
© IJIGS/University of Wolverhampton/EUROSIS

EFFICIENT USE OF REINFORCEMENT LEARNING IN A COMPUTER GAME

Yngvi Björnsson, Vignir Hafsteinsson, Ársæll Jóhannsson, and Einar Jónsson
Reykjavík University, School of Computer Science

Ofanleiti 2
Reykjavik, Iceland

E-mail: {yngvi, vignirh02, arsaelltj02, einarj02}@ru.is

KEYWORDS
Computer game-playing, Mobile games, Artificial
intelligence, Reinforcement learning.

ABSTRACT

Reinforcement learning methods are not yet widely used in
computer games, at least not for demanding online learning
tasks. This is in part because such methods often require
excessive number of training samples before converging.
This can be particularly troublesome in mobile game devices
where both storage and CPU are limited and valuable
resources. In this paper we describe a new AI-based game
for mobile phones that we are currently developing. We
address some of the main challenges of incorporating
efficient on-line reinforcement learning methods into such
gaming platforms. Furthermore, we introduce two simple
methods for interactively incorporating user feed-back into
reinforcement learning. These methods not only have the
potential of increasing the entertainment value of games, but
they also drastically reduce the number of training episodes
needed for the learning to converge. This enhancement made
it possible for us to use otherwise standard reinforcement
learning as the core part of the learning AI in our game.

INTRODUCTION

Reinforcement learning methods have in recent years
increased in popularity and are now-a-days used for solving
various demanding learning tasks. Although they have been
used successfully for years in for example classic board
game-playing programs (Tesauro 1994), they have only
recently caught the interest of the commercial game
community (Evans 2002; Manslow 2004). However, one of
the main criticisms these methods have met is their lack of
efficiency. That is, many trials are often needed before the
learning converges, rendering them practically inapplicable
in fast paced game environments where many trials are a
luxury one cannot afford. For any on-line learning method to
be applicable in practice in games it needs to be fast,
effective, robust, and efficient (Spronck 2003).

In this paper we address some the challenges of
incorporating efficient on-line reinforcement learning
techniques into gaming environments. We are using
reinforcement learning as the central component in an AI-
based game that we are developing for mobile phones ― a
platform where efficiency is of a paramount importance, in
part because of limited CPU power. We describe the main
learning method used in our game, and introduce and
experiment with two enhancements that allow us to

incorporate user feedback interactively into the learning
process. Not only does this allow the user to take on a more
active role in the development of the game characters, but
also drastically reduces the number of training episodes
needed for the learning to converge.

These enhancements made it feasible for us to use
reinforcement learning as the central learning component in
our mobile game. Although the game is still in early stages
of development, we have finished prototypes of the
components that most heavily rely on learning (the athletic
training events). We used them to demonstrate the feasibility
of reinforcement learning when augmented with the new
learning enhancements.

The remainder of the paper is structured as follows.
In the next section we give an overview of the game, and
thereafter we explain in detail the learning procedure used in
the athletic training event module. We next provide
experimental results, and finally conclude and discuss future
work.

GAME DESCRIPTION

The game consists of a (pet) creature in a virtual home
environment inside a mobile phone or PDA. The objective of
the game is to raise a creature with desirable characteristics.
The player (user) decides which characteristics are
important, and he or she has various ways of interacting with
the creature to help shape its character. This is in the spirit of
games like Black & White. For example, a player might want
to raise the creature to be a good athlete, and would therefore
have the creature do activities that develop athletic skills,
such as swimming or running. Alternatively, the player
might prefer more of a thinking creature, and instead have it
read books and solve puzzles. In addition to these training
activities, the user can show off the creature’s skills by
having it participate in competitions like athletic or mind-
game events. These competitions can be either single-player
(e.g. racing against time) or multi-player (e.g. competing
against a friend’s creature).

Game Architecture

The game is written in Java2 Micro Edition (CLDC 1.1 and
MIDP 2.0). Most new phones do or will support these new
standards. We have tested the game on a Nokia 6230 mobile
phone.

© IJIGS/University of Wolverhampton/EUROSIS

Figure 1. The main modules of the game

The main modules of the game are shown in Figure 1. These
modules are loosely coupled and all communications
between them are done via interfaces.

Daily-life
This module focuses on the creature’s principal needs, such
as eating, drinking, sleeping, and social interaction. The
food has various attributes; it can be healthy, tasty, fattening
etc. Healthy and fattening food types have physical impact
on the creature, where as attributes such as taste affect the
creature’s mental condition (we’re not too happy when we
need to eat something that tastes bad).

Events
This module contains various sub-games and challenges
where the user can train the creature in various skills and
activities and benchmark its performance. These include
physical activities such as sprinting and swimming events,
and simple mind-games like 9-men-morris. The more
training the creature gets in an activity the better it becomes.
Not only do the physical or mental attributes improve, but
the creature also learns the best strategy for the given
activity, for example a good strategy in 9-men-morris, or
how to pace its speed during a 200 meter sprinting event.
During the training the user may play the role of a personal
trainer by giving advices, for example by playing a game
against it or telling it how to pace its speed during a training
run.

Competitions
Players can sign their creatures up for competitions and
tournaments, either single or multi-player. The primary
purpose is to show-off abilities of the creature, but good
results in such competitions (such as 1st prize in a sprinting
competition) can provide the player with money and rare
valuable items. In a competition the creature’s performance
is decided by its unique combination of personality, abilities,
and skills acquired through training and other previous
interactions with the user. Thus it is important to train the
creature well before entering a competition.

Mobile
All mobile device specific code, such as graphics,
communications, menus and other user interface components
are kept in a separate module. This enforces transparent
design which will enable the game to be extended to other
gaming platforms.

Game AI

Machine learning plays a central role in this game. The main
objective of the game AI is to support creatures that evolve
and adapt based on the player’s preference. There are several
attributes that make one creature distinct from the next, both
physical (such as strength, dexterity, constitution, fat and
health) and mental (such as intelligence, wisdom, patience
and social behavior). The way the user interacts with the
creature affects how these different attributes develop. The
exact learning tasks are somewhat different and can be
coarsely divided in two.

 In the Daily-life module the task of the learning is to
allow the various characteristics of the creatures to adapt and
develop in response to the user’s input. The user is here
primarily in a parenting role. The creature, when left
unattended, starts exploring and doing things on its own. For
example, it could: go hang out around the eating bowl
looking for food, go playing, eat your slippers, give you
flowers, break your favourite vase, or even poop on the
floor. It is up to the user to raise the creature in a way such
that it acts responsibly, for example by rewarding it when it
does good things and punishing it when it does undesirable
things, e.g. eating unhealthy, staying up late, or avoiding
exercise and social interactions. These are all activities that
negatively affect the creature’s health and might possibly
eventually lead to its death.

In the Events module, on the other hand, the creature
learns from experience by repeatedly performing athletic or
mind game activities. The more it practices the better it gets
at these activities. There is no input necessary from the user.
However, if the user wants she can act as a coach and give
advice. The creature takes notes of and uses the advice to
speed up its learning curve. In this paper we will focus on
the learning in this module.

Figure 2. A scene from the Sprinting sub-game

© IJIGS/University of Wolverhampton/EUROSIS

LEARNING

In here we describe the learning method used in the game’s
athletic training events. All the different sport training
events (currently only sprinting and swimming) use the same
underlying reinforcement learning based methodology. The
task is to learn the optimal racing strategy for the given
event, possibly with some learning input from the user. The
best strategy will differ from one creature to the next because
of different physical characteristics (e.g. weight and
maximum stamina). For the same reason the optimal racing
strategy may differ from one week (or day) to the next,
because the physical condition of the creature might have
changed in that timeframe.

In the reinforcement learning paradigm an agent
learns by interacting with its environment. The agent has a
goal that it tries to achieve and while striving towards this
goal the agent takes actions that affect the environment. The
agent senses the environment and thus knows the
consequences of its actions, both in terms of detecting the
current state of the world, and also by receiving a numerical
reward in a response to each action. The strategy that the
agent follows for deciding how to act in different situations
is called the agent’s policy. The agent seeks to learn the
optimal policy, that is, the policy that maximizes the overall
reward it receives in the long run.

Reinforcement learning problems are typically
formulated as Markov Decision Processes (MDPs).
Important world properties are used to represent unique
states in the MDP. The underlying assumption is that each
state represents all properties of the environment that are
important for decision making in that state (Sutton and Barto
1998). The actions the agent takes give the agent an
immediate reward and transfer it to a (possibly) new state.
These state transitions are not necessarily deterministic.

Formulating the Learning Problem

We can formulate the sprinting game as a MDP. The 200-
meter long running course is divided into 20 consecutive 10-
meter zones. The creature makes a decision at the beginning
of each zone how fast to run. It can choose between four
progressively faster speeds: walking, jogging, running, and
sprinting. Each running speed affects the creature’s
endurance differently. The creature’s endurance is
represented with 21 discrete levels, ranging from 0
(minimum endurance) to 20 (maximum endurance). The
endurance decreases 2 levels each zone sprinted, decreases 1
level when running, does not change when jogging, and
replenishes by 1 level when walking. The endurance can
though never exceed twenty nor become less than zero. If the
endurance becomes zero the creature can not run anymore,
but must instead walk the next zone to replenishing its
endurance. Over all, the decision of how fast to run through
a zone depends on which zone the creature is in and its
remaining level of endurance. This formulation of the
running game allows us to represent it as a (cycle-free)
Markov-Decisions Process (MDP), as shown in Figure 3.

Figure 3. Sprinting game as MDP

Each state is uniquely represented by a (z, e) pair,

where z is the current zone (1-20) and e the remaining
endurance level (0-20). There are in total 421 different states
(21 states for each of the 20 zones plus one final state). The
transitions between the states represent the running speed
actions, each resulting in us ending in the next zone,
although with different remaining endurance. The actions are
deterministic and the reward returned by each action is the
negation of the time it takes to run the zone at the given
speed. The states we draw actions for are shown as dark
colored in Figure 3; the light colored states will also have
analogous actions although they are not shown. There are 4
possible actions in each state (walk, jog, run, sprint), except
in states where endurance is 0 where there is only one
possible action (walk).

Depending on the creature characteristics a different
MDP might be created. For example, if the creature is
overweight the sprinting action might be disabled, or the
stamina might drain or replenish at a different phase. Also,
the walking or running speed (the rewards) may differ from
one creature to the next or by how well the creature is
conditioned. The optimal racing strategy may therefore
differ from one run to the next, and therefore it may be non-
trivial for the user to figure out the correct policy each time.

Q-learning

For learning the optimal policy we use a well-known
reinforcement learning algorithm, Q-learning (Watkins
1989). The pseudo-code of the algorithm is shown in Fig. 4.

Figure 4. The Q-learning algorithm

Initialize all Q(s,a)
Repeat (for all running episode):
 Set s to be a starting state
 Repeat (for each step in run):
 Choose a from s using agent policy
 Take action a, observe r, s’
 Q(s,a)←Q(s,a)+α[r+γmaxa´Q(s´,a´)-Q(s,a)]
 s ← s’
 Until s is goal state
End

© IJIGS/University of Wolverhampton/EUROSIS

 The action-value function Q(s, a) gives for each
state the value of each of its actions. This is the function we
must approximate. Once the learning is finished an optimal
policy is easily achieved simply by greedily choosing in each
state the action with the highest Q(s, a) value.

In the beginning the Q(s, a) function is initialized
with arbitrary values. Next we execute many learning
episodes from a given starting state; in our case a 200-meter
sprint from a staring position (any zone 1 state can be a start
state, depending on the initial endurance of the creature). For
each episode a decision is made in each step (zone) what
action to take, that is, how fast to run. We use an ε-greedy
strategy to pick an action, that is, ε part of the time a random
action is taken, but otherwise the best action is taken. The
best action is the one with the currently highest Q(s, a)
value. It is necessary to occasionally take locally non-
optimal actions for exploration purposes, otherwise we risk
getting stuck in local optima and never finding an improved
policy. This is the reason for using the ε-greedy strategy.
Typically one gradually decreases the exploration rate as
more and more episodes are executed. The update rule

 Q(s,a) ← Q(s,a)+α[r+γmaxa´Q(s´,a´)-Q(s,a)]

gradually updates the Q(s, a) action-values until they
converge. The constant α is an adjustable step size
parameter, and γ is a discount factor of future rewards (not
used in our case, that is, set to 1.0). The term r is the current
reward, s and a are the current state and action respectively,
s’ is the next state and a’ an action from that state. The
maxa´Q(s´,a´) function returns the value of the currently
best action from state s’. The Q-learning algorithm assures
convergence to optimal values (in the limit) given that the
basic Markov properties hold and the α parameter is set
appropriately. For a more detailed discussion of Q-learning
see for example (Sutton and Barto 1998).

Improving the learning speed

The standard Q-learning algorithm was able to learn the
optimal running strategy in our domain within a couple of
thousand episodes. However, there were two problems with
this approach:

• The first is that this is far too slow convergence for
the algorithm to be practical in our application
domain. Even a few hundred episodes would be
excessive.

• The second problem is that the player itself has no
control over the learning and is simply a passive
observer. This could potentially make long learning
sessions uninteresting.

To overcome the above problems we designed the game
such that the user is allowed to participate in the decision
process, effectively taking on the role of a coach by giving
feedback. This not only allows the user to take on a more
active role in the game, but the player’s input can
additionally be used to reduce the convergence time of the
Q-learning algorithm.

During a run the user observes the creature and can
overwrite its decisions. In other words the user can tell it to
run either slower or faster. We record the user’s (last)
preferred action in each MDP state encountered. There are
two different ways we can use the user’s feedback to speed
up the learning.

Imitation Runs

During a many episode training process we periodically
rerun a running episode coached by the user, taking the user
preferred actions where applicable. These reruns are done in
the background and are transparent to the user. Given that
the user gave good advice, the creature will get better result
sooner and thus starts adapting the good strategy. However,
if the advice was not good the creature might get temporarily
sidetracked, but then gradually moves away from the user’s
strategy.

Bonus Reward Points

In this approach extra reward points are awarded to the user-
preferred action during regular running episodes. On one
hand, this approach has the benefit of not requiring extra
reruns. On the other hand, it can be potentially dangerous
because we are changing the learning problem. Because of
the bonus reward the total reward is not anymore the
negation of the total running time. Despite this, given that
the feedback is useful, Q-learning can still learn an optimal
policy (and that quickly!). Conversely, giving bad user
advice can delay the learning process and even possibly
prevent optimal policy to be learned. Note, however, that this
does reflect a real life scenario where bad advice from a
coach is harmful if always followed blindly.

EXPERIMENTS

This section gives the experimental results of a comparison
study between standard Q-learning and Q-learning
augmented with the enhancements proposed above: imitation
runs and bonus reward. We ran the enhanced Q-learning
methods every fifth episode (instead of a regular episode).

At the start of a 200-meter sprint the creature has
full endurance (level 20). The time it takes to traverse a
zone when walking, jogging, running, and sprinting are 1.5
s., 0.8 s., 0.4s. and 0.1s., respectively. When using an
optimal strategy (running all but the last zone where one
sprints) the running time for the 200 meters will be 7.7 s.
The ε parameter is set to 0.15 and α to 1.0. We ran the three
different learning approaches until convergence was reached
observing how long it took them to find an optimal policy.
The performance of the three methods is shown in the
following graphs. Each data point represents the running-
time average of 10 independent runs (tie-breaks between
equally good actions are broken randomly; therefore we base
each data point on several runs).

© IJIGS/University of Wolverhampton/EUROSIS

7

7,5

8

8,5

9

9,5

10

10,5

11

11,5

12

10 60 110 160 210 260 310 360 410 460

Standard Imitation Runs Bonus Points

Figure 5. Coach providing helpful advice

 Figure 5 shows how the learning progresses when
the user provides useful advice (the user performs the
optimal running sequence). Both the enhanced Q-learning
methods converge faster than the standard method. Within
100 episodes they have discovered the optimal policy. The
standard Q-learning needs about 2000 episodes for that. This
is a twenty fold reduction in the number of episodes. We ran
similar experiments with slightly different values for the ε
and α parameter, but all yielded similar results.
 We were also curious to know what happens if the
coach provides useless advice. We ran the same set of
experiments, but now with a random strategy interleaved
every fifth episode. The result is shown in Figure 6. Now all
methods perform similar, although the Imitation Run method
is slightly worse to start with. However, within 300 runs they
all have converged to an equally good policy and within
about 2000 episodes to an optimal one (same as standard Q-
learning). The reason why random advice does not seem to
hurt is that Q-learning is a so-called off-policy algorithm, that
is, it can learn a good policy while following an inferior one.

Finally, we experimented with the case where the
user deliberately advices a bad policy (walk all the way). In
this case both the enhanced algorithms started out really
badly but were eventually able to recover, although it took
somewhat longer this time. We did not expect beforehand
that the Bonus reward approach would be able to recover
because the learning problem has been changed. However,
because the enhanced Q-version is executed only 20% of the
time and the reward bonus is relatively small, the change in
total reward is small enough not to affect what is an optimal
policy. However, this is not necessarily always the case, and
one must be careful using this approach in situations where
there are several policies similar in quality.

CONCLUSIONS

In this paper we introduced and experimented with
techniques for incorporating user-guided feed-back into
reinforcement learning. The proposed techniques can
drastically reduce the number of training episodes necessary
for convergence. They are also robust against the case where
the user provides useless feedback. In our game these
techniques contributed to the success of the learning by
making the learning algorithm converge much faster. This is

7

7,5

8

8,5

9

9,5

10

10,5

11

11,5

12

10 60 110 160 210 260 310 360 410 460

Standard Imitation Runs Bonus Reward

Figure 6. Coach providing random advice

in our view especially important in mobile games not only
because of limited computing resources, but also the fact that
typical user game-playing sessions on mobile devices are
generally much shorter than on other game platforms

As a future work we are investigating other ways of
incorporating and reusing user feedback, as well as
measuring how well the techniques scale up to larger and
more complex learning tasks.

REFERENCES

Evans, R. 2002. “Varieties of Learning” In AI Game
Programming Wisdom, Steve Rabin, eds. Charles River Media Inc.,
Hingham, Massachusetts.

Manslow, J. 2004. “Using Reinforcement Learning to Solve AI
Control Problems” In AI Game Programming Wisdom 2, Steve
Rabin, eds. Charles River Media Inc., Hingham, M.A., 591-601.

Spronck, P.; Sprinkhuizen-Kuyper, I.; and Postma E. 2003.
“Online Adaptation of Game Opponent AI in Simulation and in
Practice”. In Proceedings of the 4th International Conference
on Intelligent Games and Simulation (GAME-ON 2003),
EUROSIS, Belgium, 93-100.

Sutton, R. S. and Barto, A. G. 1998. Reinforcement Learning: An
Introduction. The MIT Press, Cambridge, Massachusetts.

Tesauro, G. J. 1994. “TD-Gammon, a self-teaching backgammon
program, achieves master-level play.” Neural Computation, 6(2):
215-219.

Watkins, C. J. C. H. 1989. “Learning from Delayed Rewards.”
Ph.D. thesis, Cambridge University.

BIOGRAPHY

The first author is an associate professor at the School of
Computer Science, Reykjavik University. He holds a Ph.D.
degree in computer science from the University of Alberta,
Canada, specializing in AI. Prior to moving to Reykjavik
University he was for several years a research scientist with
the GAMES group at the University of Alberta working on
AI in games. The GAMES group has industrial ties with
both Electronic Arts and Bioware Inc. The other co-authors
are students at the School of Computer Science, Reykjavik
University.

