GTQ: A Language and Tool for Game-Tree
Analysis

Jonheidur Isleifsdottir and Yngvi Bjornsson

School of Computer Science, Reykjavik University, Reykjavik, Iceland
{jonheiduri02,yngvi}t@ru.is

Abstract. The search engines of high-performance game-playing pro-
grams are becoming increasingly complex as more and more enhance-
ments are added. To maintain and enhance such complex engines is a
challenging task, and the risk of introducing bugs or other unwanted be-
havior during modifications is substantial. In this paper we introduce the
Game Tree Query Language (GTQL), a query language specifically de-
signed for analyzing game trees. The language can express queries about
complex game-tree structures, including hierarchical relationships and
aggregated attributes over subtree data. We also discuss the design and
implementation of the Game Tree Query Tool (GTQT), a software tool
that allows efficient execution of GTQL queries on game-tree log files.
The tool helps program developers to gain added insight into the search
process of their engines, as well as making regression testing easier. Fur-
thermore, we use the tool to analyze and find interesting anomalies in
search trees generated by a competitive chess program.

1 Introduction

The development of high-performance game-playing programs for board games
is a large undertaking. The search engine and the position evaluator, the two
core parts of any such program, become quite sophisticated when all the neces-
sary bells and whistles have been added [8,18,7,1]. To maintain and enhance
such complicated software is a challenging task, and the risk of introducing
bugs or other unwanted behavior during modifications is substantial. A stan-
dard software-engineering approach for verifying that new modifications do not
break existing code is to use regression testing. To a large extent that approach
is what game-playing program developers use. They keep around large suites of
test positions and verify that a modified program evaluates them correctly and
plays the correct move. Additionally, new program versions play a large number
of games against different computer opponents to verify that the newly added
enhancements result in genuine improvements. Nonetheless, especially when it
comes to the search, it can be difficult to detect abnormalities; they may stay
hidden for a long time without surfacing. They can be subtle things such as the
search extending useless lines too aggressively, or poor move ordering resulting
in unnecessarily late cutoffs. Neither of the above abnormalities result in erro-
neous results, but may instead degrade the efficiency of the search unnecessarily.

220 J. Isleifsdottir and Y. Bjérnsson

To detect these anomalies one must typically explore and gather statistics about
the search process.

In this paper we introduce Game-Tree Query Language (GTQL), a language
specifically designed for querying game trees, and expand on previous work [5] by
doing a thorough empirical analysis where GTQL queries are used to analyze and
look for anomalies in search trees generated by a third-party competitive chess
program. As demonstrated, the query language allows the game-program devel-
opers to gain better insight into the behavior of the search process of their pro-
grams and makes regression testing easier. The developer can now keep around
a set of pre-defined queries that check for various wanted or unwanted search
behaviors (such as too aggressive extensions or large quiescence searches). When
a new program version is tested, it can be instructed to generate log files con-
taining the search trees. The queries are then run against the logs to verify that
the search is behaving in accordance with expectations. This has the potential of
substantially shorten the testing process as unwanted behaviors can be detected
early, as opposed to after playing hundreds of test games or, in the worst case,
never.

The paper is organized as follows. In the next section we describe the syntax
and semantics of the language, followed by a section giving an overview of the
usage and implementation of Game-Tree Query Tool (GTQT), a tool for effec-
tively executing GTQL queries. The efficiency and scalability of the tool is then
empirically evaluated, and the tool used to detect anomalies in the search of the
chess program FRUIT. Finally, we present conclusions and discuss future work.

2 The Game-Tree Query Language

A GTQL query consists of three parts: a node-expression part, a child-expression
part, and a subtree-expression part:

node: <node-expression>;
child:<child-expression>;
subtree: <subtree-expression>

The keywords mode, child, and subtree indicate the type of the expression that
follows. The query parts must be listed in the order given above, separated by a
semi-colon, but any unwanted parts can be omitted.

2.1 Query and Expression Evaluation

To be valid, expressions must be formed such that they evaluate to either true
or false. By default a query returns the set of nodes in a game tree that fulfil the
query, that is, the nodes for which all query parts evaluate to true. An example
query is provided below:

node: type = PVNode;
child: count([]ltype = type) >= 5;
subtree: count(*) > 1000

GTQ: A Language and Tool for Game-Tree Analysis 221

Table 1. Operators listed by precedence

Operator Type Arity

[, [<] Hierarchical | unary

& Attribute |binary

<,>, >=, <=, =, | =| Relational |binary
not Logical |unary

and Logical |binary

or Logical |binary

The query asks for nodes where the principal variation (PV) of the search is
changing frequently (this could, e.g., be an indication of a bad move-ordering
mechanism). The node expression evaluates to true only at PV nodes; the child
expression counts the number of child nodes that are of the same type as the
parent (i.e., also PV nodes) and returns true if there are at least five such child
nodes; the subtree expression further limits the set of PV nodes that can fulfill
the query by demanding their subtree being of a minimum size — this is done
to exclude PV nodes close to the leaves where frequent PV changes may occur
naturally.

The language is case sensitive and its expressions consist of attributes, con-
stants, operators, and functions. Attributes refer to data fields associated with
the nodes stored in the game-tree file being queried. For each node several at-
tributes are stored, two of which are always present (node id and last _move)
while others are optional. The optional attributes are typically algorithm and
domain dependent and may contain whatever information the users decide to
log in their game-playing programs (e.g., information about the search window
passed to a node, the value returned, the type of the node, etc.). In the above
example type is an attribute telling whether a node is a PV, CUT, or an ALL
node. Attribute names follow a naming convention where a name starts with
a letter and is then optionally followed by a series of characters consisting of
letters, digits, and the underscore character. Also, an attribute name may not
be the same as a reserved keyword in the language. Constants are either numeric
integral types (i.e., integer numbers) or user-defined names (e.g., PVNode in our
example query). The same naming convention is used for constant names as for
attribute names. Information about attribute and constant names available to a
query are stored in the game-tree file being queried.

The language operators fall into four categories: hierarchical, attribute, rela-
tional, and logical operators. They are listed in Table 1 in a decreasing order
of precedence. The evaluation of operators of equal precedence is left-to-right
associative. The hierarchical operators are used as prefixes to attribute names,
and identify the hierarchical relationship of the referenced node in relation to the
current node (the one being evaluated in the node expression). Currently, there
are two such operators defined, and they may be used only in child expressions.
The first operator, [], is prefix referring to the child node currently evaluated. In
our example, the child expression has such an operator for comparing the type

222 J. Isleifsdottir and Y. Bjérnsson

of the child nodes to the type of the node evaluated by the node expression (the
parent). The second hierarchical operator [<], not shown in the example, stands
for the previously evaluated child. It can be used to compare two consecutive
child nodes (e.g., to see if a node is being examined). The attribute operator,
&, is essentially an inclusive bitwise and, and is used to extract flag bits from
attribute fields. For example, a single node may be flagged simultaneously as a
quiescence node and as belonging to a null-move search. The relational opera-
tors test for equality or inequality of attributes, constants, function results, and
numbers, and the logical operators allow one to form arbitrarily complex ex-
pressions by combining Boolean expressions. Parentheses can be used to control
precedence and order of evaluation.

There is only one function in the language, the count (sub-expression)
function, and it returns the number of nodes in the expression scope (i.e., tree,
children, or subtree) that evaluate to true. Functions cannot be used recursively,
that is, the expression inside count cannot contain a call to count. The wild-
card character * may be used within the function instead of an expression to
refer to the empty expression, which always evaluates to true. Note that because
expressions must evaluate to either true or false, the count function must be
used with a relational operator, e.g. count (*)>0. The only exception is when
the function is used stand-alone in a node expression. In that case, the query
returns the actual count as opposed to a set of nodes. This is useful for gathering
statistics about the tree, e.g., as in the example below where the total number
of PV nodes in the tree is being counted:

node: count(type = PVNode)

More query examples are provided later in the paper. However, for a more thor-
ough explanation of the syntax and semantics of GTQL, as well as for additional
query examples, we refer interested readers to [14, 5].

3 Game-Tree Query Tool

The Game-Tree Query Tool (GTQT) is a software for parsing and executing
GTQL queries. It is a console application that runs from a command line. It is
implemented in C++ and runs on both Linux and Windows (as well as other
platforms that support ANSI compliant C++ compilers).

Below we give a brief overview of the one-pass algorithm used for executing
the queries. The algorithm is capable of answering any single query, no matter
how complex, in a single traversal of the game tree. The input to the program
is a set of queries and a game-tree log file. In addition to the game-tree data
(the attribute values of the nodes) the file stores meta-data, such as the names
of the attributes and constants available to the query and information about the
layout of the file. The tool, after processing and validating the meta-data, parses
and syntactically checks the queries before executing them. For a more detailed
discussion of the query execution algorithm, the logging mechanism, and the
usage of the GTQL tool we refer readers to [14].

GTQ: A Language and Tool for Game-Tree Analysis 223

I node: type = PVNode and depth >= 0 I

<ANDexpr>

| <item> ” <op>|| <item> | | <item> ||<op>|| <item> |
<vars ﬁ e é

type dspth 0

PVNode

Fig. 1. An example parse tree

3.1 Parsing a Query

Queries are parsed using a recursive-decent parser. A separate parse tree is built
for each query. An example parse tree is shown in Fig. 1, along with the query
it represents. A parse tree consists of several different types of parse nodes, de-
pending on the type of operator (e.g., relational or logical), term, or expression
being evaluated. Most parse nodes return a Boolean value when evaluated, rep-
resenting whether the corresponding expression evaluated to true or false for any
given node in the game tree. Typically, the result of an evaluation on a game-
tree node depends on the attribute values stored with the node. For example, in
Fig. 1 the values of both the type and depth fields are required for evaluating the
query; for nodes where type is equal to PV Node and depth is greater or equal to
zero the query evaluates to true, but to false for all other nodes.

A special provision must be taken for queries containing the function count,
as it returns a count based on data accumulated over many nodes. Such queries
cannot be evaluated until after all data nodes in the expression scope have been
traversed. In that case, in addition to the attribute values, a special structure
containing count information accumulated over the scope (e.g., a subtree) of the
query must be provided. This structure is called a counter. Node-expressions can
only contain one count function, whereas both subtree- and child-expression can
contain many such functions; for such expressions a list of counter structures
is required. Note that the counter lists and counter structures are not stored
as a part of the parse tree because our query execution algorithm may have
to execute several counter based query instances concurrently. Instead multiple
instances of the query are created, each using its own set of counters (see later).

3.2 Executing a Query

Although the tool is used for post-processing game-tree logs, time is still of
some essence when evaluating large game trees. The query execution algorithm
makes only one pass through the game tree, during which it collects all infor-
mation needed to answer the query. The algorithm is presented as Algorithm 1.

224 J. Isleifsdottir and Y. Bjérnsson

Algorithm 1 DFT-QUERY-EVAL(node)

1: querylnst = null

2: if nodeExpr.evaluate(node) then

3 querylnst = new QuerylInstance(subtreeExpr, childExpr)
4 querylInstStack.push(querylInst)

5: children = node.getChildren()

6: prev = null

7: for all child ¢n children do

8: DFT-QUERY-EVAL(child)

9: evalCounterExprs(querylnst, node, child, prev)
10: prev = child

11: if not querylInstStack.empty() then

12: if querylnst == querylnstStack.top() then

13: if subtreeExpr.evaluate(querylInst) and childExpr.evaluate(querylnst) then
14: addToResult(node)

15: querylnstStack.pop()

16: delete querylnst

17: evalCounterExprs(querylInstStack, node)

It first checks if the node expression evaluates to true (line 2), and if so a new
query instance is created and put onto a so-called query instance stack (line 4).
The stack keeps track of active query instances. A single query may have several
query instances active at the same time. More specifically, during the recursive
depth-first traversal (line 8) of the game tree, each node on the path from the
root to the current node where the node expression evaluates to true adds a new
query instance. The need for having many query instances open at the same time
is because separate counters are required for evaluating the child- and subtree-
expressions of each instance, as their subtree scopes differ as shown in Fig. 2.
Child- and subtree-expressions can be evaluated (line 13) only when the search
backtracks after their corresponding tree scope has been fully traversed. If both
expressions evaluate to true, the node is added to set of results (line 14) and the
query instance then popped off the stack (line 15). The subroutine evalCounter-
Ezprs updates the counters associated with the count (<expr>) expressions. It
is called for both child expressions (line 9) and subtree expressions (line 17). In
the latter case, counters in all query instances on the stack are updated.

T Instanceadded

to instance list

Fig. 2. Subtree scope of different nodes in the same line

GTQ: A Language and Tool for Game-Tree Analysis 225

node: color = Blue
subtree: count(color = Red) > 0 and count(value >0)>2

Instance stack

Instance stack node_id =1 when leaving node 5
when leaving node 2 color = Blue niD Counter c
niD [Counter [c value =2 1 color=Red |2
1 | color=Red |1 value > 0 5
value > 0 2
node_id =2 node_id =5
color = Blue Instance stack color = Green
value =-10 when leaving node 4 value = 8
niD Counter c
2 color=Red |1
value > 0 2
1 color =Red | 1
value >0 2
node_id =3 node_id =4 node_id = 6 node_id =7
color = Blue color = Red color = Red color = Green
value = 6 value = 10 value = 8 value =2

Fig. 3. Example of one-pass query evaluation

An example of the one-pass query-evaluation process is given in Fig. 3. The
node-expression part of the query looks for nodes with the color blue. In this
example we refer to the nodes by their node id. The node with node_id=1
becomes Node;. The root is blue so a new query instance is created on the stack.
This instance contains two counters: one for the sub-expression color=Red and
one for value>0. The counter stores a pointer to the parse tree of the count sub-
expression, and a counter variable initialized to zero (the c field in the figure).
The traversal continues down the left branch, and because the node-expression
is also true for Nodes, an instance is created on the stack for that node as well.
An instance is also added for Nodes. Now, because a leaf has been reached, the
DFT-QUERY-EVAL algorithm evaluates the subtree-expression for Nodes based
on the instance (the evaluation is false in this case) and backtracks. However,
before backtracking the remaining query instances on the stack are updated
according to evaluation of Nodes (the counter for value>0 is increased by one
for both instances). The instances for Node; and Nodey have now been updated
and the algorithm has backtracked to Nodes. From there it continues to traverse
the children and explores Nodey. This process continues until the entire tree has
been traversed. A snapshot of the query instance stack is shown in the figure
at selected points (text above the stacks in the figure). The rightmost snapshot
shows the stack when the algorithm backtracks back to Node; for the last time.
We can see that the instance for Node; is the only one left on the stack and its
counters have been updated several times. Node; is now evaluated based on the
query instance, the subtree-expression is true, so the node is added to result.

4 Experiments

To demonstrate the potentials of GTQL we used it to analyze game-tree logs
generated by a competitive chess program. In this section we report our findings.

226 J. Isleifsdottir and Y. Bjérnsson

Table 2. Game trees used in the experiments

LCT II Position|SD|SSD|{Number of nodes
15 8| 15 205,199
16 2| 19 2,383
17 6| 18 197,803
18 10| 30 1,671,866
19 5 25 78,165
20 8| 24 580,158
21 9| 45 2,821,292
22 9| 41 5,135,007
23 9| 35 1,009,011

4.1 Experimental Setup

For our experiments we used the chess program FRUIT [15], developed by Fabien
Letouzey. It was first released in March 2004, and subsequently made a strong
appearance in the 2005 World Computer Chess Championship held in Reykjavik
[6]. We used version 2.1 of the program, which is the strongest open-source chess
engine available (subsequent versions of the program were not open source). The
only modification we made to the program was to augment its search engine with
code for collecting attribute values and with calls to the game-tree log library.

The chess program was instructed to search nine tactical chess positions
taken from the LCT II test suite (positions number 15-23) [16]. This suite is one
of several frequently used standard test suites to measure chess programs’ per-
formance. On each of the problems the chess program was run until the correct
solution was found. For each position, a separate game-tree log was generated
for each search iteration. The solution (best move played) was found on itera-
tions varying from the second to the tenth ply, as shown in Table 2. The first
column indicates the position within the suite; the second column, SD, shows
the search depth of the iteration where the best move was first returned; the
third column, SSD, is the maximum search depth reached in that iteration; and
the final column is the number of nodes searched in that iteration. In our exper-
iments we used for each position the game-tree log from the iteration where the
solution was first found (SD). The experiments were run on a 3GHz Linux-based
computer with 2GB of main memory.

4.2 Processing Throughput

We start by measuring the throughput of the query tool. It can process around
500 to 600 thousand nodes per second from the game-tree log, depending on
the complexity of the query. The average time complexity of our one-pass query
algorithm is O(n * log(n)) where n is the number of nodes, so the throughput
degrades only slightly with increasingly larger trees [14]. The throughput speed
is in the ballpark of how fast chess programs search and log the game trees.

GTQ: A Language and Tool for Game-Tree Analysis 227

Table 3. Ratio of node types in the game trees

Tree |Num. of nodes|PV nodes|CUT nodes|ALL nodes
Posis 205,199 0.44% 69.71% 29.86%
Posis 2,382| 14.60% 63.58% 21.82%
Posi7 197,803 0.03% 74.25% 25.73%
Posis 1,671,866 0.06% 75.87% 24.07%
Posig 78,165 0.52% 73.32% 26.16%
Posag 580,158 0.08% 73.19% 26.72%
Posa 2,821,292 0.10% 72.10% 27.79%
Posos 5,135,007 0.12% 76.93% 22.95%
Posos 1,009,011 0.15% 67.52% 32.33%

4.3 Node Type Statistics

Next we asked queries for collecting statistics about the game trees, more specif-
ically the ratio of PV, CUT, and ALL nodes. The queries are shown below:

node: count(type = PVNode)
node: count(type = CUTNode)
node: count(type = ALLNode)

and the result in Table 3. The result looks as one would expect: very low ratio
of PV nodes, and 2 to 3 times more CUT than ALL nodes. The only deviation
from this is in Pos;g where there is a unusually high ratio of PV nodes, but
that is not much of a concern because of the fact that the tree is small (PV
changes are not too uncommon in shallow trees). This example, although not
providing much additional insight, is good for a sanity check to confirm the
expected behavior. The statistics were provided as a demonstration of the type
of statistics that can be collected. One must also be a little cautious when working
with accumulated statistics, as they may overlook individual anomalies. We thus
look more carefully at PV changes in the next subsection.

4.4 Principal Variation Changes
The query below was executed for different values on n:

node: type = PVNode;
child: count([ltype = type) >=n

The result is shown in Table 4. As can be seen, frequent PV changes are uncom-
mon, although there are a few problematic nodes in Posys that might warrant
a further investigation (there are 5 positions with 9 or more PV child nodes).

4.5 Large Quiescence-Search Trees

Quiescence searches are essential in chess programs for evaluating unstable po-
sitions — such searches typically include selected captures and even checks.

228 J. Isleifsdottir and Y. Bjérnsson

Table 4. Number of PV nodes in each tree with several PV node children

#pv-children|Posi5|Posi6|Pos17|Posis|Posig|Poszo|Posz21 |Posaz |Posas
2 91 29 1 87| 32| 26| 243] 556 160

5 7 3 0 3 3 2 15 59 20
7 0 0 0 0 0 0 0 6 6
9 0 0 0 0 0 0 0 5 0
a b d e g h S =S B s n

-
L.

|
A || Al A |

A
Al HTIADY

2 AP
: - . =l

a b =] d Cl £ g E L

lET N
b
>
[)

E Dow

b =) e £ el B

Fig. 4. Chess positions with a large quiescence search

However, because of the frequency of quiescence searches, it is important to
keep their size under control, a process that takes a careful tuning. To obtain
more insight into the size of the quiescence searches of FRUIT we executed the
following query for different values of n:

node: flags & QRootNode;
subtree: count(x) > n

The attribute flags is used in the chess program to mark various node properties,
such as whether a node belongs to a research, a null-move search, or a quiescence
search. The root of a quiescence search tree is marked as QRootNode.

For all positions except one, the quiescence searches were all under 200 nodes
(and most much smaller). In Pos;g (from the game Vanka - Jansa, Prag 1957),
however, four of the quiescence-search subtrees had more nodes. For example,
from the two positions shown in Fig. 4 the generated quiescence-search trees
were of size 840 and 486 nodes, respectively. This is quite excessive compared
to a normal search, and should raise a flag as something that warrants further
investigation. This is a good example of how the tool can be used to help identify
problems with the search performance.

5 Related Work

To the best of our knowledge GTQL is the first query language specifically
designed for game trees. However, several query languages for tree structures
exists, including XPath [10] for querying XML data. The navigational abilities
of XPath have been used in subsequent languages either by directly supporting

GTQ: A Language and Tool for Game-Tree Analysis 229

XPath like XQuery [9] does or extending its syntax like is done in LPath [2].
XSQuirrel [17] is a related language for making sub-documents out of existing
XML documents. None of the aforementioned languages are well suited for our
purpose and do for example not allow aggregation. However, there does exist
a chess-specific query language, Chess Query Language (CQL) [11], but it is
designed for matching chess positions, not tree structures.

On a further account, there do exist some tools that can be helpful in visu-
alizing game trees. Rémi Coulom presented a visualization technique for search
trees using treemaps [12]. Treemaps are based on the idea of taking a rectangle
and dividing it into sub-rectangles for each subtree. The first rectangle is split
vertically, one rectangle per child. Those rectangles are then split horizontally
for each of their children and so on. Although such a technique can give some
insight into where the search mainly spends it effort, it is insufficient for detect-
ing most search abnormalities. There do also exist browsers that allow one to
navigate through game-tree logs and look at resulting game positions [3, 4, 13].

6 Conclusions

From the above results we may fairly conclude that the new query language and
software can aid researchers and game-playing program developers in verifying
the correctness of their game-tree search algorithms. The syntax and semantics
of the language are explained in such terms that GTQL can be used by others.
The GTQ tool expresses queries about complex game-tree structures, including
hierarchical relationships and aggregated attributes over subtree data. Last but
not least, in this paper we demonstrated the usefulness of the GTQ tool by
analyzing and finding abnormalities in the search trees of the competitive chess
program FRUIT. These are just a few examples of the usefulness of GTQ. The
tool is quite flexible as the users decide which information about the game trees
to log. For example, by logging static node evaluations one can envision the
tool being useful to researchers working on search, e.g., for finding pathological
behaviors or for measuring diminishing returns of deeper search.

GTQL is the first query language specifically designed for game trees. There
are still many additions and improvements that could be made in future ver-
sions of both GTQL and GTQT. For example, the expressiveness of the language
could be enhanced, e.g., to include parent relations (and more generally ances-
tor relations), as well as an extended sibling relation. Also, other functions like
min and max would be useful. Moreover, there are improvements to be made
to the implementation; the two most prominent ones are: (1) allowing many
queries to be answered simultaneously, and (2) introducing run-time compres-
sion/decompression to the game-tree log files as they can quickly grow large.
As of now, the tool cannot handle game trees built in parallel. This limitation
is worthwhile to be addressed in future versions as multi-core processors are
becoming mainstream.

Finally, it is our hope that this work will aid researchers in the field of search
algorithms with the tedious process of debugging and verifying the correctness

230 J. Isleifsdottir and Y. Bjornsson

of their programs, thus saving them countless hours of frustration and grief. The
Game-Tree Query Tool is available for download at http://cadia.ru.is.

Acknowledgments. This research was supported by grants from The Icelandic
Centre for Research (RANNIS) and by a Marie Curie Fellowship of the European
Community programme Structuring the ERA under contract MIRG-CT-2005-
017284. We also thank the anonymous referees for their insightful comments.

References

1. D. Billings and Y. Bjoérnsson. Search and knowledge in Lines of Action. In H.J.
van den Herik, H. Iida, and E.A. Heinz, editors, ACG, volume 263 of IFIP, pages
231-248. Kluwer, 2003.

2. S. Bird, Y. Chen, S.B. Davidson, H. Lee, and Y. Zheng. Extending XPath to
support linguistic queries. In Proceedings of Programming Language Technologies
for XML (PLANX), pages 3546, Long Beach, California, January 2005. ACM.

3. Y. Bjornsson. Selective Depth-First Game-Tree Search. PhD thesis, University of
Alberta, Canada, June 2002.

4. Y. Bjornsson and J. Isleifsdottir. Tools for debugging large game trees. In Pro-
ceedings of The Eleventh Game Programming Workshop, Hakone, Japan, 2006.

5. Y. Bjornsson and J. Isleifsdottir. GTQL: A query language for game trees. In
Proceedings of The Twelfth Game Programming Workshop, pages 205-216, Ams-
terdam, The Netherlands, 2007.

6. Y. Bjornsson and H.J. van den Herik. The 13th world computer-chess champi-
onship. ICGA Journal, 28(3):162-175, 2005.

7. M. Buro. How machines have learned to play Othello. IEEE Intelligent Systems,
14(6):12-14, November/December 1999. Research Note.

8. M. Campbell, A.J. Hoane Jr., and F.-h. Hsu. Deep blue. Artificial Intelligence,
134(1-2):57-83, January 2002. Special Issue on Games, Computers and Artificial
Intelligence.

9. D. Chamberlin. XQuery: An XML query language. IBM Systems Journal,
41(4):597-615, 2002.

10. J. Clark and S. DeRose. XML path language (XPath) 1.0. Technical report, W3C
Recommendation, 1999.

11. G. Costeff. The Chess Query Language: CQL. ICGA Journal, 27(4):217-225, 2004.
12. R. Coulom. Treemaps for search-tree visualization. In J.W.H.M. Uiterwijk, editor,
The 7th Computer Olympiad Computer-Games Workshop Proceedings, 2002.

13. A. Fortuna. Internet Resource http://chessvortex.com/chant, 2003. CHANT: A
Tool to View Chess Game Trees.

14. J. Isleifsdottir. GTQL: A Game-Tree Query Language. Master’s thesis, Reykjavik
University, Iceland, January 2008. http://www.ru.is/?PageID=7094.

15. F. Letouzey. Internet Resource http://www.fruitchess.com, 2005. Fruit Chess.

16. F. Louguet and La Puce FEchiquéenne. Internet Resource
http://perso.orange.fr/lefouduroi/testlct2.htm, 2007. LCT II v. 1.21.

17. A. Sahuguet and B. Alexe. Sub-document queries over XML with XSQirrel. In
WWW °05: Proceedings of the 14th international conference on World Wide Web,
pages 268-277, New York, NY, USA, 2005. ACM Press.

18. J. Schaeffer. One Jump Ahead: Challenging Human Supremacy in Checkers.
Springer-Verlag New York, Inc., 1997.

