult; the programs often neglect good moves – throwing the

From Minimax to Manhattan 7

baby out with the bathwater. The quality of play by the early chess programs
was therefore poor.
Over the years, numerous algorithms were proposed to back up minimax values
in game trees, most notably Alpha-Beta. Knuth and Moore (1975) worked the
algorithm into the negamax framework and described its full pruning
capabilities. However, the underlying idea was known in 1958, and weaker
forms of it were implemented in such early chess programs as NSS, by Newell,
Shaw, and Simon (1958). The method uses an effective cut-off technique based
on the observation that parts of the tree expanded by the minimax algorithm are
irrelevant for proving the value of the tree, and thus need not be visited. The
basic idea behind the pruning is that having already found one way of refuting
the opponent's play, there is no need to look for others. The Alpha-Beta
algorithm is a major improvement over exhaustive minimax. In the best case,
the number of nodes visited is about the square root of the number seen by
minimax, and it never searches more nodes.

As more and more powerful computers became available, and the full pruning
capabilities of Alpha-Beta became better known, brute-force search programs
based on the method replaced other approaches. During the past two decades,
much effort was invested in enhancing the efficiency of the search. By expanding
the expected best line of play first (the principal variation) one need only show
that the alternatives are inferior. This observation led to more efficient variants,
such as Principal Variation Search (Marsland and Campbell, 1982) and
NegaScout (Reinefeld, 1983). These variants rely on having a good move-
ordering scheme that expands promising moves early. Various techniques to
improve the move ordering and to make the search more efficient were
developed, for example, iterative-deepening, use of transposition-tables, and
forward pruning. From now on we will refer to these techniques as search
enhancements, and call Alpha-Beta – particularly its variants that employ such
enhancements – by the generic name Null Window Search (NWS), thus
reflecting the essence of the more effective implementations. For a detailed
description we refer to Plaat (1996).

Minimaxing is not the only way to back up values in game trees, nor do the
enhanced methods necessarily traverse the smallest trees. Various other
algorithms have been proposed and implemented, but none have found wide use
in practice, because they are not time-efficient. For an extended overview of such
search alternatives we refer to Junghanns (1998).

2.2 Hardware

As computers evolved it became clear that increasing search speed dramatically
improves the playing strength of even the simplest chess programs. Using only

8 T.A. Marsland and Y. Björnsson

elementary chess knowledge, the programs could play reasonably well by
applying extensive search. The quest for more speed took two directions: on the
onehand developing special-purpose hardware for playing chess, and on the other
adapting the search to run on many general-purpose processors in parallel.

The first special-purpose high-speed circuitry for playing chess was developed by
Joe Condon and Ken Thompson (1982) in the late 1970s, and was used in his
chess program BELLE. The chess-specific hardware provided fast move
generation. In the 1980s more high-speed chess circuitry saw the light of day,
like the developments at CMU for HITECH and DEEP THOUGHT. Not only were
the new custom chips capable of move generation, but they also provide position
evaluation and search. In the early 1980s chess programs running on multi-
processor systems started to compete in computer-chess tournaments. Although
the first multi-processor based chess programs ran on only few processors,
today’s systems use hundreds. Searching in parallel poses many new
programming problems, and many techniques have been developed to allow
NWS algorithms to traverse game trees in parallel.

The DEEP BLUE program combines both of the above approaches; it runs on
many general-purpose processors, where each processor has access to several
high-speed special-purpose chess circuits.

2.3 Other Improvements

Although improvements in search algorithms and computer hardware have
drastically increased chess programs’ playing strength, other sources have
contributed as well. For instance, use of openings books and endgame databases
have proved very useful. Last, but not least, decades of experience have shown
programmers what kind of chess knowledge most benefits the program, and how
it can efficiently be represented. For chess programs, just as for humans, the
knowledge acquisition period needed to achieve mastery is long and tedious.

3. THE PRESENT: CURRENT TECHNOLOGY

It is safe to state that today’s best chess programs are playing at the Grand
Master (GM) level. This success comes from gradual improvements over the last
half century; a direct result of active research in computer chess. Advances in
search algorithms, parallel computing, special-purpose chess hardware,
knowledge representation, and opening/endgame databases all contribute to the
increased playing strength.

3.1 Search Algorithms

From Minimax to Manhattan 9

Most contemporary programs use some form of NWS (see Figure 1). It keeps
track of a lower bound a and an upper bound b of the value a player can hope to
achieve. During the search, whenever the value returned from a subtree exceeds
the upper bound b, a cut-off occurs. Intuitively this means that we have found a
refutation of the current line of play, and therefore our opponent will not select
this variation, but will instead play the line that achieves the value indicated by
the upper bound b. The algorithm first expands the so-called principal variation
with a full a-b window, and then the remaining moves with a minimal window
around the score the principal variation returned. This results in efficient searches
and only occasionally, when an alternative move really turns out to be better, is
a re-search with a wider window necessary.

When equipped with enhancements such as a transposition table (accessed by
functions LookTT() and AddTT() in Figure 1), move-ordering (AddCredit(),
NextMove()), search extension/pruning schemes (Extend(), NullMove), and
quiescence search (QS()), the algorithm is extremely efficient. Thus the fastest
chess programs look ahead about 5 to 7 moves for each side (i.e., 10 to 14 plies)
in complicated middle-game positions, and search lines of special interest even
more deeply. In the endgame and in other less complicated positions a much
deeper search is possible.

3.2 Search Enhancements

Various search enhancements are essential for the NWS algorithm to achieve
exceptional performance. Many of them focus on allowing the algorithm to be
more selective in how the search effort is spent. The selectivity is introduced by
varying the search horizon; some lines are searched to a depth that is greater than
the nominal depth, while others are terminated at a shallower depth. The real
task is to identify which alternatives are worth considering further and which can
be pruned off. In Figure 1 three common methods to vary the search horizon are
shown: quiescence search, extending forcing lines, and a forward-pruning
heuristic called null move.

Having searched some initial position to a designated maximum depth, some of
the positions that arise are volatile and hard to evaluate. For example, if we
evaluate a position where a capture has just occurred, without giving the
opponent opportunity to re-capture, a huge error may be introduced. Therefore,
all captures for both sides are played out before a position is evaluated.
Sometimes other moves that can drastically change the evaluation are also made,
for example promotions. This resolution of dynamic factors is called the
quiescence search phase.

10 T.A. Marsland and Y. Björnsson

int NWS(int height, int alpha, int beta) {
 MOVE move, tt_move=NullMove, best_move=NullMove;
 int score, best_score, bound, ttbound;
 TT tt;

 //Check for draw by repetiton or 50 move rule
 if (IsDraw()) return DRAW;
 if (Extend()) height++; //Extend forced moves

 //Call quiescence search if horizon is reached
 if (height == 0) return QS(alpha, beta);

 //Look the position up in the transposition table
 if (LookTT(&tt)) {
 if (tt.height >= height) {
 switch (tt.bound) {
 case TValue: return tt.score; break;
 case UBound: beta = MIN(tt.score,beta);break;
 case LBound: alpha = MAX(tt.score,alpha);
 }
 if (alpha >= beta) return tt.score;
 }
 best_move = tt_move = tt.move;
 }

 //Do a null-move search with search reduction R>1
 //if not in check and last move not a null-move
 if ((height > R) && NullmoveIsOK()) {
 Make(NullMove);
 score = -NWS(height-1-R, -beta-1, -beta);
 Retract(NullMove);
 if (score >= beta) return beta;
 }

 //Get the first move if it wasn't found in the TT.
 //If no legal moves, either a mate or a stalemate.
 if (best_move==NullMove && !NextMove(&best_move))
 return IsCheckmate() ? LOSS : DRAW;

 //Search the principal move before the others
 Make(best_move);
 best_score = -NWS(height-1, -beta, -alpha);
 Retract(best_move);
 while ((best_score < beta) && NextMove(&move)) {
 if (move == tt_move) continue;
 bound = MAX(alpha, best_score);
 Make(move);
 score = -NWS(height-1, -bound-1, -bound);
 if ((score > bound) && (score < beta))
 score = -NWS(height-1, -beta, -score);
 Retract(move);

From Minimax to Manhattan 11

 if (score > best_score) {
 best_move = move; //A new best move is found
 best_score = score;
 }
 }
 //Update the TT and move ordering information
 ttbound = (best_score <= alpha) ? UBound :
 (best_score >= beta) ? LBound : TValue;
 AddTT(height, best_move, best_score, ttbound);
 AddCredit(ttbound, height, best_move);
 return best_score;
}

Figure 1: NWS enhanced with TT and Null-move.

A common practice is to extend the search along “forced” lines, such as certain
re-captures, or when one side is moving out of check. In Figure 1 the function
Extend() checks for forced moves. If a decision is made to extend, then the
maximum depth of search for this line is increased by one.

As opposed to search extensions, pruning schemes select branches that are to be
searched to less than nominal depth. This is referred to as forward pruning, and
can involve erroneous decisions by prematurely truncating good lines. The null-
move heuristic is the commonest forward-pruning method used in contemporary
chess programs. The underlying idea is that in chess it is almost always
beneficial to make a move rather than to pass. Therefore, if the score received by
giving up a move is still good enough to cause a cut-off, it is very likely that at
least one legal move will too. When the position is assessed using a shallower
search than we would search otherwise, considerable search effort is saved. The
constant R shown in Figure 1 decides the search reduction for the null-move
searches, and is typically set to 2. Some precautions are necessary when using a
null move, for instance, we can not allow a null move to be made when the side
to move is in check, nor can two consecutive null moves be allowed. In chess it
is almost always safe to make the assumption that making a move will improve
the position, but for a special case, called zugzwang positions, this is not true.
Most chess programs turn off the null-move heuristic when entering the
endgame, because zugzwang positions are more likely to arise there.

The transposition table is used to store information about positions that have
been visited before, either during an earlier iteration or when different move
sequences transpose into the same position. Typical items to store in a
transposition table are: the merit value of a position, type of the value (i.e., true
value, upper bound, or lower bound), the height of the subtree the position was
searched to establish the value, the best move in the position, and a hash key for
the position. This key is necessary because hashing is used to index the table.

12 T.A. Marsland and Y. Björnsson

Whenever a node is visited, the transposition table is checked to see if it was
seen before, and if so, whether it was searched sufficiently deeply so that we can
reuse the merit value from the table. The merit can be used to determine a true
value for the position, thus eliminating the need to search the position further, or
to adjust the current a-b bounds, which can also lead to a cut-off. The use of a
transposition table can reduce the search space significantly, especially in
endgames where transpositions occur frequently. The table can only hold a small
portion of actual positions searched, therefore various replacement schemes are
used to decide which positions to keep; one scheme uses two-level transposition
tables. A two-level table stores for each entry, not only the most recent position
hashed into that entry but also the position that was searched the deepest. For an
adequate comparison between the various schemes we refer to Breuker (1998). In
Figure 1 the functions LookTT() and AddTT() retrieve and insert entries into the
transposition table, respectively.

NWS-like search algorithms perform best when good moves are expanded first.
Therefore, various move-ordering heuristics have been developed. One such is to
store the best move in the transposition table. When a node is revisited this
move is always tried first; the rationale being that a move previously found to be
good in one position is also likely to be good when the position is searched to a
greater depth. Brute-force methods explore all possible moves in each position,
many of which can easily be refuted by an obvious capture. Chess programs
therefore often order capture moves early in the move list. The killer move (Slate
and Atkin, 1977) and the history heuristic (Schaeffer, 1989) are more
sophisticated move ordering schemes that are widely used. Both are based on the
idea that a move that is good in one position is often good elsewhere. The
former keeps track of a few best moves found at each height level in the tree,
while the second keeps a global table for all possible moves. The best move
found in each position gets a credit, shown in Figure 1 as a function call
AddCredit(), and when moves are generated by NextMove(), captures are done
first and then the remainder in order by the credit they have.

When using a depth-first search it is necessary to decide beforehand how deep to
search. This makes it difficult to estimate how long the search will take.
However, by gradually increasing the search depth one can better decide how
long the search will take and when to stop searching. This is called iterative
deepening. Because the time for each iteration grows exponentially with
increased search depth, the effort spent in earlier iterations is relatively small
compared to the last iteration. The search overhead introduced by iterating on the
search depth is therefore small. Furthermore, when used in combination with a
transposition table, the principal variation is kept between iterations. This leads
to a better move ordering, often resulting in iterative deepening searching fewer
nodes in total than the non-iterative approach. The technique of iterative-

From Minimax to Manhattan 13

deepening search later found its way into other AI domains, such as theorem
proving and single-agent search.

3.3 Hardware

Today’s state-of-the-art PC is extremely powerful. The commercial chess
programs running on them are also quite sophisticated, and the playing strength
approaches the GM level. The state-of-the-art computer-chess hardware is
undoubtedly DEEP BLUE. It uses 256 to 512 chess-specific processors, and under
tournament time controls is capable of searching 50 to 100 billion positions for
each move. In the world of computer-chess research IBM’s DEEP BLUE project is
comparable to the well-known Manhattan project.

3.4 Knowledge Representation

The chess knowledge used in contemporary chess programs is primitive by
human standards. The programs have a notion of basic chess concepts such as
material, mobility, pawn structures, king safety, weak/strong squares, space,
center control, and development. A good description of a typical knowledge
encoded in chess programs can be found in CRAY BLITZ (Hyatt, Gower, and
Nelson, 1990), whose evaluation function is described in some detail.

More elaborate chess concepts, such as long-term planning, piece co-ordination,
theme consistency, imbalances, long-term weakness, are totally missing from their
vocabulary. It would be impossible for human players to achieve master strength
without this knowledge. The chess programs partially compensate for this lack by
using deep exhaustive searches.

3.5 Opening Books and Endgame Databases

Just as for humans, good opening play is an important part of a strong chess
program. The best programs invariable have opening books prepared by chess
masters. Not only do the masters manually prepare new openings lines, but
computers are also used to verify existing analysis in the hope of finding flaws
or further improvements. The opening book must guide the program to positions
that are not only favorable, but also well suited to the computer’s play. This
often implies avoiding closed positions in favor of more open and tactical ones.
The importance of having a good opening book is evident from the fact that the
top commercial programs specifically prepare opening lines against other top
programs. Therefore, to prevent both chess programs and human players from
repeatedly exploiting the same opening mistakes, some programs automatically
update their opening book during a game; deleting lines that lead to inferior
positions soon after deviating from the book, while adding others that showed

14 T.A. Marsland and Y. Björnsson

promise. Similar concepts were tried in earlier chess programs such as BEBE

(Scherzer, Scherzer, and Tjaden, 1990). It stored positions from its previous
games in a special long-term transposition table, thus preventing the program
from making the same mistake twice.

Pre-calculated endgame databases are also available, for endgames with 5 or
fewer pieces. When arriving at a position in the database, the programs play the
best moves from there without any search. A database construction is described
in detail by Van den Herik and Herschberg (1985). The endgame databases by
Ken Thompson (1986) are made publicly and are therefore used in many chess
programs.

4. THE FUTURE: WHAT IS THE RIGHT WAY

The benefit of each additional ply diminishes as we search more deeply. This
implies that the utility of searching more deeply will become less and less.
Therefore, we believe that there will be a shift in emphasis; less effort will be
spent on search algorithms and more on the knowledge part.

4.1 Search

Search is, and will remain, fundamental to chess-playing programs – after all,
tactical combinations are a big part of the game. This is one reason why chess
programs have an advantage over human players. By exhaustively looking at all
alternatives the programs often discover unexpected tactics or brilliant defending
resources that are hidden to the human eye. Further search improvements can
come from one of two sources:

• Searching faster
The search may benefit from increasing computing speed, but this will not
be as dominating a factor as before. It can be more beneficial to invest the
extra computing speed in incorporating additional knowledge. Research in
parallel search is, and will, stay important, although not of ultimate
importance to the AI community.

• Searching smarter
Alternatively, more selective-search algorithms can be developed, that search
“smarter” by more aggressively extending branches of interest while pruning
others of lesser potential. Selective-search methods are likely to attract
increased attention from the research community. One of the fundamental
questions of AI – how to use knowledge to direct search – has to be
revisited.

From Minimax to Manhattan 15

4.2 Knowledge

Further major improvements must come from additional chess knowledge.
Questions like, what additional knowledge is important, how can it be acquired
and effectively implemented, need to be addressed. These issues have been
largely neglected in the past.

As mentioned before, knowledge acquisition is a long and tedious task. Methods
to make this task easier, like tools for automatically extracting relevant chess
knowledge from big databases, will become increasingly useful.

The long-range planning component of chess programs should also be worked
on. An old adage says that it is better to play with a weak plan in mind than no
plan at all. Deep searches certainly give the programs some notion of a plan, but
often it is too superficial and short sighted. It is sometimes embarrassing to
watch a well-prepared human opponent make even the strongest chess programs
look like absolute beginners; simply by applying an uncomputer-like style of
play.

Ideas are the tools of the chess player. Players do not reinvent the wheel every
time a game is played. The same themes occur over and over again, and during a
game players recall similar positions from their own and other people’s games,
and reuse the ideas from there. Often these ideas are based on long-term plans
that are outside the scope of any search, they are simply memorized. In general,
humans have an extraordinary talent for adapting existing knowledge and
applying it to similar situations. It is called reasoning by analogy and reflects
the way they play chess. So, chess might become an active testbed for Case-
Based Reasoning methods that experiment with such memory based reasoning.
In the long run, chess programs could greatly benefit from such methods,
allowing them to reuse plans and adapt them to different over-the-board
situations.

4.3 Chess

An interesting question to ask is whether chess programs will influence the way
chess is played in the future. Chess, like most other things is receptive to
changes, both from fashion and from new discoveries. Computers have already
been used to discover new facts about various chess endgames, and to improve
opening theory. The question here is more on the lines of whether they will
change the style of human play. Humans sometimes deliberately play slightly
inferior moves, to surprise the opponent, to complicate matters, or to seek some
counter chances.

16 T.A. Marsland and Y. Björnsson

The psychological effect of a surprise move is of little value against a computer
program. One can argue that the programs have certain psychological advantages
over the humans. For example, in the first game of the 1996 Kasparov vs. DEEP

BLUE match, DEEP BLUE showed a total disregard for Kasparov’s attack, calmly
grabbing a Pawn on the Queenside while its king fortress was under seemingly
disastrous threats. A human player might have shown the World Champion a
little more respect by taking his attack seriously. In the last game of the same
match, Kasparov had a winning piece sacrifice on h7, but after thinking for a
long time he played differently, apparently deferring to the judgment of the
computer.

5. CONCLUSIONS

It is inevitable that chess programs will one day out-smart even the strongest
humans. The future programs will continue to rely on extensive search, but
whether that approach alone is sufficient to reach the top is moot. More
sophisticated methods are needed, that allow the programs to understand the
more elaborate chess concepts. However, even though a pure brute-force approach
will suffice to make a world-class chess program, the program will to be of
limited interest unless it can share its knowledge. For a program to be an
effective tutor, it must be able to explain various chess-related concepts in a
manner that is understandable and natural to us humans, instead of simply
returning a raw numeric score indicating a merit of a chess position. Therefore,
disregarding the outcome of the Garry Kasparov vs. DEEP BLUE match, we
believe that computer chess will remain an important testbed for AI applications,
not only in search but also in fields such as reasoning, knowledge representation,
and knowledge acquisition.

6. REFERENCES

Breuker, D.M. (1998). Memory versus Search in Games. Ph.D. Thesis,
Universiteit Maastricht. ISBN 90-9012006-8.

Condon, J.H. and Thompson, K. (1982). Belle Chess Hardware. Advances in
Computer Chess 3 (ed. M.R.B. Clarke), pp. 45-54. Pergamon Press, Oxford.
ISBN 0-08-026898-6.

Herik, H.J. van den and Herschberg, I.S. (1985). The Construction of an
Omniscient Endgame Data Base. ICCA Journal, Vol. 8, No. 2, pp. 66-87. ISSN
0920-234X.

From Minimax to Manhattan 17

Hyatt, R.M., Gower, A.E., and Nelson, H.L. (1990). CRAY BLITZ. Computers,
Chess, and Cognition (eds. T.A. Marsland and J. Schaeffer), pp. 111-130.
Springer-Verlag, New York. ISBN 0-387-97415-6.

Junghanns, A. (1998). Are there Practical Alternatives to Alpha-Beta? ICCA
Journal, Vol. 21, No. 1, pp. 14-32. ISSN 0920-234X.

Knuth, D.E. and Moore, R.W. (1975). An Analysis of Alpha-Beta Pruning.
Artificial Intelligence Vol. 6, No. 4, pp. 293-326. ISSN 0004-3702.

Marsland T.A., and Campbell, M.S. (1982). Parallel Search of Strongly Ordered
Game Trees. ACM Computing Surveys Vol. 14, No. 4, pp. 533-551.

Michie, D. (1980). Chess with Computers. Interdisciplinary Science Reviews.
Vol. 5, No. 3, pp. 215-227. ISBN 0308-0188.

Neumann, J. von and Morgenstern, O. (1944). Theory of Games and Economic
Behavior. Second Edition, 1947. Princeton University Press, Princeton, N.Y.

Newell, A., Shaw J.C., and Simon, H.A. (1958). Chess Playing Programs and
the Problem of Complexity. IBM Journal of Research and Development, Vol. 4,
No. 2, pp. 320-335. Reprinted (1963) in Computers and Thought (eds. E.A.
Feigenbaum and J. Feldman), pp. 39-70. McGraw-Hill, New York, N.Y.

Plaat, A. (1996). Research, Re: Search & Re-Search. Ph.D. Thesis. Erasmus
University Rotterdam. Thesis Publishers Amsterdam.

Reinefeld, A. (1983). An Improvement to the Scout Tree Search Algorithm. ICCA
Journal Vol. 6, No. 4, pp. 4-14. ISSN 0920-234X.

Schaeffer, J. (1989). The History Heuristic and Alpha-Beta Search Enhancements
in Practice. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 11, No. 11, pp. 1203-1212. ISSN 0162-8828.

Scherzer, T., Scherzer, L. and Tjaden, D. (1990). Learning in Bebe. Computers,
Chess, and Cognition (eds. T.A. Marsland and J. Schaeffer), pp. 197-216.
Springer-Verlag, New York. ISBN 0-387-97415-6.

Shannon, C.E. (1950). Programming a Computer for Playing Chess.
Philosophical Magazine, Vol. 41, No. 7, pp. 256-275. Reprinted (1988) in
Computer Games I (ed. D.N.L. Levy), pp. 81-88. Springer-Verlag, New York.
ISBN 0-387-96496-7.

18 T.A. Marsland and Y. Björnsson

Slate, D.J. and Atkin, L.R. (1977). CHESS 4,5 - The Northwestern University
Chess Program. Chess Skill in Man and Machine (ed P.W. Frey), pp. 82-118.
Springer-Verlag, New York. 2nd ed. 1983. ISBN 0-387-90815-3. Reprinted
(1988) in Computer Chess Compendium (ed. D.N.L. Levy), pp. 80-103; B.T.
Batsford, London.

Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA Journal,
Vol. 9, No. 3, pp. 131-139. ISSN 0920-234X.

Turing, A.M. (1953). Digital Computers Applied to Games. Faster Than Thought,
(ed. B.V. Bowden), pp. 286-297. Pitman, London.

