Bjornsson, Y. and Marsland, T. A., Learning Control of Search Extensions, Procs. 6th Joint Conf. on

Information Sciences, Research Triangle Park NC, (March 2002): 446-449.

L earning Control of Search Extensions

Yngvi Bjérnsson and Tony Marsland
Department of Computing Science
University of Alberta
Edmonton, Alberta
CANADA T6G 2E8
E-mail: {yngvi,tony}@cs.uaberta.ca

Abstract

The strength of a program for playing an ad-
versary game like chess or checkers is greatly
influenced by how selectively it explores the
various branches of the game tree. Typ-
ically, some branch paths are discontinued
early while others are explored more deeply.
Finding the best set of parameters to control
these extensions is a difficult, time consuming,
and tedious task. In this paper we describe
a method for automatically tuning search-
extension parameters in adversary search. One
of the main appeals of the method is that it is
non-intrusive and domain independent. There-
fore, with only minimal modifications, almost
any search-based game-playing program can
be “plugged” into the learning module. Exper-
imental results are provided in the domain of
chess.

1 Introduction

In the planning and scheduling domain, learning meth-
ods are applied successfully to improve search efficiency
[7]. These methods work primarily by deriving and re-
fining control rules. Unfortunately, such a rule-based ap-
proach is not feasible for learning search control in two-
person games such as chess, checkers and Othello. First
of all, experience gained over the decades shows the dif-
ficulty of producing rules that generalize well from one
game position to the next. Secondly, efficiency is of
paramount importance and the overhead of manipulat-
ing complex search-control rules can easily outweigh the
possible benefits. This calls for a different approach for
learning search control.

In this paper we introduce a method for learning
search-control in two-person games. We start by dis-
cussing search-control strategies in two-person games,
and follow with a description of the learning system it-
self. Finally, learning results are presented for a strong
chess program.

2 Search Control

The aB-algorithm [5] is almost universally employed by
programs for such board games as chess, checkers and
Othello. The search efficiency of the algorithm can be
improved in a couple of ways: either by better move or-
dering or by selecting dynamically how deeply to explore
each line. Here we are concerned only with the latter.

The number of nodes visited by the af-algorithm
grows exponentially with search depth. This raises the
question: how should one use the available time to find
a good move? Although, the basic formulation of the al-
gorithm explores all continuations the same number of
plies, it has long been evident that this is not the best
search strategy. Instead, interesting continuations are ex-
plored more deeply while less promising alternatives are
terminated prematurely. In chess, for example, it is com-
mon to resolve forced situations, such as checks and re-
captures, by searching them more deeply. The move-
decision quality is greatly influenced by the depth selec-
tion strategy. Therefore, the design of a search-extension
scheme is fundamental to any game-playing program us-
ing an aS-like algorithm. Unfortunately, the more elab-
orate the search-extension scheme, the more difficult it
is to parameterize to achieve its full efficiency. The
method we introduce here automatically parameterizes
the search.

3 Architecture

The basic architecture of the learning system consists of
three main parts: the learning module, the game-playing
engine and, finally, a pre-generated database of game po-
sitions.

The learning module, which is also the main driver,
first spawns off the game-playing program as a sepa-
rate process. All communication between the learning
module and the game-playing engine is done via Unix-
domain sockets (pipes) that have been redirected to the
game program’s standard input/output. The database
contains a collection of game positions, where each po-
sition is labeled with information about the correct move
choice. The positions are read from the database and

used as training data. The learning algorithm repeat-
edly calls the game-playing engine, asking it to solve
each game position in the database, but using different
search-control parameters. Essentially, we are interested
in finding the parameter set that solves the most posi-
tions, while searching as few nodes as possible.

One of the main design objectives is to allow minimal
modification to any game-playing program “plugged”
into the learning system. This implies that the learning
module needs to be generic enough to learn the param-
eters without a detailed knowledge of the specific depth
extension schemes employed by the game-playing pro-
gram. We now describe the main components of the ar-
chitecture in more detail.

3.1 Learning Module

Given a set of training samples, 7', we are interested in
finding the parameter vector « that minimizes the total
number of nodes it takes to “solve” all the samples. In
other words, we want to minimize the function:

F(w) = Z Nodecount(pg, my, W,n),
(pe,me) €T

where the Nodecount(p;, my,w, n) function returns the
number of nodes visited when the game-playing program
searches position p; using parameter vector «. An upper
limit of n nodes is allotted for each search. The pro-
gram either finds the correct move my (that is, solves the
problem), in which case the function returns the actual
number of nodes searched, or the upper node-count limit
(n) is reached, in which case n is returned. It is impor-
tant to have an upper limit on the number of nodes each
search can expand, otherwise a single difficult game po-
sition can dominate the entire test-suite.

A well known hill-climbing method, gradient-descent,
is used to minimize F'(&). Although the method guaran-
tees finding a global minimum only for concave func-
tions, nonetheless, in practice it is a highly effective
heuristic approach to optimization and forms the basis
of various learning systems (e.g. the back-propagation
rule in artificial neural networks). The method starts with
some initial setting for the weight vector « and then re-
peatedly iterates over all the training samples, updating
the weight vector after each iteration. The gradient of
F(w) specifies the direction of weight changes that pro-
duces the steepest increase in the value of F'(«). There-
fore, by adjusting the weights in the opposite direction,
one expects the value of the function to decrease. This
process continues until some termination condition is
met: such as doing a fixed number of iterations, or be-
cause negligible progress is being made.

Algorithm 1 outlines this procedure as adapted to our
learning task. First the NV search-control parameters are
initialized to 1 (alternatively, random values could be as-
signed). The outermost loop iterates until the parame-
ters converge to fixed values. At the beginning of each

Algorithm 1 The Learning Algorithm
1: /[Initialize the parameters.

2. for i=1,N do
3 w; < 1.0
4: end for
5: /I Iterate until a sufficiently good « is found.
6: while not terminate do
7. Il Reset the node count to zero.
8 mnodes + 0
9. for ¢i=1,N do
10: nodes; <+ 0
11: endfor
12: /] Search all the game positions in the test-suite.
13: for all (pg,m;) € T do
14 nodes < nodes + Nodecount(pg, m¢, &, n)
15 for i=1,N do
16: w; — w; +90
17: nodes; <mnodes;+N odecount(p;, m¢, W, n)
18: W; < w; — 1)
19: end for
20: end for
21 // Adjust the parameter vector.
222 for i=1,N do
23: w; + w; — p ((nodes; — nodes) /nodes)
24: end for
25: p < Decrease(p)
26: end while

iteration the node-count information is reset. The total
number of nodes visited when searching all the test po-
sitions in the database using the current weight vector @
is called nodes. Similarly, the nodes; (i = 1,2, ..., N)
record the provisional node count used for estimating the
gradient.

Next the algorithm loops over all the training sam-
ples. Each sample consists of a game position (p;) and
the best move for that position (m;). For each posi-
tion the game-playing program is called N + 1 times:
once using the current parameter vector «, and then
once for each of the N parameters. Each time the i-
th item in the parameter vector « is increased by a
small amount §. These additional searches are used to
measure how sensitive the game-playing program is to
changes in each search-control parameter. The interac-
tion with the game-playing program is abstracted away in
the Nodecount(ps, mg, w,n) function. From the learn-
ing point of view the function simply returns the number
of nodes the game-playing program expands when solv-
ing game position p; using the supplied parameter vector.

At the end of each iteration the parameter vector &
is modified in the direction opposite to the “gradient”.
The Nodecount function cannot be expressed in a closed
form, and the gradient can therefore not be derived ana-
Iytically. Instead the node counts (nodes;) are used to
tell how each parameter change affects the F'(w) func-

tion, just as the gradient would. Furthermore, the learn-
ing rate p is used to control the step size of the parameter
changes. It is decreased in between iterations to guaran-
tee eventual convergence.

3.2 Game-Playing Program

The only changes required to the game-playing program
is to augment its command interface to support the fol-
lowing three commands:

e sethoard position

Set the current game state to be position. The
learning module is indifferent to the representation
of a game state or position (it simply relays this in-
formation from the database), but the game-playing
program needs to understand the format. This com-
mand also resets the state of the game engine such
that a new search can be performed independently
of previous searches (e.g. the transposition table
and other history information must be cleared). No
return value is expected.

e Setparam wi ws ... wy

Specify the values of the search-control parameters.
The arguments wy, ..., wy, are real numbers and rep-
resent the values that the search-control parameters
take. The game-playing program can scale these pa-
rameters or map them to integers (if the program’s
internal representation requires so). No return value
is expected.

e gountil move n

This command instructs the game-playing program
to search the current game position until the pro-
gram agrees that mowe is the best continuation in
the given position, or an imposed search limit of
n nodes is reached. The number of nodes actually
searched must be returned, and also a flag indicat-
ing whether the suggested move was found by the
search. The return string has the following format:

nodes flag count

where flag is set to 1 if the problem was solved,
otherwise 0. The count tells how many nodes were
expanded by the search (for an unsolved position
count is the node-count limit n).

The Nodecount(p:, m,w,n) function sends the three
commands described above (setboard, setparam, and
gountil) to the game-playing program and then waits
until it receives the expected return string (“nodes ...”).
Many game-playing programs already have commands
built-in with similar capabilities, e.g. a command to set
up a game position, a command for specifying the value
of a (search) parameter, and a command to perform a
search. Thus, implementing the above three commands
is typically as simple as mapping them onto already sup-
ported interface commands.

4 Experimental Results

To obtain practical experience with the learning method
we used it to learn search-control parameters for the
chess program Crafty [4]. The program uses a fractional-
ply-based extension scheme. Instead of all moves count-
ing a full ply toward the search depth, some move types
are worth only a fraction of a ply. For example, if a move
class is worth half a ply, two such moves can be expanded
on the same path during a 1-ply deep search. The smaller
the fraction, the more aggressive are the extensions.

We observed the performance improvement of the pro-
gram as it learned using the extensive ECM test-suite [6].
This suite consists of 879 (mostly tactical) middlegame
chess positions. Initially the weights of the move cat-
egories were set to 1.0, and allowed to vary within the
range [0.1,2.0]. If the right move is not found after exam-
ining half a million nodes the search is stopped for that
problem. The learning rate p is fixed to 1.0 (no forced
convergence) and the 4 is set to 0.15.

In Figure 1 the two graphs show the program’s im-
provement from one iteration to the next. On the upper
graph, the dotted line shows the percentage of problems
solved (out of the 879), and the solid line shows the to-
tal number of nodes searched relative to the first iteration
(310 million nodes). The learning algorithm minimizes
the total number of nodes searched, the increase in prob-
lems solved follows indirectly as a side effect! After only
a few iterations the values have converged and the total
node count is reduced to 73% (229M) of the original, at
which level 57% (508) of the problems are solved cor-
rectly as opposed to only 39% (346) in the beginning.

The lower graph shows how the move-class parame-
ters evolve. The four move-class parameters tuned were
check, forced-replies (only one legal reply to check),
passed-pawn pushes, and re-captures. They converge to
fractional-ply values of 0.10, 0.77, 0.96, and 0.89, re-
spectively. This shows clearly that checking moves are a
particularly important category to extend on. The other
parameters also decrease, although more gradually.

5 Redated Work

Previous attempts to use machine-learning methods to
improve search efficiency in two-person games have not
been particularly successful. For example, explanation-
based learning and case-based reasoning approaches,
although interesting, have yet to demonstrate improved
search efficiency. An overview of these approaches is
given by Firnkranz [3]. An attempt to use an evolving
neural network to focus the search of an Othello program
was at best only moderately successful [8]. The authors
acknowledge that the method is not applicable to more
complex games like chess in a straightforward way. In
games like Go where search is of a much lesser impor-
tance, moderate success has been achieved by learning
search-control rules [2].

100

T T
nodes
problems solved -------

90 [

80

70 -

60 [

50
40 B

30

% solved and % nodes

20

10

5 7 s o 10
iteration number

T T T T
passed pawns
recapture -------
1r forced reply ------- |
check

move-class weight

5 1 5 5 1
iteration number
Figure 1: Learning results

Based on ideas similar to those presented here, we
also developed a method for learning search extensions
during on-line play (as opposed to analyzing game posi-
tions off-line) [1]. On-line learning is a more challeng-
ing task. For one thing, the absence of labeled training
samples renders supervised learning approaches useless.
Instead, the on-line learner needs to understand where
things went wrong. Furthermore, during a game it is im-
possible to search the same game position multiple times
using different parameter values. A different scheme is
used to estimate in real-time how sensitive the search is
to changes in each of the search parameters. Unfortu-
nately, to make the on-line learning approach feasible it
was necessary to impose certain constraints on the type
of search extensions that can be learned, and elaborate
code modifications were necessary to the game-playing
engine.

On the other hand, the method introduced here, al-
though restricted to off-line use only, does not impose
such constraints and is straightforward to implement.
Thus the two methods complement each other.

6 Conclusions

The automation of the tuning of search-control param-
eters opens up many new opportunities for improved
search-control schemes in game-playing programs. Tra-
ditionally, the effort it takes to hand-tune complex ex-

tensions schemes imposes restrictions on how elaborate
the schemes can be. However, by automating the te-
dious tuning process, it becomes possible to experiment
with more sophisticated schemes using far more param-
eter values. The learning method introduced here tunes
these search-control parameters by analyzing game po-
sitions off-line. The main appeal of the method is that
almost any search-based game-playing program can be
“plugged” into the learning module with only minimal
modifications.

There are still many avenues for further research. For
example, one of the outstanding challenges is how to au-
tomatically discover features to extend on.

References

[1] Y. Bjornsson and T. Marsland. Learning search con-
trol in adversary games. In Advances in Computer
Games 9, 2001.

[2] T. Cazenave. Generation of patterns with external
conditions for the game of go. In Advances in Com-
puter Games 9, 2001.

[3] J. Firnkranz. Machine learning in computer chess:
The next generation. ICCA Journal, 19(3):147-161,
1996.

[4] R. Hyatt. Crafty - chess program.
ftp.cis.uab.edu/pub/hyatt.

[5] D. E. Knuth and R. W. Moore. An analysis of alpha-
beta pruning. Artificial Intelligence, 6(4):293-326,
1975.

[6] N. Krogius, A. Livsic, B. Parma, and M. Taimanov.
Encyclopedia of Chess Middlegames. 1980.

[7]1 S. Minton. Learning Effective Search Con-
trol Knowledge: An Explanation-based Approach.
Kluwer Academic Publishers, Boston, MA, 1988.

[8] D. E. Moriarty and R. Miikkulainen. Evolving neu-
ral networks to focus minimax search. In Proceed-
ings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), Seattle, WA, 1994,

1996.

