
Noname manuscript No.
(will be inserted by the editor)

CadiaPlayer: Search-Control Techniques

Hilmar Finnsson · Yngvi Björnsson

Received: 31 July 2010 / Accepted: 11 September 2010

Abstract Effective search control is one of the key

components of any successful simulation-based game-

playing program. In General Game Playing (GGP),

learning of useful search-control knowledge is a par-

ticularly challenging task because it must be done in

real-time during online play. In here we describe the

search-control techniques used in the 2010 version of

the GGP agent CadiaPlayer, and show how they

have evolved over the years to become increasingly ef-

fective and robust across a wide range of games. In

particular, we present a new combined search-control

scheme (RAVE/MAST/FAST) for biasing action selec-

tion. The scheme proves quite effective on a wide range

of games including chess-like games, which have up un-

til now proved quite challenging for simulation-based

GGP agents.

Keywords General game playing · Cadiaplayer ·
search control

1 Introduction

CadiaPlayer was the first General Game Playing

(GGP) agent to use Monte-Carlo Tree Search (MCTS)

for reasoning about its actions, an approach that has

now become mainstream in GGP agents. However, in

contrast to many of its contemporary MCTS-based

players, which empathize massive search parallelism,

the mainstream research in CadiaPlayer has been on

developing practical ways of extracting search-control

H. Finnsson · Y. Björnsson
Reykjav́ık University, Menntavegur 1, 101 Reykjav́ık, Iceland
E-mail: hif@ru.is

Y. Björnsson
E-mail: yngvi@ru.is

knowledge during online play as well as developing in-

formed search-control mechanisms for effectively using

such knowledge in real-time. Using such an approach it

won the 2007 and 2008 International GGP competitions

and ended in the third place in 2010.

An effective search-control mechanism for simula-

tion playouts is a key component in any MCTS-based

game-playing program. In many game application do-

mains where MCTS is successfully used, such as com-

puter Go [11,7] and Amazons [18], a typical approach

is to manually define and encode game-specific play-

ing patterns and other kind of domain knowledge that

is useful for search control and then carefully tune its

use, either by hand or by automated match play con-

sisting of (possibly) thousands of games. In contrast,

in GGP the search-control knowledge must be auto-

matically discovered, extracted, represented, and tuned

during online play consisting of (possibly) only a single

match game — making the task a hand all the more

challenging.

In this paper we describe the MCTS reasoning com-

ponent of the 2010 version of CadiaPlayer. The main

contributions are: 1) a state-of-the-art online simulation

search-control mechanism, which introduces a new tech-

nique for handling chess-like games as well as a novel

integration with existing schemes; 2) empirical evalu-

ation of the new search-control mechanism on a wide

range of games and analysis of its strengths and weak-

nesses depending on several game properties; and 3)

an overview of CadiaPlayer’s performance evolution

since its first competition, thus providing one bench-

mark of how the field of GGP has advanced over the

years.

The paper is structured as follows. In the next

section we give an overview of the MCTS approach

and its implementation in CadiaPlayer. We next

2 Hilmar Finnsson, Yngvi Björnsson

describe the search-control techniques used in Cadi-

aPlayer, including how they obtain and apply the

relevant knowledge. We then empirically evaluate the

techniques on a wide range of games, including some

from the 2010 GGP competition. In particular, we ex-

amine how CadiaPlayer has evolved in strength over

the years as more sophisticated search-control schemes

have been incorporated. Related work is then discussed

before concluding and contemplating future work.

2 MCTS General Game Player

Monte-Carlo Tree Search (MCTS) is at the core of Ca-

diaPlayer’s reasoning engine. MCTS continually runs

simulations to play entire games, using the result to

gradually build a game tree in memory where it keeps

track of the average return of the state-action pairs

played, Q(s, a). When the deliberation time is up, the

method plays the action at the root of the tree with the

highest average return value.

Fig. 1 An overview of a single simulation.

Figure 1 depicts the process of running a single sim-

ulation: the start state is denoted with S and the ter-

minal state with T . Each simulation consists of four

strategic steps: selection, playout, expansion, and back-

propagation. The selection step is performed at a be-

ginning of a simulation and chooses actions while still

in the tree (upper half of figure), while the playout step

chooses actions once the simulated episode falls out of

the tree and until the end of the game (bottom half of

figure). The expansion step controls how the game tree

is grown. Finally, in the back-propagation step, the re-

sult value of the simulation is used to update Q(s, a) as

well as other relevant information if applicable.

The Upper Confidence Bounds applied to Trees

(UCT) algorithm [15] is used in the selection step, as

it offers an effective and a sound way to balance the

exploration versus exploration tradeoff. At each visited

node in the tree the action a∗ taken is selected by:

a∗ = argmaxa∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}

The N(s) function returns the number of simulation

visits to a state, and the N(s, a) function the number

of times an action in a state has been sampled. A(s) is

the set of possible actions in state s and if it contains an

action that has never been sampled before it is selected

by default as it has no estimated value. If more than one

action is still without an estimate a random tie-breaking

scheme is used to select the next action. The term added

to Q(s, a) is called the UCT bonus. It is used to provide

a balance between exploiting the perceived best action

and exploring the less favorable ones. Every time an

action is selected the bonus goes down for that action

because N(s, a) is incremented, while its siblings have

their UCT bonuses raised as N(s) is incremented. This

way, when good actions have been sampled enough to

give an estimate with some confidence, the bonus of the

suboptimal ones may have increased enough for them to

get picked again for further exploration. If a suboptimal

action is found to be good, it needs a smaller bonus

boost (if any) to be picked again, but if it still looks

the same or worse it will have to wait longer. The C

parameter is used to tune how much influence the UCT

bonus has on the action selection calculations.

In the playout step there are no Q(s, a) values

available for guiding the action selection, so in the

most straightforward case one would choose between

those available uniformly at random. However, Cadi-

aPlayer uses more sophisticated techniques for bias-

ing the selection in an informed way, as discussed in the

next section.

The expansion step controls how the search tree

grows. A typical strategy is to append only one new

node to the tree in each simulation: the first node en-

countered after stepping out of the tree [5]. This is done

to avoid using excessive memory, in particular if sim-

ulations are fast. In Figure 1 the node added in this

episode is labeled as N .

3 Simulation Control

The search-control mechanism used in CadiaPlayer

for guiding the MCTS simulations combines three dif-

ferent schemes. The first one, MAST, was introduced

in the 2008 version of CadiaPlayer; the next one,

RAVE, was added in the 2009 version and is borrowed

CadiaPlayer: Search-Control Techniques 3

from the computer Go community where it is an es-

tablished technique to expedite search-control learning;

and the third one, FAST, is a newly added scheme that

uses temporal-difference learning to learn board-specific

domain-knowledge for search control. In the 2010 ver-

sion of CadiaPlayer the three schemes were used col-

lectively, giving an effective and robust search-control

guidance on a wide range of disparate games.

We first describe the general search-control frame-

work used in CadiaPlayer, followed by each of the in-

dividual schemes, and finally we show how the schemes

can be combined.

3.1 Search-Control Framework

In CadiaPlayer a single simulation plays out in two

phases with a different search-control mechanism for

each: first, in the selection step, actions are chosen ac-

cording to the (possibly modified) UCT formula, and

second, in the playout step, actions are chosen accord-

ing to the Gibbs (or Boltzmann) distribution:

P(a) =
eQh(a)/τ

Σn
b=1e

Qh(b)/τ

where P(a) is the probability that action a will be cho-

sen in the current playout state and Qh(a) is a merit-

based value telling how promising move a is — actions

with a higher Qh(a) value being more likely to be cho-

sen. This is a general and convenient framework for al-

lowing non-uniform random action selection as the bias

introduced by the merit values can be controlled by

tuning the τ parameter. When τ → 0 the distribution

stretches, whereas higher values make it converge to an

uniform one.

3.2 Move-Average Sampling Technique

Move-Average Sampling Technique (MAST) [8] learns

search-control information during the back-propagation

step using the values of the simulation nodes both out-

side the tree as well as those within it. The information

is then used to bias future playout steps towards more

promising actions, using the aforementioned Gibbs dis-

tribution. This is done by setting up a lookup table over

all actions independent of the states they are available

in. When a return value of a simulation is backed up

from T to S (see Figure 1), the table is updated with

incrementally calculated averages, Qh(a), for each ac-

tion a on the path. The rational is that some actions

are likely to be good whenever they are available, e.g.

placing a piece in the center cell in TicTacToe or one

of the corner cells in Othello.

One of the main attractions of this scheme is its

simplicity and generality, allowing useful search-control

information to be efficiently computed in a game inde-

pendent manner. The scheme’s effectiveness has proved

quite robust across a wide range of games.

3.3 Rapid Action Value Estimation

Rapid Action Value Estimation (RAVE) [10] is a

method borrowed from computer Go, which speeds up

the learning process in the game tree. It uses returns as-

sociated with actions further down the simulation path

to get more samples for duplicate actions available, but

not selected, higher up in the tree. The method stores

its values,QRAVE(s, a), separately from the actual MC

state-action averages, Q(s, a), so when backing up the

values of a simulation, we not only update the tree value

for the action taken, Q(s, a), but also sibling action val-

ues, QRAVE(s, a′), if and only if action a′ occurs fur-

ther down the path being backed up (s to T).

We use the QRAVE(s, a) to bias theQ(s, a) value in

the UCT formula in the selection step. These rapidly

learned estimates are mainly good initially when the

sampled data is still unreliable and should only be used

in conjunction with high variance Q(s, a) values. With

more simulations theQ(s, a) averages become more reli-

able and should be trusted more than the QRAVE(s, a)

values. This is accomplished by replacing the Q(s, a)

term with the following formula that weighs the two

values linearly based on number of samples collected:

β (s)×QRAVE(s, a) + (1− β (s))×Q(s, a)

where

β (s) =

√
k

3×N (s) + k

The parameter k is called the equivalence parameter

and controls how many state visits are needed for both

estimates to be weighted equal. The function N(s) tells

how many times state s has been visited.

3.4 Features-to-Action Sampling

The aforementioned schemes do not use any game-

specific domain knowledge. Although this has the bene-

fit of allowing effective deployment over a wide range of

disparate games, this approach seems simplistic in con-

trast to human players, which use high-level features

such as piece types and board geometry in their reason-

ing. The lack of understanding of such high-level game

concepts does indeed severely handicap GGP players

4 Hilmar Finnsson, Yngvi Björnsson

using simple search-control schemes in certain types of

games, for example chess-like games where a good un-

derstanding of the different piece type values is essential

for competitive play. Although GDL does not explicitly

represents items such as pieces and boards such game-

specific concepts can often be inferred.

With the Features-to-Action Sampling Technique

(FAST) we use template matching to identify com-

mon board game features, currently detecting two such:

piece types and cells (squares). Piece type is only judged

relevant if it can take on more than one value; if not,

we consider cell locations as our feature set. We use

TD(λ) [26] to learn the relative importance of the de-

tected features, e.g. the values of the different types

of pieces or the value of placing a piece on a particular

cell. Each simulation, both on the start- and play-clock,

generates an episode s1 → s2 → ...→ sn that the agent

learns from by applying the delta rule to each state st
in the episode:

δ = δ + α× [Rλt − V (st)]×5θV (st)

where Rλt is the λ-return (average of exponentially

weighted n-step TD returns), V (s) is our value func-

tion, and 5θV (s) is its gradient. A reward is given at

the end of the episode, as the difference of the players’

goal values. The δ is then used in between episodes to

update the weight vector θ used by the value function to

linearly weigh and combine the detected features f(s):

V (s) =

|f |∑
i=1

θi × fi(s)

In games with different piece types, each feature

fi(s) represents the number of pieces of a given type

in state s (we do not detect piece symmetry, so a white

rook is considered different from a black one). In games

where cell-based features are instead detected each fea-

ture is binary, telling whether a player has a piece in

a given cell (i.e. a two-player game with N cells would

result in 2N features).

The value function is not used directly to evaluate

states in our playouts. Although that would be pos-

sible, it would require executing not only the actions

along the playout path, but also all sibling actions. This

would cause a considerable slowdown as executing ac-

tions is a somewhat time consuming operation in GGP.

Instead we map the value function into the same Qh(a)

framework as used by MAST. This is done differently

depending on type of detected features and actions. For

example, for piece-type features in games where pieces

move around the mapping is:

Qh(a) =

{
−(2× θPce(to) + θPce(from)), if capture move

−100 otherwise

where θPce(from) and θPce(to) are the learned values of

the pieces on the from and to squares, respectively. This

way capture moves get added attention when available

and capturing a high ranking piece with a low ranking

one is preferred. For the cell features the mapping is:

Qh(a) = c× θp,to

where θp,to is the weight for the feature of player p hav-

ing a piece on square to, and c is a constant. Now that

we have established a way to calculate Qh(a) the P(a)

distribution can be used to choose between actions.

(cell h 8 br)

(move h 1 h 8)

(cell h 1 wr)

From

To

The values learnt for the piece type features found
at the from and to positions are then fed to the formula
for this move:

Fig. 2 FAST capture calculations in chess for (move h 1 h
8) in a state containing (cell h 1 wr) and (cell h 8 br).

We look at a concrete example in Figure 2 of how
piece type features are used. In chess and similar board

games a common encoding practice in GDL for repre-

senting a board configuration with state predicates will

take on the general form (or variation thereof)

(< predicate-name >< column >< row >< piece >)

for each piece on the board. The name of the predicate

may vary but a common feature is that two of its argu-

ments indicate the cell location and the remaining one

the piece type currently occupying the cell. For exam-

ple, (cell h 1 wr) indicates a white rook on square h1.

Similarly, actions in games where pieces move around

are commonly encoded using the recurring format of

indicating the from and to cell locations of the mov-

ing piece, e.g. (move h 1 h 8). This way both different

piece types and piece captures can be identified. As soon

as the program starts running its simulations, the TD-

learning episodes provide learned values for the different

piece types. For example, in chess we would expect the

CadiaPlayer: Search-Control Techniques 5

winning side to be material up more often and our own

pieces thus getting positive values and the opponent’s

pieces negative ones. The more powerful pieces —such

as queens and rooks— have higher absolute values (e.g.,

in Skirmish, a simplified chess-like game used in our

experiments, the values typically learned for a pawn,

knight, bishop, and rook were approximately 5, 10, 10,

and 13, respectively). The learned piece values θ are

stored in a lookup table and consulted when captures

moves are made, as depicted in Figure 2 for the move

rook h1 captures on h8. The more powerful the captured

opponent’s piece is, especially when captured with a

low ranked piece, the higher the Qh(a) becomes and

thus the likelihood that the move will be played. The

learned piece values are constantly updated throughout

the game, however, as a precaution, they are not used

unless having a value far enough from zero.

In games with only one type of piece for each role,

the piece locations become active features instead of

piece types. This is shown for the game Othello in Fig-

ure 3, where (3 4 white) is an example feature (i.e., a

white disk on cell 3 4). During the playout step, in each

state, we look up the Qh(a) values for all available ac-

tions in the feature table by their associated role and

location, and bias play towards placing disks onto cells

with high learned values, such as corners and edges.

The values learnt for the position with our marker
are then fed to the formula for these moves :

Fig. 3 FAST calculations in Othello for available moves.

3.5 Combining Schemes

The RAVE scheme can be easily combined with either

MAST or FAST as it operates in the selection step of a

simulation, opposed to in the playout step as the other

two. The RAVE/MAST combination was implemented

and used in CadiaPlayer 2009.

The FAST scheme was devised later, but was not

as easily integrated into the already existing combined

RAVE/MAST scheme. The problem is that MAST and

FAST both operate on the playout step and possibly

bias the action selection differently. We opted for the

following MAST/FAST integration in the playout step:

Qh(a) =

QMAST(a) + w ×QFAST(a) if any features

active in A(s)

QMAST(a) otherwise

where QMAST(a) and QFAST(a) are the Qh(a) val-

ues as calculated by the MAST and FAST schemes

respectively, and the w parameter is a weighing con-

stant deciding on their relative importance. If no fea-

tures are active in the current state, meaning that ei-

ther no features were detected in the game descrip-

tion or that no capture moves are available in such

a game, the QFAST(a) distribution becomes uniform

and is omitted (as it would shift the final distribution

without adding any information).

For maximum efficiency the influence of each scheme

must be carefully weighted, possibly varying depending

on the game type. For the 2010 competition a com-

bined RAVE/MAST/FAST scheme was used, however,

we simply fixed w = 1.0 because of a lack of time for

thoroughly tuning a more appropriate value.

4 Empirical Evaluation

The aforementioned search-control schemes were de-

veloped and added to CadiaPlayer at different time

points, often in a response to an observed inefficiency

of the agent in particular types of games. The main

difference in the agent between subsequent GGP com-

petitions has thus been the sophistication level of the

search control. Although there have been other more

minor improvements made to the agent from year to

year —e.g., in the form of a more effective transpo-

sition table, implementation efficiency improvements,

and better tuned parameter settings— in here we are

interested in quantifying the effects of the increasingly

more effective search-control schemes. We nullify the ef-

fect of other changes by having all agent versions share

the newest and most effective code base, thus differing

only in the type of search-control scheme used.

4.1 Setup

We empirically evaluate and contrast four versions of

CadiaPlayer, each representing the type of search-

6 Hilmar Finnsson, Yngvi Björnsson

control used in the four GGP competitions the agent

has competed in (it placed 1st in 2007 and 2008, 6th

in 2009, and 3rd in 2010). The 2007 version is used as

a baseline player that all other versions are matched

against. In the table that follows, each data point rep-

resents the result of a 200-game match, showing both

a win percentage and a 95% confidence interval. The

matches were run on Linux based 8 processor Intel(R)

Xeon(R) 2.66GHz CPU computer with 4GB of RAM.

Each agent used a single processor.

The value of the UCT parameter C is set to 40 (for

perspective, possible game outcomes are in the range 0-

100). The τ parameter of the P(a) distribution is set to

10 for all agents. The equivalence parameter for RAVE

is set to 500. In FAST the λ parameter is set to 0.99,

the step-size parameter α to 0.01, c to 5, and w to 1.

These parameters are the best known settings for each

scheme, based on trial and error testing. The startclock

and the playclock were both set to 10 seconds.

Our experiments used nine two-player turn-taking

games: Breakthrough, Skirmish, Checkers, Othello,

Connect 5, 3D Tic-Tac-Toe, Chinook, Nine Board Tic-

Tac-Toe, and TTCC4.1

4.2 Result

Table 1 shows the result of the matches. The 2007 base-

line player uses MCTS but chooses actions uniformly at

random in the playout phase. The main improvement

1 Skirmish is a chess-like game. We used the variation
played in the 2007 GGP finals where each player has two
knights, two bishops, two rooks, and four pawns (can only
move by capturing). The objective is to capture as many of
the opponent’s pieces as possible. Breakthrough is played on
a chess board where the players, armed with two ranks of
pawns, try to be the first to break through to reach the op-
ponent’s back rank. The pawns can move forward and diag-
onally, but can only capture diagonally. Chinook is a variant
of Breakthrough played with checkers pawns and the added
twist that two independent games are played simultaneously,
one on the white squares and another on the black ones. 3D
Tic-Tac-Toe and Nine Board Tic-Tac-Toe are variants of Tic-
Tac-Toe; the former is played on a 4×4×4 cube, and in the lat-
ter 9 Tic-Tac-Toe boards are placed in a 3×3 grid formation,
and on each turn a player can play only on the board having
the same coordinate as the last cell marked by the opponent
(e.g., if the opponent marked a center cell in one of the boards,
the player must on his turn play in the Tic-Tac-Toe board in
the center). TTCC4 is a hybrid of several games where each
player has a chess pawn, a chess knight, and a checkers king
— these pieces respawn on their start square if captured. In-
stead of moving a piece a player can choose to drop a disk onto
the board like in Connect 4 (captured disks do not respawn).
The goal is to form a 3-in-a-row formation with your pieces
anywhere on the 3 × 3 center squares of the table. Full
game descriptions can be found on the Dresden GGP server
(http://euklid.inf.tu-dresden.de:8180/ggpserver).

in the following year’s player, CadiaPlayer 2008, was

MAST for choosing actions in a more informed man-

ner in the playout phase. We can see from column two

that the MAST scheme offers an genuine improvement

over the MCTS player in almost all the games, partic-

ularly in Breakthrough and related games. This is not

surprising as the scheme was motivated specifically to

improve the agents performance in such type of games.

The only game where the scheme has non-positive ef-

fects on performance is in Skirmish.

In CadiaPlayer 2009 the combined RAVE/MAST

scheme was introduced, again improving upon the pre-

vious year’s version in almost all games (except Chi-

nook). The new version is though still inferior to the

baseline player in the game of Skirmish. The problem

MCTS-based players have with chess-like games like

Skirmish is that they do not realize fast enough that

the value of the pieces are radically different, e.g. that

a rook is worth more than a pawn. Even though MCTS

might towards the end of the game start to realize this

then it is far to late to save the game.

We specifically targeted this inefficiency in the 2010

version of the agent by incorporating FAST. From

the rightmost column we see that the new combined

RAVE/MAST/FAST scheme is very effective in Skir-

mish, getting close to perfect score against the baseline

player. Although the new combination does incur re-

duced performance in a few other games, the overall

average winning percentage slightly improves over the

2009 version. More importantly, the performance of the

2010 agent is more robust across a wider range of games,

which is important for GGP agents.

We believe that additional performance gains are

possible by further tuning the RAVE/MAST/FAST

scheme. For example, in our experiments RAVE shows

decremental performance effects in the game Chinook,

a simultaneous move game recently added to our test

suite. We have verified with additional experiments that

decremental behavior is not observed in a turn-taking

(but otherwise identical) variant of that game. The rel-

ative importance of RAVE in the combined scheme

could be controlled by tuning the w parameter based

on game properties. The feature-detection templates

could also be made more selective. In the above experi-

ments the piece-type feature was activated in Skirmish

with a great success, but in TTCC4 with counter ef-

fective results. The problem with the latter game was

that the number of pieces varied only for disks as the

other pieces respawn on capture, and the agent thus

learned a significant value for that piece only, making

our agent too aggressive in adding such pieces to the

board. As for the location based feature, it was acti-

vated in Breakthrough, Othello, Connect 5, and Chi-

CadiaPlayer: Search-Control Techniques 7

Table 1 Tournament: CadiaPlayer 2007 (MCTS) vs. its Decendants.

CadiaPlayer 2008 win % CadiaPlayer 2009 win % CadiaPlayer 2010 win %
Game (MAST) (RAVE/MAST) (RAVE/MAST/FAST)

Breakthrough 86.50 (± 4.74) 89.00 (± 4.35) 77.50 (± 5.80)
Checkers 53.25 (± 6.45) 84.50 (± 4.78) 79.50 (± 5.30)
Othello 56.75 (± 6.80) 79.75 (± 5.52) 84.50 (± 4.93)
Skirmish 42.25 (± 6.29) 45.00 (± 6.55) 96.75 (± 2.31)
Connect 5 70.25 (± 6.33) 94.00 (± 3.23) 93.00 (± 3.55)
3D Tic-Tac-Toe 66.50 (± 6.56) 92.00 (± 3.77) 96.50 (± 2.55)
Chinook 82.00 (± 5.25) 73.00 (± 6.13) 73.25 (± 6.13)
9BoardTTT 60.00 (± 6.35) 71.50 (± 6.27) 70.50 (± 6.34)
TTCC4 72.75 (± 5.89) 77.25 (± 5.24) 51.00 (± 6.88)

Average 65.58 78.44 80.28

nook. The only game where this helped was Othello,

but playing on specific locations is particularly impor-

tant in that game, e.g. on corner and edge squares. As

for the other games piece formations are more impor-

tant than placing pieces on particular locations, and the

FAST scheme thus adds noise which may sometimes re-

duce the effectiveness of MAST. This is in particular no-

ticeable in Breakthrough, where the learning preferred

advanced piece locations. This results in a playing be-

havior where the agent advances its pieces prematurely

without necessary backup from other pieces. From these

experiments, it is clear that a deeper analysis is needed

into which game properties must be present to apply

the FAST scheme in the most effective way.

5 Related Work

One of the first general game-playing systems was Pell’s

Metagamer [20], which played a wide variety of sim-

plified chess-like games. The introduction of the AAAI

GGP competition [12] brought about an increased in-

terest in general game-playing systems. Cluneplayer

[4] and Fluxplayer [23] were the winners of the

2005 and 2006 GGP competitions, respectively. Cadi-

aPlayer [2] won the competition in 2007 and 2008,

and the agent Ary won in 2009 and 2010. The former

two agents employ traditional game-tree search (the

most recent version of Cluneplayer also had a MC

simulation module), whereas the latter two are MCTS

based. Another strong MCTS-based agent is Maligne.

GGP as a field presents many challenging research

topics, which is reflected in the various agents focussing

on somewhat different aspects of GGP. Some use tra-

ditional game-tree search where the focus is on learn-

ing evaluation functions [4,22,16], whereas the focus of

the simulation-based agents is more on learning search

control [8,9,25,14]. Other important research topics

include: representations [17], efficient GDL reasoning

engines [29], detecting state-space properties such as

symmetries [21] and factorability [6,13], proving game

properties [24,28], and knowledge-transfer learning [1].

There is also interest in extending the expressive power

of GDL [19], and a proposal for GDL-II [27] was recently

introduced, adding support for both non-deterministic

and incomplete information games.

Monte Carlo Tree Search (MCTS) was pioneered

in computer Go, and is now used by several of the

strongest Go programs, including MoGo [11] and

Fuego [7]. Experiments in Go showing how simulations

can benefit from using an informed playout policy are

presented in [10]. This, however, requires game-specific

knowledge which makes it difficult to apply in GGP.

The paper also introduced RAVE. Progressive Strate-

gies [3] are also used by Go programs to improve simu-

lation guidance in the MCTS’s selection step.

6 Conclusions and Future Work

Informed search-control for guiding simulations play-

outs is a core component of CadiaPlayer. In here

we described the search-control scheme in CadiaPlayer

2010 and empirically evaluated the performance gains

achieved over the years as it evolved.

Generic search-control schemes using only implicit

domain knowledge, such as MAST and RAVE, are able

to provide impressive performance across a large collec-

tion of games. However, such a generic approach fails

to take advantage of higher-level game concepts that

are important for skillfull play in many game domains.

By using search-control methods that incorporate such

concepts, like FAST, we were able to improve the per-

formance of CadiaPlayer in a chess-like game that

had previously proved problematic for our agent. Chal-

lenges in using such game-type specific approaches in-

clude knowing when to apply them and how to balance

them with possibly existing more generic search-control

approaches. We made initial steps in that direction.

8 Hilmar Finnsson, Yngvi Björnsson

As for future work there is still further research

needed of how best to incorporate higher-level game

concepts into simulation control, e.g. to understand a

much broader range of games and game concepts. We

believe that to take GGP simulation-based agents to

the next level such reasoning is essential.

References

1. Banerjee, B., Stone, P.: General game learning using
knowledge transfer. In: M.M. Veloso (ed.) 20th IJCAI,
pp. 672–677 (2007)

2. Björnsson, Y., Finnsson, H.: CADIAPlayer: A
simulation-based general game player. IEEE Trans. on
Computational Intelligence and AI in Games 1(1), 4–15
(2009)

3. Chaslot, G., Winands, M., van den Herik, J.H., Uiterwijk,
J., Bouzy, B.: Progressive strategies for Monte-Carlo tree
search. In: 10th JCIS, Heuristic Search and Computer
Game Playing Session (2007)

4. Clune, J.: Heuristic evaluation functions for General
Game Playing. In: R.C. Holte, A. Howe (eds.) 22nd
AAAI, pp. 1134–1139. AAAI Press (2007)

5. Coulom, R.: Efficient selectivity and backup operators
in Monte-Carlo tree search. In: H.J. van den Herik,
P. Ciancarini, H.H.L.M. Donkers (eds.) CG2006, pp. 72–
83. Springer (2006)

6. Cox, E., Schkufza, E., Ryan Madsen, M.G.: Factor-
ing general games using propositional automata. In:
GIGA’09 The IJCAI Workshop on General Game Play-
ing (2009)

7. Enzenberger, M., Müller, M.: Fuego - an open-source
framework for board games and Go engine based on
Monte-Carlo tree search. Tech. Rep. 09-08, Dept. of Com-
puting Science, University of Alberta (2009)

8. Finnsson, H., Björnsson, Y.: Simulation-based approach
to general game playing. In: D. Fox, C.P. Gomes (eds.)
23rd AAAI, pp. 259–264. AAAI Press (2008)

9. Finnsson, H., Björnsson, Y.: Learning simulation-control
in general game-playing agents. In: M. Fox, D. Poole
(eds.) 24th AAAI, pp. 954–959. AAAI Press (2010)

10. Gelly, S., Silver, D.: Combining online and offline knowl-
edge in UCT. In: Z. Ghahramani (ed.) 24th ICML, vol.
227, pp. 273–280. ACM (2007)

11. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modifica-
tion of UCT with patterns in Monte-Carlo Go. Technical
Report 6062, INRIA (2006)

12. Genesereth, M.R., Love, N., Pell, B.: General Game Play-
ing: Overview of the AAAI competition. AI Magazine
26(2), 62–72 (2005)

13. Günther, M., Schiffel, S., Thielscher, M.: Factoring gen-
eral games. In: GIGA’09 The IJCAI Workshop on Gen-
eral Game Playing (2009)

14. Kirci, M., Schaeffer, J., Sturtevant, N.: Feature learning
using state differences. In: GIGA’09 The IJCAI Work-
shop on General Game Playing (2009)

15. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo
planning. In: ECML, pp. 282–293 (2006)

16. Kuhlmann, G., Dresner, K., Stone, P.: Automatic heuris-
tic construction in a complete general game player. In:
21st AAAI, pp. 1457–62 (2006)

17. Kuhlmann, G., Stone, P.: Graph-based domain mapping
for transfer learning in general games. In: 18th ECML
(2007)

18. Lorentz, R.J.: Amazons discover Monte-Carlo. In: H.J.
van den Herik, X. Xu, Z. Ma, M.H.M. Winands (eds.)
CG2008, Lecture Notes in Computer Science, vol. 5131,
pp. 13–24. Springer (2008)

19. Love, N., Hinrichs, T., Genesereth, M.: General Game
Playing: Game description language specification. Tech-
nical Report April 4 2006, Stanford University (2006)

20. Pell, B.: A strategic metagame player for general chess-
like games. Computational Intelligence 12, 177–198
(1996)

21. Schiffel, S.: Symmetry detection in general game playing.
In: M. Fox, D. Poole (eds.) 24th AAAI, pp. 980–985.
AAAI Press (2010)

22. Schiffel, S., Thielscher, M.: Automatic construction of a
heuristic search function for General Game Playing. In:
M.M. Veloso (ed.) 7th IJCAI Workshop on Nonmontonic
Reasoning, Action and Change (NRAC07) (2007)

23. Schiffel, S., Thielscher, M.: Fluxplayer: A successful gen-
eral game player. In: R.C. Holte, A. Howe (eds.) 22nd
AAAI, pp. 1191–1196. AAAI Press (2007)

24. Schiffel, S., Thielscher, M.: Automated theorem proving
for general game playing. In: C. Boutilier (ed.) 21st IJ-
CAI, pp. 911–916. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2009)

25. Sharma, S., Kobti, Z., Goodwin, S.: Knowledge genera-
tion for improving simulations in UCT for general game
playing. In: AI 2008: Advances in Artificial Intelligence,
pp. 49–55. Springer (2008)

26. Sutton, R.S.: Learning to predict by the methods of tem-
poral differences. Machine Learning 3, 9–44 (1988)

27. Thielscher, M.: A general game description language for
incomplete information games. In: M. Fox, D. Poole
(eds.) 24th AAAI, pp. 994–999. AAAI Press (2010)

28. Thielscher, M., Voigt, S.: A temporal proof system for
general game playing. In: M. Fox, D. Poole (eds.) 24th
AAAI, pp. 1000–1005. AAAI Press (2010)

29. Waugh, K.: Faster state manipulation in general games
using generated code. In: GIGA’09 The IJCAI Workshop
on General Game Playing (2009)

Hilmar Finnsson is a Ph.D. stu-
dent at the School of Computer Sci-
ence at Reykjavik University work-
ing on General Game Playing. He is
a co-author of the GGP agent Cadi-
aPlayer.

Yngvi Björnsson is an associate
professor at the School of Computer
Science at Reykjavik University and
the director of Reykjavik Univer-
sity’s Center for Analysis and Design
of Intelligent Agents (CADIA). He is
a co-author of the GGP agent Cadi-
aPlayer.

