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Abstract

Game pathfinding is a challenging problem due to a limited amount of per-frame CPU time com-
monly shared among many simultaneously pathfinding agents. The challenge is rising with each new
generation of games due to progressively larger and more complex environments and larger numbers
of agents pathfinding in them. Algorithms based on A* tend to scale poorly as they must compute a
complete, possibly abstract, path for each agent before the agent can move. Real-time heuristic search
algorithms satisfy a constant bound on the amount of planning per move, independent of problem size.
These algorithms are thus a promising approach to large scale multi-agent pathfinding in video games.
However, until recently, real-time heuristic search algorithms universally exhibited a visually unappeal-
ing “scrubbing” behavior by repeatedly revisiting map locations. This had prevented their adoption by
video game developers. In this chapter we review three modern search algorithms which address the
“scrubbing” problem in different ways. Each algorithm presentation is complete with an empirical eval-
uation on game maps.

1 Introduction and Related Work
Heuristic search is a core area of Artificial Intelligence (AI) research and its algorithms have been widely
used in planning, game-playing and agent control. In this chapter we are interested in real-time heuristic
search algorithms that satisfy a constant upper bound on the amount of planning per action, independent
of problem size. This property is important in a number of applications including autonomous robots
and agents in video games. A common problem in video games is searching for a path between two
locations. In most games, agents are expected to act quickly in response to player’s commands and other
agents’ actions. As a result, many game companies impose a constant time limit on the amount of path
planning per move1 (e.g., one millisecond for all simultaneously moving agents).

While in practice this time limit can be satisfied by limiting problem size a priori, a scientifically
more interesting approach is to impose a constant per-action time limit independent of the problem size.
Doing so severely limits the range of applicable heuristic search algorithms. For instance, static search
algorithms such as A* [15], IDA* [24] and PRA* [39, 38], re-planning algorithms such as D* [37],
anytime algorithms such as ARA* [27] and anytime re-planning algorithms such as AD* [26] cannot
guarantee a constant bound on planning time per action. This is because all of them produce a complete,
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1Henceforth we will use the terms action and move synonymously.
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possibly abstract, solution before the first action can be taken. As the problem increases in size, their
planning time will inevitably increase, exceeding any a priori finite upper bound.

Real-time search addresses the problem in a fundamentally different way. Instead of computing a
complete, possibly abstract, solution before the first action is taken, real-time search algorithms compute
(or plan) only a few first actions for the agent to take. This is usually done by conducting a lookahead
search of a fixed depth (also known as “search horizon”, “search depth” or “lookahead depth”) around
the agent’s current state and using a heuristic (i.e., an estimate of the remaining travel cost) to select the
next few actions. The actions are then taken and the planning-execution cycle repeats [25]. Since the
goal state is not seen in most such local searches, the agent runs the risks of heading into a dead end or,
more generally, selecting suboptimal actions. To address this problem, most real-time heuristic search
algorithms update (or learn) their heuristic function over time.

The learning process has precluded real-time heuristic search agents from being widely deployed for
pathfinding in video games. The problem is that such agents tend to “scrub” (i.e., repeatedly revisit) the
state space due to the need to fill in heuristic depressions [19]. As a result, solution quality can be quite
low and, visually, the scrubbing behavior is perceived as irrational.

Since the seminal work on LRTA* [25], researchers have attempted to speed up the learning process.
Most of the resulting algorithms can be described by the following four attributes:

The local search space is the set of states whose heuristic costs are accessed in the planning stage.
The two common choices are full-width limited-depth lookahead [25, 33, 35, 34, 14, 16, 17, 36, 31]
and A*-shaped lookahead [21, 23]. Additional choices are decision-theoretic based shaping [32] and
dynamic lookahead depth-selection [7, 29]. Finally, searching in a smaller, abstracted state has been
used as well [13].

The local learning space is the set of states whose heuristic values are updated. Common choices
are: the current state only [25, 33, 35, 34, 14, 7], all states within the local search space [21, 23] and
previously visited states and their neighbors [16, 17, 36, 31].

A learning rule is used to update the heuristic costs of the states in the learning space. The common
choices are mini-min [25, 35, 34, 16, 17, 36, 31], its weighted versions [33], max of mins [7], modified
Dijkstra’s algorithm [21], and updates with respect to the shortest path from the current state to the best-
looking state on the frontier of the local search space [23]. Additionally, several algorithms learn more
than one heuristic function [32, 14, 33].

The control strategy decides on the move following the planning and learning phases. Commonly
used strategies include: the first move of an optimal path to the most promising frontier state [25, 14, 16,
17], the entire path [7], and backtracking moves [35, 34, 7, 36].

Given the multitude of proposed algorithms, unification efforts have been undertaken. In partic-
ular, [10] suggested a framework, called Learning Real Time Search (LRTS), to combine and extend
LRTA* [25], weighted LRTA* [33], SLA* [35], SLA*T [34], and to a large extent, γ-Trap [7].

A breakthrough in performance came with D LRTA* [12] which, for the first time in real-time heuris-
tic search, used automatically selected local subgoals instead of the global goal. The subgoal selection
mechanism has later been refined in kNN LRTA*, which we review in this chapter.

In this chapter we review the following three modern real-time heuristic search algorithms:
kNN LRTA* [8, 9] employs a nearest-neighbour algorithm over a database of solved cases. It in-

troduced the idea of compressing a solution path into a series of subgoals so that each can be “easily”
reached from the previous one. In doing so, it uses hill-climbing as a proxy for the notion of “easy
reachability by LRTA*”.

If precomputing a database of solved cases and compressing them into subgoals is not feasible then
one can use the following two modern real-time heuristic search algorithms.

TBA* [2] is a time-bounded variant of the classic A*. Unlike A* that plans a complete path before
committing to the first action, TBA* interrupts its planning periodically to act. Because initially a com-
plete path to the goal is unknown, the agent instead moves towards the most promising state on the open
list, backtracking its steps as necessary. This interleaving of planning and acting is done in such a way
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that both real-time behavior and completeness are ensured. Among the attractions of this algorithm are
its simplicity and broad applicability as well as the fact that reasonable solution quality and real-time
performance is achieved without the need for precomputations or state-space abstractions.

RIBS [40] takes a different approach to learning real-time search. Instead of learning a heuristic
estimate of the distance from an arbitrary state to the goal as most algorithms have traditionally done,
RIBS learns accurate distances from the start state. This approach has just recently been explored,
and more work is required to deploy this algorithm in commercial games. But, the study of RIBS has
lead to critical insights in the performance of real-time algorithms and approaches that are likely to be
successful.

The rest of the chapter is organized as follows. In Section 2 we formulate the problem. Section 3
presents three classic algorithms that serve as the core to kNN LRTA*, TBA* and RIBS which are
reviewed in Sections 5, 6 and 7, respectively. Finally, we discuss applications beyond pathfinding in
Section 8 and conclude the chapter.

2 Problem Formulation
We define a heuristic search problem as an undirected graph containing a finite set of states (vertices) and
weighted edges, with a single state designated as the goal state. At every time step, a search agent has a
single current state, a vertex in the search graph, and takes an action (or makes a move) by traversing an
out-edge of the current state. By traversing an edge between states s1 and s2 the agent changes its current
state from s1 to s2. We say that a state is visited by the agent if and only if it is the agent’s current state at
some point of time. As it is usual in the field of real-time heuristic search, we assume that path planning
happens between the moves (i.e., the agent does not think while traversing an edge). The “plan a move”
- “travel an edge” loop continues until the agent arrives at its goal state, thereby solving the problem.

Each edge has a positive cost associated with it. The total cost of edges traversed by an agent from
its start state until it arrives at the goal state is called the solution cost. We require algorithms to be
complete (i.e., produce a path from start to goal in a finite amount of time if such a path exists). In order
to guarantee completeness for real-time heuristic search we make the assumption of safe explorability of
our search problems. Specifically, all edge costs are finite and for any states s1,s2,s3, if there is a path
between s1 and s2 and there is a path between s1 and s3 then there is also a path between s2 and s3.

Formally, all algorithms discussed in this chapter are applicable to any such heuristic search problem.
To keep the presentation focused and intuitive we use a particular type of heuristic search problems,
video-game pathfinding in grid worlds, for the rest of the chapter. In video-game map settings, states are
vacant square grid cells. Each cell is connected to four cardinally (i.e., west, north, east, south) and four
diagonally neighboring cells. Outbound edges of a vertex are moves available in the corresponding cell
and in the rest of the chapter we will use the terms action and move interchangeably. The edge costs are
defined as 1 for cardinal moves and 1.4 for diagonal moves.2

An agent plans its next action by considering states in a local search space surrounding its current
position. A heuristic function (or simply heuristic) estimates the (remaining) travel cost between a
state and the goal. It is used by the agent to rank available actions and select the most promising one.
Furthermore, we consider only admissible and consistent heuristic functions which do not overestimate
the actual remaining cost to the goal and whose difference in values for any two states does not exceed
the cost of an optimal path between these states. In this chapter we use octile distance – the minimum
cumulative edge cost between two vertices ignoring map obstacles – as our heuristic. This heuristic is
admissible and consistent. An agent can modify its heuristic function in any state to avoid getting stuck
in local minima of the heuristic function, as well as to improve its action selection with experience.

We evaluate the algorithms presented in this chapter with respect to several performance measures.

2We use 1.4 instead of the Euclidean
√

2 to avoid errors in floating point computations.
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First, we measure mean planning time per action in terms of both the number of states expanded3 as well
as the CPU time. Also note that while total planning time per problem is important for non-real-time
search, it is irrelevant in video game pathfinding as we do not compute an entire path outright.

The second performance measure of our study is sub-optimality defined as the ratio of the solution
cost found by the agent to the minimum solution cost minus one and times 100%. To illustrate, subop-
timality of 0% indicates an optimal path and suboptimality of 50% indicates a path 1.5 times as costly
as the optimal path. We also measure the precomputation time for kNN LRTA* as well as the memory
requirements of all three algorithms.

3 The Core Algorithms
TBA*, RIBS and kNN LRTA* presented later in this chapter build on three classic heuristic search
algorithms: A* [15], IDA* [24] and LRTA* [25]. We briefly review these algorithms and discuss their
drawbacks for real-time heuristic search below.

3.1 A*
The classic A* algorithm [15] is a fundamental algorithm for pathfinding. Given a start state s and a
goal state g, it finds a least-cost path between the two states. It is a best-first search algorithm, and
uses a distance-plus-cost-estimate function to determine which state to expand next. The cost function,
denoted f (n), consists of two parts: f (n) = g(s,n)+h(n,g) where g(s,n) is the distance of the shortest
path found so far between the start state s and state n, and h(n,g) is the heuristic estimate of the distance
cost of traveling from state n to the goal g. The algorithm uses two containers to keep track of its search
progress: the open list storing states that have been encountered but not expanded yet, and the closed
list storing states already expanded. The algorithm iteratively picks the state from the open list with the
lowest f -cost, expands the state, and places its children on the open list. To determine whether a child
state goes into the open list, it cannot already be on the closed list or on the open list with a lower cost.
The state just expanded is moved to the closed list. The role of the closed list is both to avoid state
re-expansions and to reconstruct the solution path once the goal is found. This continues until the goal
state is removed from the open list, in which case the solution path is reconstructed from the closed list.

The algorithm is complete, finds an optimal solution when used with an admissible heuristic, and
never re-expands states given a consistent heuristic.

3.2 Iterative Deepening A* (IDA*)
Early researchers noticed that A* could not solve large problems because it would run out of memory.
IDA* [24] was thus developed as an alternate algorithm that could find optimal solutions, like A*, but
that would only require memory usage linear in the cost of the solution. Most combinatorial puzzles,
which were the original focus of IDA*, have state spaces exponential in the solution cost, and so are a
natural fit for IDA*. Henceforth, we will call such problems exponential domains.

One way to understand how IDA* works is to contrast it to how A* works. Given a consistent
heuristic, the lowest f -cost of any state in A*’s open list will monotonically increase during search.
Imagine that we grouped states according to their cost when expanded by A*. For instance, all the states
with cost 12 might be expanded first, followed by the states with cost 14, and so on. We demonstrate this
in Figure 1, showing contours that delineate states of each successive cost.

IDA* will first expand these groups of states in the same order as A* (modulo tie-breaking among
states with equal f -cost) but will subsequently revisit states in subsequent iterations of the algorithm. It
does this because it does not maintain an open list. Instead, it performs multiple depth-first searches, with
each search bounded by the best f -cost which has yet to be explored. All the states of a particular cost are

3A state is called expanded if all of its immediate children are generated.
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f = 16

f = 14

f = 12

Figure 1: IDA* search contours: IDA* performs multiple depth-first searches within each successive cost
frontier found during search.

explored before the next iteration begins anew. In exponential domains such as common combinatorial
puzzles, the largest number of states will be expanded in the last iteration, amortizing away the cost of
the previous iterations. Because it can be expensive to maintain an open list, IDA* can be faster than A*
in practice.

IDA* works best in exponential domains where the state space does not contain many cycles. It
might, therefore, seem that IDA* is not well suited to grid-based worlds. These domains are usually
polynomial, as the number of states in a map grows as a polynomial function of length and/or width of
the map. Additionally, there are many cycles on grid-based maps. Surprisingly, IDA* can indeed be
adapted to perform real-time heuristic search in such domains, as we show below.

3.3 Learning Real-Time A* (LRTA*)
The core of most real-time heuristic search algorithms is an algorithm called Learning Real-Time A*
(LRTA*) [25]. It is shown in Figure 2 and operates as follows. As long as the goal state sglobal goal is
not reached, the algorithm interleaves planning and execution in lines 4 through 7. In our generalized
version we added a new step at line 3 for selecting goal sgoal individually at each execution step (the
original algorithm uses sglobal goal at all times). In line 4, a cost-limited breadth-first search with duplicate
detection is used to find frontier states with cost up to gmax away from the current state s. For each frontier
state ŝ, its value is the sum of the cost of a shortest path from s to ŝ, denoted by g(s, ŝ), and the estimated
cost of a shortest path from ŝ to sgoal (i.e., the heuristic cost h(ŝ,sgoal)). The state that minimizes the sum
is identified as s′ in line 5. Ties are broken in favour of higher g costs4. Remaining ties are broken in
a fixed order. The heuristic value of the current state s is updated in line 6 (we keep separate heuristic
tables for the different goals and we never decrease heuristics). Finally, we take one step towards the
most promising frontier state s′ in line 7.

LRTA* is a special case of value iteration or real-time dynamic programming [1] and has a problem
that has prevented its use in video game pathfinding. Specifically, it updates a single heuristic value
per move on the basis of heuristic values of near-by states. This means that when the initial heuristic
values are overly optimistic (i.e., too low), LRTA* will frequently revisit these states multiple times,
each time making updates of a small magnitude. This behavior is known as “scrubbing” and appears
highly irrational to an observer. Unlike some combinatorial puzzles (e.g., the sliding tile puzzle), deep
heuristic depressions are common in pathfinding due to dead ends and corners.

There are two fundamental approaches to address problems related to heuristic inaccuracies. First,
one can use a more accurate heuristic. Second, one can increase the depth of the lookahead (i.e., by
increasing the gmax parameter in LRTA*) to compensate for heuristic inaccuracies. Deeper lookaheads
have been generally found beneficial in real-time heuristic search [25], though lookahead pathologies
(i.e., detrimental effects of deeper lookahead on solution optimality) have been observed as well [11, 6,
28, 29].

4In the rest of the chapter we use the terms cost and value interchangeably whenever we refer to f and g functions on states.
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LRTA*(sstart,sglobal goal,gmax)

1 s← sstart
2 while s 6= sglobal goal do
3 select a subgoal sgoal
4 generate successor states of s up to gmax cost, generating a frontier
5 find a frontier state s′ with the lowest g(s,s′)+h(s′,sgoal)
6 update h(s,sgoal) to g(s,s′)+h(s′,sgoal)
7 change s one step towards s′

8 end while

Figure 2: LRTA* algorithm extended with dynamic subgoal selection.

kNN LRTA* takes the former approach and effectively improves the heuristic quality by computing
it with respect to a near-by subgoal as opposed to a distant global goal. This is done in an automated
fashion as presented below.

4 The Three Modern Algorithms
The three real-time search algorithms discussed in this chapter use A*, IDA* or LRTA* as their core
and enhance them in a number of ways. We review them below. The space constraints preclude us
from presenting technical details. Thus we will focus on the key ideas, the underlying intuition and
support them with highlights of empirical evaluation. We refer the reader to the original publications for
additional details [9, 2, 40].

5 k Nearest Neighbors LRTA* (kNN LRTA*)
If an agent is expected to solve a number of problems on the same search graph then it can make sense
to analyze the graph and precompute certain information before attempting to solve the first problem. In
the following, we describe one such type of precomputation used in kNN LRTA*.

5.1 kNN LRTA*: Off-line Subgoal Precomputation
It has been observed in the literature that common heuristic functions are not uniformly inaccurate [30].
Namely, they tend to be more accurate closer to the goal state and less accurate farther away. The
intuition for this fact is as follows: heuristic functions usually ignore certain constraints of the search
space. For instance, the Manhattan distance heuristic in a sliding tile puzzle would be perfectly accurate
if the tiles could pass through each other. Likewise, the octile distance on a map ignores obstacles. The
closer a state is to a goal the fewer constraints a heuristic function is likely to ignore and, as a result, the
more accurate (i.e., closer to the optimal solution cost) the heuristic is likely to be.

We can use these observations to select subgoals dynamically. The idea is straightforward: if being
far from the goal leads to grossly inaccurate heuristic values, let us move the goal closer to the agent,
thereby improving heuristic accuracy. We can do this by computing the heuristic function with respect
to an intermediate, and thus nearby, goal as opposed to a distant global goal — the final destination of
an agent. Since an intermediate goal is closer than the global goal, the heuristic values of states around
an agent will likely be more accurate. Once the agent gets to an intermediate goal, the next intermediate
goal is selected so that the agent makes progress towards its actual global goal. Such dynamic subgoal
selection can be carried out by using a precomputed subgoal database as described below.
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Intuitively, if an LRTA*-controlled agent is in the state s going to the state sgoal then the best subgoal
is the state sideal subgoal that resides on an optimal path between s and sgoal and can be reached by LRTA*
along an optimal path with no state revisitation. Given that there can be multiple optimal paths between
two states, it is unclear how to computationally efficiently detect the LRTA* agent’s deviation from an
optimal path immediately after it occurs.

On the positive side, detecting state revisitation can be done computationally efficiently by running
a simple greedy hill-climbing agent.5 This is based on the fact that if a hill-climbing agent can reach a
state b from a state a without encountering a local minimum or a plateau in the heuristic then an LRTA*
agent will travel from a to b without state revisitation. Thus, we propose an efficiently computable
approximation to sideal subgoal. Namely, we define the subgoal for a pair of states s and sgoal as the state
skNN LRTA* subgoal farthest along an optimal path between s and sgoal that can be reached by a simple hill-
climbing agent. In summary, we select subgoals to eliminate any scrubbing but do not guarantee that the
LRTA* agent keeps on an optimal path between the subgoals. In practice, however, only a tiny fraction
of our subgoals are reached by the hill-climbing agent suboptimally and even then the suboptimality is
negligible.

This approximation to the ideal subgoal allows us to effectively compute a series of subgoals for a
given pair of start and goal states. Intuitively, we compress an optimal path into a series of key states
such that each of them can be reached from its predecessor without scrubbing. The compression allows
us to save a large amount of memory without much impact on time-per-move. Indeed, hill-climbing
from one of the key states to the next requires inspecting only the immediate neighbors of the current
state and selecting one of them greedily.

However, it is still infeasible to compute and then compress an optimal path between every two
distinct states in the original search space. We solve this problem by compressing only a pre-determined
fixed number of optimal paths between random states off-line.

5.2 kNN LRTA*: On-line Search
On-line, kNN LRTA*, tasked with going from s to sgoal, retrieves the most similar compressed path
from its database and uses the associated subgoals. We define (dis-)similarity of a database path to the
agent’s current situation as the maximum of the heuristic distances between s and the path’s beginning
and between sgoal and the path’s end. We use maximum because we would like both ends of the path
to be heuristically close to the agent’s current state and the goal respectively. Indeed, the heuristic
distance ignores walls and thus a large heuristic distance to the path’s either end tends to make that end
hill-climbing unreachable.

Note that high similarity (i.e., both distances being low) does not guarantee that the path will be
useful to the kNN LRTA* agent. For instance, the beginning of the path can be heuristically very close
to the agent but on the other side of a long wall, making it unreachable without a lot of learning and the
associated scrubbing. To address this problem we compliment the fast-to-compute similarity metric with
more computationally demanding hill-climbing reachability checks as detailed below.

We illustrate this intuition with a simple example. Figure 3 shows kNN LRTA* operation off-line.
On this map, two random start and goal pairs are selected and for each pair an optimal path is computed
between the start and goal. Then each path is compressed into a series of subgoals such that each of the
subgoals can be reached from the previous one via hill-climbing. The path from S1 to G1 is compressed
into two subgoals and the other path is compressed into a single subgoal.

Once this database of two records is built, kNN LRTA* can be tasked with solving a problem on-
line. In Figure 4 it is tasked with going from the state S to the state G. The database is scanned and
similarity between (S,G) and each of the two database records is determined. The records are sorted by

5In each state such a simple greedy hill-climbing agent moves to the immediate neighbor with the lowest f -cost. It gives up
when all children have their h-cost greater than or equal to the h-cost of the agent’s current state.
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Figure 3: Example of kNN LRTA* off-line operation. Left: two subgoals (start,goal) pairs are chosen:
(S1,G1) and (S2,G2). Center: optimal paths between them are computed by running A*. Right: the two
paths are compressed into a total of three subgoals.

their similarity: (S1,G1) followed by (S2,G2). Then the agent runs hill-climbing reachability checks:6

from S to Si and from Gi to G where i runs the database indices in the order of record similarity. In this
example, S1 is found unreachable by hill-climbing from S and thus the record (S1,G1) is discarded. The
second record passes hill-climbing checks and the agent is tasked with going to its first subgoal (shown
as 1 in the figure).

S1

G1

S2

G2

1

S1

G1

S2

G2

S

G

S

G

S

G

Figure 4: Example of kNN LRTA* on-line operation. Left: the agent intends to travel from S to G. Center:
similarity of (S,G) to (S1,G1) and (S2,G2) is computed. Right: while (S1,G1) is more similar to (S,G) than
(S2,G2), its beginning S1 is not reachable from S via hill-climbing and hence the record (S2,G2) is selected
and the agent is tasked with going to subgoal 1.

5.3 kNN LRTA*: Properties
Real-time property. On each move kNN LRTA* invokes LRTA* which expands a constant-bounded

6To satisfy the real-time operation constraint, we set an a priori constant limit on the number of steps in any hill-climbing
check on-line.
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Figure 5: The maps used in our empirical evaluation.

number of states. On some moves, kNN LRTA* additionally queries its database to find the appropriate
record. Since the database size is independent of the number of states, the query time does not grow with
the number of states. The time to sort the records is independent of the total number of states and so
are move-limited hill-climbing checks. Therefore, kNN LRTA*’s planning time per move does not grow
with the total number of states, satisfying the real-time requirement.

Completeness. Given a problem, the subgoal selection module of kNN LRTA* will either return a
database record or instruct LRTA* to go to the global goal. In the latter case, kNN LRTA* is complete
because the underlying LRTA* is complete. In the former case, LRTA* is guaranteed to reach the start
state of the record due to the way records are picked from the database. LRTA* is then guaranteed to
reach the subsequent subgoals due to the completeness of the basic LRTA* and the way the subgoals are
constructed.

5.4 kNN LRTA*: Empirical Evaluation
The experiments in this chapter were run on a set of 1000 randomly generated problems across the four
maps shown in Figure 5. There were 250 problems on each map and they were constrained to have
solution cost of at least 1000. The grid dimensions varied between 4096×4604 and 7261×4096 cells.
For each problem we computed an optimal solution cost by running A*. The optimal cost was in the
range of [1003.8,2999.8] with a mean of 1881.76, a median of 1855.2 and a standard deviation of 549.74.
We also measured the A* difficulty defined as the ratio of the number of states expanded by A* to the
number of edges in the resulting optimal path. For the 1000 problems, the A* difficulty was in the range
of [1,199.8] with a mean of 62.60, a median of 36.47 and a standard deviation of 64.14.

All algorithms compared were implemented in Java using common data structures as much as pos-
sible. We used Java version 6 under SUSE Enterprise Linux 10 on a 2.1 GHz AMD Opteron processor
with 32 Gbytes of RAM. All timings are reported for single-threaded computations.

We evaluated kNN LRTA* with the following parameters. Database size values were in
{1000,5000,10000,40000,60000,80000} records. On-line, we allowed our hill-climbing test to climb
for up to 250 steps before concluding that the destination state is not hill-climbing reachable. This value
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was picked after some experimentation and had to be appropriate for the record density on the map.
To illustrate, a larger database requires fewer hill-climbing steps to maintain the likelihood of finding a
hill-climbing reachable record for a given problem.

We ran reachability checks on the 10 most similar records. LRTA*’s parameter gmax was set to the
cost of the most expensive edge (i.e., 1.4) so that LRTA* generated only all immediate neighbors of its
current state.

We also contrast kNN LRTA*’s performance to that of TBA*, which was run with the time slices of
{5,10,20,50,100,500,1000,2000,5000} and the cost ratio of expanding a state to backtracing set to 10
(explained in the next section).

5.4.1 Solution Suboptimality and Per-Move Planning Time

We begin the comparisons by looking at average solution suboptimality versus average time per move.
Table 1 shows the individual values. kNN LRTA* produces the highest quality solutions, followed by
TBA*.

Algorithm Mean time per move (microseconds) Solution suboptimality (%)
kNN LRTA*(10000) 7.56 6851.62
kNN LRTA*(40000) 6.88 620.63
kNN LRTA*(60000) 6.40 12.77
kNN LRTA*(80000) 6.55 11.96

TBA*(5) 14.31 1504.54
TBA*(10) 26.34 666.50
TBA*(50) 83.31 131.12
TBA*(100) 117.52 64.66

A* 208.03 0

Table 1: Suboptimality versus time per move.

TBA* cannot reach kNN LRTA* with the database size of 60 and 80 thousand records. Additionally,
TBA* is noticeably slower per move as it expands more than one state and allocates some time to
backtracing as well. The time per move can be decreased by lowering the value of cutoff but already with
the cutoff of 10, TBA* produces unacceptably suboptimal solutions (666.5% suboptimal). As a result,
kNN LRTA* dominates TBA* by outperforming it with respect to both measures. This is intuitive as
TBA* does not benefit from subgoal precomputation.

For the sake of reference, we also included A* results in the table. A* is not a real-time algorithm and
its average time per move tends to increase with the number of states in the map. Additionally, it spends
most of it time during the first move when it computes the entire path. Subsequent moves require a trivial
computation. In the table, we define A*’s mean time per move as the total planning time for a problem
divided by the number of moves in the path A* finds. We average this quantity over all problems. kNN
LRTA* is about 30 times faster than A* per move.

5.4.2 Database Precomputation Time

Suboptimality versus database precomputation time is shown in Table 2. Note that while the times are
roughly between 10 and 100 hours, they are reported for single-threaded computations. Because database
records are independent of each other, the precomputation process scales up linearly with the number
of threads. Thus, these times can be decreased by an order of magnitude by simply running the code in
parallel on a modern multi-core CPU.
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Algorithm Precomputation time per map (hours) Solution suboptimality (%)
kNN LRTA*(10000) 13.10 6851.62
kNN LRTA*(40000) 51.89 620.63
kNN LRTA*(60000) 77.30 12.77
kNN LRTA*(80000) 103.09 11.96

Table 2: Suboptimality versus database precomputation time.

5.4.3 Memory Requirements

Memory is at premium in video games, especially on consoles. TBA* space complexity comes from its
open and closed list which it builds on-line. kNN LRTA* expands only a single state (the agent’s current
state) and thus has the closed list of one state and the open list of at most eight states (as any grid cell
in our maps has at most eight neighbors). However, it consumes memory as it stores updated heuristic
values. Additionally, it stores its subgoal databases. We will first focus on the database size. Then we
will cover the total memory consumed on-line: open and closed lists as well as the updated heuristic
values.

kNN LRTA* records have two or more states each and the number of records is fixed by the algorithm
parameter. Additionally, kNN LRTA* stores start and end states of each record in a kd-tree. We define
relative database size as the ratio of the total number of states stored in all records to the total number of
map grid cells. The empirical results are found in Table 3.

Algorithm Precomputation time Records Relative size Size (megabytes)
kNN LRTA*(10000) 13.10 10000 0.00308 0.25
kNN LRTA*(40000) 51.89 40000 0.01234 1.00
kNN LRTA*(60000) 77.30 60000 0.01851 1.51
kNN LRTA*(80000) 103.09 80000 0.02468 2.01

Table 3: Database statistics. All values are averages per map. Precomputation time is in hours.
We will first analyze specifically the amount of memory allocated by the algorithms on-line. When

an algorithm solves a particular problem, we record the maximum size of its open and closed lists as well
as the total number of states whose heuristic values were updated. We count each updated heuristic value
as one state in terms of storage required.7 Adding these three measures together, we record the amount
of strictly on-line memory per problem. Averaging the strictly on-line memory over all problems, we list
the results in Table 4.

TBA*, as time-sliced A*, does not update heuristic values at all. However, its open and closed lists
contribute to the highest memory consumption at 1353.94 Kbytes. This is intuitive as TBA* does not
use subgoals and therefore must “fill in” potentially large heuristic depressions with its open and closed
lists. Also, notice that the total size of these lists does not change with the cutoff as state expansions are
independent of agent’s moves in TBA*. A* has identical memory consumption as it expands states in
the same way as TBA*. Again, kNN LRTA* dominates TBA* for all cutoff values, using less memory
and producing better solutions.

Strictly on-line memory gives an insight into the algorithms but does not present a complete picture.
Specifically, kNN LRTA* must load its databases into its on-line memory. Thus we define the cumulative
on-line memory as the strictly on-line memory plus the size of the database loaded. The values are found
in Table 5.

7Multiple heuristic updates in the same state do not increase the amount of storage.
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Algorithm Strictly on-line memory (Kbytes) Solution suboptimality (%)
kNN LRTA*(10000) 8.62 6851.62
kNN LRTA*(40000) 5.04 620.63
kNN LRTA*(60000) 4.23 12.77
kNN LRTA*(80000) 4.22 11.96

TBA*(5) 1353.94 1504.54
TBA*(10) 1353.94 666.50
TBA*(50) 1353.94 83.31
TBA*(100) 1353.94 64.66

A* 1353.94 0

Table 4: Strictly on-line memory versus solution suboptimality.

Algorithm Cumulative on-line memory (Kbytes) Solution suboptimality (%)
kNN LRTA*(10000) 265.65 6851.62
kNN LRTA*(40000) 1034.08 620.63
kNN LRTA*(60000) 1547.85 12.77
kNN LRTA*(80000) 2062.20 11.96

TBA*(5) 1353.94 1504.54
TBA*(10) 1353.94 666.50
TBA*(50) 1353.94 83.31
TBA*(100) 1353.94 64.66

A* 1353.94 0

Table 5: Solution suboptimality versus cumulative on-line memory.
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Figure 6: An example of TBA* in action.

TBA* is no longer dominated due to its low memory consumption. The closest comparison is be-
tween kNN LRTA* with 60000 records and TBA*. While kNN LRTA* uses 14% more memory than
TBA*, it produces solutions of 1.5 to 14.2 times better.

6 Time-Bounded A* (TBA*)
It may not always be feasible to precompute pathfinding information for video game maps. For example,
whereas hours of precomputation per map may be acceptable for maps shipping with a game (as the
computation is done beforehand at the game studio), the same is unlikely to be the case for user-generated
maps. Also, precomputation is much less useful for maps that change frequently during game play (e.g.,
a bridge or a building is blown-up or a new one built).

Unfortunately, in the absence of precomputed information for guiding the search, LRTA*-like algo-
rithms tend to preform poorly, often revisiting and re-expanding the same states over and over again. In
contrast, A* with a consistent heuristic never re-expands a state. However, in A* the first action cannot
be taken until an entire solution is planned. As search graphs grow in size, the planning time before the
first action will grow, eventually exceeding any fixed cut-off. Consequently, A*-like algorithms violate
the real-time property and, thus, do not scale well. One way of alleviating this problem has been to
use A* with hierarchies of state-space abstractions, and search first for an approximate path in a highly
abstracted state space and then refine it locally in a less abstract one. While faster, their planning time
per move still increases with the number of states, making them non-real-time.

Below we describe a time-bounded version of the A* algorithm, called Time-Bounded A*
(TBA*) [2], that achieves true real-time behavior while requiring neither precomputation nor state space
abstractions.

6.1 TBA*: Search
The TBA* algorithm expands states in an A* fashion, away from the original start state, towards the
goal until the goal state is expanded. However, unlike A* that plans a complete path before committing
to the first action, TBA* interrupts its search periodically after a fixed number of state expansions and
acts. If the complete path to the goal has not yet been found, the agent instead moves towards the most
promising state on the open list. This interleaving of planning and acting operations ensures real-time
behavior. A key aspect of TBA* over LRTA*-based algorithms is that it retains closed and open lists
over its planning steps. Thus, on each planning step it does not start planning from scratch, but continues
with its open and closed lists from the previous planning step.

The basic idea behind TBA* is depicted in Figure 6. S is the start and G the goal, the curves represent
A* open list after each expansion time-slice, the small solid circles (a), (b), (c) are states on the open
lists with the lowest f -value. The dashed lines are the shortest paths to them. The first three steps of the
agent are: S→ 1→ 2→ 1. The agent backtracks on the last step because the path to the most promising
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state on the outermost frontier, labeled (c), did not go through state 2 where the agent was situated at the
time.

The pseudo-code of TBA* is shown as Algorithm 1. The arguments to the algorithm are the start
and goal states, the search problem P, and the per-move search limit R (expressed as the number of
states to expand on each step). The algorithm keeps track of the current location of the agent using the
variable loc. After initializing the agent location as well as several boolean variables that keep track
of the algorithm’s internal state (lines 1-4), the algorithm divides up the resource limit as it must be
shared between state expansion and backtracing8 operations (lines 5-6). The constants r ∈ [0,1] and c
stand for the fraction of the resource limit to use for state expansions and the relative cost of a expansion
compared to backtracing (e.g., a value of 10 indicates that one state expansion takes ten times more
time to execute than a backtracing step), respectively. The algorithm then enters the main loop where it
repeatedly interleaves planning (lines 8-23) and execution (lines 24-35) until the agent reaches the goal.

The planning phase proceeds in two steps: first, a fixed number (NE ) of A* state expansions are done
(lines 9-11). Second, a new path to follow, pathNew, is generated by backtracing the steps from the
most promising state on the open list back to the start state. This is done with A* closed list contained in
the variable lists which also stores A* open list thereby allowing us to run A* in a time-sliced fashion.
The function traceBack (line 16) backtraces until reaching either the current location of the agent, loc,
or the start state. This is also done in a time-sliced manner (i.e., no more than NT trace steps per action)
to ensure real-time performance. Thus, the backtracing process can potentially span several action steps.
Each subsequent call to the traceBack routine continues to build the backtrace from the front location
of the path passed as an argument and adds the new locations to the front of that path (to start tracing
a new path one simply resets the path passed to the routine (lines 13-15). Only when the path has been
fully traced back, is it set to become the new path for the agent to follow (line 18); until then the agent
continues to follow its current path, pathFollow.

In the execution phase the agent does one of two things as follows. If the agent is already on the path
to follow it simply moves one step forward along the path, removing its current location from the path
(line 26).9 On the other hand, if the agent is not on the path — for example, if a different new path has
become more promising — then the agent simply starts backtracking its steps one at a time (line 29).
The agent will sooner or later step onto the path that it is expected to follow, in the worst case this will
happen in the start state.

Note that one special case must be handled. Assume a very long new path is being traced back. In
general, this causes no problems for the agent as it simply continues to follow its current path until it
reaches the end of that path, and if still waiting for the tracing to finish, it simply backtracks towards
the start state. It is possible, although unlikely, that the agent reaches the start state before a new path
becomes available, thus having no path to follow. However, as the agent must act, it simply moves back
to the state it came from (line 31).

6.2 TBA*: Properties
Real-time property. The number of state expansions and backtraces performed for each action step
is bounded. This is sufficient to claim real-time behavior provided that the time it takes to expand or
backtrace each state is constant-bounded. In TBA* the open and closed lists grow between action steps,
so subsequent planning steps work with larger lists. However, a careful choice of data-structures still
enables (amortized) constant-time operation.10

Completeness. The algorithm expands states in the same manner as A* and is thus guaranteed to find
a path from the start state to the goal provided that one exists. The algorithm does additionally guarantee

8We use the term backtracing for the act of tracing a path backwards in the planning phase. The term backtracking is used in
its usual sense — physically moving (backwards) along the path in the execution phase.

9It is not necessary to keep the part of the path already traversed since it can be recovered from the closed list.
10Using the standard heap-based implementation of the open list gives times per move sub-polynomial (logarithmic) in the

number of states and, therefore, violates the real-time constraint.
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Algorithm 1 TBA*(start, goal, P, R)
1: loc← start
2: solutionFound← f alse
3: solutionFoundAndTraced← f alse
4: doneTrace← true
5: NE = bR× rc
6: NT = (R−NE)× c
7: while loc 6= goal do
8: { PLANNING PHASE }
9: if not solutionFound then

10: solutionFound← A∗(lists,start,goal,P,NE)
11: end if
12: if not solutionFoundAndTraced then
13: if doneTrace then
14: pathNew← lists.mostPromisingState()
15: end if
16: doneTrace← traceBack(pathNew, loc,NT )
17: if doneTrace then
18: pathFollow← pathNew
19: if pathFollow.back() = goal then
20: solutionFoundAndTraced← true
21: end if
22: end if
23: end if
24: { EXECUTION PHASE }
25: if pathFollow.contains(loc) then
26: loc← pathFollow.popFront()
27: else
28: if loc 6= start then
29: loc← lists.stepBack(loc)
30: else
31: loc← loc last
32: end if
33: end if
34: loc last← loc
35: move agent to loc
36: end while
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Figure 7: The maps used in the TBA* experiments.

that the agent will get on this solution path and subsequently follow it to the goal. This is done by having
the agent backtrack towards the start state when it has no path to follow; during the backtracking process
the agent is guaranteed to walk onto the solution path A* found — in the worst case this will be at the
start state. TBA* is thus complete.

Memory complexity. The algorithm uses the same state-expansion strategy as A*, and consequently
shares the same memory complexity: in the worst case the open and closed lists will cover the entire state
space. Traditional heuristic updating real-time search algorithms face a similar worst-case scenario as
they may end up having to store an updated heuristic for every state of the search graph. One advantage
TBA* has over precomputation-based algorithms, is that no memory is allocated for the precomputed
data.

6.3 TBA*: Empirical Evaluation
The experiments performed in this section were run using three different maps modeled after game
worlds from a popular real-time strategy game (shown in Figure 7). The maps were scaled up to 512×
512 cells to increase the problem difficulty [39, 12]. One hundred different searches were performed
on each map with start and goal locations chosen randomly, although constrained such that the optimal
solution cost was between 230 and 320. Each data-point we report below is thus an average of 300
different pathfinding problems (3 maps × 100 searches on each).

In the experiments that follow, TBA* was matched against two recent real-time search algorithms
that have been shown particularly effective in pathfinding on video-game maps. They both use state
abstraction and precomputation to improve performance. The algorithms and their parameter settings
are:

• PR LRTA* is Path Refinement Learning Real-Time Search [13]. The algorithm runs LRTA* with
a fixed search depth d in an abstract space (abstraction level ` in a clique abstraction hierarchy [39])
and refines the first action using a corridor-constrained A* running on the original ground-level
map. The control parameters are as follows: abstraction level ` ∈ {3,4, . . . ,7}, LRTA* lookahead
depth d ∈ {1,3,5,10,15} and LRTA* heuristic weight γ ∈ {0.2,0.4,0.6,1.0}.

• D LRTA* is a variant of LRTA* equipped with dynamic search depth and intermediate goal selec-
tion [12]. For each map optimal search depths as well as intermediate goals (or waypoints) were
precomputed beforehand and stored in pattern databases. State abstraction was used to reduce
the amount of precomputation. We used the abstraction level of 3 (higher levels of abstraction
exceeded the real-time computation cut-off threshold of 1000 states per action).

• TBA* is our Time-Bounded TBA*; the resource limit R took on the values
{10,25,50,75,100,500,1000} but the values of r and c were fixed at 0.9 and 10, respec-
tively.

A previous section of the chapter contrasted the performance of TBA* and kNN LRTA* (thus not in-
cluded here).
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Figure 8: TBA* compared to other real-time algorithms.

Figure 8 presents the results. The run-time efficiency of the algorithms is plotted. The x-axis rep-
resents the amount of work done in terms of the mean number of states expanded per action, whereas
the y-axis shows the quality of the solution found relative to an optimal solution (e.g., a value of four
indicates that a solution path four times longer than optimal was found). Each point in the figure repre-
sents a run of one algorithm with a fixed parameter setting. The closer a point is to the origin the better
performance it represents. Note that we imposed a constraint on the parameterization: if the worst-case
number of states expanded per action exceeded a cut-off of 1000 states then the particular parameter
setting was excluded from consideration. Also, to focus on the high-performance area close to the center
of origin, we limited the axis limits and, as a result, displayed only a subset of the aforementioned PR
LRTA* and D LRTA* parameter combinations.

We see that TBA* performs on par with these algorithms. However, unlike these, it requires neither
state-space abstractions nor precomputed pattern databases. This has the advantages of making it both
much simpler to implement and better poised for application in non-stationary search spaces, a common
condition in video-game map pathfinding where other agents or newly constructed buildings can block
a path. For example, the data point that is provided for D LRTA*, although showing a somewhat better
computation versus suboptimality tradeoff than TBA*, is at the expense of extensive precomputation that
can take hours for even a single map.

7 Real-time Iterative-deepening Best-first Search (RIBS)
TBA* is a relatively straightforward extension of A* which allows immediate movement by an agent
before A* finds a complete path. However, TBA* is not an agent-centric algorithm. That is, the memory
accesses performed by TBA* happen at arbitrary places in the map that may not be local to the agent.
This can be important if there are cache or memory concerns, where random memory accesses are slow,
or if the world is dynamic and might change significantly after planning is completed. One way to look at
RIBS is that it is an agent-centric version of TBA*, however there are a few extra pieces that are needed
to make RIBS efficient in practice. If an agent-centric approach is not important, TBA* may be a better
option.

The basic approach for RIBS is shown in simplified pseudo-code in Figure 9. A global cost limit is
used as the current estimate of the cost to the goal. An agent begins at the state scurrent and is passed the
last state visited, which is used to set up parent pointers so the agent can retrace its path if stuck in a dead
end (lines 1-4).

Next, the agent computes the f -cost of the successor states, and recursively visits any states which
have f -cost less than or equal to the current bound. If all successors are visited without finding the goal,
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Global: cost limit← 0
RIBS(scurrent , g-cost, sparent , sgoal)

1 if scurrent is visited the first time
2 set parent of scurrent to sparent

3 store g-cost of scurrent

4 end if
5 while scurrent is not sgoal
6 mark scurrent as visited with current cost limit
7 foreach successor succi with f -cost ≤ cost limit and unvisited with current cost limit
8 if succi never expanded or succi’s parent is scurrent

9 RIBS(scurrent , g-cost + cost(scurrent , ssucci), ssucci , sgoal)
10 end if
11 end foreach
12 if sparent is not nil { only occurs at sstart }
13 return
14 else
15 increase cost limit
16 end if
17 end while

Figure 9: A simplified version of the RIBS algorithm.

then the agent returns to its parent state. If there is no parent state, then the agent must be in the start
state, and there is no path to the goal with the current bound. In this case the bound is increased and the
procedure starts over.

This procedure is essentially the same as IDA*, and so it can be proven that, with a consistent
heuristic, when an agent expands a state for the first time it will have discovered an optimal cost path to
that state. As a corollary, RIBS is guaranteed to identify an optimal path to the goal state by the time
it reaches it. Note that it does not mean that it will have followed such an optimal path. Like other
real-time heuristic search agents, a RIBS agent tends to follow suboptimal paths in practice.

A simple agent running RIBS would take one action per move. An agent moves forward on line 9
and moves backwards on line 13. The while statement on line 5 really only serves to keep the agent
iterating with increasing cost limits at the start state, as for every other state a parent will be defined
causing the while loop to exit at line 13.

This description of the algorithm is fairly simple to implement, but it is missing a few details, such as
some of the code for initializing new states, the procedure for updating the cost limit, and some important
pruning details. The first two details are relatively straightforward, so we will only discuss the pruning
details here. Also note that RIBS is shown as a recursive algorithm that would run until completion, but
it is not hard to break this computation into pieces that could be resumed when the time limit for the
current action expires.

7.1 RIBS: Intuition
Learning h-values can be slow because inaccurate heuristics values are used to update other (also inac-
curate) heuristic values. This is particularly problematic if a learning agent enters a heuristic depres-
sion [20], a localized area in the search space where it has to repeatedly revisit states to raise their
heuristic values enough to be able to continue to explore other parts of the search space. The more
frequent and deeper the depressions are, the more severely the problem manifests itself.

This is illustrated in Figure 10 with an example of LRTA* behavior on a portion of a map with a local
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minima in the corner. To simplify the example, diagonal moves have cost 1.5. States are marked with
their initial heuristic values. Consider part (a) where the agent is in the shaded state. Using a lookahead
of one, the value of the corner heuristic can be updated from 3 to 5, because a neighbor distance 1 has
heuristic cost 4. In part (b) the agent moves to the highlighted state and makes a similar update, raising
the h-cost to 5.5, before moving to the state updated in part (c), where that state will be updated to have
a heuristic value of 5.5.
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Figure 10: Learning in a local minima.

After three updates, considerable learning still remains. This is because the heuristic is being updated
locally from neighboring heuristics, which, due to consistency, cannot be considerably larger. Thus, a
state must be visited and updated many times before large changes in the heuristic can occur. As this
learning begins far from the goal state, heuristic estimates are likely to be inaccurate. For the same
reason that heuristic costs (h-costs) tend to be more accurate closer to the goal state, g-costs tend to be
more accurate closer to the start state. RIBS takes advantage of this fact and learns g-costs for all states
visited by the agent. Since the agent begins in the start state, such a learning process is more efficient
than the h-cost learning of LRTA*: more accurate g costs are learned faster.

The second key observation is that (accurate) g-costs can be helpful in escaping heuristic depres-
sions. Not only can they greatly reduce the number of times the agent must revisit states in a heuristic
depression, but they are also useful in identifying dead states and redundant paths. Such identifications
require accurate costs and, as a result, work much better with g-cost learning than with h-cost learning.

Excluding the start and goal, any state on an optimal path must have neighbors with both higher and
lower g-costs. If a state has no neighbors with larger g-costs, then an optimal path to the goal cannot
pass through this state. We thus define a dead state as follows: Given a start state s and a state n, n is a
dead state if n is not the goal state and if for all non-dead neighbors of n, n1 . . .ni, cost(s,n)≥cost(ni,s).

Consider the example in Figure 11, which shows g-cost estimates for the same problem. Upon
reaching the corner, the agent can potentially mark each state with the g-costs in the figure, which
are upper-bounds on the actual cost to each state. In part (a) of the figure, the agent can see that the
highlighted state in the corner is dead, because all neighbors can be reached by shorter paths through
other states. After this state is marked dead, in part (b), two more states can be marked dead. Learning
that a state is dead only requires visiting a state a single time, unlike learning a heuristic, which may take
multiple visits. Fortunately, there is more that can be done if we know the optimal cost to each state.

Consider Figure 12(a). In this case the states in the corners can be marked as dead and ignored
once the optimal cost is discovered. Note, however, that even after removing the dead states there are
still many paths that lead out through this room, shown in Figure 12(b). However, because there is
only a single doorway to the room, these paths are all redundant. Detecting and ignoring states on such
redundant paths offers additional saving. This requires two steps. In Figure 12(c) we show two possible
optimal paths leading out of the room. We focus on states A and B, shown in detail In Figure 12(d).

The first step is to mark all parents which are along optimal paths to a state. Each time a state is
generated, if the parent is on an optimal path to the state, the parent is added to the list of optimal parents
for that state. In the case of state B, states A and D can both reach B with the same cost, and so B
maintains this information.

The second step occurs in the next iteration of search. Suppose that A is visited first. Then, at A
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Figure 12: Marking dead states.

we will notice that there is also an optimal path to B through D. Since there are no other optimal paths
through A to a successor of A, A can be marked dead or redundant, and B is marked to have a single
optimal parent of D. If D were visited first, D would be marked redundant, and only the path through A
would be maintained.

In Figure 13 we show an example of redundant state removal on a fragment of an actual game
map. The different types of states are labelled with arrows. Most states have been marked as dead
or redundant, meaning that additional exploration focuses just on the successors of a small fringe of
previously expanded states.

The effectiveness of dead state and redundant state pruning will depend on the problem being solved.
We observe that if previously expanded states can be marked dead and/or redundant at the same rate that
new states are expanded, then the performance of RIBS would approach that of TBA*, as TBA* never
revisits expanded states. But, RIBS must first mark states as dead and/or redundant in order to stop
visiting them, and searches in multiple iterations, so it cannot completely match the performance of
TBA*, especially given that it obeys agent-centric constraints.

7.2 RIBS: Properties
Real-time property. The number of state expansions performed for each step of RIBS can be set to any
desired constant. Note that RIBS maintains no open or closed lists and thus does not require sophisticated
data representations to satisfy the real-time constraint.

Completeness RIBS, being at its core a time-sliced version of IDA*, is complete under the same
assumptions as IDA*. Also note that, similar to TBA* and unlike kNN LRTA*, when RIBS finds the
goal it will have determined the optimal solution path, although it will not have followed that path en
route to the goal.

Memory complexity. RIBS has the same worst case as TBA* where it will consider and store
information all states in the state space. Unlike kNN LRTA*, however, it does not require loading or
precomputing a database.

7.3 RIBS: Empirical Evaluation in Heuristic Depressions
Of all the algorithms discussed in this chapter, RIBS makes the most restrictive assumptions about what
an agent running RIBS is able to perform in the environment. RIBS assumes no up-front knowledge of
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Figure 14: The example map used to compare RIBS and LRTA* performance.

the domain, ruling out any opportunity for precomputation. RIBS also assumes that random access to
states far from the agent is not available, ruling out the TBA* approach. TBA* and kNN LRTA* have
better performance than RIBS in practice because they do not make such assumptions. As a result, we
focus on evaluating RIBS’ ability to quickly escape heuristic depressions. We focus on the comparison
between g-learning RIBS and h-learning basic LRTA*. This showcases RIBS ability to use its accurately
learned g-costs to identify the redundant and dead states as described above.

The basic version of LRTA* which we compare against can be described as follows: The local search
space only includes the neighbors of the current state. The local learning space is only the current state.
The learning rule is mini-min, and the control strategy is to move to the best neighboring state. Although
the local search space and learning space are small, increasing their size does not significantly change
the results we present here (see [40] for more details).

We experiment on the map in Figure 14, where the agent starts in the upper left corner and must
travel to the lower-right corner. The default heuristic leads directly into the corner, from which the agent
must then escape. This structure is common in many maps, and so we experiment directly with this
example, scaling the size to measure performance.

The results of the comparison are in Figure 15. The x-axis is the number of states in the whole
map, while the y-axis is the number of states expanded by each algorithm. Note that both axes use
a logarithmic scale. The RIBS line approximates y = 10x as the map gets larger, while the LRTA*
approximates y = 0.14x1.5. This means that, once the map gets large, RIBS can expand each state 10
times before finding the optimal solution. For LRTA*, however, the number of expansions is polynomial
in the size of the map. This explains the “scrubbing” behavior of LRTA* – the number of expansions
that it takes for LRTA* to escape a local minima can be far more than the number of states in the local
minima. The performance of RIBS and LRTA* crosses when the number of states in the local minima
grows to approximately 1500 states, which corresponds to a 40×40 room in a larger map, a size that is
not unrealistic.
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8 Future Work
We presented and evaluated kNN LRTA*, TBA* and RIBS for grid-based pathfinding. Formally, the
algorithms are applicable to arbitrary weighted graphs that satisfy the constraints at the beginning of
Section 2. Thus, in principle, they should be applicable to general planning using the ideas from search-
based planners ASP [5], the HSP-family [3], FF [18], SHERPA [22] and LDFS [4]. An actual application
is a subject of future work.

The methods can also be further improved and fine tuned in our problem domain of pathfinding in
video games. Currently one of the main drawbacks of kNN LRTA* is the long precomputation time
needed for generating the off-line databases. While the time is affordable on the game company side,
most players would want their home-made game maps to be processed in a matter of seconds or minutes.
While the computation can be sped up at a linear scale by using multi-core processors this would still
come up short. One of the main focus of future work on kNN LRTA* will thus be to shorten the
precompuation time, for example, we might be able to get away with much smaller databases if the
database records were generated in a manner such that they produce a better coverage of the state space.

Unlike A*, no real-time algorithm can guarantee finding an optimal path. This is of a little conse-
quence in video-game pathfinding as long as approximately optimal paths are found. More importantly
is that the agents navigate the game world in a rational way, for example that they do not show visually
jarring or indecisive behavior by frequently changing their mind as of where to go. Whereas both kNN
LRTA* and TBA* are much improved in that respect compared to most other mainstream real-time al-
gorithms, such behavior does still occasionally surface, especially in the latter. Even a single incident
of an irrational pathfinding behavior can break the player’s immersion. Some preliminary solutions for
TBA* are provided in [2] but more effective solutions are required.

RIBS is a promising approach but, given its recency, further empirical evaluation as well as algorith-
mic improvements are necessary. In particular, variants of RIBS that forgo the eventual identification of
optimal paths and, as a result, find better suboptimal solutions, can be explored.

9 Conclusions
In this chapter we considered the problem of real-time heuristic search whose planning time per move
does not depend on the number of states. We reviewed three modern algorithms, each with its strengths
and weaknesses.

In terms of solution sub-optimality when given equal computing resources (or vice versa, required
computing resources for finding equally good solutions), kNN LRTA* shows the best performance.
Because pathfinding tends to be a rather computing intensive task in modern games, especially in large
game worlds with multiple agents navigating simultaneously, this metric is of an utmost importance.
This level of on-line performance comes at the cost of long offline precomputation times (hours per
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map). TBA*, although not being quite as effective as kNN LRTA*, still shows a good performance
and has the benefit of not requiring any precomputation. It may thus be better poised for environments
that dynamically change during game play. TBA* also uses on average somewhat less memory that
kNN LRTA*, which can be an important consideration on some gaming platforms (e.g., consoles). Both
algorithms thus appear well poised for video game pathfinding.

RIBS is an interesting way of moving TBA* closer to being an agent-centered approach – an im-
portant consideration for some problem domains. The algorithm also provides added insights into how
real-time search agents can learn heuristics.
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