
Learning Search Control in Adversary Games

Yngvi Björnsson and Tony Marsland
University of Alberta, Department of Computing Science,

Edmonton AB, Canada T6G 2H1
E-mail:{yngvi,tony}@cs.ualberta.ca

Abstract

Recently there has been increased interest in applying machine learn-

ing methods to adversary games. However, the emphases has been mainly

on learning evaluation function parameters and opening book lines, with

little attention given to other aspects of the game. In contrast, learning

as applied in the domain of planning and scheduling has focussed on ways

of speeding up the search process, primarily by deriving rules for control-

ling the search. Unfortunately, most board games are far too complex to

make such a rule-based approach feasible. In this paper we introduce a

new framework for learning search control, and give experimental results

in the domain of chess.

1 Introduction

The number of nodes visited by the αβ-algorithm grows exponentially with
search depth. This obviously limits how far the search can “see”, especially
because game-playing programs must meet external time-constraints — often
having only a few minutes to make a move decision. The question now be-
comes: how can the program best use the available time to find a good move?
Although, the basic formulation of the αβ-algorithm explores all continuations
the same number of plies, it has long been evident that this is not the best
search strategy. Instead, interesting continuations are explored more deeply
while less interesting alternatives are terminated prematurely. In chess, for ex-
ample, it is common to resolve forced situations, such as checks and recaptures,
by searching them more deeply. The search efficiency — and consequently the
move-decision quality — of the αβ-algorithm is greatly influenced by the choices
of which lines are investigated deeply and which not. Therefore, the design of
a search-extension scheme is fundamental to any game-playing program using
an αβ-like algorithm. Several studies have been conducted to quantify the rela-
tive importance of various extension schemes [7, 2, 1]. Unfortunately, the more
elaborate the search-extension scheme, the more difficult it is to parameterize
to achieve its full search-efficiency potential.

1

In this paper we introduce a method for automatically learning search-
extension parameters. The method is equally well suited to learn either during
on-line play, or by analyzing game-positions off-line. We start by presenting an
unified framework of search-extension schemes, and follow with a description of
the learning system itself. We show how the learning can be formulated as a
function approximation task, thereby allowing us to employ existing learning
techniques. This requires a special cost-model that is described later. Finally,
learning results are presented for a strong chess program.

2 Search Control

Although all based on the same principles, the specific search-control schemes
employed by the various game-playing programs differ somewhat from one pro-
gram to the next. Therefore, to make our learning system as widely applicable
as possible, we introduce a unified framework that attempts to encapsulate the
various implementations.

2.1 A Unified View

Figure 1 shows an example game-tree that is being searched to an arbitrary
depth, say d′. For any node x in a tree let Px stand for the move-path leading
from the root of the tree to that node. For example, the path PH consists of
the move sequence connecting nodes A-B-E-F-G-H. In our unified framework
a function D(P, ~w) decides how deep to expand each line of play, that is, the
current move-path is expanded until:

D(Px, ~w) ≥ d′.

The function takes the current move-path as its first argument and returns
its depth. Note that the depth of the path is not necessarily the same as its
length. The length is simply the number of moves on the path, whereas the
depth can be determined by whatever criteria we like. When a path’s depth
is less than its length, the path will be extended beyond the nominal search
horizon (search-reductions occur when the opposite is true). The special case
where the depth of each move-path equals its length results in a search strategy
that explores all continuations by the same fixed number of plies. The second
argument, ~w, is a vector of search-control parameters that influence the depth
calculations. These parameters are made explicit because they are the ones we
want to learn. In practice, there are probably additional parameters that must
be passed to the function (e.g. the root game position and the α and β search
bounds). However, to simplify our notation we do not show them, but we may
assume arbitrary many such parameters (as long as they are not a function of
~w).

Our framework is quite general and incorporates most of the different search
extension schemes known to us. On the other hand, when implementing a com-

2

1.0

2.0

0.5

1.0

1.0

1.0

1.0

A

B

C

D

E

F

G

H

Figure 1: Search-control schemes - unified view

petitive game-playing program, one typically does not have an explicit function
for calculating the depth of the move-path at each frontier node — instead the
depth is updated incrementally. However, this does not pose a problem as long
as there exists a conceptually equivalent formulation in form of a depth function.

2.2 Fractional-Ply Extensions

Here we show how a commonly used search-extension scheme, often referred to
as fractional-ply extensions [5, 4], can be trivially formulated within the unified
framework (the game-playing program we use for our experiments employs this
type of extension scheme). The existence of predefined move-classes is assumed,
where each class has a weight associated with it. Examples of move-classes in
chess could be: checking moves, recaptures, and advanced passed-pawn pushes.
During the search each move is categorized as belonging to one of the move-
classes, and the depth of the current move-path is the sum of the class-weights
of the moves on the path. Referring to Figure 1, the numbers on the paths
show the class-weight of each move. For example, the depth of path PD is
1.0 + 2.0 + 1.0 = 4.0, and similarly the depth for PH is 4.5. More formally, if
we assume that there are N predefined classes, the depth function becomes:

D(P, ~w) =

length(P)
∑

i=1

wj | j ≡ Class(mi)

where mi is the i-th move on the path, and the vector ~w contains the weights
for each of the N move-classes (the element wj is the weight of class number j).

3

The Class(mi) function categorizes each move as belonging to one of the move-
classes 1, ..., N . The search-control parameters to be tuned are the weights of
the move-classes.

3 The Learning System

The main advantage of the general framework above is that search-control learn-
ing can now be viewed as a function-approximation task, namely approximating
the D(P, ~w) function. In other words, the task of the learning system is to find
the most appropriate weight vector ~w. As for all such tasks, we need to specify
the training experience, the exact representation of the target function (i.e. the
function we are trying to approximate), and the algorithm for adjusting the
weights.

3.1 Training Experience

We want the game-playing program to learn from its mistakes and adapt the
search behavior accordingly. However, for that to be possible the program must
first recognize when it makes a mistake. For human players this is generally not
a difficult task. Experienced players will in retrospect realize where they went
wrong; the player might have over-estimated his or her chances in a particular
position, chosen a dubious plan, or simply overlooked some tactical continu-
ations. On the other hand, this is a challenging task for a computer-player.
Obviously, if the program loses a game in an abrupt fashion it is clear that
a mistake was made, but to pin-point exactly what move or moves were the
cause of the defeat is not trivial. This problem is sometimes referred to as the
credit assignment problem, and is hard in the general case. However, there are
situations where mistakes can be identified with a high degree of certainty.

Figure 2 shows a search tree for a game in progress: the moves connected by
the solid lines have already been played, and currently the program is searching
game position C. Based on the search the program determines the principal
continuation to be m1,...,mn (shown as dotted lines), and assesses the position
as having a value vC . Now, assume that when it was the program’s turn to
move at position A the assessment was significantly higher, or

vC < vA − τ

where τ is a positive constant representing the significance margin. The program
evaluates its chances much worse now than just a move ago: clearly something
must have gone wrong! But what caused this undesirable change of fortune?
One of two things could be responsible. It might be that position A was already
bad but that the program just didn’t realize it. Alternatively, it could be that
position A was fine and the move mA was a mistake — and only now does
the program see the bad consequences of that move. However, in either case,
position A was assessed incorrectly. Thus, A is referred to as a critical position,
and the move sequence mA, mB , m1, ...,mn as the solution path of the position.

4

m1

m2

mA

mB

mn

...

A

B

C

. . .

Figure 2: Identifying mistakes.

The basic assumption that we make here is that: if the search is to correctly
assess position A, its solution path (SA) must be fully explored. 1 This implies
that the game-tree for position A needs to be explored as far as the depth of
its solution path. Critical positions and their solution paths form the training
input for our learning system. Many existing problem test-suites consist of a
collection of game positions and their corresponding solution paths, meaning
that they can also serve as a training input for our learning method.

It is interesting to notice that we cannot learn from cases where the positional
estimate increases from position A to C. The reason is that the in-between move
made by the opponent (mB) might simply be a blunder. The search might have
explored that move at position A deeply enough to correctly discard it as a bad
move, in which case there is no need to adapt the search.

3.2 Target Function

The function we want to approximate is the depth function D(P, ~w). However,
it is not clear how the training experience from the above example helps us do
exactly that. Although we know position A and its solution path, there is no
information about the “correct” depth for the path. This renders supervised
learning methods practically useless. Instead, we must go about this indirectly.

1Note, this is not a sufficient condition for correctly assessing the position, because other
lines in the game-tree might also need to be explored more deeply. We are only assuming this
to be a necessary condition.

5

One way of reformulating the problem is to ask: which weight vector results in
the search expanding the fewest nodes possible to find the given solution path?
Given our previous assumption, we know that to find the solution the position
must be expanded to at least the depth of its solution path. Therefore, we alter
the question slightly to: when expanding the position to the depth of its solution
path, which weight vector causes the search to expand the fewest nodes possible?
The only problem is that without actually performing the search we have no
way of telling how many nodes it will take to explore position A that deeply
(and during a game we cannot revisit the position to search it again).

Suppose that we have a cost-model, C(p, ~w, d), that predicts how many nodes
it takes to search position p to depth d using weight vector ~w. We could use this
cost-model to answer the question we posed above, that is, we could predict the
number of nodes it takes to expand position A to the depth of its solution path
as:

C(A, ~w,D(SA, ~w)).

More generally: given a set of training samples, T , where each sample is a
pair 〈pt, St〉 consisting of a game position (pt) and a solution path (St), we are
interested in finding the weight vector ~w that minimizes the total number of
nodes (as estimated by the cost-model) it takes to “solve” all the samples. In
other words we want to minimize the function:

F (~w) =
∑

t∈T

C(pt, ~w,D(St, ~w)).

If the function C(p, ~w, d) were known this could be done numerically, or even
analytically. However, for games of any complexity it is practically impossible to
analytically model this function. Not only does it depend on the weight vector
but also on various positional features. A key observation here is that it is not
necessary to formally model the function over the entire search-space to be able
to minimize it. When using a hill-climbing like method, it is sufficient to be
able to approximate it for any individual point in the search space.

3.3 Learning Algorithm

A standard hill-climbing method, gradient-descent [6], is used to minimize F (~w).
Although the method guarantees finding a global minimum only for concave
functions, nonetheless, in practice it is a highly effective heuristic approach to
optimization and forms the bases of various learning systems (e.g. the back-
propagation rule in artificial neural networks). The gradient-descent method
starts with some initial setting for the weight vector ~w, and then repeatedly
iterates over all the training samples, each time updating the weight vector
in the opposite direction of the gradient. The gradient of F (~w) specifies the
direction of weight changes that produce the steepest increase in the value of
F (~w). Therefore, by adjusting the parameters in the opposite direction, one
expects the value of the function to incrementally decrease at each iteration.
This process is continued until some termination condition is met. The condition

6

could be as simple as doing a fixed number of iterations, or a more elaborate one
like: continue until negligible progress is being made. The gradient provides the
sign and relative size of each weight change, while the step size — that is, how
much the weights are altered — is controlled by the learning rate parameter µ.
The learning rate is typically decreased after each iteration to avoid stepping
over the minimum and to ensure eventual convergence. The exact procedure
for decreasing µ depends on the search domain, and is often determined by trial
and error.

Our adapted implementation is outlined as Algorithm 1 below. The algo-
rithm starts by initializing the search control parameters (wi) to 1 (lines 1-3),
and then repeatedly iterates over the test-suite data T (consisting of game po-
sitions pt and corresponding solution paths St). In our experiments a fixed
number of iterations is done. Before starting each iteration we initialize the
variables that record the total node count information (lines 6-8). The variable
nodes indicates the total number of nodes that our cost-model predicts it will
take to solve all the problems in the test-suite, whereas the ∆nodesi variables
store how much this node count would change if we were to alter each of the
search control parameters. The node count information accumulate as we go
through the test-suite sample by sample (lines 9-12). After finishing looking at
all the game positions the search control parameters are updated proportionally
to how much a change in them will affect the total node count (lines 13-14).
The ∆wmax constant is used for controlling the step size. Basically, a parameter
change that causes 100% increase in the node count would result in a weight
change of exactly ∆wmax (given a learning rate of 1.0). Larger or smaller node
count changes are adjusted proportionally. Finally, before starting the next
iteration, the learning rate (µ parameter) is decreased.

Algorithm 1 Gradient−Descent

1: // Initialize ~w
2: for i = 1, N do

3: wi ← 1
4: // Iterate until a sufficiently good ~w is found.
5: while not terminate do

6: nodes← 0
7: for i = 1, N do

8: ∆nodes← 0
9: for all pt ∈ T do

10: nodes = nodes + C(pt, ~w,D(St, ~w))
11: for i = 1, N do

12: ∆nodesi ← ∆nodesi + ∂C(pt, ~w,D(St, ~w))/∂wi

13: for i = 1, N do

14: wi ← wi − µ ∆wmax (∆nodesi/nodes)
15: µ← Decrease(µ)

A detail one might have noticed is that there is no direct reference to the

7

actual game-playing program in the learning algorithm, only to the cost-model.
How can that be? The truth is that our cost-model uses the game-playing
program to provide information about how many nodes the search actually
expands.

Although, we show the algorithm here as operating on an existing test-
suite of training samples, it is also suitable for learning from on-line game-play.
Then, instead of updating the weight vector after each iteration, it is updated
after each training sample (or a subset of samples). This is a more convenient
approach when learning during on-line game-play, where we want to update the
weights either immediately after encountering a critical position (see section
3.1) or, alternatively, in between games. This approach is sometimes referred to
as incremental gradient-descent [6]. When using an incremental version of the
algorithm it is important to use a slower learning rate (a smaller µ) to make
sure the weights are not changed drastically based only on a single learning
sample. An alternative approach would be to log to a file all critical positions
and solution paths encountered during on-line play, and then learn off-line from
the resulting test-suite using Algorithm 1.

4 Modeling the Search

So far we have assumed the existence of a cost-model, but at the same time
implied that it is impossible to accurately model the search. This seems para-
doxical. However, as we mentioned before, it is not necessary to formally model
the search over the entire search-space. When traversing the hypothesis space
of possible weight vectors, the gradient-descent algorithm requires information
about only a relatively few individual points in the search-space. Fortunately,
we have a way of approximating these points by using actual searches!

4.1 Cost-Model

The cost-model assumed by the learning algorithm returns an estimate of how
many nodes the search expands when position p is explored to depth d.2 Because
the node count typically grows exponentially with increased search depth, the
cost function must be of the basic form:

C(p, ~w, d) = B(p, ~w)d. (1)

The B(p, ~w) function measures the growth rate of the search, for example,
B(p, ~w) = 4 means that it takes 4 times as many nodes to search position p
to depth d+1 than to depth d. For uniform game trees B(p, ~w) would be equal
to the branching factor of the tree. However, in practice game trees are far from

2Alternatively, one could measure the running time of the algorithm. However, that mea-
sure is a little more problematic because of hardware dependence, and non-deterministic
behavior when running experiments on a multi-user platform. In any case, the number of
nodes explored per second by the search algorithm is fairly constant within each phase of the
game, and so these two measures are approximately equivalent.

8

being uniform. Nonetheless, we can talk about an average branching factor for
such trees. The model above can therefore also be used for irregular trees as
long as the the growth rate is relatively constant with respect to the search
depth.

It is important to understand how altering the search-control parameters
~w affects the node count estimate. Recall that for any given position p and
corresponding solution path S, we are interested in knowing C(p, ~w,D(S, ~w)).
Modifying any weight has two fundamental effects:

• the exponential growth rate B(p, ~w) changes, and

• the required search depth D(S, ~w) is affected.

Typically, these two are contra-effective, for example, a change that reduces the
depth of the solution path also tends to inflate the growth rate of the search.
Intuitively, one would expect that altering the weights such that the required
search depth is reduced would result in the least node count. However, it is
quite possible that the modified weights will affect the exponential growth of
the search in such a way that the estimated node count for the reduced search
depth will indeed be higher than the one before. The right balance must be
found.

For the learning we are particularly interested in knowing the partial deriva-
tives of C(p, ~w,D(S, ~w)). Applying the chain rule for a function of two variables
gives:

∂C(p, ~w,D(S, ~w))

∂wi

= C(p, ~w,D(S, ~w))×

(

D(S, ~w)

B(p, ~w)

∂B(p, ~w)

∂wi

+ ln(B(p, ~w))
∂D(S, ~w)

∂wi

)

(2)

The depth function D(S, ~w) is external to our model and is assumed to be
known, so are its derivatives. The only unknown quantities in the above equation
are therefore the B(p, ~w) function and its partial derivatives.

4.2 Approximating B(p, ~w) and its Partial Derivatives

In our cost-model the growth-rate function B(p, ~w) is independent of the search
depth. Therefore, by knowing the node count for only a single search depth we
can determine the growth rate. For instance, in the example given in Figure
2 we know how deeply position A was actually explored, say to depth dA, and
how many nodes were expanded, say nA. Presumably, dA is less than the depth
of the solution path of position A. Now, by substituting dA and nA in for d and
C(p, ~w, d) in equation 1, respectively, we get:

nA = B(p, ~w)dA ⇒ B(p, ~w) = n
1

dA

A . (3)

The resulting approximation of the growth rate will allow us to use the cost-
model, and we can now estimate how many nodes the search will explore if

9

expanding position A to the depth of its solution path. Because, in practice,
the growth rate is not truly constant, this in only an estimate. Nonetheless,
given that the depth dA is reasonably close to the depth of the solution path,
the estimate will be sufficiently accurate.

The partial derivatives are a little more problematic. Recalling that the
partial derivatives simply state how much the value of the function is expected to
change if each weight is increased by a small amount, they can be approximated
as:

∂B(p, ~w)

∂wi

=
(B(p, ~w + ~∆i)−B(p, ~w))

δi

(4)

where ~∆i is a vector whose the i − th element equal to δi and all the other
elements zero. This requires us, though, to know the value of each of the
B(p, ~wi + ~∆i). One approach to come up with these values is to perform N
(number of weight parameters) additional searches using a differently altered
weight vector each time, and then use equation (3) to estimate the growth rate
of the search for each of the altered weight vectors. Unfortunately, this is not
feasible because of our requirement that the learning system be used during
on-line play. Instead, during the normal search we simultaneously estimate for
each of the N altered weight vectors (~wi + ~∆i) how many nodes the search would
expand if using that vector instead. In addition to the normal depth, separate
depths and node counts are recorded for each modified weight vector. The
node count information gathered this way allows us to estimate each of the
B(p, ~wi + ~∆i) in the same way as we did for B(p, ~wi), by using equation (3).

This is illustrated in Figure 3 for the fractional-ply extension scheme (see
Figure 1). Assume that the tree shown is expanded using weight vector ~w =
{1.0, 2.0, 0.5}, that is, the first, second, and the last move-class have weights 1.0,
2.0, and 0.5, respectively. The dark shaded area shows the subtree we would
expect the search to expand if using an altered weight vector {1.0 + δ1, 2.0, 0.5}

(δ1 > 0). At position G, for example, if the depth D(pg, ~w + ~∆1) exceeds
the search-depth limit, node H would not be expanded. Therefore it is not
included in the total node count for that weight vector. Similarly the node
count information for the other two modified weight vectors are simultaneously
gathered (not shown in the figure).

Note that this approach only approximates how many nodes are searched;
if we really were to use a modified weight vector different values would be
propagated up the tree, likely causing another set of branches to be expanded in
some of the sub-trees. Nonetheless, this approximation gives us a good measure
of the sensitivity of the search to changes in the search-control parameters. For
this approximation to work, each of the weights must be altered such that the
move-paths become shorter — otherwise, the actual search would terminate
before the altered depths reach the search-depth limit. In the previous example
this means adding a positive constant to each of the weights. However, because
we do not put any restrictions on the form of the depth function, this might in
other extension schemes imply that a weight has to be reduced. One can even
envision schemes where changing a parameter in either direction causes some

10

1.0+

2.0

0.5

1.0

1.0+

1.0+

1.0+

A

B

C

D

E

F

G

H

δ

δ

δ

δ

Figure 3: Approximating B(p, ~w1 + ~∆1)

move-paths to shorten but others to lengthen. In such cases it might be possible
to replace the troublesome parameter with two new ones, such that a parameter
adjustment now causes consistent changes in the move-path depths. When that
is impossible, it might be necessary as a last resort to explore some paths in
the tree beyond the depth the actual weight vector does, although, this would
impose undesirable overhead on the search.

5 Experimental Results

To obtain practical experience with the learning method we implemented it
in the chess program Crafty [4].3 The program uses a fractional-ply based
extension scheme with five different move categories: checks, re-captures, forced-
replies to checks (i.e. only one possible reply), advanced passed pawn-pushes,
and mate-threats. The task is to learn the extension weight for each of the
move-classes. The last category does not fit directly into the framework we
introduced earlier, so we did not include the weight for that class as one of the
parameters to learn. We ran two independent sets of experiments. In the first,
the program was trained using a suite of chess-problems, while in the second
the program learned during actual game play.

3Crafty is one of the strongest, if not the strongest, of the publicly available chess pro-
grams. On the on-line chess servers it consistently ranks among the highest rated players,
out-performing both some of the commercial chess programs and strong chess masters. The
source code is publicly available via ftp at ftp.cis.uab.edu/pub/hyatt. Our learning scheme
was implemented in version 14.13 (a bug in the extension scheme was also removed; this bug
was officially fixed in version 16.4 of Crafty).

11

5.1 Test-suite

Within the computer-chess community it is common practice to benchmark
performance of chess programs against standard test-suites. In the first set of
experiments we observed the performance improvement of the program as it
learned using the well-known WAC test-suite [3]. This suite consists of 300
tactical chess positions. Initially, the weights of the move categories were set to
1.0, and allowed to vary within the range [0.0,2.0]. For each of the problems, if
the right move was not found after examining half a million nodes the search
was stopped.

In Figure 4, the top graph shows how the program’s performance improves
from one learning iteration to the next. The dotted line shows the percentage
of problems solved (out of the 300), and the solid line shows the total num-
ber of nodes searched relative to the first iteration (53.5 million nodes). It is
worthwhile recalling that the learning algorithm minimizes the total number of
nodes required to solve the problems, the increase in problems solved follows
indirectly as a side effect! The performance improves significantly as we can

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

%
 n

od
es

 o
r

%
 s

ol
ve

d

iteration number

nodes
problems solved

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

m
ov

e-
cl

as
s

w
ei

gh
t

iteration number

passed pawns
recapture

onerep
check

Figure 4: Learning results from test-suite data

12

see. After seventeen learning iterations the weights have converged to values
where the total node count is reduced to only 30% (16.5M) of the original, at
which level 93% (281) of the problems are solved correctly as opposed to 75%
(227) in the beginning. For a comparison, using the hand-set weights (0.25 for
all the classes), the program solves 94% (282) of the problems, but requires
substantially more nodes to do so, or 18.5M. The bottom graph shows how
the move-class parameters evolve. The check extension weight rapidly drops to
zero, indicating that checking moves are a particularly important category to
extend on. The forced-reply weight also decreases, but more slowly, and finally
converges to a value of 0.5. The two remaining weights, re-captures and passed
pawn pushes, do not change. This implies that these kind of extensions are
not important for this particular test-suite. Also of interest is the sharp drop
in the node count in iteration seventeen. By comparing the two graphs we see
that this occurs when the forced-reply weight becomes exactly one half. This is
a typical behavior when using a fractional-ply extension scheme. Sometimes a
marginal change in the fractional-ply value decides if an extension is being done
or not.

Many test-suites, including the one we used, provide only the best move for
each position instead of the complete solution sequence. Because our learning
method requires that the full solution-path be known, we had to make some
compromises. If the best move returned by the program agrees with the move
suggested by the test-suite, we assume that the principal-variation given by the
program represents the correct solution path. However, if the move returned
does not agree with the test-suite we simply ignore the problem for learning
purposes. As a consequence, in each iteration we are minimizing the total
number of nodes needed to solve only a subset of the problems in the test-suite,
that is, those problems we have been able to derive a solution path for. However,
this sub-set gradually increases with each iteration and eventually contains over
90% of the problems in the test-suite. A different approach that we could have
taken is to find solution paths for all the positions in the test-suite, by pre-
searching them to a much greater depth. The drawback of that approach is
that a few of the more difficult problems require extremely deep searches to be
solved. These few problems would dominate the total node count needed to
solve all the problems. This is undesirable, and the compromise approach we
take avoids this problem altogether.

5.2 Game playing

In the second set of experiments the program learned from playing games. A
version of the program using the learning scheme played 60 games against an
unmodified version of the chess program (with a 5 minute time limit for each side
for completion of entire game). As before, the move-class weights of the learner
are initialized to 1.0. The program learns from critical positions encountered
during the game (see Section 3.1). The evaluation drop threshold for a position
to be considered critical is set to half a pawn. Once the game position of the
learner is considered to be lost (the position evaluation is more than the value

13

of 1 pawn down) the learning is disabled for the rest of the game. The reason is
that once the position is already significantly worse, it is almost inevitable that
one will lose more material and eventually the game. To learn from such losing
examples is not particularly instructive.

In Figure 5 we see how the parameters evolve during the training match.
One thing we notice is that the parameters fluctuate more than in the previous

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

5 10 15 20 25 30 35 40 45 50 55 60

m
ov

e-
cl

as
s

w
ei

gh
t

game number

passed pawns
recapture

onerep
check

Figure 5: Learning results from game data

experience. When learning from a test-suite, each weight update is based on a
collective data from looking at all the game positions in the suite. When learning
from games the weights are updated after each game, where each game provides
at most only one or two training samples. Given the low number of samples each
weight update is based on, it is quite normal to see such fluctuations. On the
other hand, there is a clear trend in the weight movements. The checking and
re-capture weights quickly converge to zero, whereas the two remaining weights
converge to less aggressive extension values.

It is interesting to compare the weights learned from game-play to the hand-
set ones, and the ones we learned from the test-suite data. Table 1 lists the
different weight settings. As we can see, none of the weight settings agree. Of
particular interest is that the weights learned from game-play differ substan-
tially from the ones learned from the test-suite. The check and forced-reply
parameters agree, whereas the passed-pawn and, in particular, the re-capture
weights have a totally different emphasis. In game-play re-capture extensions
are considered important and a full extension is done (i.e. the weight is 0.0),
whereas for the test-suite re-captures are not extended (have weight 1.0). This
result supports criticism that test-suites mainly consisting of tactical game po-
sitions (and most do) are not that representative of actual play. To tune the
parameters to achieve optimal search efficiency on such data does not necessar-
ily result in the best overall play. The WAC test-suite is clearly an example of
a test-suite over-representing tactical features.

We still have not addressed the question how good the weights are that we

14

Table 1: Learned weights

Move-class Hand-set Learned
Game-play Test-suite

Checks 0.25 0.00 0.00
Re-captures 0.25 0.00 1.00
Forced-reply 0.25 0.50 0.50
Passed-pawn 0.25 0.68 1.00

learned from game-play. Unfortunately, we have no way of telling what the
optimal weights are and, thus, we cannot really say how close to optimal the
learned weights are. On the other hand, we can compare them with the hand-set
weights. To evaluate the quality of the learned weights, we matched a version
of the program using the learned weights against another version using the
hand-set weights. The only difference between the versions was the value of the
search-control parameters. The match consisted of 200 games played at time
controls of five minutes per game.4 To prevent the programs from repeating
move sequences in the opening, each game was started from a different, well-
established opening position. The programs played each starting position once
as White and once as Black. Table 2 lists the result of the match. The program
using the weights learned from game-play won the match with a comfortable
margin. Furthermore, we can state with 95% confidence that the program using
the learned weights does perform better than the program using the hand-set
weights.5

Table 2: Match results

CraftyLearn vs. Crafty
Time control Score Winning %
5 minutes 108.5 - 91.5 54.25

The extension scheme employed by our test program is a relatively simple
one, using only a few parameters. These parameters have been hand-tuned
to reasonable values, and thus opportunity for drastic improvement is small.
On the other hand, we expect the benefits of the automatic tuning to become
even more relevant for more sophisticated extension schemes, which require the
tuning of many additional parameters.

4The match was played on a single Intel PIII/450 computer. In the chess-program all the
default parameter settings were used, except that pondering (thinking on opponent’s time)
was turned off. Otherwise, the programs would compete for CPU time.

5The student’s t-test was used to compare the mean of the score distribution of the two
programs.

15

6 Conclusions and Future Work

In this paper we introduced a new method for learning search-control parameters
in adversary search. By using a cost-model to model the search, the learning
task can be formulated as a function approximation task, allowing us to use well-
established machine learning techniques for determining the most appropriate
parameter vector. The learning method was tested in a strong chess program,
where it learned a parameter vector that outperformed the hand-set parameter
vector (one chosen by a leading computer-chess expert). Another lesson to learn
is that the common practice to measure programs’ performance against tactical
test-suites is suspect, and can lead to parameter settings that are not optimally
suited for actual game-play.

The automation of the tuning of search-control parameters opens up many
new opportunities for improved search-control schemes. Traditionally, the ef-
fort it takes to hand-tune complex extension schemes — possibly using many
disparate parameters — imposes a limitation on how complex the schemes can
be in practice. However, by automating the tuning process it is possible to
experiment with more sophisticated schemes. This is a logical next step. One
can envision schemes that use many more move-classes, where each class is not
only dependent on the phase of the game but also on other positional features.
For example, different extensions would apply for open vs. closed positions, or
positions where the king is exposed. However, in this paper, we were mainly
concerned with describing the new learning method and evaluating its soundness
and applicability.

Finally, the learning method itself is not specific to adversary search. The
only assumption we make here is that there is a parameterizable depth function
that controls how deeply each branch of the tree is expanded (and that we can
reasonably well model the search by our cost model). It is definitely worth
experimenting with it in other tree search domains; single-agent search is one
that comes to mind.

References

[1] T. Anantharaman, M. S. Campbell, and F. Hsu. Singular extensions: Adding
selectivity to brute-force searching. Artificial Intelligence, 43(1):99–109,
1990.

[2] D. Beal and M. C. Smith. Quantification of search extension benefits. ICCA
Journal, 18(4):205–218, 1995.

[3] F. Feinfeld. Win At Chess. McKay, New York, 1945. Also (1958), Dover,
New York.

[4] R. Hyatt. Crafty - chess program. 1996. ftp.cis.uab.edu/pub/hyatt.

[5] D. Levy, D. Broughton, and M. Taylor. The sex algorithm in computer
chess. ICCA Journal, 12(1):10–21, 1989.

16

[6] T. M. Mitchell. Machine Learning, pages 92–94. WCB McGraw-Hill, 1997.

[7] C. Ye and T. A. Marsland. Experiments in forward pruning with limited
extensions. ICCA Journal, 15(2):55–66, 1992.

17

