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ABSTRACT 
 
Reinforcement learning methods are not yet widely used in 
computer games, at least not for demanding online learning 
tasks. This is in part because such methods often require 
excessive number of training samples before converging. 
This can be particularly troublesome in mobile game devices 
where both storage and CPU are limited and valuable 
resources. In this paper we describe a new AI-based game 
for mobile phones that we are currently developing. We 
address some of the main challenges of incorporating 
efficient on-line reinforcement learning methods into such 
gaming platforms. Furthermore, we introduce two simple 
methods for interactively incorporating user feed-back into 
reinforcement learning. These methods not only have the 
potential of increasing the entertainment value of games, but 
they also drastically reduce the number of training episodes 
needed for the learning to converge. This enhancement made 
it possible for us to use otherwise standard reinforcement 
learning as the core part of the learning AI in our game.  
 
INTRODUCTION 
 
Reinforcement learning methods have in recent years 
increased in popularity and are now-a-days used for solving 
various demanding learning tasks.  Although they have been 
used successfully for years in for example classic board 
game-playing programs (Tesauro 1994), they have only 
recently caught the interest of the commercial game 
community (Evans 2002; Manslow 2004). However, one of 
the main criticisms these methods have met is their lack of 
efficiency. That is, many trials are often needed before the 
learning converges, rendering them practically inapplicable 
in fast paced game environments where many trials are a 
luxury one cannot afford. For any on-line learning method to 
be applicable in practice in games it needs to be fast, 
effective, robust, and efficient (Spronck 2003).   

In this paper we address some the challenges of 
incorporating efficient on-line reinforcement learning 
techniques into gaming environments. We are using 
reinforcement learning as the central component in an AI-
based game that we are developing for mobile phones ― a 
platform where efficiency is of a paramount importance, in 
part because of limited CPU power.  We describe the main 
learning method used in our game, and introduce and 
experiment with two enhancements that allow us to 

incorporate user feedback interactively into the learning 
process. Not only does this allow the user to take on a more 
active role in the development of the game characters, but 
also drastically reduces the number of training episodes 
needed for the learning to converge.   

These enhancements made it feasible for us to use 
reinforcement learning as the central learning component in 
our mobile game.  Although the game is still in early stages 
of development, we have finished prototypes of the 
components that most heavily rely on learning (the athletic 
training events). We used them to demonstrate the feasibility 
of reinforcement learning when augmented with the new 
learning enhancements.  

The remainder of the paper is structured as follows. 
In the next section we give an overview of the game, and 
thereafter we explain in detail the learning procedure used in 
the athletic training event module. We next provide 
experimental results, and finally conclude and discuss future 
work.  
 
GAME DESCRIPTION 
 
The game consists of a (pet) creature in a virtual home 
environment inside a mobile phone or PDA. The objective of 
the game is to raise a creature with desirable characteristics.  
The player (user) decides which characteristics are 
important, and he or she has various ways of interacting with 
the creature to help shape its character. This is in the spirit of 
games like Black & White. For example, a player might want 
to raise the creature to be a good athlete, and would therefore 
have the creature do activities that develop athletic skills, 
such as swimming or running. Alternatively, the player 
might prefer more of a thinking creature, and instead have it 
read books and solve puzzles. In addition to these training 
activities, the user can show off the creature’s skills by 
having it participate in competitions like athletic or mind-
game events. These competitions can be either single-player 
(e.g. racing against time) or multi-player (e.g. competing 
against a friend’s creature). 
 
Game Architecture 
 
The game is written in Java2 Micro Edition (CLDC 1.1 and 
MIDP 2.0). Most new phones do or will support these new 
standards. We have tested the game on a Nokia 6230 mobile 
phone. 
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Figure 1.  The main modules of the game 
 
The main modules of the game are shown in Figure 1.  These 
modules are loosely coupled and all communications 
between them are done via interfaces. 

Daily-life 
This module focuses on the creature’s principal needs, such 
as eating, drinking, sleeping, and social interaction.  The 
food has various attributes; it can be healthy, tasty, fattening 
etc. Healthy and fattening food types have physical impact 
on the creature, where as attributes such as taste affect the 
creature’s mental condition (we’re not too happy when we 
need to eat something that tastes bad). 

Events 
This module contains various sub-games and challenges 
where the user can train the creature in various skills and 
activities and benchmark its performance. These include 
physical activities such as sprinting and swimming events, 
and simple mind-games like 9-men-morris. The more 
training the creature gets in an activity the better it becomes.  
Not only do the physical or mental attributes improve, but 
the creature also learns the best strategy for the given 
activity, for example a good strategy in 9-men-morris, or 
how to pace its speed during a 200 meter sprinting event.  
During the training the user may play the role of a personal 
trainer by giving advices, for example by playing a game 
against it or telling it how to pace its speed during a training 
run.  

Competitions 
Players can sign their creatures up for competitions and 
tournaments, either single or multi-player. The primary 
purpose is to show-off abilities of the creature, but good 
results in such competitions (such as 1st prize in a sprinting 
competition) can provide the player with money and rare 
valuable items. In a competition the creature’s performance 
is decided by its unique combination of personality, abilities, 
and skills acquired through training and other previous 
interactions with the user. Thus it is important to train the 
creature well before entering a competition. 

Mobile 
All mobile device specific code, such as graphics, 
communications, menus and other user interface components 
are kept in a separate module. This enforces transparent 
design which will enable the game to be extended to other 
gaming platforms. 
 
Game AI 
 
Machine learning plays a central role in this game. The main 
objective of the game AI is to support creatures that evolve 
and adapt based on the player’s preference. There are several 
attributes that make one creature distinct from the next, both 
physical (such as strength, dexterity, constitution, fat and 
health) and mental (such as intelligence, wisdom, patience 
and social behavior). The way the user interacts with the 
creature affects how these different attributes develop. The 
exact learning tasks are somewhat different and can be 
coarsely divided in two. 

 In the Daily-life module the task of the learning is to 
allow the various characteristics of the creatures to adapt and 
develop in response to the user’s input. The user is here 
primarily in a parenting role. The creature, when left 
unattended, starts exploring and doing things on its own. For 
example, it could: go hang out around the eating bowl 
looking for food, go playing, eat your slippers, give you 
flowers, break your favourite vase, or even poop on the 
floor.  It is up to the user to raise the creature in a way such 
that it acts responsibly, for example by rewarding it when it 
does good things and punishing it when it does undesirable 
things, e.g. eating unhealthy, staying up late, or avoiding 
exercise and social interactions. These are all activities that 
negatively affect the creature’s health and might possibly 
eventually lead to its death. 

In the Events module, on the other hand, the creature 
learns from experience by repeatedly performing athletic or 
mind game activities. The more it practices the better it gets 
at these activities. There is no input necessary from the user. 
However, if the user wants she can act as a coach and give 
advice. The creature takes notes of and uses the advice to 
speed up its learning curve. In this paper we will focus on 
the learning in this module. 

 

 
 

Figure 2. A scene from the Sprinting sub-game 
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LEARNING 
 
In here we describe the learning method used in the game’s 
athletic training events.  All the different sport training 
events (currently only sprinting and swimming) use the same 
underlying reinforcement learning based methodology. The 
task is to learn the optimal racing strategy for the given 
event, possibly with some learning input from the user. The 
best strategy will differ from one creature to the next because 
of different physical characteristics (e.g. weight and 
maximum stamina). For the same reason the optimal racing 
strategy may differ from one week (or day) to the next, 
because the physical condition of the creature might have 
changed in that timeframe. 

In the reinforcement learning paradigm an agent 
learns by interacting with its environment. The agent has a 
goal that it tries to achieve and while striving towards this 
goal the agent takes actions that affect the environment. The 
agent senses the environment and thus knows the 
consequences of its actions, both in terms of detecting the 
current state of the world, and also by receiving a numerical 
reward in a response to each action. The strategy that the 
agent follows for deciding how to act in different situations 
is called the agent’s policy. The agent seeks to learn the 
optimal policy, that is, the policy that maximizes the overall 
reward it receives in the long run.  

Reinforcement learning problems are typically 
formulated as Markov Decision Processes (MDPs).  
Important world properties are used to represent unique 
states in the MDP. The underlying assumption is that each 
state represents all properties of the environment that are 
important for decision making in that state (Sutton and Barto 
1998). The actions the agent takes give the agent an 
immediate reward and transfer it to a (possibly) new state. 
These state transitions are not necessarily deterministic. 
 
Formulating the Learning Problem 
 
We can formulate the sprinting game as a MDP.  The 200-
meter long running course is divided into 20 consecutive 10-
meter zones. The creature makes a decision at the beginning 
of each zone how fast to run. It can choose between four 
progressively faster speeds: walking, jogging, running, and 
sprinting.  Each running speed affects the creature’s 
endurance differently. The creature’s endurance is 
represented with 21 discrete levels, ranging from 0 
(minimum endurance) to 20 (maximum endurance). The 
endurance decreases 2 levels each zone sprinted, decreases 1 
level when running, does not change when jogging, and 
replenishes by 1 level when walking.  The endurance can 
though never exceed twenty nor become less than zero. If the 
endurance becomes zero the creature can not run anymore, 
but must instead walk the next zone to replenishing its 
endurance. Over all, the decision of how fast to run through 
a zone depends on which zone the creature is in and its 
remaining level of endurance. This formulation of the 
running game allows us to represent it as a (cycle-free) 
Markov-Decisions Process (MDP), as shown in Figure 3. 

 
 

Figure 3. Sprinting game as MDP 
 

 
Each state is uniquely represented by a (z, e) pair, 

where z is the current zone (1-20) and e the remaining 
endurance level (0-20). There are in total 421 different states 
(21 states for each of the 20 zones plus one final state). The 
transitions between the states represent the running speed 
actions, each resulting in us ending in the next zone, 
although with different remaining endurance. The actions are 
deterministic and the reward returned by each action is the 
negation of the time it takes to run the zone at the given 
speed. The states we draw actions for are shown as dark 
colored in Figure 3; the light colored states will also have 
analogous actions although they are not shown. There are 4 
possible actions in each state (walk, jog, run, sprint), except 
in states where endurance is 0 where there is only one 
possible action (walk). 

Depending on the creature characteristics a different 
MDP might be created. For example, if the creature is 
overweight the sprinting action might be disabled, or the 
stamina might drain or replenish at a different phase. Also, 
the walking or running speed (the rewards) may differ from 
one creature to the next or by how well the creature is 
conditioned.  The optimal racing strategy may therefore 
differ from one run to the next, and therefore it may be non-
trivial for the user to figure out the correct policy each time. 
 
Q-learning 
 
For learning the optimal policy we use a well-known 
reinforcement learning algorithm, Q-learning (Watkins 
1989). The pseudo-code of the algorithm is shown in Fig. 4.  
 
 

 
 

Figure 4. The Q-learning algorithm 

Initialize all Q(s,a)  
Repeat (for all running episode): 
 Set s to be a starting state 
 Repeat (for each step in run): 
   Choose a from s using agent policy 
   Take action a, observe r, s’  
   Q(s,a)←Q(s,a)+α[r+γmaxa´Q(s´,a´)-Q(s,a)] 
   s ← s’ 
 Until s is goal state 
End 
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 The action-value function Q(s, a) gives for each 
state the value of each of its actions. This is the function we 
must approximate. Once the learning is finished an optimal 
policy is easily achieved simply by greedily choosing in each 
state the action with the highest Q(s, a) value. 

In the beginning the Q(s, a) function is initialized 
with arbitrary values. Next we execute many learning 
episodes from a given starting state; in our case a 200-meter 
sprint from a staring position (any zone 1 state can be a start 
state, depending on the initial endurance of the creature). For 
each episode a decision is made in each step (zone) what 
action to take, that is, how fast to run. We use an ε-greedy 
strategy to pick an action, that is, ε part of the time a random 
action is taken, but otherwise the best action is taken. The 
best action is the one with the currently highest Q(s, a) 
value.  It is necessary to occasionally take locally non-
optimal actions for exploration purposes, otherwise we risk 
getting stuck in local optima and never finding an improved 
policy. This is the reason for using the ε-greedy strategy.  
Typically one gradually decreases the exploration rate as 
more and more episodes are executed. The update rule 
 
  Q(s,a) ← Q(s,a)+α[r+γmaxa´Q(s´,a´)-Q(s,a)] 

 
gradually updates the Q(s, a) action-values until they 
converge. The constant α is an adjustable step size 
parameter, and γ is a discount factor of future rewards (not 
used in our case, that is, set to 1.0).  The term r is the current 
reward, s and a are the current state and action respectively, 
s’ is the next state and a’ an action from that state. The 
maxa´Q(s´,a´) function returns the value of the currently 
best action from state s’. The Q-learning algorithm assures 
convergence to optimal values (in the limit) given that the 
basic Markov properties hold and the α parameter is set 
appropriately. For a more detailed discussion of Q-learning 
see for example (Sutton and Barto 1998). 
 
Improving the learning speed 
 
The standard Q-learning algorithm was able to learn the 
optimal running strategy in our domain within a couple of 
thousand episodes.  However, there were two problems with 
this approach: 

• The first is that this is far too slow convergence for 
the algorithm to be practical in our application 
domain.  Even a few hundred episodes would be 
excessive. 

• The second problem is that the player itself has no 
control over the learning and is simply a passive 
observer.  This could potentially make long learning 
sessions uninteresting.  

 
To overcome the above problems we designed the game 
such that the user is allowed to participate in the decision 
process, effectively taking on the role of a coach by giving 
feedback. This not only allows the user to take on a more 
active role in the game, but the player’s input can 
additionally be used to reduce the convergence time of the 
Q-learning algorithm.   

During a run the user observes the creature and can 
overwrite its decisions. In other words the user can tell it to 
run either slower or faster.  We record the user’s (last) 
preferred action in each MDP state encountered.  There are 
two different ways we can use the user’s feedback to speed 
up the learning. 
 
Imitation Runs 
 
During a many episode training process we periodically 
rerun a running episode coached by the user, taking the user 
preferred actions where applicable.  These reruns are done in 
the background and are transparent to the user. Given that 
the user gave good advice, the creature will get better result 
sooner and thus starts adapting the good strategy. However, 
if the advice was not good the creature might get temporarily 
sidetracked, but then gradually moves away from the user’s 
strategy. 
 
Bonus Reward Points 
 
In this approach extra reward points are awarded to the user-
preferred action during regular running episodes.  On one 
hand, this approach has the benefit of not requiring extra 
reruns. On the other hand, it can be potentially dangerous 
because we are changing the learning problem. Because of 
the bonus reward the total reward is not anymore the 
negation of the total running time. Despite this, given that 
the feedback is useful, Q-learning can still learn an optimal 
policy (and that quickly!). Conversely, giving bad user 
advice can delay the learning process and even possibly 
prevent optimal policy to be learned. Note, however, that this 
does reflect a real life scenario where bad advice from a 
coach is harmful if always followed blindly.  
 
 
EXPERIMENTS 
 
This section gives the experimental results of a comparison 
study between standard Q-learning and Q-learning 
augmented with the enhancements proposed above: imitation 
runs and bonus reward.  We ran the enhanced Q-learning 
methods every fifth episode (instead of a regular episode). 

At the start of a 200-meter sprint the creature has 
full endurance (level 20).  The time it takes to traverse a 
zone when walking, jogging, running, and sprinting are 1.5 
s., 0.8 s., 0.4s. and 0.1s., respectively.  When using an 
optimal strategy (running all but the last zone where one 
sprints) the running time for the 200 meters will be 7.7 s. 
The ε parameter is set to 0.15 and α to 1.0.  We ran the three 
different learning approaches until convergence was reached 
observing how long it took them to find an optimal policy. 
The performance of the three methods is shown in the 
following graphs.  Each data point represents the running-
time average of 10 independent runs (tie-breaks between 
equally good actions are broken randomly; therefore we base 
each data point on several runs). 
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Figure 5. Coach providing helpful advice 
 
 Figure 5 shows how the learning progresses when 
the user provides useful advice (the user performs the 
optimal running sequence). Both the enhanced Q-learning 
methods converge faster than the standard method. Within 
100 episodes they have discovered the optimal policy. The 
standard Q-learning needs about 2000 episodes for that. This 
is a twenty fold reduction in the number of episodes. We ran 
similar experiments with slightly different values for the ε 
and α parameter, but all yielded similar results.  
 We were also curious to know what happens if the 
coach provides useless advice. We ran the same set of 
experiments, but now with a random strategy interleaved 
every fifth episode. The result is shown in Figure 6.  Now all 
methods perform similar, although the Imitation Run method 
is slightly worse to start with. However, within 300 runs they 
all have converged to an equally good policy and within 
about 2000 episodes to an optimal one (same as standard Q-
learning). The reason why random advice does not seem to 
hurt is that Q-learning is a so-called off-policy algorithm, that 
is, it can learn a good policy while following an inferior one.   

Finally, we experimented with the case where the 
user deliberately advices a bad policy (walk all the way). In 
this case both the enhanced algorithms started out really 
badly but were eventually able to recover, although it took 
somewhat longer this time.   We did not expect beforehand 
that the Bonus reward approach would be able to recover 
because the learning problem has been changed.  However, 
because the enhanced Q-version is executed only 20% of the 
time and the reward bonus is relatively small, the change in 
total reward is small enough not to affect what is an optimal 
policy. However, this is not necessarily always the case, and 
one must be careful using this approach in situations where 
there are several policies similar in quality. 
 
CONCLUSIONS 
 
In this paper we introduced and experimented with 
techniques for incorporating user-guided feed-back into 
reinforcement learning.  The proposed techniques can 
drastically reduce the number of training episodes necessary 
for convergence. They are also robust against the case where 
the user provides useless feedback.    In our game these 
techniques contributed to the success of the learning by 
making the learning algorithm converge much faster.  This is  
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Figure 6. Coach providing random advice 
 
in our view especially important in mobile games not only 
because of limited computing resources, but also the fact that 
typical user game-playing sessions on mobile devices are 
generally much shorter than on other game platforms 

As a future work we are investigating other ways of 
incorporating and reusing user feedback, as well as 
measuring how well the techniques scale up to larger and 
more complex learning tasks. 
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