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Abstract

A complete partition of a graph is a partition of the vertex set such that any two classes are
connected by an edge. We consider the problem of finding a complete partition maximizing the
number of classes. This relates to clustering into the greatest number of groups so as to mini-
mize the diameter (inter-cluster connectivity) without concern for the intra-cluster topology.

We give a randomized algorithm that approximates the complete partitioning number within
a factor ofO(

√
log n) on regular graphs.

1 Introduction

A complete partitionof a graphG = (V,E) is a partition of the vertex set such that there is an
edge between members of any two classes. That is, a partitionV1, . . . , Vt of V is complete if, for
eachi, j, i 6= j, there is an edge(vi, vj) such thatvi ∈ Vi andvj ∈ Vj . TheCP problem is that
of finding a complete partition with maximum number of classes. Letcp(G) denote the maximum
number of classes in a complete partition of a graphG.

One easy observation is that since there must be an edge between any pair of classes,

cp(G) ≤ q(m),

wherem = |E(G)| andq(m) ≈
√

2m is the largest valuet such that
(
t
2

)
≤ m.

Motivation: Our complete partition problem falls under the general family of clustering prob-
lems with inter-cluster constraints (for example, each cluster should be an independent set) and
additionally, some constraints on the relation between different clusters.

An important example is that oflow diameter decomposition. There, the constraint is that the
diameter of every cluster is “low” and that the number of edges between clusters is “low”. Low
diameter partitions have numerous applications in, e.g., synchronization in distributed computation,
on-line tracking of mobile users, etc (see [AP90]).

The interplay between intra- and inter-cluster topology yields widely different considerations.
Separating these concerns may provide basic understanding that can be translated back to the com-
bined problems. In many ways, problems involving intra-cluster topology alone have been well
studied in the literature. Namely, we obtain graph partitioning problems where each class should
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satisfy some propertyΠ. The concern of the current paper is to study a basic problem involving
only the inter-cluster topology.

The motivation for the particular constraints as suggested in the complete partition problem
comes from the goal of allowing fast communication in presence of large number of processors in a
distributed setting.

Assume that the given graph represent the current communication lines between existing proces-
sors. Breaking the graph into “many” clusters implies that typically a cluster is of small size. This
makes possible to cheaply add some fast means of communication (such as a bus) between vertices
of the same cluster. In addition, if the partition is complete, fast communication between different
clusters is possible using already existing communication lines. This can be useful in speeding the
execution of important basic primitives such as broadcast.

Our results: We give the first bounds on the approximability of the complete partitioning prob-
lem. We present (in Section 2) a randomized algorithm that finds a complete partition of size
Ω(q(m)/

√
log n) on regular graphs. Sinceq(m) is an upper bound on the complete partitioning

numbercp(G), this yields an absolute approximation factor ofO(
√

log n). We also show (in Sec-
tion 4) that for random graphs withm edges,cp(G) = O(q(m)/

√
log n), implying that the gap of

aθ(
√

log n)-factor is tight.

Related work: The cardinality of a maximum complete partition has been studied in graph the-
ory as thepseudo-achromatic number. It was introduced by Gupta [G69], and shown NP-hard by
Knisely [K92]. Before discussing these results further, we first introduce some related problems,
citing only the most relevant results.

A coloring is a partition into independent sets, and a complete coloring is a complete partition
into independent sets. The minimum (maximum) number of colors in a complete coloring of a
graph is itschromatic number(achromatic number). The achromatic number is a lower bound on
the pseudo-achromatic number, and is particularly relevant to this work. Theharmoniousnumber
is the minimum number of colors in a coloring such that there is at most one edge connecting any
pair of color classes. A coloring that is both complete and harmonious uses at mostq(m) colors,
and thus forms also an optimal complete partition.

Cairnie and Edwards [CE97] showed that the achromatic number is NP-hard for trees by show-
ing that it is NP-hard to determine if a graph contains a complete harmonious coloring. It therefore
also yields the NP-hardness forCP of trees. Bodlaender’s [Bod89] proof of the NP-hardness for
graphs that are simultaneously cographs and interval graphs has the same property and also yields
hardness forCP . Cairnie and Edwards [CE98] gave an algorithm that finds a complete coloring of
trees having bounded degree with at leastq(m) − 1 colors. Thus,CP also has an approximation
with an additive term of 1.

There are few maximum partitioning problems known that do not involve colorings. Adomatic
partition is a partition of the vertex set into dominating sets. Feige et al. [FHKS00] gave a random-
ized algorithm that finds a domatic partition intoδ(1−o(1))/ log n classes, while any such partition
contains at mostδ classes (δ is the minimum degree of the graph). It was also shown that it was
hard to approximate the problem within a factor of(1− ε) logn, for anyε > 0.

2



2 Algorithms for regular graphs

This section is devoted to the following result.

Theorem 2.1 There is a polynomial time randomized algorithm that finds a complete partition of a
d-regular graph intoΩ(

√
dn/ log n) classes.

The algorithm can be made deterministic using the method of conditional expectation. Note that
for G regular, we have an easy upper bound ofcp(G) ≤ q(m) ≤

√
dn.

Corollary 2.2 For G regular,Ω(q(m)
√

log n) ≤ cp(G) ≤ q(m).
Let t = c

√
dn/ lnn for a constantc to be determined later. Randomly partition the vertex set

V (G) into 2t equal-sized classes:S1, S2, . . . , St andT1, T2, . . . , Tt. LetS = ∪iSi andT = ∪iTi.
We also introduce the following notation. LetnS = |S| andnT = |T |, son = nS + nT . Let

dT (dS) be the degree of vertices inT (S), respectively. Writet = c′
√
dTnT / lnnT .

We say thatSi is expandingif the size of the neighborhood ofSi in T , NT (Si) = N(Si) ∩ T ,
is at least(1− e−dT /4t)nT . LetC = {Si ∪ Ti|Si is expanding}. Observe thatC can be computed in
polynomial time. We show that with some constant probability,C is a complete partition of at least
Ω(t) classes.

Let t̃ = C be the random variable denoting the number of expanding setsSi.

Lemma 2.3 Pr
[
t̃ ≥ t

4

]
≤ 1

2
.

Thus with probability at least half,C contains at leastt/4 sets. Before proving this lemma, and the
following lemma, let us continue to prove our main result.

We writeSi ∼ Tj to denote that there is an edge ofG connectingSi andTj . LetAij denote the
event thatSi 6∼ Tj conditioned onSi being anA-expander.

Lemma 2.4 Pr [Aij ] ≤
1
t2
.

Since there are at most
(
t
2

)
< t2/2 pairs of sets inC, Lemma 2.4 implies that with probability at

least1/2, the sets inC are pairwise adjacent. We arbitrarily add to these sets any vertices not already
included in them. Thus, using Lemma 2.3, the resultingC is a complete partition of size at leastt/5,
with probability at least12 ×

1
2 = 1

4 . It remains to prove Lemmas 2.3 and 2.4.

Proof of Lemma 2.3: To prove the lemma, it suffices to show the following claim.
Claim 2.5 The probability that a givenSi is expanding is at least1/2.
The claim implies that

E
[
t̃
]
≥ t/2.

which by Markov inequality yields the statement of the lemma.
It remains to prove the claim. LetSi be one of the sets randomly chosen fromS, and letw be a

vertex inT . In order forw not to be contained inNT (Si), all thedT neighbors ofw must fail to be
chosen forSi. That is,

Pr [w 6∈ NT (Si)] =
(
|Si|
dT

)
/

(
nS
dT

)
≤ (1− 1/t)dT ≤ e−dT /t.

We divide the rest of the proof into two cases.
Cased ≥ 2t: Then, the expected size ofNT (Si) is at least

E [|NT (Si)|] ≥ (1− e−dT /t)nT .
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Sincent is the maximum possible size ofNT (Si), we have by Markov that

Pr
[
|NT (Si)| ≥ (1− 2e−dT /t)nT

]
≥ 1

2
.

Since2e−dT /t ≤ e−dT /2t, this says that the probability thatSi is expandingis at least half, as
claimed.
Cased ≤ 2t: Now,

Pr [w 6∈ NT (Si)] ≤ e−dT /t ≤ 1− dT /2t.
The expected size ofNT (Si) is then at least

E [|NT (Si)|] ≥
dTnT

2t
,

while the maximum size ofNT (Si) can be bounded bydS |Si| = dSnS/t = dTnT /t. By Markov
again,

Pr
[
|NT (Si)| ≥

dTnT
4t

]
≥ 1

2
.

SincedT /t ≥ 1− edT /t, this implies that the expansion probability is at least half, as claimed.

Proof of Lemma 2.4: CasedT ≥ t: For an expanding setSi,

Pr [Aij ] =
(
|NT (Si)|
|Tj |

)
/

(
nT
|Tj |

)
≤

(
|NT (Si)|
nT

)|Tj |
.

Recalling the size ofTj and the definition of expansion, we have that

Pr [Aij ] ≤ (e−dT /4t)nT /t = e− logn/4c2 = n1/(4c2).

Thus, the lemma holds for anyc ≤
√

1/8.

2.1 Upper bound oncp(G):

We propose a new upper bound on the optimal solution sizecp(G) that applies also to non-regular
graphs. The boundq(m) is a good approximation ofcp(G), whenG is regular, but can be far off
whenG is non-regular. For instance, whenG is the complete bipartite graphKd,n−d, q(m) ≈

√
dn,

while cp(G) = d+ 1. Thus,q(m) can differ by a factor of as much as
√
n.

Definition 2.1 A subgraphH ⊆ G is degree-stuntedif ∆(H) < q(|H|).
Defineq∗(G) to be the largest valueq(|H|) of a degree-stunted subgraphH. The subgraphH

with q(|H|) = q∗(G) is the maximum degree-stunted subgraph ofG.

To see thatq∗(G) forms an upper bound oncp(G), consider a maximum complete partition
V1, . . . , Vcp(G). Select arbitrary

(
cp(G)

2

)
edgesei,j , 1 ≤ i < j ≤ cp(G) such thatei,j connects

vertices inVi andVj , and letH be the subgraph ofG formed by the edgesei,j . Then,q(|H|) =
cp(G) while the degree of each vertex is at mostcp(G)− 1, soH is degree-stunted.

Intuitively, at mostt−1 edges incident on a vertex can ever contribute to a completet-partition;
thus, we may safely ignore the other edges.

The proof of the following claim is omitted. The computation involves a reduction to a maxi-
mum matching problem.

Claim 2.6 A maximum degree-stunted subgraph of a graphG can be found in polynomial time.
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3 Random graphs

This section is devoted to the following result that shows that the
√

log n gap of our randomized
algorithm is unavoidable.

Theorem 3.1 LetG = Gn,p be a random graph. Letm =
(
n
2

)
p. Then,cp(G) = O(q(m)/

√
log n),

with high probability.

Proof: Let t = C
√
m/ lnn, for C large constant. Letd = pn = 2m/(n− 1).

Consider a given partition intot classes. At least half the number of classes in the partition have
at most2n/t nodes, twice the average number. Denote these classes asSP = {S1, S2, . . . , St′},
wheret′ ≥ t/2. The probability thatSi andSj are not connected by an edge is

(1− p)|Si|·|Sj | = e−p(2n/t)
2(1−o(1)) = e−2 logn/C2

= n−1/C′ ,

for constantC ′ = C2/(2 log 2). The probability thatSP is a complete partition is bounded above
by

(1− n−1/C′)(
t
2) ≤ e−m/(n1/C′ logn).

The number of unordered partitions of vertices intot classes is

nt = et lnn = em
1/2+o(1)

.

Thus, the probability that any of these partitions is complete is at most

em
1/2+o(1)−m1−1/C′

,

which forC ′ > 2 is exponentially small.
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