
Risk Management in Game-Tree Pruning

Y. Björnsson and T.A. Marsland

Department of Computing Science, University of Alberta, Edmonton, AB,
CANADA T6G 2H1

Abstract

In the half century since minimax was first suggested as a strategy for adversary
game search, various search algorithms have been developed. The standard approach
has been to use improvements to the Alpha-Beta (α-β) algorithm. Some of the more
powerful improvements examine continuations beyond the nominal search depth if
they are of special interest, while others terminate the search early. The latter case
is referred to as forward pruning.

In this paper we discuss some important aspects of forward pruning, especially re-
garding risk-management, and propose ways of making risk-assessment. Finally, we
introduce two new pruning methods based on some of the principles discussed here,
and present experimental results from application of the methods in an established
chess program.

1 Introduction to Decision Quality and Search

The standard approach to game-tree search is to use improvements to the
Alpha-Beta (α-β) algorithm to explore all combination of moves to some fixed
depth (continuation length or search horizon). In practice, however, the algo-
rithms are not used that way, instead heuristics vary the distance to the search
horizon, exploring some variations more deeply than others. In an indirect way,
this resembles the human thinking process. Continuations that are thought to
be of special interest are expanded beyond the nominal depth, while others
are terminated prematurely. The latter case is referred to as forward pruning.

Humans are adept at simplifying the search process, by reasoning about the
choices and then selecting a few prime candidates [4], while computers try to
search all possible combinations of moves. Thus the number of nodes visited by
Alpha-Beta increases exponentially with increasing search depth. This limits
the scope of the search, especially because game-playing programs must meet
external time-constraints: often having only a few minutes to reach a decision
(choose of move). In practice, the quality of the move decision usually improves

the further the search looks ahead. The question now becomes, how to find a
good move while making best use of the available time. One approach is to
prune unpromising lines, so that the time saved can be used to search selected
lines more deeply.

There exist several well established forward-pruning methods for game-tree
search. For example, in chess the null-move heuristic is very effective (best
described by Beal [2] and Goetsch & Campbell [5]), while in Othello Buro’s
ProbCut method is the most successful [3]. On the other hand, the theoretical
issue surrounding forward pruning and how it affects decision quality has not
been studied much. However, Smith and Nau [11] analyzed a model of forward
pruning using (over)simplified game trees, and concluded that forward pruning
works best when there is a high correlation among the minimax values of
sibling nodes in the game tree. For specific games like chess, checkers and
Othello, Junghanns et al. [6] have done some empirical studies to investigate
how error in leaf-node evaluation affects the move decision at the root.

2 Forward Pruning

The real task when doing forward pruning is to identify move sequences that
are worth considering more closely, and others that can be pruned off with
minimal risk of overlooking a good continuation. Several factors should be
considered for effective forward pruning:

• Risk-assessment.
How safe is the forward-pruning method? We want to minimize the risks
that this speculative pruning introduces into the search.

• Applicability.
To maximize the possible gains from forward pruning we would like to apply
the method frequently in the tree, especially where there is a potential for
big savings.

• Cost-effectiveness.
The investment of time and effort to decide whether to prune a node should
be kept low. In any case, the savings achieved through pruning must exceed
the additional effort introduced.

• Domain-independency.
Ideally, we want a pruning method that can be applied in more than one
specific search domain.

The above factors are by no means independent, improving one usually in-
volves compromising another. For example, reducing the risks often means lim-
iting the applicability, while improving cost-effectiveness can introduce other
risks. Finally the more general (domain-independent) methods tend to be less

2

efficient. A useful forward-pruning heuristic must find the appropriate trade-
off between the above factors, and this process may require careful tuning.

2.1 Risk-assessment

When using forward pruning there is always some danger of overlooking good
moves. We would like to minimize the risk of doing so. When deciding whether
to examine a node v, the basic question is: how likely is it that the sub-tree
below v includes a continuation that, if searched, would yield a new principal
variation (pv). For a new variation to emerge two things must occur; first the
value returned to v must exceed the best value found so far, and second the
value must propagate to the root of the tree. This in turn implies that the
pruning method should be able to

• predict with reasonable accuracy the range of values for node v, and
• measure the likelihood that the anticipated value will back up to the root

of the tree.

Existing forward-pruning methods address the first issue while often ignoring
the second one.

2.1.1 Error Introduction

For most subtrees we are not so much interested in knowing the exact value of
each particular node, but rather whether the value lies outside the bounds of
the α-β window. This is because we know that continuations which result in
values outside the window can never become a part of the principal variation.
When using a null-window search the bound is the value of the current princi-
pal variation, so when comparing node values to the bound we are determining
whether a better continuation is found. In that case we are simply interested
in knowing if a value returned by searching a node further is at least as good
as the β-bound, since then it causes a cutoff.

When predicting where the value of a node v lies relative to the α-β bounds,
most pruning methods carry out a shallow search. They use the value returned
to estimate the range in which the actual value of node v is likely to be found
when the node is searched more deeply. For example, a 5-ply-deep search is
used to predict the window for a 6-ply-deep search. The outcome of the shallow
search decides whether to search node v further. If we are confident enough
that further search will not yield an improvement, node v is not expanded. The
exact criteria used to relate the value of the shallow search to the anticipated
return value of the deeper search varies with the pruning technique. Some
approaches rely on statistical methods to define confidence intervals, while

3

others simply use ad hoc heuristics. Error is introduced into the search when
a wrong pruning decision is made.

Although, values returned by shallow searches are usually reasonable estimates
of the values found by deeper searches, additional information can enhance the
overall prediction capabilities of the pruning heuristics, thereby reducing the
risk involved. For example, consider the tree in Figure 1. The shaded area

m m... ...
v

a b...

1 n

Fig. 1. Different risk-assessment.

marks the parts of the tree searched to decide whether to prune nodes a and
b. Each pruning decision is made independently of the other, based only on
the outcome of the local search. However, by looking at each node in isolation
information is lost. For example, when looking at move mn current pruning
methods are interested in knowing if the move will lead to a value that causes
a cutoff, that is, in estimating the probability

P (v(mn) ≥ β).

But having already searched moves m1,...,mn−1, and knowing that none caused
a cutoff, provides a strong indicator that move mn will also fail to do so, espe-
cially because the preliminary move-ordering scheme believes that move mn is
no better than the moves already considered. Instead one should compute the
probability that move mn causes a cutoff, given that moves m1,...,mn−1 have
failed to do so, that is compute:

P (v(mn) ≥ β | v(m1, ...,mn−1) < β).

The values of the moves are not independent of each other, and so by assuming
otherwise we are ignoring potentially useful information. Existing pruning
methods and probability based best-first search algorithms totally ignore the

4

dependencies, or unrealistically assume the search values (or the error in the
values) are independent of each other. Instead, the fact that the values tend to

be dependent should be used to make more informed pruning decisions.

2.1.2 Error Propagation

Figure 2 shows two different game trees. The solid lines identify the parts of the
tree that have already been visited, while the dotted lines correspond to nodes
that have not been expanded. Assume that the search is currently situated at

v
...

...

(b)

m

(a)

m1m
... ...

v

1 k

Fig. 2. Controlling error propagation.

node v and that the sub-tree resulting from playing move m1 has already been
searched. Furthermore, assume that a part of that sub-tree has been cut away
using some forward-pruning technique, and that the value returned is greater
or equal to the β-bound for node v (if node v is a cut-node this is what we
would expect). Therefore, a β-cutoff occurs and the value returned by move
m1 will back up to the root. From the root’s perspective this branch is inferior
to the current principal variation and the search therefore continues to expand
the other children of the root without switching principal variation.

If the pruned subtree in Figure 2(a) does not contain a better line, search effort
has been saved. The case of interest here is: what if a better line is present?
In Figure 2(a), if a better line is present but is overlooked, the value of m1 is
wrong and the error may propagate through node v to the root. However, if
alternatives to m1 are present, as in Figure 2(b), it is possible that one of the
alternative moves in [m2, ..., mk] may contain a line that enables it to deliver
a beta-cutoff at v, acting as a substitute for m1, and thus preserving the value

5

assigned at node v. Thus in Figure 2(b), an error in the subtree below m1 does
not necessarily propagate to the root. This situation is common in practice:
if the first move fails to cause a cutoff, one of the alternative moves may do
so. This means that even though the pruning below m1 was flawed, the risk
of affecting the move decision at the root is less in Figure 2(b) than in Figure
2(a), because one of the other moves m2 ..., mk might preserve the cutoff
if m1 changes it’s value. Thus, even though an erroneous pruning is made it

will not necessarily affect the move decision at the root. This illustrates that,
when assessing risk, pruning methods should not only take into account the
expected return value of a pruned node, but also assess the likelihood that an
erroneous pruning decision will propagate up the tree.

2.2 Applicability

The most popular pruning heuristics used in two-person game-playing pro-
grams have one thing in common: they apply frequently, though not without
restriction. The more frequently a pruning heuristic is applied in the search,
especially at places where there is a high probability of big savings, the more
potential it has for being effective. However, the applicability is restricted,
since pruning can only be done where it is expected to be safe. Depending
on the heuristics used, this can differ substantially. Some heuristics need ad-
ditional pre-requirements for them to be applied. An example of one such
pruning method is the special cutoff introduced by Reinefeld’s NegaScout [8]
algorithm. Although the cutoff is risk-free when search extensions are not
used, the savings are very small (less than 2%). This is because the necessary
pre-requirement for the cutoff is met infrequently. That is, a change in the
principal variation is occurring two or fewer plies from the search horizon.

2.3 Cost-effectiveness

Although some pruning methods offer low risks and substantial savings in
terms of nodes searched, the overhead needed to implement them is often
prohibitive. The effort expended gathering and tracking in real-time the in-
formation required by the heuristics may outweigh the potential time-savings
introduced by the pruning. An example of such a heuristic is the method
of analogies. Although, the method offers almost risk-free pruning, the over-
head of tracking how pieces influence each other originally proved too high for
practical use in a competitive chess playing program [1]. However, changes in
software and hardware technology may improve the efficiency of such meth-
ods. It might also be possible to approximate the original heuristic by another
that is less costly to maintain, and yet achieve most of the savings. Therefore

6

the method of analogies is again a topic worthy of investigation.

2.4 Domain-dependency

Ideally we want domain-independent pruning. Those methods would not rely
on such explicit knowledge as: is a king in check, or whether a corner square is
occupied. If domain-specific knowledge, is used, it is incorporated in a domain
independent way, for example express the knowledge in a language that can
be interpreted in a general way by the search.

In the domain independent methods, the only information revealed to the
search by the evaluation function is a numerical estimate of a problem state’s
quality. This clear separation of the search and the problem encourages more
domain-independent pruning methods. On the other hand the methods are
then denied access to potentially useful information about the problem do-
main, thereby restricting their pruning capabilities. However, there is a wealth
of information to be gathered about the problem by simply looking at the
shape of the expanded search tree. This knowledge is accessible without hav-
ing to uncover any additional domain-specific knowledge. We have already
mentioned a few cases of interest as part of our risk-assessment discussion.

In practice, it is extremely difficult for pruning methods to be domain indepen-
dent. As said earlier, there is a trade-off between generality and effectiveness,
and to achieve the full pruning capability we must exploit some special char-
acteristics of the search space. Most existing forward-pruning methods are
therefore domain specific. Even though methods like null-move [2] and Prob-
Cut [3] do not use explicit knowledge about their domain, they make implicit
assumptions that tie them down for use in one, or at best very few, two-person
games. For example, the null-move heuristic is very effective in chess, but in-
appropriate in Othello. Conversely, ProbCut is the pruning heuristic of choice
in Othello but has not yet been shown useful in chess or checkers.

3 New Forward-Pruning Methods

As mentioned before, pruning heuristics should be concerned with the ques-
tion: What is the likelihood of making an erroneous pruning decision, and if

an erroneous decision is made how likely is it to affect the principal variation?

Existing forward-pruning methods generally do not consider the second part
of this question. When assessing risk, pruning methods should not only spec-
ulate whether a subtree contains a good continuation, but also determine if
there are alternatives to any potentially overlooked continuation that could

7

preserve the principal variation. To answer these questions the methods must
consider each node in the context of its location in the game-tree, instead of
looking at each node (and the subtree below it) in isolation.

In the following sections we introduce two new forward-pruning methods:
Multi-Cut, and Variable Null-move Bound. Both our new methods indirectly
consider the likelihood that the consequences of an erroneous pruning decision
propagate to the root of the game tree.

4 Multi-Cut

In this section we present the idea behind the multi-cut method, then give
implementation details, and experimental results.

4.1 Multiple cut-offs idea

In a traditional αβ-search, if a move returns a value greater or equal to β

there is no reason to examine that position further, and the search can return.
This is often referred to as a β-cutoff. Intuitively, this means that the player
to move has found a way to refute the current line of play, so there is no
need to find something better. By way of explanation, and to introduce our
terminology, we are seeking the principal variation. This is the sequence of
moves from the root node (current position in the game) to the best of the
accessible nodes on the search horizon. We expect β-cutoffs to occur at so
called cut-nodes (that is, nodes that are refuted). The root node of a game-
tree is a pv-node (principal variation node), the first child of a pv-node is also
a pv-node, while the other children are cut-nodes. Every child of a cut-node
is an all-node (where every successor must be explored) and vice versa every
child of an all-node is a cut-node. In a perfectly ordered tree only one child of
a cut-node is expanded. If a new best move is found at a pv-node, the node it
leads to is also a pv-node. At pv- and all-nodes every successor is examined.
Most often it is the first child that causes the cutoff, but if it fails to do so the
sibling nodes are expanded in turn, until one of them returns a value greater
or equal to β (thus causing a cutoff), or all the children have been searched.
If none of the moves causes a cutoff, the cut-node becomes an all-node.

For a new principal variation to emerge, every expected cut-node on the path
from a leaf-node to the root must become an all-node. In practice, however,
it is common that if the first move does not cause a cutoff, one of the alterna-
tive moves will. Therefore, expected cut-nodes, where many moves have a good

potential of causing a β-cutoff, are less likely to become all-nodes, and con-

8

sequently such lines are unlikely to become part of a new principal-variation.
This observation forms the basis for the new forward-pruning scheme we intro-
duce here, multi-cut αβ-pruning. Before explaining how it works, let us first
define a mc-prune (multi-cut prune).

Definition 1 (mc-prune) When searching node v to depth d + 1 using αβ-

search, and if at least c of the first m children of v return a value greater or

equal to β when searched to depth d − r, a mc-prune is said to occur and the

search can return.

In multi-cut αβ-search, we attempt an mc-prune only at expected cut-nodes
(we would not expect it to be successful elsewhere). Figure 3 shows the basic
idea. At node v, but before searching v1 to a full depth d, as normal αβ-
search does, the first m successors of v are expanded to a reduced depth of
d − r. If c of them return a value greater or equal to β a mc-prune occurs
and the search returns the value of β, otherwise the search continues as usual
exploring v1 to a full depth d. The subtrees below v2, ..., vm represent extra

v1 vm vn

r

v

......

...

d

v2

Fig. 3. Principles of multi-cut pruning.

search overhead introduced by mc-prune, since they would not be expanded by
normal αβ-search. The dotted area of the subtree below node v1 represents the
savings that are possible if the mc-prune is successful. However, if the pruning
condition is not satisfied, we are left with the overhead but no savings. By
searching the subtree of v1 to a shallower depth, there is of course some risk
of overlooking a tactic that would make v1 become a new principal variation.
We are willing to take that risk, because we expect at least one of the c moves
that returns a value greater or equal to β, when searched to a reduced depth,
will still cause a genuine β-cutoff if searched to a full depth.

9

4.2 Implementation

Figure 4 is a C-code version of a null-window search (NWS) routine using
multi-cut. For clarity we have omitted details about search extensions, trans-
position table lookups, null-move searches, and history heuristic updates that
are not immediately relevant to our discussion. The NWS routine [7] could for
example be called by an enhanced αβ-variant like Principal Variation Search

or NegaScout. The parameter depth is the remaining length of search for the
position, and β is an upper-bound on the value we can achieve. There is no
need to pass α as a parameter, because it is always equal to β - 1. In our
case, however, the new parameter ntype is needed to identify the nodes where
mc-pruning applies.

As is normal, the routine starts by checking whether the horizon has been
reached, and if so to use a quiescence search (QS) to return the value of the
position. Otherwise, we look in the transposition table for useful information to
guide the search. This is followed by a null-move search (most chess programs
use this powerful technique) [2]. A normal αβ search would then start exploring
the possible moves to the requested depth. Instead we insert here a multi-
cut search to see if the mc-prune condition applies. If a multi-cut occurs the
local search terminates, but otherwise it continues as a normal αβ search.
The parameters mc M , mc R, and mc C stand for m (number of moves to
look at), r (search reduction), and c (number of cutoffs needed), respectively.
Although they are shown here as constants, they could be determined more
dynamically and allowed to vary during the search.

We do not check for the mc-prune condition at every node in the tree. First,
we test for it only at expected cut-nodes. Second, it is not applied at the lev-
els of the search tree close to the horizon, thus reducing the time overhead
involved in this method. Finally, there are some game-dependent restrictions
that apply. In Figure 4 these restrictions are encapsulated in the function
TryMultiCut(). In our experiments in the domain of chess (see Section 4.3)
the pruning is disabled when the endgame is reached. Usually only a few viable
move options exist there, and so the mc-search is not likely to be successful.
Also, the positional understanding of chess programs in the endgame is gen-
erally poorer than in the earlier phases of the game. Therefore the programs
rely heavily on the search to guide them, and so any forward-pruning scheme
is more likely to be harmful. Finally, the pruning is not done if the side to
move is in check, or if a search extension has been applied at any of the three
previous moves leading to the current position, since it is preferable that these
forced situations be assessed correctly.

10

// Multi-Cut parameters

#define mc_M 10 //# of moves to look at

#define mc_C 3 //# of cuts to cause a mc-prune

#define mc_R 2 //depth reduction

#define CUT 2

#define ALL 3

#define TYPE(t) (((t)==CUT) ? ALL : CUT)

VALUE NWS(int depth, VALUE beta, NODETYPE ntype) {

VALUE score;

MOVE move;

if (depth <= 0) return QS(beta-1);

// Transposition table lookup, and nullmove search omitted ...

// Multi-Cut pruning

if ((ntype == CUT) && (depth > mc_R) && TryMultiCut()) {

int m = 0, c = 0;

move = MoveFirst();

while (m < mc_M && move) {

MakeMove(move);

score = -NWS(depth-mc_R-1, -beta+1, TYPE(ntype));

RetractMove(move);

if (score >= beta) {

c++;

if (c == mc_C) return beta;

}

m++;

move = MoveNext();

}

}

// Standard null-window (minimal window) search

move = MoveFirst();

while (move) {

MakeMove(move);

score = -NWS(depth-1, -beta+1, TYPE(ntype));

RetractMove(move);

if (score >= beta) break;

move = MoveNext();

}

// Store node information, omitted ...

// ... update trans table and history heuristic...

return score;

}
Fig. 4. Multi-Cut null-window search.

11

Table 1. TTmc(r,c,m) searches

r c m Nodes Solved r c m Nodes Solved r c m Nodes Solved

1 2 4 93.33 97.60 2 2 4 70.48 97.40 3 2 4 71.60 95.80

1 2 8 91.71 97.20 2 2 8 61.56 97.20 3 2 8 63.17 95.50

1 2 12 93.39 96.80 2 2 12 59.38 96.80 3 2 12 57.13 95.10

1 3 4 134.17 99.20 2 3 4 87.46 99.50 3 3 4 86.07 97.70

1 3 8 150.31 98.90 2 3 8 82.60 99.20 3 3 8 79.30 97.50

1 3 12 157.34 98.50 2 3 12 79.95 99.20 3 3 12 72.21 97.00

1 4 4 175.38 99.40 2 4 4 100.14 99.70 3 4 4 98.33 98.60

1 4 8 210.41 99.30 2 4 8 98.50 99.40 3 4 8 89.96 97.90

1 4 12 234.33 99.00 2 4 12 98.04 99.20 3 4 12 84.89 97.60

4.3 Experimental Results

Ultimately, we want to show that game-playing programs using the new prun-
ing method can achieve increased playing strength. To test the idea in practice
multi-cut αβ-pruning was implemented in The Turk 1 . Next, we experimented
with different instantiations of the multi-cut parameters both to give a better
insight into how they alter the search behavior, and to find the most appropri-
ate parameter setting for the program. The program was tested against a suite
of over one thousand tactical chess problems [9]. For each run a different set
of multi-cut parameters was used, and information was collected about both
the total number of nodes explored, and the number of problems solved. The
program was instructed to search to a nominal depth of 7-ply, and use normal
search extensions and null-move search reductions. Basically, we are looking
for the parameters that give the most node reduction, while still solving the
same number of problems that the original program does. For each parameter
setting, Table 1 shows the number of nodes searched and problems solved.
However, instead of using absolute values, the values are given relative to the
performance of the standard version of the program. The high-lighted data
indicates that a setting of r = 2, c = 3, and m in the range 8-12 looks the
most promising. Using these settings the program searches 20% fewer nodes,
while still solving 99.2% of the problems handled by the original version. A
higher value for c, does not result in any improvement in search efficiency,
while a lower value significantly lowers the decision quality. Similarly there is
little scope for varying r. On the other hand, there is some freedom in choosing
the m parameter.

Finally, two versions of the program were matched against each other, one us-
ing multi-cut pruning and the other without. Several matches, with 80 games
each, were played using different time controls. To prevent the programs from

1 The Turk is a chess program developed at University of Alberta by Yngvi
Björnsson and Andreas Junghanns.

12

Table 2. Summary of 80-game match results.

TTmc(2,3,10) versus TT

Time control Score Winning %

40 moves in 5 minutes 46 - 34 57.5

40 moves in 15 minutes 42 - 38 52.5

40 moves in 25 minutes 43.5 - 36.5 54.4

40 moves in 60 minutes 43 - 37 53.8

playing the same game over and over, forty well known opening positions
were used as a starting point. The programs played each opening once from
the white side and once as black. Table 2 shows the match results. TT stands
for the unmodified version of the program and TTmc(r,c,m) for the version with
multi-cut implemented. We experimented with the case m = 10, r = 2, and
c = 3 (i.e. 10 moves searched using a depth reduction of 2 and requiring 3
β-cutoffs to achieve the mc-prune condition). This choice of parameter val-
ues is based on the test-suite of data presented above. The multi-cut version
shows definite improvement over the unmodified version. In tournament play
this winning percentage would result in about 35 points difference in the play-
ers’ performance rating. More games are needed for determining exactly the
relative strength of the two versions, but based on these experiments we can
state with a 95% confidence level that the multi-cut version is the stronger.

One final insight, the programs gathered statistics about the behavior of the
multi-cut pruning. The search spends about 25%-30% of its time (in terms of
nodes visited) in shallow multi-cut searches, and mc-prune occurs in about
45%-50% of its attempts. Obviously, the tree expanded using multi-cut prun-
ing differs significantly from the tree expanded when it is not used.

5 Variable Null-move Bound

In this section we describe a new enhancement to the null-move heuristic,
variable null-move bound search, that utilizes some of the aforementioned ob-
servations to search more efficiently.

5.1 Basis

Goetsch and Campbell [5] mention as a future research idea the possibility
of permitting a null-move cutoff not only when a null-move search returns
a value greater or equal to β, but also if the returned value is slightly less.

13

They propose that a cutoff be forced if v ≥ β − t, t ≥ 0, where v is the value
returned by the null-move search and t is a small positive number that can
be interpreted as the value of a tempo. This allows null-move cutoffs to be
applied more frequently thereby reducing the tree-size even further, although
at the cost of introducing additional errors. Furthermore, they state that the
value of t must be lower than the actual value of a tempo to avoid inadvertent
cutoffs, and that the value of t would be dependent on the evaluation function
and could vary during the course of the game. Both these factors help reduce
the risk of erroneous pruning.

The method we introduce here is based on the same idea. However, we use
a different approach for approximating t. Instead of having t depend on the
evaluation function, we let it vary according to how likely we think an erro-
neous pruning decision affects the principal variation. Indeed, in some parts of
the tree we allow the value of t to exceed what would normally be considered
an appropriate value for a tempo.

5.2 Implementation

First we need a metric to show how likely it is that a pruning error affects
the principal variation. The more opportunities a player has to refute the op-
ponent’s play, the less likely it is that an oversight in assessing an individual
node will affect the move decision at the root (see the discussion with Figure
2). This suggests that one metric is the “Number of Potentially Good Alter-
native Moves” (NoPGAM) that a player has on the path leading from the
root to the current node in the search tree. However, there are a couple of
difficulties. First, at cut-nodes only one, or at most few, moves are considered,
leaving us with no information about the remainder. Second, since programs
commonly employ a null-window search, for most nodes in the tree we have
only bounds on the actual value of a node, making it difficult to compare
the merits of any two moves. One approach would be to perform additional
shallow searches to estimate the value of each move, but this would imply a
considerable extra search overhead, possibly offsetting any gains. Fortunately,
there are more cost-effective means of approximating the number of poten-
tially good alternative moves. Most programs use some form of Schaeffer’s
history-heuristic [10] for move ordering. Whenever a move causes a cut-off it
is rewarded by increasing its history heuristic value. We simply define a move
to be a potentially good alternative if it has a positive history heuristic value.
Although this is not the most accurate approximation it is a cost-effective one.

We implemented the variable null-move bound heuristic in The Turk. The
program uses principal variation search, and null-moves are applied recursively
with a search reduction of 2. Several restrictions control where and when

14

the null-move heuristic applies. For example, a null-move is not allowed on
the principal variation or if the side to move is in check. Neither are two
consecutive null-moves allowed. Figure 5 shows how the null-move heuristic is
applied in the variable bound scheme. The variable NoPGAM is the number
of potentially good alternative moves that are found on the path from the
root, but are still unexplored. A separate count is kept for each player and is
updated incrementally as the tree is traversed.

if (NULLMOVE_OK()) {

int bound, t = 0;

if (!InNullMoveSearch()) {

if (NoPGAM > 15) {

t = 20;

}

else if (NoPGAM > 0) {

t = 10;

}

}

bound = beta - t;

Make (Nullmove);

score = -NWS (depth+1, -bound+1, max_depth-2);

Retract (Nullmove);

if (score >= bound) {

return (beta);

}

}

Fig. 5. Variable bound null-move cutoff decision.

In the current implementation, the number of potentially good alternative
moves is recorded during a zero-window search, with the exception of the first
move expanded at each node. The main reasons for this is that the first move
is most often taken from the transposition table and expanded before any legal
moves are generated. Because we count the number of good alternative moves
for each level in the tree at the time of move generation, that information is
not available to pass down for the first move. Since the NoPGAM count is
not updated for that level, this makes the program less aggressive in pruning
along these paths 2 .

2 Since the first move expanded is often the most critical one, this compromise
might actually be beneficial.

15

Table 3. Performance on tactical problems.

Method Nodes Solved

TTvariable 89.38 99.40

TT10 84.44 98.90

TT20 75.06 98.80

5.3 Experimental Results

We did experiments to assess the viability of the new heuristic. Three different
variants of the chess program (TTt) were created, each using a different value
for the tempo, t. For two of the variants, TT10 and TT20, t was set to a fixed
constant, 10 and 20 respectively 3 . The third, TTvariable, varied the value of t

using history data (see above). The relationship between NoPGAM and t is
as shown in Figure 5, and was chosen based on some trial and error tests. In
a future implementation a more appropriate relationship will be empirically
determined.

First, the programs were tested against the same suite of one thousand tactical
chess problems as used in the multi-cut experiments. The result is shown in
Table 3. As before, both the number of nodes searched and problems solved
are relative to the performance of an unmodified program. We see that ad-
justing the cutoff margin offers substantial node savings, but at the cost of
overlooking a few problem solutions. All the programs seem to do reasonably
well, but notably the version that varies the cut-off margin misses the fewest
solutions. This experiment is useful for showing that the pruning does not alter
significantly the tactical ability of the program. This is particularly important
for games like chess. On the other hand, the experiment does not show how
adjusting the margin affects the positional play. This is best tested by playing
actual games, as we do next.

The modified programs were matched against an unmodified version of the
program (TT). Each match consisted of 100 games, with the time controls set
to 40 moves in 5 minutes. To prevent the programs from playing the same
game over and over, fifty well known opening positions were used as a starting
point. The programs played each position twice, once from the white side and
once as black. As is customary in actual tournament play, a player scores one
point for a win, half a point for a draw, but nothing for losing. The match re-
sults are shown in Table 4. Of the three variants, TTvariable performed the best,
out-playing the original version with a winning ratio of 1.25 (i.e. scoring 25%
more winning points than the opponent). The TT10 version also demonstrated
increased playing strength, while the TT20 version lost its match convincingly.

3 These numbers are related to a value of a pawn, which is set to 100.

16

This shows that for small margin adjustments, the benefits of increased search
efficiency outweigh the drawbacks of the error introduced by more aggressive
pruning. On the other hand, if the margin adjustment is too high the errors

Table 4. 100-game match results.

Match Score Winning ratio

TTvariable vs. TT 55.5 - 44.5 1.25

TT10 vs. TT 53.5 - 46.5 1.15

TT20 vs. TT 41.0 - 59.0 0.69

become the dominating factor in determining the playing strength. Not only
will the program make more tactical errors, but the positional play also suf-
fers. This clearly shows in the match result where the TT20 version of the
program performs rather poorly. However, by selectively adjusting the mar-
gin depending on how likely an error is to affect the principal variation, we
achieve some of the search efficiency benefits from using a higher margin, but
at only minimal risk of introducing additional errors. This follows from our
match results where the TTvariable version performs the best.

Although the preliminary results are encouraging, care must be taken in inter-
preting them. First, more than 100 games are required to reliably determine a
difference in playing strength between any two programs, and second, games
with actual tournament time controls must be played. The preliminary re-
sults indicate that this method has potential and is definitely worth refining
further. For example, more study is needed to find the optimal values of the
controlling parameters (r, c, m).

6 Conclusions

We discussed some important characteristics of forward pruning in game-tree
search, emphasizing risk-management, and we propose ways to improve risk-
assessment by considering

• move dependency information, and
• the likelihood that erroneous pruning decisions influence the principal vari-

ation.

We develop two new forward-pruning methods based on the above principles.
Experiments with the new methods demonstrate consistent improvement over
the currently best search techniques. This clearly indicates that pruning meth-
ods should consider the likelihood of an erroneous pruning decision propagat-
ing to the root of the game tree, something that has been neglected previously.

17

The new methods need additional practical experience before their full poten-
tial can be determined. There is still scope for improvement through tuning
and further enhancements. For example, in our experiments we fixed the prun-
ing parameters to constant values. Instead, the parameters could be adjusted
dynamically, and their values allowed to vary as the game/search progresses.
The new forward-pruning methods introduced here are by no means the only
way to exploit the above principles for improved risk-assessment, there is room
for other innovative methods.

References

[1] G. M. Adelson-Velskiy, V. L. Arlazarov, and M. V. Donskoy. Some methods of
controlling the tree search in chess programs. Artificial Intelligence, 6(4):361–
371, 1975.

[2] D. F. Beal. A generalized quiescence search algorithm. Artificial Intelligence,
43:85–98, 1990. See also: Experiments with the Null Move. In Advances in
Computer Chess 5, 1989, 65-79.

[3] M. Buro. ProbCut: An effective selective extension of the alpha-beta algorithm.
ICCA Journal, 18(2):71–76, 1995.

[4] A. de Groot. Thought and Choice in Chess. Mouton Publishers, The Hague,
second edition edition, 1978.

[5] G. Goetsch and M.S. Campbell. Experimenting with the null move heuristic. In
T. Marsland and J. Schaeffer, editors, Computers, Chess and Cognition, pages
158–168, 1990. See also: 1988 AAAI Spring Symposium Proceedings, 14-18.

[6] A. Junghanns, J. Schaeffer, M. Brockington, Y. Björnsson, and T. Marsland.
Diminishing returns for additional search in chess. In Advances in Computer
Chess 8, pages 53–67, June 1997.

[7] T.A. Marsland. Single-Agent and Game-Tree Search. In A. Kent and
J. G. Williams, editors, Encyclopedia of Computer Science and Technology,
volume 27, pages 317–336, New York, 1993. Marcel Dekker, Inc.

[8] A. Reinefeld. An improvement to the Scout tree search algorithm. ICCA
Journal, 6(4):4–14, 1983.

[9] F. Reinfeld. 1001 Brilliant Ways to Checkmate. Sterling Publishing Co., New
York, N. J., 1955. Reprinted by Melvin Powers Wilshire Book Company.

[10] J. Schaeffer. The history heuristic and alpha-beta search enhancements in
practice. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(1):1203–1212, 1989.

[11] S. J. J. Smith and D. S. Nau. An analysis of forward pruning. In Proceedings of
the Twelfth National Conference on Artificial Intelligence (AAAI-94), volume 2,
pages 1386–1391, 1994.

18

