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Abstract

The simulation-based principles behind Monte-Carlo Tree
Search (MCTS) have their roots in non-deterministic do-
mains. In game domains, MCTS has nonetheless proved suc-
cessful in both non-deterministic and deterministic games.
This has been achieved by using more or less identical se-
lection mechanisms for choosing actions, thus potentially not
fully exploiting the inherent differences of deterministic and
non-deterministic games. In this paper we take steps towards
better understanding how determinism and discrete game out-
comes may influence how action selection is best done in
the selection step in MCTS. We use a simple n-arm-bandit
test domain to show that action selection can be improved by
taking into account whether a game is deterministic and has
only few discrete game outcomes possible. We introduce two
methods in this context to do so: moving average return func-
tion and sufficiency threshold and evaluate them empirically
in the n-arm-bandit test domain, as well as providing prelimi-
nary results in a GGP inspired game. Both methods offer sig-
nificant improvement over the standard UCT action-selection
mechanism.

Introduction

From the inception of the field of Artificial Intelligence
(AI), over half a century ago, games have played an im-
portant role as a testbed for advancements in the field, re-
sulting in game-playing systems that have reached or sur-
passed humans in many games. A notable milestone was
reached when IBM’s chess program Deep Blue (Campbell
et al. 2002) won a match against the number one chess
player in the world, Garry Kasparov, in 1997. The ’brain’ of
Deep Blue relied heavily on both an efficient minimax-based
game-tree search algorithm for thinking ahead and sophisti-
cated knowledge-based evaluation of game positions, using
human chess knowledge accumulated over centuries of play.
A similar approach has been used to build world-class pro-
grams for many other deterministic games, including Check-
ers (Schaeffer 1997) and Othello (Buro 1999).

For non-deterministic games, in which moves may be
subject to chance, Monte-Carlo sampling methods have ad-
ditionally been used to further improve decision quality. To
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accurately evaluate a position and the move options avail-
able, one plays out (or samples) a large number of games
as a part of the evaluation process. Backgammon is one ex-
ample of a non-deterministic game, where possible moves
are determined by rolls of dice, for which such an ap-
proach has led to world-class computer programs (e.g., TD-
Gammon (Tesauro 1994)).

In recent years, a new simulation-based paradigm for
game-tree search has emerged, Monte-Carlo Tree Search
(MCTS) (Coulom 2006; Kocsis and Szepesvári 2006).
MCTS combines elements from both traditional game-
tree search and Monte-Carlo simulations to form a full-
fledged best-first search procedure. Many games, both non-
deterministic and deterministic, lend themselves well to the
MCTS approach. As an example, MCTS has in the past
few years greatly enhanced the state of the art of computer
Go (Enzenberger and Müller 2009), a game that has eluded
computer based approaches so far.

MCTS has also been used successfully in General Game
Playing (GGP) (Genesereth et al. 2005). The goal there
is to create intelligent agents that can automatically learn
how to skillfully play a wide variety of games, given only
the descriptions of the game rules (in a language called
GDL (Love et al. 2008)). This requires that the agents
learn diverse game-playing strategies without any game-
specific knowledge being provided by their developers. The
reason for the success of MCTS in this domain is in part
because of the difficulty in automatically generating effec-
tive state evaluation heuristics. Most of the strongest GGP
agents are now MCTS-based, such as ARY (Méhat and
Cazenave 2011), CADIAPLAYER (Björnsson and Finnsson
2009; Finnsson and Björnsson 2011), and MALIGNE (Kirci
et al. 2011), however, with the notable exception of
FLUXPLAYER (Schiffel and Thielscher 2007; Haufe et al.
2011), which employs a traditional heuristic-based game-
tree search. Currently only finite, deterministic, perfect-
information games can be expressed in the GDL language,
so the focus of GGP agents has so far been on such games.
However, extensions to GDL were recently proposed for
augmenting the language to also express non-deterministic,
imperfect information games (Thielscher 2010). Subse-
quently, a relevant question to ask is whether the deter-
ministic vs. non-deterministic nature of a game affects
how MCTS is best employed (in GGP). The simulation-
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based principles behind MCTS have their roots in non-
deterministic domains, and although MCTS has been used
successfully in both deterministic and non-deterministic
game domains, the inherent difference of such types of
games has potentially not been fully exploited. For example,
actions selection (at non-chance nodes) is currently done the
same way in both domains.

In this paper we take steps towards better understanding
how determinism and discrete game outcomes can affect the
action selection mechanism of MCTS. We show that by tak-
ing such properties into consideration action selection can
be improved. We introduce two methods for doing so: mov-
ing average return function and sufficiency threshold. Both
methods show significant improvement over the standard
action-selection mechanism.

The paper is structured as follows. In the next section we
give a brief overview of MCTS, followed by a discussion
of how determinism and discrete game outcomes influence
action selection in MCTS. Next we introduce the two tech-
niques for exploiting the differences and evaluate them em-
pirically. Finally, we conclude and discuss future work.

Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a simulation-based
search technique that extends Monte-Carlo simulations to
be better suited for (adversary) games. It starts by running a
pure Monte-Carlo simulation, but gradually builds a game-
tree in memory with each new simulation. This allows for
a more informed mechanism where each simulation con-
sists of four strategic steps: selection, expansion, playout,
and back-propagation. In the selection step, the tree is tra-
versed from the root of the game-tree until a leave node is
reached, where the expansion step expands the leave by one
level (typically adding only a single node). From the newly
added node a regular Monte-Carlo playout is run until the
end of the game (or when some other terminating condition
is met), at which point the result is back-propagated back up
to the root modifying the statistics stored in the game-tree as
appropriate. The four steps are depicted in Figure 1. MCTS
continues to run such four step simulations until deliberation
time is up, at which point the most promising action of the
root node is played.

In this paper we are mainly concerned with the selec-
tion step, where Upper Confidence-bounds applied to Trees
(UCT) (Kocsis and Szepesvári 2006) is widely used for ac-
tion selection:

a

⇤ = argmax

a2A(s)

(
Q(s, a) + C

s
lnN(s)
N(s, a)

)
(1)

N(s) stands for the number of samples gathered in state s

and N(s, a) for number of samples gathered when taking
action a in state s. A(s) is the set of possible actions in state
s and Q(s, a) is the expected return for action a in state s,
usually the arithmetic mean of the N(s, a) samples gathered
for action a. The term added to Q(s, a) decides how much
we are willing to explore, where the constant C dictates how
much effect the exploration term has versus exploitation.

Figure 1: The four steps of MCTS: (1) selection step when
traversing the tree from the root to a leaf; (2) expansion step,
where node x is added; (3) playout from the expanded node
until a terminal position is reached; (4) back-propagation
step where the game outcome is backed up to the root, up-
dating statistics as appropriate.

With C = 0 our samples would be gathered greedily, al-
ways selecting the top-rated action for each playout. When
we have values of N(s, a) which are not defined, we con-
sider the exploration term as being infinity.

Exploiting the Determinism

Assume that after running a fixed number of simulations in
the tree in Figure 1 two of the available actions at the root
have established themselves as substantially better than the
others, say scoring 0.85 and 0.88 respectively. In a non-
deterministic game with a substantial chance element, or
in a game where the outcome is scored on a fine grained
scale (e.g., [0.00,1.00]), one might consider spending addi-
tional simulations to truly establish which one of the two
actions is indeed the better one before committing to either
one to play. In contrast, in a deterministic game with only
win (=1) and loss (=0) outcomes this is not necessarily the
case. Both moves are likely to lead to a win and no mat-
ter which one is played the true outcome is preserved. So,
instead of spending additional simulations in deciding be-
tween two inconsequential decisions, the resources could be
used more effectively. Generally speaking, if there are only
win or loss outcomes possible in a deterministic game then
once the Q(s, a) values become sufficiently close to a legiti-
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mate outcome based on enough simulations, spending addi-
tional simulations to distinguish between close values is not
necessarily wise use of computing resources.

Furthermore, with only win and loss (and draw) outcomes
in a deterministic game, once winning lines are found, it
may take many simulations for that information to propa-
gate up the tree. This is because the Q(s, a) values are av-
erage based. For example, assume that node y in Figure 1 is
found to be a win. This implies that the second action at the
root is a win (because the second player has no alternative
to switch to). Provided that there is already a large number
of simulations behind the Q(s, a) value of the second root
move, it will take many more simulations to raise the ac-
tion’s value to a win. Although the same is true in games
with many possible outcomes, then we are much less likely
to see such drastic changes in an evaluation, and if a game
is non-deterministic, then the effects of such changes will
typically be dampened as they back up the tree because of
chance nodes.

Generally speaking, in a non-deterministic game, or a
game with a fine grained spread of outcomes, the Q(s, a)
values may be considered as reasonable estimators of the
true game outcome, whereas in deterministic games with
only a few discrete outcomes the value is not directly es-
timating the true outcome. For example, consider a game
like Othello. How do we treat an estimate of, say 0.7, in a
given position? We know that the true value of the position
is either 0 or 1. Figure 2 shows the nature of the sampling
averages when the samples we gather approach infinity. In
the infinity we reach the true value (Kocsis and Szepesvári
2006). The figure shows how the estimates approach the true
values as we gather more samples. For deterministic games
with only two outcomes (DGs) the estimates approach ei-
ther 0 or 1 but for non-deterministic games (or games with a
”continuos” range of outcomes) (NDGs) the true values can
take number of values between 0 and 1. If there is no ad-
ditional information at hand we would expect the true value
for an NDG in this situation to follow a �-distribution with
mean 0.7. What we propose is that, for a DG, it should be
possible to exploit the determinism. In a DG we know that
an estimate approaches one of few known values. Our first
attempt to exploit this are two methods we call sufficiency
threshold (ST) and moving average return function (MA).
We introduce them in the next two sections, respectively.

Sufficiency Threshold

In an NDG we may have two best moves with true values as
0.7 and 0.75 representing a 70% and 75% changes of win-
ning, respectively. Early on in our search their estimates
may not differ much and the MCTS agent spends most of its
resources, i.e. samples, on deciding which is the better move
- occasionally sampling from other moves. This is very im-
portant as finding the move with true value as 0.75 increases
our winning changes by 5%. In DGs this is not as relevant.
Let us take an example of a position in chess where white
can capture a rook or a knight. After few simulations we get
high estimates for both moves. Probabilities are that both
lead to a win, i.e. both might have the same true value as 1.
We argue that at this point it is more important to get more

Figure 2: The estimated value is 0.7 after n samples. With infinite
samples a DG can only take the values 0 or 1, whereas an NDG can
take values spread over the interval [0, 1] following a �-distribution
with mean 0.7.

reliable information about one of the moves instead of trying
to distinguish between, possibly, equally good moves. Ei-
ther our estimate of one of the moves stays high or even gets
higher and our confidence increases or the estimate drops
and we have proven the original estimate wrong which can
be equally important. We introduce a sufficiency threshold
↵ such that whenever we have an estimate Q(s, a) > ↵ we
unplug the exploration. To do so we replace C in Equation
(1) by Ĉ as follows:

Ĉ =
⇢

C when all Q(s, a)  ↵,
0 when any Q(s, a) > ↵.

(2)

When our estimates drop below the sufficiency threshold we
go back to the original UCT method. For unclear or bad
positions where estimates are less than ↵ most of the time,
showing occasional spikes, the ST agent differs from the
UCT agent in temporarily rearranging the order of moves to
sample. After such a rearrangement the agents more or less
couple back to selecting the same moves to sample from.

Moving Average Return Function

Figure 2 shows how the reward function Q(s, a) either ap-
proaches 0 or 1 in a DG with two possible outcomes. From
our standpoint we sample more often from moves with high
estimates and when we choose the opponents moves we
sample more often moves which give us lower estimates.
Thus we gradually build up lines of play similar to the mini-
max approach. Our first samples may give a misleading im-
pression of a move but as we gather more samples the esti-
mate Q(s, a) gets more reliable and moves towards 0 or 1.
This is a recipe for thinking about moving averages instead
of the customary arithmetic mean used to evaluate Q(s, a).
The contribution of old samples in the arithmetic mean can
overshadow the increase or decrease in Q(s, a). We want to
slowly forget older samples as we gather new ones. We do
this using � such that the update rule for Q(s, a) is

Q(s, a) = Q

old

(s, a) + �(r �Q

old

(s, a)) (3)
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where r is the result from the simulation. This method is
sometimes called recency-weighted average and results in a
weighted average of past rewards and the initial estimate of
Q(s, a) (Sutton and Barto 1998). Since the initial estimate
plays a major role we do not start using the moving average
until we have gathered some minimum amount of samples,
M . With fewer samples we use the arithmetic mean and �

becomes

� =
⇢

1/N(s, a) when N(s, a)  M ,
�0 when N(s, a) > M .

(4)

where �0 is a constant.

Experiments

In the following we first describe the experimental setup. In
the experiments that follow we contrast moving average’s
(MA’s) and sufficiency threshold’s (ST’s) performance to
that of UCT. First we give an intuitional example using a sin-
gle model and show the effect of adding noise to the model.
This is followed by experiments representing average per-
formance over a wide range of models. We also look at how
increasing the number of actions affects performance. Fi-
nally, we provide preliminary results when using MA and
ST in an actual game.

Setup

To simulate a decision process for choosing moves in a game
we can think of a one-arm-bandit problem. We stand in front
of a number of one-arm-bandits, slot machines, with coins
to play with. Each bandit has its own probability distribu-
tion which is unknown to us. The question is, how do we
maximize our profit? We start by playing the bandits to
gather some information. Then, we have to decide where
to put our limited amount of coins. This becomes a mat-
ter of balancing between exploiting and exploring, i.e. play
greedily and try less promising bandits. The selection for-
mula (Equation 1) is derived from this setup (Kocsis and
Szepesvári 2006). With each bandit having its own proba-
bility distribution the randomness is inherited. Therefore it
is reasonable to simulate an NDG as n one-arm-bandits. In-
stead of n one-arm-bandits we can equally talk about one n-
arm-bandit and we will use that terminology henceforth. To
more accurately simulate a DG we alter the n-arm-bandit.
We continue to give each bandit a probability distribution,
but now we focus on a mean value for each bandit. Play-
ing a bandit means that we choose a number uniformly at
random from the interval [0, 1]. If the number is below the
bandit’s mean value the outcome of the play is a win, 1, oth-
erwise it is a loss, 0. Furthermore we let the mean values
move towards the possible true values for the DG we are
simulating, following the path of a random walk1. One can
argue that the mean values follow the path of a correlated
random walk (Goldstein 1951), since paths in the game-tree
are often highly correlated. With use of the Central Limit

1By the path of a random walk we mean a discretized path with
constant step size with equal probabilities of taking a step in the
positive or negative direction.
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created mean’s paths

Figure 3: Types of mean’s paths

Theorem we can approximate a correlated random walk with
a random walk when the observation time, i.e. the number
of samples, is long enough. It might be interesting to exper-
iment with a correlated random walk coupled with a limited
number of samples. This, however, adds complexity to the
model which does not serve our purposes at this time. In
our experiments we consider only true values 0 and 1. With
each sample we gather for a bandit we move one step further
along the mean’s path.

Our setup is related to Sutton and Barto’s approach [1998]
but adapted for deterministic environments. Once a path has
reached 0 or 1 it has found its true value and it does not
change after that. This way we get closer to the true value of
a bandit the more samples we can gather from it. Here, we
think of the simulation phase purely as information gather-
ing. Instead of trying to maximize our profit from playing
a fixed amount of coins we use a fixed amount of coins to
gather information. With this information we choose one
bandit to gamble all our money on in one bet and the out-
come is dictated by the bandit’s true value. We think this
setup simulates well the process of using a Monte-Carlo
sampling-based method in a DG. It is game-invariant and
scales well with its parameters. Figure 3a shows possible
paths hitting 0 or 1. We let M

i

(k
i

) be the mean value for
bandit i after k

i

samples from it. We use the results from
each sample to evaluate the expected reward of the bandits.
Let Q

i

(k
i

) be the expected reward for bandit i after k

i

sam-
ples from it. The total number of samples is k =

P
i

k

i

. The
closer Q

i

(k
i

) and M

i

(k
i

) are to each other, the better is our
estimate.

We experiment with a bandit as follows. Pulling an arm
once is a sample. A single task is to gather information for k

samples, k 2 [1, 3000]. For each sample we measure which
action an agent would take at that point, i.e. which bandit
would we gamble all our money on with current information
available to us. Let V (k) be the value of the action taken
after gathering k samples. V (k) = 1 if the chosen bandit has
a true value of 1 and V (k) = 0 otherwise. A trial consists
of running t tasks and calculate the mean value of V (k) for
each k 2 [1, 3000]. This gives us one measurement, V̄ (k),
which measures the percentage for each agent of choosing
the optimal action after k simulations. There is always at
least one bandit with a true value of 1. Each trial is for a
single n-arm-bandit, representing one type of a position in a
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Figure 4: Manual setup using UCT with 1 winner
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(b) ST vs UCT

Figure 5: 20 arms - noise level low, 1 winner

game. In all our experiments we compare the performance
of ST and MA to UCT.

Intuition Model and Noise Levels

To get an intuition for this setup we start by manually build-
ing three types of mean’s paths, as seen in Figure 3b. The
first and second path are the same up to k

i

= 400. After that
the first path moves towards 1 and the second to 0. The third
type of path has a constant mean value of 0.4 up to k

i

= 499
and is 0 when k

i

= 500. We build an n-arm-bandit, referred
to as a model, having one arm of the first type, one arm of
the second type and the remaining (varying number of) arms
of the third type, representing noise.

In the following experiments we run a single trial of 1000
tasks using the above bandit. We set C = 0.4 in UCT (the
value used for CADIAPLAYER), ↵ = 0.6 in ST, and M =
30 and � = 0.05 in MA. We did not put much effort into
tuning the parameters of ST and MA, so these values do by
no mean represent optimal settings. The graph in Figure 4
serves as a baseline and shows the performance of UCT for
different number of arms where all but 2 arms are noisy (type
3). More arms thus represent more noise. We can see how
the UCT agent distinguishes the two promising arms from
the others in the first few steps. The step shape of the low-
noise trajectory shows this best. For a while the agent can
not distinguish between the two promising arms and thus
selects the winners 50% of the time. Thereafter, the agent is
able to choose the winner gradually more often as we gather
more samples.
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Figure 6: 50 arms - noise level medium, 1 winner
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(b) ST vs UCT

Figure 7: 80 arms - noise level high, 1 winner

The graphs in Figures 5-7 show MA’s and ST’s perfor-
mance relative to the UCT baseline (Figure 4), with different
levels of noise. The y-axis indicates the difference in how
often the optimal action is chosen compared to UCT (e.g., if
UCT chooses the correct action 50% of the time, a value of
+4 means that MA (or ST) chooses the correct action 54%
of the time). Two trends can be read from the graphs. With
low-noise the ST agent is doing worse than the UCT agent
to begin with as it spends more resources on noisy arms giv-
ing false positive results. With increasing noise the ST agent
surpasses the UCT agent when the UCT agent spends more
resources on exploring all arms instead of proving a promis-
ing arm right or wrong. As the noise increases the MA agent
needs more samples to surpass the other agents but eventu-
ally does so convincingly. In Figures 6a and 7a we notice a
zig-zag behavior of the MA agent, scoring better than UCT,
then worse and again better. This is a known behavior of
moving averages when the step-size, �0, is too large (Sut-
ton and Barto 1998).

Many Models and Actions

The aforementioned experiments provided intuition by us-
ing a single contrived model. In here we run experiments
on 50 different bandits (models) generated randomly as fol-
lows. All the arms start with M

i

(1) = 0.5 and have ran-
domly generated mean’s paths although constrained such
that they hit loss (0) or win (1) before taking 500 steps.
One trial consisting of 200 tasks is run for each bandit, giv-
ing us 50 measurements of V̄ (k) for each agent and each
k 2 [1, 3000]. In the following charts we calculate a 95%
confidence interval over the models from s⇥ t49/

p
50 with

s as the sampled standard deviation and t49 from the Stu-
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Figure 8: UCT with various number of arms and winners

dent’s t-distribution with 49 degrees of freedom.
In the experiments two dimensions of the models are var-

ied: first the number of arms are either 20 or 50, and second,
either 10% or 30% of the arms lead to a win (the remain-
ing to a loss). Figure 8 shows V̄ (k) for UCT, which we use
as a benchmark. Figures 9 and 10 show the performance of
ST and MA relative to UCT when using 20 and 50 arms,
respectively. In Figure 9, first we see how MA performs
significantly better with 20 arms and 10% winners. Increas-
ing the arms and winners seems to diminish MA’s lead over
the other agents. However, we should keep in mind that
MA is sensitive to its parameters M and �0. It looks like
the MA’s parameters are tuned too greedily for more arms
and winners. ST does not perform much better than UCT
with little noise but with higher percentage of winners it
performs significantly better than UCT when few samples
have been gathered. With more noise the ST agent is much
better than UCT. We changed the parameters to a more pas-
sive approach for MA with 50 arms by setting M = 50 and
�0 = 1

50 = 0.02. There is no longer a significant difference
between MA and UCT with 50 arms.

Breakthrough Game

Figure 11:
White wins with
a5a6

Using simplified models as we did
in the aforementioned experiments is
useful for showing the fundamental
differences of the individual action se-
lection schemes. However, an impor-
tant question to answer is whether the
models fit real games. In here we
provide preliminary experimental re-
sults in a variant of the game Break-
through2, frequently played in dif-
ferent variants in GGP competitions.
More in-depth experiments remain as
future work. The goal of Break-
through is to advance a pawn to the
end of the board. The pawns move
forward, one square at a time, both
straight and diagonally and can cap-

2http://boardgames.about.com/od/free8x8games/a/breakthrough.htm
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(b) ST vs UCT (10% win)
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(c) MA vs UCT (30% win)
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Figure 9: 20 arms
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(b) ST vs UCT (10% win)
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Figure 10: 50 arms

ture opponents pawns with the diagonal moves. The position
in Figure 11 showcases the problem at hand, and in a way
resembles the types of arms described above. There are two
promising moves which turn out to be bad, one that wins and
10 other moves which do little. In the position, capturing a
pawn on a7 or c7 with the pawn on b6 looks promising since
all responses from black but one lose. Initially our samples
give very high estimates of these two moves until black picks
up on capturing back on a7 or c7. There is a forced win for
white by playing a6. Black can not prevent white from mov-
ing to b7 in the next move, either with the pawn on a6 og b7.
From b7 white can move to a8 and win.
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Figure 12: UCT, MA and ST in the position in Figure 11

Table 1: Frequency of a5a6 in 1000 trials
Samples UCT ST MA

500 280 382 (< 1%) 326 (< 5%)
1000 323 611 (< 1%) 497 (< 1%)

Figure 12 shows how the three different methods, UCT,
ST and MA, perform in the position in Figure 11. The
threshold level for ST is 0.6 and for MA we had M = 30
and � = 0.05. The exploration constant C was 0.4. Table 1
shows the frequency of the correct move, a5a6, and a mea-
sure of the probability that ST and MA are equal to UCT.
Both ST and MA perform significantly better than UCT in
this position. This position demonstrates clearly the draw-
backs of UCT. To begin with, capturing on a7 and c7 are
overestimated and playing a6 underestimated. By estimat-
ing the expected return with arithmetic mean these over-
and underestimates get rectified rather slowly. Also, UCT
wastes resources on exploring too much when the estimates
are telling us we might have a forced win. We notice that in
this real-game setup UCT behaves in a similar way as in the
manual setup with low noise. In Figure 12 we see how UCT
reaches a plateau around 33%, where the optimal move is
played approximately 1/3 of the time as UCT needs more
samples to distinguish between the three promising moves.

Related Work

The current research focus on improving the selection phase
in MCTS has been on incorporating domain knowledge
to identify good actions earlier, materializing in enhanced
schemes such as RAVE (Gelly and Silver 2007) and Pro-
gressive Bias (Chaslot 2010).

A solver based variant of MCTS (Winands et al. 2008;
Cazenave and Saffidine 2010) allows proven values to be
propagated correctly in the MCTS game-tree, thus expedit-
ing how fast such values back-propagate up the tree. This
offers similar benefits as MA does, however, only in the ex-
treme cases of proven values.

We are not aware of any previous work specifically look-
ing into how the selection step in MCTS can take advantage

of the fact that it is playing a deterministic game with only
discrete game outcomes.

Conclusions and Future Work

We have shown that the estimates of positions in DGs as a
function of the number of samples follow a fundamentally
different kind of path than in NDGs. Knowing that a func-
tion approaches either 0 or 1 in infinity can give us valuable
information. Both our proposals to exploit this behavior, ST
and MA, improve the traditional selection strategy in MCTS
significantly. We should bear in mind that the MA agent is
more sensitive to its parameters, M and �0, than the other
agents and we did not put much effort in fine tuning the pa-
rameters. We have fixed the exploration factor to C = 0.4
for all agents. Different values of C could change the out-
come and that needs to be investigated. Apart from that the
only parameters we can change are in the ST and MA agents.
The results we have for ST and MA can therefore be thought
of as lower limits.

We believe the n-arm-bandit setup represents the behav-
ior of simulation-based agents for DGs well. Taking into
account that the we are not trying to maximize our profit
as we gather samples, but using our samples to gather in-
formation to have the best probabilities of distinguishing a
winning arm from the others. The results show significant
improvements over UCT in all setups, for either or both of
the agents ST and MA. The experiments are meant to mir-
ror a wide range of possible positions in games with low
and medium noise as well as few and many winners. There-
fore we are confident that we have shown that our proposed
methods, and more importantly our use of the determinism,
improve the customary UCT selection method when used in
DGs. Of special interest to GGP is the early lead of the ST
agent over the others as GGP-players often have very limited
time to play their moves.

We have pointed out two major parameters in describing
a position of a game, i.e. how many moves are possible, the
noise, and how many of them lead to a win. Increasing the
noise seems to fit well for ST as well as increasing the num-
ber of winners. The MA does not perform as well with in-
creased noise and winners but tuning the parameters in MA
could improve it substantially. It is interesting to notice that
the ratio of winners is not enough to explain the difference of
the agents. It seems like the number of unsuccessful arms, or
losers, does also play a part as they contribute to the number
of false positive arms to begin with.

The Breakthrough experiment indicates that our methods
fit well to GGP domains as ST and MA agents perform sig-
nificantly better than UCT. Comparing the different meth-
ods in real games is the natural next step for future work.
Furthermore, it would be interesting to try to characterize a
real-game with parameters like noise, winners etc., e.g. the
branching factor of the game-tree could be a representation
of the noise. For each characterization we could then choose
the correct method and parameters for the action selection
phase. The methods we introduce here are intentionally sim-
plistic, with the main purpose of demonstrating potentials.
More sophisticated methods for handling moving averages
and cutoff thresholds exist and will be investigated in future
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work in this context. It is interesting to research in more de-
tail the effect of noise, winners and losers on the agents and
the parameters, C, ↵, M and �0, need to be investigated.
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