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Abstract

Real-time heuristic search methods, such as LRTA*, are used
by situated agents in applications that require the amount of
planning per action to be constant-bounded regardless of the
problem size. LRTA* interleaves planning and execution,
with a fixed search depth being used to achieve progress to-
wards a fixed goal. Here we generalize the algorithm to allow
for a dynamically changing search depth and a dynamically
changing (sub-)goal. Evaluation in path-planning on video-
game maps shows that the new algorithm significantly outper-
forms fixed-depth, fixed-goal LRTA*. The new algorithm can
achieve the same quality solutions as LRTA*, but with nine
times less computation, or use the same amount of computa-
tion, but produce four times better quality solutions. These
extensions make real-time heuristic search a practical choice
for path-planning in computer video-games.

Introduction
Heuristic search has been a successful approach in plan-
ning with such planners as ASP (Bonet, Loerincs, & Geffner
1997), the HSP-family (Bonet & Geffner 2001), FF (Hoff-
mann 2000), SHERPA (Koenig, Furcy, & Bauer 2002) and
LDFS (Bonet & Geffner 2006). In this paper we study the
problem of real-time planning where an agent must repeat-
edly plan and execute actions within a constant time inter-
val that is independent of the size of the problem being
solved. This restriction severely limits the range of appli-
cable heuristic search algorithms. For instance, static search
algorithms such as A* and IDA* (Korf 1985), re-planning
algorithms such as D* (Stenz 1995), anytime algorithms
such as ARA* (Likhachev, Gordon, & Thrun 2004) and any-
time re-planning algorithms such as AD* (Likhachev et al.
2005) cannot guarantee a constant bound on planning time
per action. LRTA* can, but with potentially low solution
quality due to the need to fill in heuristic depressions (Korf
1990; Ishida 1992).

As a motivating example, consider an autonomous
surveillance aircraft in the context of disaster response (Ki-
tano et al. 1999). While surveying a disaster site, locating
victims, and assessing damage, the aircraft can be ordered to
fly to a particular location. Radio interference may make re-
mote control unreliable thereby requiring a certain degree of
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autonomy from the aircraft by using AI. This task presents
two challenges. First, due to flight dynamics, the AI must
control the aircraft in real time, producing a minimum num-
ber of actions per second. Second, the aircraft needs to reach
the target location quickly due to a limited fuel supply and
the need to find and rescue potential victims promptly.

We study a simplified version of this problem which cap-
tures the two AI challenges while abstracting away some of
the peripheral details. Specifically, in line with Likhachev
& Koenig (2005) we consider an agent on a finite search
graph with the task of planning a path from its current state
to a given goal state. Within this context we measure the
amount of planning the agent conducts per action and the
length of the path found between the start and the goal lo-
cations. These two measures are antagonistic insomuch as
reducing the amount of planning per action leads to subopti-
mal actions and results in longer paths. Conversely, shorter
paths require better actions that can be obtained by larger
planning effort per action.

We use navigation in grid world maps derived from video
games as a testbed. In such games, an agent can be tasked to
go to any location on the map from its current location. The
agent must react quickly to the user’s command regardless
of the map’s size and complexity. Consequently, game com-
panies impose a time-per-action limit on their path-planning
algorithms. Bioware Corp., a major game company we col-
laborate with, sets the limit to 1-3 ms.

LRTA* is the best-known algorithm that addresses this
problem. In an agent’s current state, LRTA* uses a breadth-
first search of a user-specified fixed depth (henceforth search
depth, also known as lookahead depth or search horizon in
the literature). A heuristic function computed with respect
to the global goal state is then used to select the next action.

The main contribution of this paper is a new generalized
variant of LRTA* that can dynamically alter both its search
depth and its target (sub-)goal in an automated fashion. Em-
pirical evaluation on video-game maps shows that the new
algorithm outperforms fixed-depth, fixed-goal LRTA*. It
can achieve the same quality solutions as LRTA* with nine
times less computation per move. Alternatively, with the
same amount of computation, it finds four times better solu-
tions. As a result, the generalized LRTA* becomes a practi-
cal choice for computer video-games.

The rest of the paper is organized as follows. We first for-



mulate the problem of real-time heuristic search and show
how the core LRTA* algorithm can be extended with dy-
namic lookahead and subgoal selection. We then describe
two approaches to dynamic lookahead selection: one based
on induction of decision-tree classifiers and one based on
precomputing pattern-databases. We then present the idea of
selecting subgoals dynamically and evaluate the efficiency
of these extensions in the domain of path-planning. We re-
view related research and conclude with a discussion of ap-
plicability of the new approach to general planning.

Problem Formulation
We define a heuristic search problem as a directed graph
containing a finite set of states and edges, with a single state
designated as the goal state. At every time step, a search
agent has a single current state, vertex in the search graph,
and takes an action by traversing an out-edge of the current
state. Each edge has a positive cost associated with it. The
total cost of edges traversed by an agent from its start state
until it arrives at the goal state is called the solution cost.

In video-game map settings, states are defined as vacant
square grid cells. Each cell is connected to adjacent vacant
cells. In our empirical testbed, cells have up to eight neigh-
bors: four in the cardinal and four in the diagonal directions.
The costs are 1 /

√
2 for cardinal / diagonal actions.

An agent plans its next action by considering states in a lo-
cal search space surrounding its current position. A heuristic
function (or simply heuristic) estimates the cumulative cost
between a state and the goal and is used by the agent to rank
available actions and select the most promising one. In this
paper we consider only admissible heuristic functions that
do not overestimate the actual remaining cost to the goal.
An agent can modify its heuristic function in any state to
avoid getting stuck in local minima of the heuristic function.

The defining property of real-time heuristic search is that
the amount of planning the agent does per action has an
upper-bound that does not depend on the problem size. In
applications, low bounds are preferred as they guarantee the
agent’s fast reaction to a new goal specification or to changes
in the environment. We will be measuring mean planning
time per action in terms of CPU time as well as a machine-
independent measure – the number of states (or nodes) ex-
panded during planning. A state is called expanded if its
successor states are considered. The second performance
measure of our study is sub-optimality defined as the ratio of
the solution cost found by the agent to the minimum solution
cost. Ratios close to one indicate near-optimal solutions.

In this paper we use a generalized version of the core
of most real-time heuristic search algorithms: an algorithm
called Learning Real-Time A* (LRTA*) (Korf 1990). It is
shown in Figure 1. As long as the goal state sgoal is not
reached, the algorithm interleaves planning and execution in
lines 4 through 7. In our generalized version we added a
new step at line 3 for selecting a search depth d′ and goal sg

individually at each execution step (the original algorithm
uses the user-specified parameters d and sgoal for all plan-
ning searches). In line 4, a d′-ply breadth-first search with
duplicate detection is used to find frontier states precisely d′

General LRTA*(sstart, sgoal, d)
1 s← sstart; sg ← sgoal; d′ ← d
2 while s 6= sgoal do
3 select search depth d′ and goal sg

4 expand successor states up to d′ actions away
5 find state s′ with the lowest g(s, s′) + h(s′, sg)
6 update h(s, sg) to g(s, s′) + h(s′, sg)
7 move s one step towards s′
8 end while

Figure 1: General LRTA* algorithm.

actions away from the current state s. We use the standard
path-max technique to deal with possible inconsistencies in
the heuristic function when computing g + h-values. For
each frontier state ŝ, its value is a sum of the cost of a short-
est path from s to ŝ, denoted by g(s, ŝ), and the estimated
cost of a shortest path from ŝ to sg (i.e., the heuristic value
h(ŝ, sg)). The state that minimizes the sum is identified as s′
in line 5. The heuristic value of the current state s is updated
in line 6 (the generalized version keeps separate heuristic
tables for the different goals). Finally, we take one step to-
wards the most promising frontier state s′ in line 7.

Dynamic Selection of Search Depth
We will now present two different approaches to equipping
LRTA* with a dynamic search depth selection (i.e., realizing
the first part of line 3 in Figure 1). The first approach uses
a decision-tree classifier to select the search depth based on
features of the agent’s current state and its recent history.
The second approach uses a pattern database.

Decision-Tree Classifier Approach
LRTA* can be augmented with a classifier for choosing the
search depth at each execution step. The agent feeds the
recent search history and observed dynamic properties of
the search space into the classifier. The classifier returns a
search depth to use for the current state.

An effective classifier needs input features that are not
only useful for predicting the ideal search depth, but are also
efficiently computable by the agent in real-time. The follow-
ing features were selected as a compromise between those
two considerations: (1) initial heuristic estimate, h(s, sgoal),
of the distance from the current state to the goal; (2) heuris-
tic estimate of the distance between the current state and the
state the agent was in n steps ago (n is a user-set parameter);
(3) total number of revisits to states previously encountered
in the last n steps; and (4) total number of heuristic updates
in the last n steps. Feature 1 provides a rough estimate of
the location of the agent relative to the goal. Features 2 and
3 measure the agent’s mobility in the search space. Frequent
state revisits may indicate a heuristic depression; a deeper
search is usually beneficial in such situations (Ishida 1992).
Feature 4 is a measure of inaccuracies and inconsistencies in
the heuristic around the agent; again, frequent heuristic up-
dates may warrant a deeper search. When calling the clas-
sifier for the current state, features (3) and (4) are based on
statistic collected from the n previous execution steps of the



agent, i.e., (3) looks at the states the agent was in during the
last n steps, and counts the number of reoccurring states.

The classifier predicts the optimal search depth for the
current state. To avoid pre-computing true optimal actions,
we assume that deeper search usually yields a better ac-
tion. In the training phase, the agent first conducts a dmax-
ply search to derive the “optimal” action. Then a series of
progressively shallower searches are performed to determine
the shallowest search depth, ds, that still returns the “opti-
mal” action. During this process, if at any given depth, an
action is returned that differs from the optimal action, the
progression is stopped. This enforces all depths from ds to
dmax to agree on the best action. This is important for im-
proving the overall robustness of the classification, as the
classifier must generalize over a large set of states. The
depth ds is set as the class label for the vector of features
describing the current state

Once a decision-tree classifier is built, the overhead of us-
ing it is negligible. The real-time response is ensured by
fixing the maximum length that a decision-tree branch can
grow to, as well as the length of the recent history from
which we collect input features. This maximum is indepen-
dent of the problem (map) size. Indeed, the four input fea-
tures for the classifier are all efficiently computed in small
constant time, and the classifier itself is only a handful of
shallowly nested conditional statements. Thus, the execu-
tion time is dominated by LRTA*’s lookahead search. The
process of gathering training data and building the classifier
is carried out off-line. Although the classifier appears sim-
plistic, with minimal knowledge about the domain, as shown
later it performs surprisingly well.

Pattern Database Approach
We start with a naı̈ve approach as follows. For each
(sstart, sgoal) state pair, the true optimal action a∗(sstart, sgoal)
is to take an edge that lies on an optimal path from sstart
to sgoal. Once a∗(sstart, sgoal) is known, we can run a series
of progressively deeper searches from state sstart. The shal-
lowest search depth that yields a∗(sstart, sgoal) is the optimal
search depth d∗(sstart, sgoal).

There are two problems with the naı̈ve approach. First,
d∗(sstart, sgoal) is not a priori upper-bounded, thereby for-
feiting LRTA*’s real-time property. Second, pre-computing
d∗(sstart, sgoal) or a∗(sstart, sgoal) for all pairs of (sstart, sgoal)
states on even a 512 × 512 cell video-game map has pro-
hibitive time and space complexity. We solve the first prob-
lem by capping d∗(sstart, sgoal) at a fixed constant c ≥ 1
(henceforth called cap). We solve the second problem by us-
ing an automatically built abstraction of the original search
space. The entire map is partitioned into regions (or abstract
states) and a single search depth value is pre-computed for
each pair of abstract current and goal states. The resulting
data are a pattern database (Culberson & Schaeffer 1998).

This approach speeds up pre-computation and reduces
memory overhead (both important considerations for com-
mercial video games). To illustrate, in typical grid world
video-game maps, a single application of clique abstrac-
tion (Sturtevant & Buro 2005) reduces the number of states
by a factor of 2 to 3. At the abstraction level of five, each re-
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Figure 2: Goal is shown as G, agent as A. Diamonds denote rep-
resentative states for each tile. Left: Optimal actions are shown for
each representative of an abstract tile; applying the action of the
agent’s tile in the agent’s current location leads into a wall. Right:
The dashed line denotes the optimal path.

gion contains about one hundred ground-level states. Thus,
a single search depth value is shared among about ten thou-
sand state pairs. As a result, five-level clique abstraction
yields a four orders of magnitude reduction in memory and
about two orders of magnitude reduction in pre-computation
time (as analyzed later in the section).

Two alternatives to storing the optimal search depth are to
store an optimal action or the optimal heuristic value. The
use of abstraction excludes both of them. Indeed, sharing
an optimal action computed for a single ground-level repre-
sentative of an abstract region among all states in the region
may cause the agent to run into a wall (Figure 2, left). Like-
wise, sharing a single heuristic value among all states in a
region leaves the agent without a sense of direction as all
states in its vicinity would look equally close to goal. Such
agents are not guaranteed to reach a goal, let alone mini-
mize travel. In contrast, sharing the search depth among any
number of ground-level states is safe as LRTA* is complete
for any search depth. Additionally, optimal search depth is
more robust with respect to map changes (e.g., a bridge be-
ing destroyed in a video-game).

We compute a single pattern database per map off-line
(Figure 3). In line 1 the state space is abstracted ` times.
In this paper we use clique abstraction that merges fully
connected states. This respects topology of a map but re-
quires storing the abstraction links explicitly. An alterna-
tive is to use regular rectangular tiles of Botea, Müller, &
Schaeffer (2004). Lines 2 through 7 iterate through all pairs
of abstract states. For each pair (s′start, s

′
goal), representative

ground-level states sstart and sgoal (e.g., centroids of the re-
gions) are picked and the optimal search depth value d is
calculated for them. To do this, Dijkstra’s algorithmis run
over the ground-level search space (V,E) to compute true
minimal distances from any state to sgoal. Once the dis-
tances are known for all successors of sstart, an optimal ac-
tion a∗(sstart, sgoal) can be computed trivially. Then the op-
timal search depth d∗(sstart, sgoal) is computed as described
above and capped at c (line 5). The resulting value d is stored
for the pair of abstract states (s′start, s

′
goal) in line 6.

During run-time, an LRTA* agent located in state sstart
and with the goal state sgoal sets the search depth as the pat-
tern database value for pair (s′start, s

′
goal), where s′start and s′goal

are images of sstart and sgoal under an `-level abstraction. The
run-time complexity is minimal as s′start, s

′
goal, d(s

′
start, s

′
goal)



BuildPatternDatabase(V,E, c, `)
1 apply an abstraction procedure ` times to the original

space (V,E) to compute abstract space S` = (V`, E`)
2 for each pair of states (s′start, s

′
goal) ∈ V` do

3 select a representative of s′start: sstart ∈ V
4 select a representative of s′goal: sgoal ∈ V
5 compute optimal search depth value d for

state sstart with respect to goal sgoal; cap d at c
6 store d for pair (s′start, s

′
goal)

7 end for

Figure 3: Pattern-database construction.

can be computed with a minimal constant-time overhead on
each action. We will now analyze the time and space com-
plexity of building a pattern database.

Dijkstra’s algorithm is run V` times on the graph (V,E) –
a time complexity of O(V`(V log V +E)) on sparse graphs.
The optimal search depth is computed V 2

` times. Each
time, there are at most c LRTA* invocations with the to-
tal complexity of O(bc) where b is the maximum degree of
any vertex in (V,E). Thus, the overall time complexity is
O(V`(V log V +E+V` b

c)). The space complexity is lower
because we store optimal search depth values only for all
pairs of abstract states: O(V 2

` ). Table 1 lists the bounds,
simplified for sparse graphs (i.e., E = O(V )).

Table 1: Reduction in complexity due to state abstraction.
no abstraction `-level abstraction reduction

time O(V 2 log V ) O(V`V log V ) V/V`

space O(V 2) O(V 2
` ) (V/V`)

2

Discussion of the Two Approaches

Selecting the search depth with a pattern database has two
advantages. First, the search depth values stored for each
pair of abstract states are optimal for their non-abstract rep-
resentatives, unless either the value was capped or the states
in the local search space have been visited before and their
heuristic values have been modified. This (conditional) opti-
mality is in contrast to the classifier approach where deeper
searches are assumed to lead to the better action. The as-
sumption does not always hold – a phenomenon known as
lookahead pathology (Bulitko et al. 2003). The second ad-
vantage is that we do not need features of the current state
and recent history. The search depth is looked up on the
basis of the current state’s identifier, such as its coordinates.

The decision-tree classifier approach has two advantages
over the pattern-database approach. First, the classifier train-
ing does not need happen on the same search space the agent
operates on. As long as the training maps used to collect the
features and build the decision tree are representative of run-
time maps, this approach can run on never-before-seen maps
(e.g., user-created maps in a computer game). Second, there
is a much smaller memory overhead with this method as the
classifier is specified procedurally and no pattern database
needs to be loaded into memory.

Dynamic Selection of Goal
The two methods just described allow the agent to select an
individual search depth for each state. However, as in the
original LRTA*, the heuristic is still computed with respect
to the global goal sgoal. Going back to Figure 2, consider the
grid world example to the right. The map is partitioned into
four abstract states whose representative states are shown as
diamonds (1-4). A straight line distance heuristic will ignore
the wall between the agent (A) and the goal (G) and will lead
the agent towards the wall. A very deep search is needed in
LRTA* to produce the optimal action. Thus, for any realistic
cap value, the agent will be left with the suboptimal ↓ action
and will spend a long time in its corner raising the heuristic
values. Getting stuck in corners and other heuristic depres-
sions is the primary weakness of real-time heuristic search
agents which, in this example, is not addressed by dynamic
search depth selection (due to the cap).

A solution is to switch to an intermediate goal when the
heuristic with respect to the global goal is grossly inaccurate
and, as a result, the optimal search depth is too high. In the
example, a much shallower search depth is needed for an
optimal action towards the next abstract state (marked with
diamond 2). The approach is implemented by replacing lines
5–6 in Figure 3 with those in Figure 4.

5 compute optimal search depth value d for sstart to sgoal
5a if d > c then
5b re-compute d for sg , cap at c
5c store (d, sg) for pair (s′start, s

′
goal)

6 else
6a store (d, sgoal) for pair (s′start, s

′
goal)

Figure 4: Switching from global goal sgoal to intermediate goal
sg . Replaces lines 5–6 of Figure 3.

As long as the cap is not reached, the new algorithm works
as described earlier. When the cap is reached in line 5a,
the global goal sgoal is replaced with an intermediate goal
sg in line 5b. The intermediate goal sg is the ground-level
representative of the next abstract state that an optimal path
from sstart to sgoal will enter. In the right map in Figure 2,
the optimal path (a thick dash line) will enter the upper right
quadrant. Its representative, the diamond 2, would thus be
selected as sg . It will then be stored in line 5c, together with
the corresponding search depth.

The capping is still necessary (line 5b) to guarantee a con-
stant bound on planning time per action. However, switch-
ing to a closer goal (i.e., from sgoal to sg) works because
it usually improves heuristic accuracy (heuristic functions
used in practice are usually more accurate closer to goal).
Consequently, a shallower search depth is needed to get the
optimal action out of LRTA* and is less likely to be capped.
This intuition is supported empirically: on 512× 512 maps,
pattern database LRTA* (` = 5) reaches the cap of 30 about
10% of the time with global goal, and never with local goals.

At run-time, the agent executes LRTA* with the stored
search depth and computes the heuristic h with respect to
the stored goal (be it sgoal or sg) in line 3 of Figure 1. In
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Figure 5: Margins for improvement over fixed-depth LRTA*.

other words, in addition to selecting the search depth per
state, the goal is also selected dynamically, per action.

Finally, one can imagine always using intermediate goals
(until the agent enters the abstract state containing sgoal).
This gives us three approaches to selecting goal states in
LRTA*: always global goal (G); intermediate goal if the
global goal requires excessive search depth (G+I); always
intermediate goal unless the agent is in the goal region (I).

Empirical Evaluation
This section presents results of an empirical evaluation of
LRTA* agents with dynamic control of search depth and
goal selection. All algorithms except Koenig’s LRTA* use
breadth-first search for planning and avoid re-expanding
states via a transposition table. We report sub-optimality in
the solution found and the average amount of computation
per action, expressed in the number of states expanded and
actual timings on a 3 GHz Pentium IV computer.

We use grid world maps from a popular real-time strategy
game as our testbed. Such maps provide a realistic and chal-
lenging environment for real-time search (Sigmundarson &
Björnsson 2006). The agents were first tested on three dif-
ferent maps (sized 161×161 to 193×193 cells), performing
100 searches on each map. The heuristic function used is oc-
tile distance – a natural extension of the Manhattan distance
for maps with diagonal actions. The start and goal locations
were chosen randomly, although constrained such that op-
timal solution paths cost between 90 and 100. Each data
point in the plots below is an average of 300 problems (3
maps ×100 runs each). All algorithms were implemented
in the HOG framework (Sturtevant 2005), and use a shared
code-base for algorithmic independent features. This has
the benefit of minimizing performance differences caused
by different implementation details (e.g. all algorithms are
using the same tie-breaking mechanism for node selection).

For building the classifiers, we used the J48 decision tree
algorithm in the WEKA library (Witten & Frank 2005).
The training features were collected from a history trace of
n = 20 steps. The game maps were used for training and
10-fold cross-validation was used to avoid over-fitting the
data. The pruning factor and minimum number of data items
per leaf parameters of the decision tree algorithm were set
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Figure 6: Effects of dynamic goal selection.

to 0.05 and 200, respectively. For the reference, at depth
dmax = 20 there were approximately 140 thousand train-
ing samples recorded on the problems. Collecting the data
and building the classifier took about an hour. Of these two
tasks, collecting the training data is by far the more time
consuming — building the decision trees using the WEKA
library takes only a matter of minutes. On the other hand, the
decision-tree building process requires more memory. For
example, during the large map experiments described in a
later subsection, we collected several hundred of thousand
training samples (taking several hours to collect) and this
required and order of 1GB of memory for WEKA to pro-
cess. As this calculation is done offline, we are not overly
concerned with efficiency. As described earlier, once the
decision-tree classifiers have been build they have negligi-
ble time and memory footprint.

Margins for Improvement. The result of running the dif-
ferent LRTA* agents is shown in Figure 5. Search depth for
all versions of LRTA* was capped at 20. The x-axis repre-
sents the amount of work done in terms of the mean number
of states (nodes) expanded per action, whereas the y-axis
shows the quality of the solutions found (as a multiple of the
length of the optimal path). The standard LRTA* provides a
baseline trade-off curve. We say that a generalized version
of LRTA* outperforms the baseline for some values of con-
trol parameters if it is better along both axes (i.e., appears
below a segment of the baseline curve on the graph).

The topmost line in the figure shows the performance of
LRTA* using fixed search depths in the range [4, 14]. The
classifier approach, shown as the triangle-labeled line, out-
performs the baseline for all but the largest depth (20). As
seen in the figure, the standard LRTA* must expand as many
as twice the number of states to achieve a comparable so-
lution quality. The solid triangles show the scope for im-
provement if we had a perfect classifier (oracle) returning
the “optimal” search depth for each state (as defined for the
classifier approach). For the shallower searches, the classi-
fier performs close to the corresponding oracle, but as the
search depth increases, the gap between them widens. This
is consistent with classification accuracy: the ratio of cor-
rectly classified instances dropped as the depth increased
(from 72% at depth 5 to 44% at depth 20). More descrip-
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Figure 7: Benefits of dynamic search control over fixed-depth
LRTA*. The pattern-database curve is labeled with the level of ab-
straction used. The classifier approach curve is labeled with dmax.

tive features and longer history traces are likely needed.
The circle markers show the performance of agents us-

ing global-goal pattern databases with abstraction levels of
1 through 5. All abstraction levels outperform the baseline,
and for level 3 and less, also the classifier approach. For ex-
ample, a 2-level abstraction expands on average four times
fewer states than the fixed strategy that achieves comparable
solution quality. The 0 point is produced by pre-computing
the optimal search depth for all ground-level state pairs. The
resulting paths are still somewhat suboptimal because of the
imposed cap of 20.

Effects of Intermediate Goals. Figure 6 shows the bene-
fits of using intermediate goals. The two rightmost curves
plot the performance of fixed strategies and the global goal
pattern database (same as in the previous figure), whereas
the two leftmost curves show the effect of adding interme-
diate goals at various levels of abstraction (the lowest point
on each curve represents level 0, no abstraction, and the top
point is for level 5). The performance improvement of using
intermediate goals is substantial, even at higher abstraction
levels. For instance, a pattern database of abstraction level 5
with intermediate goals performs similarly to a larger level-
2 database with mixed global/intermediate goals. Both are
expanding an order of magnitude fewer states than a fixed
depth LRTA* of a similar sub-optimality.

Scaling Up. Recent releases of real-time strategy games use
even larger maps than we used in the above experiments. To
find out how well our approaches scale to such large maps,
we scaled the maps to 512 × 512 cells (the start and goal
locations moved further apart accordingly). The results are
shown in Figure 7 (the error bars show the standard error).
We used the same settings as in the previous experiments
except to adjust to the larger map size, we increased the cap
from 20 to 30 and levels of abstraction to 4 through 7.

The 7 to 10 fold increase in the map size led to less
optimal solutions for the same search depths. The clas-
sifier of depth 10 or less still outperforms the fixed-depth
LRTA*. Likewise, global goal pattern-database approach

outperforms the fixed strategies for abstraction level of 4.
The intermediate goals version is less affected by map scal-
ing due to the locality of its goals. It still shows a strong su-
periority over all other approaches; even at as high abstrac-
tion levels as 6, it expands an order of magnitude fewer states
than a fixed strategy counterpart of a similar sub-optimality.

The number of states expanded per action is a machine-
independent measure. It is also fair for comparing our dif-
ferent approaches because the dynamic selection schemes
impose negligible time overhead at run-time. In terms of the
actual time scale, a search expanding 150 - 200 states per
move, which is a typical average for our approaches, takes
under a millisecond.

Pattern Database Construction. The pattern database
approach with intermediate goals exhibits the best perfor-
mance tradeoff in terms of sub-optimality versus computa-
tion per action. This is achieved through building a pattern
database containing a search depth d and intermediate goal
sg for all pairs of abstract states. Table 2 shows the trade-
offs involved. For each level of abstraction 1 – 7 and the case
of no abstraction (0), we list the size of the pattern database
(in the number of (d, sg) entries stored), construction time,
and the performance of the resulting LRTA* (sub-optimality
and states expanded per action). Abstraction levels 0 to 2 are
prohibitively expensive and their results are estimated.

Table 2: Pattern databases for a 512× 512 map.

Abs. level Size Time Subopt. Planning
0 1.1× 1010 est. 1 year - -
1 7.4× 108 est. 1 month - -
2 5.9× 107 est. 4 days - -
3 6.1× 106 19 hours 1.09 5
4 8.6× 105 5 hours 1.11 16
5 1.5× 105 2 hours 1.65 111
6 3.1× 104 50 min 1.99 253
7 6.4× 103 20 min 3.12 529

Finally, instead of using LRTA* as our base algorithm,
we could have used RTA*. Experiments showed that there
is no significant performance difference between the two for
a search depth beyond one. Indeed for deeper searches the
likelihood of having multiple actions with equally low g+h
cost is very high, reducing the distinction between RTA* and
LRTA*. By using LRTA* we keep open the possibility of
the agents learning over repeated trials.

Comparison to State-of-the-Art Algorithms. In the pervi-
ous subsections we investigated the performance gains dy-
namic control offers in real-time search. This was best tested
in LRTA* – the most fundamental real-time search algo-
rithm, and a core of most modern algorithms.

Here we compare our dynamic-control LRTA* against
the current state-of-the-art. Figure 8 also includes plots for
three recent real-time algorithms, Koenig’s LRTA* (Koenig
2004), PR LRTS (Bulitko, Sturtevant, & Kazakevich 2005),
and Prioritized LRTA* (Rayner et al. 2007), for various pa-
rameter settings. In deciding on the most appropriate param-
eter setting for each algorithm, we imposed a constraint that
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Figure 8: Dynamic-control LRTA* versus state-of-the-art algorithms. The zoomed-in part highlights the abstraction-based methods, PR
LRTS and intermediate-goal PDB; both methods use abstraction level 4; PR LRTS uses γ=1.0 and depths 1, 3, and 5 (from top to bottom).

the worst-case number of nodes expanded per move does not
exceed 1000 nodes – approximately the number of nodes
that an optimized implementation of these algorithms can
expand in the amount of time available for planning each
action in video games. All parameter settings that violate
this constraint were excluded from the figure.

Of the surviving algorithms, two clearly dominate the oth-
ers: our new pattern-database approach with intermediate
goals and PR LRTS (both use state abstraction). At their best
parameter settings, PR LRTS with the abstraction level of 4,
depth 5, and γ=1.0, and the pattern-database approach with
the abstraction level of 4 yield comparable performance and
neither algorithm dominates the other. PR LRTS searches
slightly fewer nodes but the pattern-database approach re-
turns slightly better solutions, as shown in the zoomed-in
part in the figure. Thus, the pattern-database approach is
a new competitive addition to the family of state-of-the-art
real-time search algorithms. Furthermore, as PR LRTS runs
LRTA* in an abstract state space, it can be equipped with
our dynamic control scheme and is likely to achieve even
better performance; this is the subject of ongoing work.

Previous Research
Most algorithms in single-agent real-time heuristic search
use fixed search depth, with a few notable exceptions. Rus-
sell & Wefald (1991) proposed to estimate the value of
search off-line/on-line. They estimated how likely an ad-
ditional search is to change an action’s estimated value. In-
accuracies in such estimates and the overhead of meta-level
control led to small benefits in combinatorial puzzles.

Ishida (1992) observed that LRTA*-style algorithms tend
to get trapped in local minima of their heuristic function,
termed “heuristic depressions”. The proposed remedy was
to switch to a limited A* search when a heuristic depres-
sion is detected and then use the results of the A* search to
correct the depression at once. A generalized definition of
heuristic depressions was used by Bulitko (2004) who ar-
gued for extending search horizon incrementally until the
search finds a way out of the depression. After that all ac-
tions leading to the found frontier state are executed. A cap
on the search horizon depth is set by the user. In our ap-

proach, we execute only a single action toward the fron-
tier and do not use backtracking — two feature that have
been shown to improve robustness of real-time search (Sig-
mundarson & Björnsson 2006; Luštrek & Bulitko 2006).
Additionally, in the pattern-database approach we switch to
intermediate goals when the agent discovers itself in a deep
heuristic depression. The idea of pre-computing a pattern
database of heuristic values for real-time path-planning was
recently suggested by Luštrek & Bulitko (2006). This paper
extends their work in several directions: (i) we introduce the
idea of intermediate goals, (ii) we propose an alternative ap-
proach that does not require map-specific pre-computation,
and (iii) we demonstrate superiority over fixed-ply search on
large-scale computer game maps.

There is a long tradition for search control in two-player
search. The problem of semi-dynamically allotting time to
each action decision in two-player search is somewhat anal-
ogous to the depth selection investigated here.

Applicability to General Planning
So far we have evaluated our approach empirically only on
path-planning. However, it may also offer benefits to a wider
range of planning problems. The core heuristic search al-
gorithm extended in this paper (LRTA*) was previously ap-
plied to general planning (Bonet, Loerincs, & Geffner 1997).
The extensions we introduced may have a beneficial effect
in a similar way to how the B-LRTA* extensions improved
the performance of ASP planner. Subgoal selection has
been long studied in planning and is a central part of our
intermediate-goal pattern-database approach. Decision trees
for search depth selection are induced from sample trajecto-
ries through the space and appear scalable to general plan-
ning problems. The only part of our approach that requires
solving numerous ground-level problems is pre-computation
of optimal search depth in the pattern databases approach.
We conjecture that the approach will still be effective if, in-
stead of computing the optimal search depth based on an op-
timal action a∗, one were to solve a relaxed planning prob-
lem and use the resulting action in place of a∗. Deriving
heuristic guidance from solving relaxed problems is com-
mon to both planning and the heuristic search community.



Conclusions and Future Work
Since Korf’s seminal work on LRTA*, most real-time search
algorithms use a fixed search depth that is manually tuned
for an application. Furthermore, the heuristic function is
usually computed with respect to the agent’s global goal.
In this paper we demonstrated that selecting both the search
depth and the agent’s goal dynamically for each action has
substantial benefits, and results in performance improve-
ments that are on a par with of what is offered by advanced
state-of-the-art real-time algorithms. To illustrate, on maps
with quarter of a million states, pattern-database LRTA* is
an order of magnitude faster than the standard version for
the same solution quality. Alternatively, for the same mean
amount of computation per action, dynamic control finds
four times shorter solutions. This is accomplished by pre-
computing a pattern database of about 62 thousand values
in 50 minutes. Our current research focus is on incorporat-
ing the techniques introduced here into other state-of-the-
art methods (e.g. PR LRTS), and to run more thorough set
of experiments to isolate better the individual effects of dy-
namic depth vs. goal selection. Both play an important role
as our experiments show. We also plan to experiment with
these algorithms in environments with dynamic obstacles.

This project opens several interesting avenues for future
research. In particular, we defined a space of algorithms
of the following three dimensions: search depth (fixed ver-
sus dynamic), goal (global versus global and intermediate
versus intermediate), selection mechanism (pattern database
versus machine-learned classifier). Only four out of the re-
sulting twelve combinations were explored in this paper. It
would be of interest to explore the others.
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