
Simulation Control in General Game Playing Agents

Hilmar Finnsson and Yngvi Björnsson
School of Computer Science

Reykjavı́k University
{hif,yngvi}@ru.is.

Abstract

The aim of General Game Playing (GGP) is to cre-
ate intelligent agents that can automatically learn
how to play many different games at an expert
level without any human intervention. One of
the main challenges such agents face is to auto-
matically learn knowledge-based heuristics in real-
time, whether for evaluating game positions or for
search guidance. In recent years, GGP agents
that use Monte-Carlo simulations to reason about
their actions have become increasingly more pop-
ular. For competitive play such an approach re-
quires an effective search-control mechanism for
guiding the simulation playouts. In here we in-
troduce several schemes for automatically learn-
ing search guidance, as well as comparing them
empirically. We show that by combining schemes
one can improve upon the current state-of-the-art of
simulation-based search-control in GGP.

1 Introduction
From the inception of the field of Artificial Intelligence

(AI), over half a century ago, games have played an impor-
tant role as a test-bed for advancements in the field. Artifi-
cial intelligence researchers have over the decades worked on
building high-performance game-playing systems for games
of various complexity capable of matching wits with the
strongest humans in the world [Campbell et al., 2002; Schaef-
fer, 1997; Buro, 1999]. The importance of having such an ob-
jective measure of the progress of intelligent systems cannot
be overestimated, nonetheless, this approach has led to some
adverse developments. For example, the focus of the research
has to some extent been driven by the quest for techniques
that lead to immediate improvements to the game-playing
system at hand, with less attention paid to more general con-
cepts of human-like intelligence like acquisition, transfer, and
use of knowledge. The success of game-playing systems has
thus in part been because of years of relentless knowledge-
engineering effort on behalf of the program developers, man-
ually adding game-specific knowledge to their programs. The
aim of general game playing is to completely automate this
process.

In General Game Playing (GGP) the goal is to create in-
telligent agents that can automatically learn how to skillfully
play a wide variety of games, given only the descriptions of
the game rules. This requires that the agents learn diverse
game-playing strategies without any game-specific knowl-
edge being provided by their developers. A successful re-
alization of this task poses interesting research challenges for
artificial intelligence sub-disciplines such as knowledge rep-
resentation, agent-based reasoning, heuristic search, compu-
tational intelligence, and machine learning.

The traditional way GGP agents reason about their actions
is to use a minimax-based game-tree search along with its
numerous accompanying enhancements [Knuth and Moore,
1975; Atkin and Slate, 1988; Schaeffer, 1989; Breuker, 1998].
The most successful GGP players all used to be based on
that approach [Schiffel and Thielscher, 2007b; Clune, 2007;
Kuhlmann et al., 2006]. Unlike agents which play one spe-
cific board game, GGP agents are additionally augmented
with a mechanism to automatically learn an evaluation func-
tion for assessing the merits of the leaf positions in the search
tree. In recent years, however, a new paradigm for game-tree
search has emerged, the so-called Monte-Carlo Tree Search
(MCTS) [Coulom, 2006; Kocsis and Szepesvári, 2006]. In the
context of game playing, Monte-Carlo simulations were first
used as a mechanism for dynamically evaluating the merits
of leaf nodes of a traditional minimax-based search [Abram-
son, 1990; Bouzy and Helmstetter, 2003; Brügmann, 1993],
but under the new paradigm MCTS has evolved into a full-
fledged best-first search procedure that can replace minimax-
based search altogether. MCTS has in the past few years sub-
stantially advanced the state-of-the-art in several game do-
mains where minimax-based search has had difficulties, most
notably in computer Go. Instead of relying on an evaluation
function for assessing game positions, pre-defined search-
control knowledge is used for effectively guiding the simu-
lation playouts [Gelly and Silver, 2007].

The MCTS approach offers several attractive properties for
GGP agents, in particular, it avoids the need to construct a
game-specific evaluation function in real-time for a newly
seen game. Under this new paradigm the main focus is in-
stead on online learning of effective search-control heuristics
for guiding the simulations. Although still a challenging task,
it is in some ways more manageable, because such heuristics
do not depend on game-specific properties. In contrast, au-



Figure 1: An overview of a single simulation.

tomatically learned heuristic evaluation functions that fail to
capture essential game properties result in the evaluations be-
coming highly inaccurate and, in the worst case, even caus-
ing the agent to strive for the wrong objectives. GGP agents
that apply the MCTS approach are now becoming increas-
ingly mainstream, in part inspired by the success of CADI-
APLAYER [Björnsson and Finnsson, 2009] which won the last
two AAAI GGP competitions.

In this paper we investigate several domain-independent
search-control learning mechanisms in CADIAPLAYER. The
main contributions are an extensive empirical evaluation of
different search-control mechanisms for GGP agents, both
old and new. There is no single mechanism that domi-
nates the others on all the games tested. We instead contrast
their relative strengths and weaknesses and pinpoint game-
specific characteristics that influence their effectiveness. We
also show that by combining them one can improve upon the
current state-of-the-art of simulation-based search-control in
GGP.

The paper is structured as follows. In the next section we
give a brief overview of the MCTS approach and how it is
implemented in CADIAPLAYER. Next we introduce several
different search-control mechanism, that we then empirically
evaluate using three different games. Finally, we survey re-
lated work before concluding and discussing future work.

2 Monte-Carlo Tree Search GGP Player
Monte-Carlo Tree Search (MCTS) continually runs simula-
tions to play entire games, using the result to gradually build
a game tree in memory where it keeps track of the average
return of the state-action pairs played, Q(s, a). When the de-
liberation time is up, the method chooses between the actions
at the root of the tree based on which one has the highest av-
erage return value.

Fig. 1 depicts the process of running a single simulation:
the start state is denoted with S and the terminal state with
T . Each simulation consists of four strategic steps: selection,
playout, expansion, and back-propagation. The selection-
step is performed at a beginning of a simulation for choosing
actions while still in the tree (upper half of figure), while the
playout-step is used for choosing actions once the simulated
episode falls out of the tree and until the end of the game
(bottom half of figure). The expansion-step controls how the
game tree is grown. Finally, in the back-propagation-step, the
result value of the simulation is used to updateQ(s, a) as well
as other relevant information if applicable.

The Upper Confidence Bounds applied to Trees (UCT) al-
gorithm [Kocsis and Szepesvári, 2006] is commonly used in
the selection step, as it offers an effective and sound way to
balance the exploration versus exploration tradeoff. At each
visited node in the tree the action a∗ taken is selected by:

a∗ = argmaxa∈A(s)

{
Q(s, a) + C

√
lnN(s)
N(s, a)

}
The N(s) function returns the number of simulation visits to a
state, and the N(s, a) function the number of times an action
in a state has been sampled. A(s) is the set of possible ac-
tions in state s and if it contains an action that has never been
sampled before it is selected by default as it has no estimated
value. If more than one action is still without an estimate a
random tie-breaking scheme is used to select the next action.
The term added to the Q(s, a) function is called the UCT
bonus. It is used to provide a balance between exploiting the
perceived best action and exploring the less favorable ones.
Every time an action is selected the bonus goes down for that
action because N(s, a) is incremented, while its siblings have
their UCT bonuses raised as N(s) is incremented. This way
when good actions have been sampled enough to give an es-
timation with some confidence the bonus of the suboptimal
ones may have increased enough to have this formula pick
them for exploration. If a suboptimal action is discovered to
be good, it needs a smaller bonus boost (if any) to be picked
again, but if it still looks the same or worse it will have to wait
longer now as the bonus will grow slower each time it is sam-
pled. The C parameter is used to tune how much influence
the UCT bonus has on the action selection calculations, but it
can vary widely from one domain (or program) to the next.

In the playout step there are no storedQ(s, a) values avail-
able for guiding the action selection, so in the most simplistic
case one would choose between available actions uniformly
at random. However, there exists several more sophisticated
schemes for biasing the selection in an informed way, as dis-
cussed in the next section.

The expansion step controls how the search tree grows, and
a typical strategy is to append only one new node to the tree
for each simulation: the first node encountered after stepping
out of the tree [Coulom, 2006]. This is done to prevent using
excessive memory, in particular if the simulation are fast. In
Fig. 1 the newly added node in this episode is labeled as N .

For more details about the MCTS search in CADI-
APLAYER see [Finnsson, 2007; Björnsson and Finnsson,
2009].



3 Search Controls
In this section we describe four different, although related,
search-control mechanism for guiding simulation runs in
MCTS. The first one, MAST, is the one used in the 2008 ver-
sion of CADIAPLAYER; the next one, TO-MAST, is identical
to the first except that it is more restrictive about its learn-
ing. The third one, PAST, is more informed about how to
generalize the learned control information, that is, it affects
mainly states with similar properties. The fourth method,
RAVE, is a state-of-the-art technique originally designed to
expedite search-control learning in Go programs.

3.1 Move-Average Sampling Technique
Move-Average Sampling Technique (MAST) [Finnsson and
Björnsson, 2008] is the search-control method used by CA-
DIAPLAYER when winning the AAAI 2008 GGP competi-
tion. It is somewhat related to the history-heurstic [Schaef-
fer, 1989], which is a well-established move-ordering mecha-
nism in chess. The method learns search-control information
during the back-propagations step, which it then uses in fu-
ture playout steps to bias the random action selection towards
choosing more promising moves. More specifically, when a
return value of a simulation is backed up from T to S (see
Fig. 1), then for each action a on the path a global (over all
simulations) average for the action a,Qh(a), is incrementally
calculated and kept in a lookup table. Moves found to be good
on average, independent of a game state, will get higher val-
ues. The rational is that such moves are more likely to be
good whenever they are available, e.g. placing a piece in one
of the corner cells in Othello. In the playout step, the action
selections are biased towards selecting such moves. This is
done using Gibbs sampling as below:

P(a) =
eQh(a)/τ

Σn
b=1e

Qh(b)/τ

where P(a) is the probability that action a will be chosen in
the current playout state andQh(a) is the average of all values
backed up in any state when action a has been selected. This
results in actions with a high Qh(a) value becoming more
likely to be chosen. One can stretch or flatten the above dis-
tribution using the τ parameter (τ → 0 stretches the distribu-
tion, whereas higher values make it more uniform).

3.2 Tree-Only MAST
Tree-Only MAST (TO-MAST) is a slight variation of MAST.
Instead of updating the Qh(a) for an entire simulation
episode, it does so only for the part within the game tree (from
state N back to S). This scheme is thus more selective about
which action values to update, and because the actions in the
tree are generally more informed than those in the playout
part, this potentially leads to decisions based on more robust
and less variance data. In short this method prefers quality of
data over sample quantity for controlling the search.

3.3 Predicate-Average Sampling Technique
Predicate-Average Sampling Technique (PAST) has a finer
granularity of its generalization than the previous schemes.

As the name implies, it uses the predicates encountered in the
states to discriminate how to generalize.1

This method works as MAST except that now prediate-
action pair values are maintained, Qp(p, a), instead of ac-
tion values Qh(a). During the back-propagation, in a state
s where action a was taken, Qp(p, a) is updated for all
p ∈ P (s) where P (s) is the set of predicates that are true in
state s. In the playout step, an action is chosen as in MAST
except that in the Gibbs sampling Qh(a) is substituted with
Qp(p′, a), where p′ is the predicate in the state s with the
maximum predicate-action value for a.

Whereas MAST concentrates on moves that are good on
average, PAST can realize that a given move is good only in a
given context, e.g. when there is a piece on a certain square.
To ignore PAST values with unacceptably high variance, they
are returned as the average game value until a certain thresh-
old of samples is reached.

3.4 Rapid Action Value Estimation
Rapid Action Value Estimation (RAVE) [Gelly and Silver,
2007] is a method to speed up the learning process inside
the game tree. In Go this method is known as all-moves-as-
first heuristic because it uses returns associated with moves
further down the simulation path to get more samples for du-
plicate moves available, but not selected, in the root state.
When this method is applied to a tree structure as in MCTS
the same is done for all levels of the tree. When backing
up the value of a simulation, we update in the tree not only
the value for the action taken, Q(s, a), but also sibling action
values, QRAV E(s, a′), if and only if action a′ occurs further
down the path being backed up (s to T ).

As this presents bias into the average values, which is
mainly good initially when the sampled data is still unre-
liable, these rapidly learned estimates should only be used
for high variance state-action values. With more simulations
the state-action averages Q(s, a) become more reliable, and
should be trusted more than the RAVE value QRAV E(s, a).
To accomplish this the method stores the RAVE value sep-
arately from the actual state-action values, and then weights
them linearly as:

β (s)×QRAV E(s, a) + (1− β (s))×Q(s, a)

where

β (s) =

√
k

3n (s) + k

The parameter k is called the equivalence parameter and
controls how many state visits are needed for both estimates
to be weighted equal. The function n(s) tells how many times
state s has been visited.

4 Empirical Evaluation
We matched programs using the the four aforementioned
search-control schemes against two baseline programs. They
all share the same code base to minimize implementation-
specific issues. The value of the UCT parameter C is set to

1A game positions, i.e. a state, is represented as a list of predi-
cates that hold true in the state.



Table 1: Tournament against the MCTS agent.

Game MAST win % TO-MAST win % PAST win % RAVE win %
Checkers 54.83 (± 5.42) 80.67 (± 4.23) 61.33 (± 5.20) 61.50 (± 5.27)
Othello 58.67 (± 5.48) 54.00 (± 5.55) 61.33 (± 5.42) 57.17 (± 5.50)
Breakthrough 88.67 (± 3.59) 86.67 (± 3.85) 89.67 (± 3.45) 60.67 (± 5.54)

Table 2: Tournament against the MAST agent.

Game TO-MAST win % PAST win % RAVE win %
Checkers 74.83 (± 4.64) 57.67 (± 5.27) 61.33 (± 5.16)
Othello 37.00 (± 5.35) 49.67 (± 5.51) 46.50 (± 5.51)

Breakthrough 49.33 (± 5.67) 42.33 (± 5.60) 13.00 (± 3.81)

40 (for perspective, possible game outcomes are in the range
0-100). The τ parameter of the Gibbs sampling in MAST and
TO-MAST was set to 10, but for PAST it was set to 8. The
sample threshold for a PAST value to used was set to 3, and
the equivalence parameter for RAVE was set to 1000. These
parameters are the best settings for each scheme, based on
trial an error testing.

In the result tables that follow each data point represents
the result of a 300-game match, with both a winning per-
centage and a 95% confidence interval shown. We tested
the schemes on two-player turn-taking games. The matches
were run on Linux based dual processor Intel(R) Xeon(TM)
3.20GHz CPU computers with 2GB of RAM. Each agent
used a single processor. The startclock and the playclock
were both set to 10 seconds.

4.1 Individual Schemes
Table 1 shows the result when the four search-control
schemes were individually matched against a base MCTS
player, using UCT in the selection step but choosing actions
uniformly at random in the playout step. All four schemes
show an significant improvement against the base player on
all three games where PAST seems to be doing overall the
best, being the best performing scheme in two out of the three
games.

As the MAST scheme has been in use in CADIAPLAYER
for some time, and as such represents the state-of-the-art in
simulation search-control in GGP, we also matched the other
schemes against CADIAPLAYER as a baseline player. The re-
sult in shown in Table 2. There are several points of interest.
First of all, the other schemes improve upon MAST only in
the game of Checkers. In the game Othello, PAST and RAVE
also more or less holds their own against MAST and we can-
not state with statistical significance that one is better than the
other. However, in the game Breakthrough, MAST clearly
outperforms both PAST and RAVE. This is maybe not of a
surprise because the MAST scheme was originally motivated
to overcome problems surfacing in that particular game. Of
particular interest though is how badly RAVE is doing against
MAST in this game, despite that it showed a significant im-
provement against the other base player.

Also of interest is to contrast TO-MAST’s performance on

Table 3: Tournament between MCTS and RAVE/MAST.
Game RAVE/MAST win %

Checkers 62.83 (± 5.25)
Othello 66.83 (± 5.29)

Breakthrough 89.00 (± 3.55)

different games. The only difference between MAST and
TO-MAST is that the former updates action values in the
entire episode, whereas the latter only updates action values
when back-propagating values in the top part of the episode,
that is, when in the tree. TO-MAST significantly improves
upon MAST in the game of Checkers, whereas it has decre-
mental effects in the game of Othello. A possible explanation
is that actions generalize better between states in different
game phases in Othello than in Checkers, that is, an action
judged good towards the end of the game is more often also
good early on if available. For example, placing a piece on
the edge of the board is typically always good and such ac-
tions, although not available early on in the game, start to
accumulate credit right away.

4.2 Combined Schemes

The MAST, TO-MAST, and PAST values are applied for ac-
tion selection in the playout step only, whereas RAVE affects
the action selection in the selection step only. It thus makes
sense to try to combine RAVE with the others. The result of
a combined RAVE/MAST scheme playing against the same
base players as in previous experiments is given in Tables 3
and 4.

The result shows that such a combined scheme offers over-
all a genuine improvement. For example, against the MCTS
base player the combined schemes scores higher than either
of the schemes individually on all three games. Also, against
the MAST baseline player the combined scheme offers sub-
stantial benefits in Checkers and Breakthrough, although it
appears to be slightly worse in Breakthrough (although within
the significance confidence bounds). Again, we should keep
in mind that MAST was specifically inspired to overcome
drawbacks that simulations have in that game.



Table 4: Tournament between MAST and RAVE/MAST.
Game RAVE/MAST win %

Checkers 74.50 (± 4.80)
Othello 60.33 (± 5.43)

Breakthrough 46.33 (± 5.65)

5 Related Work
One of the first general game-playing systems was Pell’s
METAGAMER [Pell, 1996], which played a wide variety of
simplified chess-like games. CLUNEPLAYER [Clune, 2007]
and FLUXPLAYER [Schiffel and Thielscher, 2007b; 2007a]
were the winners of the 2005 and 2006 GGP competitions,
respectively. UTEXAS LARG was also a prominent agent
in those two competitions, and novel in that it used knowl-
edge transfer to expedite the learning process. The afore-
mentioned agents all use a traditional game-tree search with
a learned heuristic evaluation function. The most recent ver-
sion of CLUNEPLAYER also has a Monte-Carlo simulation
module, and the agent decides at the beginning of a game
which search approach to use [Clune, 2008]. Besides CADI-
APLAYER, which won the 2007 and 2008 GGP competitions,
two other strong agents were also simulation-based, ARY and
MALIGNE.

As for learning simulation guidance in GGP the MAST
scheme has already been presented [Finnsson and Björnsson,
2008]. Furthermore, in [Sharma et al., 2008] a method to gen-
erate search-control knowledge for GGP agents based on both
action and state predicate values is presented. The action bias
consists of the sum of the action’s average return value and
the value of the state being reached. The value of the state is
computed as the sum of all state predicate values, where the
value of each state predicate is learned incrementally using
a recency weighted average. Our PAST method learns state
predicates as simple averages and uses them quite differently,
in particular, we found that a bias based on a maximum state
predicate value is more effective than using their sum.

Monte Carlo Tree Search (MCTS) has been used success-
fully to advance the state-of-the-art in computer Go, and is
used by several of the strongest Go programs, e.g. MOGO
[Gelly et al., 2006] and CRAZYSTONE [Coulom, 2006]. Ex-
periments in Go showing how simulations can benefit from
using an informed playout policy are presented in [Gelly and
Silver, 2007]. The method, however, requires game-specific
knowledge which makes it difficult to apply to GGP. In the
paper the authors also introduced RAVE. Progressive Strate-
gies [Chaslot et al., 2007] is another methods used by Go
programs to improve simulation guidance in the MCTS’s se-
lection step. The UCT action selection is biased progressively
from using mainly heuristic knowledge about states early on,
towards using regular action return values once the sampling
size has increased sufficiently. A method that progressively
unprunes search trees with a large branching factor based on
domain knowledge is also presented.

Search-control learning in traditional game-tree search has
been studied for example in [Björnsson, 2002; Björnsson and
Marsland, 2003].

6 Conclusions and Future Work
In this paper we empirically evaluate several search-control
schemes for simulation-based GGP agents: MAST, TO-
MAST, and PAST control action selection in the MCTS play-
out step, whereas RAVE biases the action selection in the
MCTS selection step.

It is clear that the design and choice of a search-control
scheme greatly affects the playing strength of an agent. By
combining schemes that work on disparate parts of the simu-
lation rollout, even further performance improvements can be
gained, as we showed by RAVE/MAST. Also, it is important
to consider both where the learning experiences come from
(e.g. the performance difference of MAST vs. TO-MAST),
and how they are generalized. For example, the PAST scheme
is capable of generalizing based on context, and that gives sig-
nificant benefits in some games. Overall, none of the schemes
is dominating in the sense that of improving upon all the oth-
ers on all three test-bed games. Not surprisingly, the diverse
properties of the different games favor some schemes more
than others.

For future work there are still many interesting research
avenues to explore for further improving simulation-based
search control. All the methods we present here do not, or
only very indirectly, take the game structure into account.
Agents that infer game-specific properties from a game de-
scription, could potentially use better informed schemes for
generalizing the learned search-control knowledge. For ex-
ample, an agent that explicitly understands that a move is a
capture move, could potentially learn more quickly whether
captures are in general beneficial for the game at hand (PAST
kind of learns this, but implicitly over time). There is also
specific work that can be done to further improve the schemes
discussed, for example, currently PAST introduces consider-
able overhead in games where states contain many predicates,
resulting in up to 10-20% slowdown. By updating the predi-
cates more selectively we believe that most of this overhead
can be eliminated while still maintaining the benefits, likely
resulting in PAST subsequently dominating the other individ-
ual schemes. Also, we do not fully understand which game
properties determine why MAST is so much better than TO-
MAST on certain games but clearly worse on others. The
only difference between the two schemes is that the former
learns from an entire episode whereas the latter learns only
from the beginning of an episode. This difference is interest-
ing and warrants a further investigation. There is also scope
for combining the search-control schemes differently — one
possibility that comes to mind is PAST and RAVE. Finally,
we believe that there is still room for improvements by simply
tuning the various different parameters used by the methods,
especially if one could automatically tailor them to the game
at hand.

Acknowledgments
This research was supported by grants from The Icelandic
Centre for Research (RANNÍS) and by a Marie Curie Fel-
lowship of the European Community programme Structuring
the ERA under contract MIRG-CT-2005-017284.



References
[Abramson, 1990] B. Abramson. Expected-outcome: A gen-

eral model of static evaluation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 12(2):182–193,
1990.

[Atkin and Slate, 1988] L. Atkin and D. Slate. Chess 4.5-the
northwestern university chess program. Computer chess
compendium, pages 80–103, 1988.

[Björnsson and Finnsson, 2009] Yngvi Björnsson and
Hilmar Finnsson. Cadiaplayer: A simulation-based gen-
eral game player. IEEE Transactions on Computational
Intelligence and AI in Games, in press, 1(1), 2009.

[Björnsson and Marsland, 2003] Yngvi Björnsson and T. A.
Marsland. Learning extension parameters in game-tree
search. Information Sciences, 154(3-4):95–118, 2003.

[Björnsson, 2002] Yngvi Björnsson. Selective Depth-First
Game-Tree Search. PhD dissertation, University of Al-
berta, Canada, Department of Computing Science, 2002.

[Bouzy and Helmstetter, 2003] B. Bouzy and B. Helmstetter.
Monte-Carlo Go Developments. In H.J. van den Herik,
H. Iida, and E.A. Heinz, editors, Advances in Computer
Games 10: Many Games, Many Challenges, pages 159–
174. Kluwer Academic Publishers, Boston, MA, USA,
2003.

[Breuker, 1998] Dennis M. Breuker. Memory versus Search
in Games. PhD dissertation, Maastricht University, De-
partment of Computing Science, 1998.

[Brügmann, 1993] B. Brügmann. Monte Carlo Go. Tech-
nical report, Physics Department, Syracuse University,
1993.

[Buro, 1999] Michael Buro. How machines have learned
to play Othello. IEEE Intelligent Systems, 14(6):12–14,
November/December 1999. Research Note.

[Campbell et al., 2002] Murray Campbell, A. Joseph Hoane,
Jr., and Feng-Hsiung Hsu. Deep blue. Artificial Intelli-
gence, 134(1–2):57–83, 2002.

[Chaslot et al., 2007] G. M. J. B. Chaslot, Winands M. H. M.
Winands, J. W. H. M. Uiterwijk, H. J. van den Herik,
and B. Bouzy. Progressive strategies for Monte-Carlo tree
search. Draft, submitted to JCIS workshop 2007, 2007.

[Clune, 2007] James Clune. Heuristic evaluation functions
for General Game Playing. In Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence, pages
1134–1139, 2007.

[Clune, 2008] James Edmond Clune. Heuristic Evaluation
Functions for General Game Playing. PhD disserta-
tion, University of California, Los Angeles, Department
of Computer Science, 2008.

[Coulom, 2006] Rémi Coulom. Efficient selectivity and
backup operators in Monte-Carlo tree search. In The
5th International Conference on Computers and Games
(CG2006), pages 72–83, 2006.

[Finnsson and Björnsson, 2008] Hilmar Finnsson and Yngvi
Björnsson. Simulation-based approach to general game

playing. In Dieter Fox and Carla P. Gomes, editors, Pro-
ceedings of the Twenty-Third AAAI Conference on Artifi-
cial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008, pages 259–264. AAAI Press, 2008.

[Finnsson, 2007] Hilmar Finnsson. CADIA-Player: A Gen-
eral Game Playing Agent. Master’s thesis, Reykjavı́k Uni-
versity, December 2007.

[Gelly and Silver, 2007] Sylvain Gelly and David Silver.
Combining online and offline knowledge in UCT. In
Zoubin Ghahramani, editor, ICML, volume 227, pages
273–280. ACM, 2007.

[Gelly et al., 2006] Sylvain Gelly, Yizao Wang, Rémi
Munos, and Olivier Teytaud. Modification of UCT with
patterns in Monte-Carlo Go. Technical Report 6062, IN-
RIA, 2006.

[Knuth and Moore, 1975] D. E. Knuth and R. W. Moore.
An analysis of alpha-beta pruning. Artificial Intelligence,
6:293–326, 1975.

[Kocsis and Szepesvári, 2006] Levante Kocsis and Csaba
Szepesvári. Bandit based Monte-Carlo planning. In Eu-
ropean Conference on Machine Learning (ECML), pages
282–293, 2006.

[Kuhlmann et al., 2006] Gregory Kuhlmann, Kurt Dresner,
and Peter Stone. Automatic heuristic construction in a
complete general game player. In Proc. of the Twenty-
First National Conference on Artificial Intelligence, pages
1457–62, July 2006.

[Pell, 1996] Barney Pell. A strategic metagame player for
general chess-like games. Computational Intelligence,
12:177–198, 1996.

[Schaeffer, 1989] Jonathan Schaeffer. The history heuristic
and alpha-beta search enhancements in practice. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-11(11):1203–1212, 1989.

[Schaeffer, 1997] Jonathan Schaeffer. One Jump Ahead:
Challenging Human Supremacy in Checkers. Springer-
Verlag New York, Inc., 1997.

[Schiffel and Thielscher, 2007a] Stephan Schiffel and
Michael Thielscher. Automatic construction of a heuristic
search function for General Game Playing. In Seventh IJ-
CAI International Workshop on Nonmontonic Reasoning,
Action and Change (NRAC07), 2007.

[Schiffel and Thielscher, 2007b] Stephan Schiffel and
Michael Thielscher. Fluxplayer: A successful general
game player. In Proc. of the Twenty-Second AAAI
Conference on Artificial Intelligence, pages 1191–1196,
2007.

[Sharma et al., 2008] Shiven Sharma, Ziad Kobti, and Scott
Goodwin. Knowledge generation for improving simula-
tions in UCT for general game playing. In AI 2008: Ad-
vances in Artificial Intelligence, pages 49–55. Springer,
2008.


