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Abstract

We consider the scheduling of biprocessor jobs under sum objective (BPSMS). Given a col-

lection of unit-length jobs where each job requires the use of two processors, find a schedule such

that no two jobs involving the same processor run concurrently. The objective is to minimize the

sum of the completion times of the jobs. Equivalently, we would like to find a sum edge coloring

of a given multigraph, i.e. a partition of its edge set into matchings M1, . . . ,Mt minimizing
∑

t

i=1
i|Mi|.

This problem is APX-hard, even in the case of bipartite graphs [M04]. This special case is

closely related to the classic open shop scheduling problem. We give a 1.8298-approximation

algorithm for BPSMS improving the previously best ratio known of 2 [BBH+98]. The algorithm

combines a configuration LP with greedy methods, using non-standard randomized rounding

on the LP fractions. We also give an efficient combinatorial 1.8886-approximation algorithm for

the case of simple graphs.

Key-words: Edge Scheduling, Configuration LP, Approximation Algorithms

1 Introduction

We consider the problem of biprocessor scheduling unit jobs under sum of completion times measure

(BPSMS). Given a collection of unit-length jobs where each job requires the use of two processors,

find a schedule such that jobs using the same processor never run concurrently. The objective is to

minimize the sum of the completion times of the jobs.

The problem can be formalized as an edge coloring problem on multigraphs, where the nodes

correspond to processors and edges correspond to jobs. In each round, we schedule a matching
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from the graph with the aim of scheduling the edges early on average. This is also known as sum

edge coloring. Formally, the BPSMS problem is: given a multigraphs G, find an edge coloring, or

a partition into a matchings M1,M2, . . ., minimizing
∑

i i · |Mi|.

Biprocessor scheduling problems have been studied extensively [AB+00, KK85, GKMP02, CGJL85,

Y05, GSS87, DK89, K96, FJP01]. Natural applications of biprocessor scheduling include, e.g., data

migration problems, [GKMP02, CGJL85, Y05], running two (or more) programs on the same job

in order to assure that the result is reliable [GSS87], mutual testing of processors in biprocessor

diagnostic links [KK85], and batch manufacturing where jobs simultaneously require two resources

for processing [DK89].

We survey some additional previous work on biprocessor scheduling. If jobs have varying length

then biprocessor scheduling of trees is NP-hard both in preemptive [M05] and non-preemptive [K96]

settings. Marx [M06] designed a polynomial-time approximation scheme (PTAS) for the case of

preemptive biprocessor scheduling of trees. This PTAS was generalized in [M05’] to partial k-trees

and planar graphs. Marx [M04] showed that BPSMS (unit jobs) is NP-hard even in the case of

planar bipartite graphs of maximum degree 3 and APX-hard in general bipartite graphs. When

the number of processors is constant, Afrati et al. [AB+00] gave a polynomial time approximation

scheme for minimizing the sum of completion times of biprocessor scheduling. Later, their results

were generalized in [FJP01] to handle weighted completion times and release times.

Related problems: A problem related to ours is minsum edge coloring with total vertex comple-

tion time objective. This problem has a setting similar to ours but with different objective function:

for each vertex compute the maximal color assigned to it and minimize the total sum of such colors

over all vertices. This problem is NP-hard but admits an approximation ratio of 1+φ ≈ 2.61 [M08]

on general graphs.

A problem more general than ours is the (vertex) sum coloring problem. Here, a feasible solution

assigns a color (a positive integer) to each vertex of the input graph so that adjacent vertices get

different colors. The goal is to minimize the sum of colors over all vertices. Thus, the BPSMS

problem is the special case of sum coloring line graphs of general graphs.

We survey some of the work done on the sum coloring problem. This problem is NP-hard

on interval graphs [M05], planar graphs [HK02], and is APX-hard on bipartite graphs [BK98]. It

admits a 1.796-approximation on interval graphs [HKS01], a PTAS on planar graphs [HK02] and a

27/26-approximation on bipartite graphs [GJKM04].

The literature on scheduling with the total completion time objective is quite extensive. The

approximation algorithms for such problems are usually based on completion time formulation

[HSSW97] or time-indexed formulation [ScSk02]. We refer the reader to [CK04] for a thorough

survey of this subject.

2



The only general approximation result for BPSMS is a 2-approximation algorithm in [BBH+98].

Improved bounds of 1.796 [GHKS04] and
√

2 [GM06] have been given for the special case of bipartite

graphs. The bipartite case lends additional importance to BPSMS as it captures a version of the

classic open shop scheduling problem and can be denoted as O|pij = 1|∑Cij using the standard

scheduling notation [LLRS]. The minsum open shop scheduling with general processing times was

studied in the series of papers [QS02, QS02’, GHKS04].

Our main tool for the main result is the solution of a configuration linear program (LP). A

configuration LP is a linear program with a large (usually exponential) number of variables. Usu-

ally, it contains a variable corresponding to each ”restricted” feasible solution, which in our case

corresponds to a feasible assignment of edges to a particular color. See also configuration LP’s for

assignment problems [FGMS06, NBY06, BS06, COR01] and an interesting application of the tech-

nique giving a variable for any tree spanning a certain collection of terminals [CCG+98]. Although

we are not aware of the instances with the integrality gap close to our performance guarantee even

for simpler linear program with assignment variables xet for each edge e and color t it easy to see

that the configuration LP is strictly stronger than the simple LP. For a multigraph consisting of

three vertices and k parallel edges between each pair of vertices the simple LP has optimal value

equal to 3k(k+1/2) (just spread each edge equally between 2k colors) while the value of an optimal

integral solution and the optimal value of the configuration LP is equal to 3k(3k + 1)/2.

1.1 Our results

Theorem 1.1 The BPSMS problem admits an LP-based approximation algorithm with expected

approximation ratio at most 1.8298.

This results holds even if the graph has parallel edges.

This LP-based approach has high polynomial time complexity. Hence, it is of practical interest

to study purely combinatorial algorithms.

Theorem 1.2 The BPSMS problem on graphs with no parallel edges admits a combinatorial algo-

rithm whose approximation ratio is at most 1.8886.

This algorithm combines ideas from [HKS01] and [V64].

2 An Overview of the Main Algorithm

The main algorithm proceeds as follows. We formulate a configuration integer program that con-

tains, for each matching M and time t, a variable xMt that represents whether M is to be scheduled

at time t. We solve the linear programming relaxation by means of the ellipsoid algorithm. We then

randomly round the variables in a way to be explained shortly. This results in a many-to-many
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correspondence of matchings to time slots. This is resolved by first randomly reordering matchings

assigned to the same time slot, and then scheduling the matching in the order of the rounding and

the reordering. Finally, the edges left unscheduled after this phase are then scheduled by a simple

greedy procedure that iteratively schedules the edges in the earliest possible time slot.

There are two twists to the randomized rounding. One is the introduction of a multiplier α,

eventually chosen to be 0.9076. Namely, the probability that matching M is selected at time t is

αxMt. This introduces a balance between the costs incurred by the edges of rounded matchings

and edges scheduled in the greedy phase.

The other variation is that each xMt value is chopped up into many tiny fractions that are

rounded independently. This ensures a much stronger concentration of the combined rounding,

which is crucial in the greedy phase. The main reason for using this “chopping” operation is purely

technical: we want the expected number of edges incident to a node v of degree dv that are not

covered during the first phase to be roughly e−αdv even for vertices of small degree. See Propo-

sition 3.5. The minimum number of chopping required is to n4 pieces (as the analysis indicates).

Smaller chopping will not carry the inequalities through and larger chopping will only worsen the

approximation ratio.

3 An Approximation Algorithm Using Configuration LP

Let n be the number of vertices in the graph and ∆ be the maximum degree. Let M denote the

collection of all (possibly non-maximal) matchings in the graph, including the empty matching. For

an edge h, letMh denote the set of matchings that contain h. We form an LP with a variable xMt

for each matching M and each time slot t. Observe that the number of rounds in any reasonable

schedule is at most Ψ = 2∆− 1, since each edge has at most 2∆ − 2 adjacent edges.

Minimize opt∗ =
∑

t,M

t|M |xMt

subject to:
∑

M∈M

xMt = 1 for each t (1)

∑

M∈Mh

∑

t

xMt = 1 for each edge h (2)

xMt ≥ 0 for each t and M

Equality (1) ensures that in an integral solution each round contains exactly one matching (if a

round is not used by the optimum then it is assigned an empty matching). Equality (2) indicates

that each edge belongs to exactly one scheduled matching. Since every valid solution must obey

these constraints, the linear programming relaxation is indeed a relaxation of our problem.
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Proposition 3.1 The LP can be solved exactly in polynomial time and we may assume the solution

vector is a basic feasible solution.

Proof: As the LP has an exponential number of variables, we consider the dual program. Equality

(1) receives a variable yt and Equality (2) receives a variable zh. The dual LP is then:

maximize
∑

h

zh +
∑

t

yt (3)

subject to:
∑

h∈M

zh + yt ≤ t · |M | for each round t and matching M (4)

In spite of having an exponential number of inequalities, the dual LP can be approximated to

an arbitrary precision by the ellipsoid algorithm when given a polynomial-time separation oracle.

Such an oracle must answer, within arbitrary precision, whether a candidate fractional solution is

{yt} ∪ {zh} is feasible, and in case it is not, output a violated inequality (see [Kh80]). A violated

inequality implies that for some M and t:

∑

h∈M

zh + yt > t|M |.

To find a violated inequality we look for every t for the largest weighted matching with weights

zh− t. The value of the solution is
∑

h∈M zh− t|M | for some matching M . Since we are maximizing
∑

h∈M zh− t|M |, if
∑

h∈M zh− t|M | ≤ yt, this inequality is true to every M . Otherwise, we found a

violated constraint. As long as we find separating hyperplanes we continue doing so until a feasible

solution is found (as one clearly exists). We may restrict the variables in the primal program to

those that correspond to violated dual constraints found (as these dual constraint suffice to define

the resulting dual solution). Thus, the number of variables is polynomial and the primal program

can be solved within arbitrary precision in polynomial time.

We may also assume that the solution is a basic feasible solution (see for example [J2001]).

3.1 The randomized rounding algorithm

For simplicity of the presentation the algorithm and analysis are for simple graphs. We point out

later the changes needed (in only one proof) if the graph has parallel edges. Let {xMt} be the

optimum fractional solution for the instance at hand. We assume that {xMt} is a basic feasible

solution. This means that the number of xMt variables with positive values is at most the number

of variables in the dual LP ; this is at most the number of rounds plus the number of edges, or at

most 2n2.

Let 1/2 ≤ α ≤ 1 be a universal constant whose value will be optimized later. For technical

reasons (to be clarified later) we need to do a chopping operation described as follows. Each xMt

is replaced by a set of n4 smaller fractions y1
Mt, . . . , y

n4

Mt, each with a value of xMt/n
4. We think of

yj
Mt as associated with a matching Mj,t = M and “responsible” for an xMt/n

4 fraction of xMt.
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The algorithm has a randomized phase followed by a deterministic phase. The random phase

first assigns to each time slot t a bucket Bt of matchings, all provisionally requesting to occupy that

slot. Since bucket Bt may currently contain more than one matching, a procedure is needed to

decide which unique matching to use in each round t. In this spreading procedure, the matchings

are evenly distributed so that each actual round t receives at most one matching, thus forming a

proper schedule. Because of the spreading, the actual unique matching assigned to round t may

not even belong to Bt.

Formally, the algorithm is defined as follows:

(i) The initial ordering step:

We choose an arbitrary initial order on all the chopped Mj,t matchings. The order is deter-

ministic and obeys time slots in that if t < t′ then any Mj,t must come in the initial order

before M ′
j′,t′ regardless of j′, j,M ′,M .

(ii) The randomized rounding step: For each M ′
j,t, 1 ≤ t ≤ Ψ and 1 ≤ j ≤ n4, place M ′

independently at random in bucket Bt′ with probability α · yj
t′,M ′ . Several matchings may be

selected into the same bucket Bt′ , indicating their provisional wish to be scheduled at time

t′.

(iii) The random reordering step: Randomly reorder all matchings that reached bucket Bt.

Remark: The random ordering step is completely independent of the randomized rounding

step.

(iv) The spreading step: Spread the resulting matchings, in order of bucket number and the

chosen order within each bucket. Thus, all matchings of bucket Bt will be scheduled before

all matchings of bucket Bt+1, etc. For each i, let mi denote the number of matchings in Bi.

By increasing bucket numbers i, the matchings in Bi are assigned to rounds
∑i−1

j=1mj + 1

through
∑i−1

j=1mj + mi, with the ordering of the mi matchings that belong to Bi following

the random order of the previous step.

(v) The assignment step: We assign each edge h to the first matching M that contains h (in

the order of spreading). If M is the i-th matching in the order then the finish time of h is

f(h) = i. We then remove copies of h from all other matchings.

Denote byM1,M2, . . .Mγ the matchings chosen in this first phase. Let Ec =
⋃γ

i=1Mi be the

set of edges covered in this first phase, and Eu = E − Ec be the set of uncovered edges.

In the second phase, the edges of Eu are now scheduled in an arbitrary sequence by a straight-

forward greedy procedure. Namely, add edges one by one to the current schedule (collection of

matchings) as early as possible, i.e. if an edge (z, v) ∈ Eu is scheduled at time t then for every time

step t′ < t either edge incident to node z or an edge incident to node v is scheduled at time t′. Let

the final schedule be {M1,M2, . . . ,MΦ} where Φ ≥ γ.
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3.2 Analysis

Recall that for each matching M and each bucket t, there are n4 tries of addingM into t. Let Aj
Mt be

the event the j-th try succeeds and Y j
Mt the indicator random variable of Aj

Mt. Let XMt =
∑

j Y
j
Mt.

Since Pr[Aj
Mt] = αyj

Mt, by linearity of expectation, E[XMt] = α · xMt.

Let Ah = {Aj
Mt|j = 1, . . . , n4,M ∈ Mh, t = 1, . . . ,Ψ} be the set of events involving edge h.

We order these events for h according to the initial order (see the first step of the algorithm), and

denote Ah = {Ah
1 , A

h
2 , . . . , A

h
kh
} according to this order. The i-th event Ah

i in this order corresponds

to some Aj
M ′,t′ that is the jth trial of some pair t′,M ′. Correspondingly, let yh

i denote the chopped

value yj
M ′,t′ , namely, yh

i = Pr[Aj
t′M ′ ]/α. Note that the order above depends for now only on the

initial order and does not depend on the later random ordering in buckets. Let kh be the total

number of events related to h.

Let deg(v) be the degree of vertex v, and dc(v) be the number of edges incident on v in Ec (as

a random variable).

Let the finish time of an edge h, denoted f(h), be the round i in which h was scheduled, i.e.,

if the unique matching containing h was Mi. We split this quantity into two parts: its covering

contribution fc(h) and its uncovered contribution fu(h). If h ∈ Ec, then fc(h) = f(h) and fu(h) = 0,

while if h ∈ Eu, then fc(h) = 0 and fu(h) = f(h). Clearly, fc(h) + fu(h) = f(h). Thus, fc(h)

(fu(h)) correspond to the amount contributed by h to the objective function from the first (second)

phase, respectively.

Remark: Throughout, we assume, without explicit mention, that n is large enough (larger than

any universal constant required in the analysis).

Outline of the proof We analyze the performance of the algorithm by bounding individually

the expected covering and uncovered contribution of each edge. See Figure 1 for an overview of the

structure of the proof.

The unconditional covering contribution is obtained in Lemma 3.7. For this, we use the initial

ordering defined on the events involving the edge h and first evaluate the expected covering contri-

bution conditioned on the edge being selected due to the first event and more generally ith event

in the ordering, respectively (Proposition 3.2). We use several propositions to manipulate these

conditional contributions: 3.3, 3.8, 3.9. Additionally, it depends on Proposition 3.5 which bounds

the probability that an edge remains uncovered after the randomized phase.

To bound the uncovered contribution, we charge each edge h by some quantity f ′u(h) (see Def-

inition 3.1) so that
∑

h∈Eu
f ′u(h) =

∑

h∈Eu
fu(h). This is done because analyzing the expectation

of f ′u(h) is easier. We bound the expected number of covered edges incident on a vertex (Propo-

sition 3.10) and then argue the uncovered contribution of each edge (Lemma 3.11) using f ′u(h).

Finally, summing over all the edges of the graph, we combine the two contributions to derive the
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Thm. 3.13: 
1.829-ratio

Lemma 3.7: 
Covered contribution

Lemma 3.11: 
Uncovered contribution

Prop. 3.4*

Prop. 3.2 Prop. 3.8

Prop. 3.3*

Prop. 3.10Prop. 3.9*

Prop. 3.5:
Probability covered

Prop. 3.1:
LP-property

Figure 1: Structure of the proof of the main result. Asterisk denotes that proof is given in the

appendix.

approximation in Theorem 3.13. We note that the part of the ratio corresponding to the covering

contributions is in terms of the LP objective, while the uncovered contributions is in terms of a

weaker previously studied lower bound on the optimal value (Definition 3.2).

Proof details We first bound fc(h), conditioned on h ∈ Ec. Recall that Ah = {Ah
1 , A

h
2 , . . . A

h
kh
}

is the initial ordering of matchings containing h. At least one of the events in this list has succeeded.

We compute the finish time of h under the assumption that events Ah
1 , . . . , A

h
p failed and the

first to succeed was Ah
p+1, for some p ≥ 0. Let thi be the slot number in the initial ordering of the

event Ah
i .

Proposition 3.2 The expected covering contribution of edge h, given that the p+ 1-th event in Ah

was the first one to occur, is bounded by

E



fc(h)

∣

∣

∣

∣

⋂

i≤p

Ah
i ∩Ah

p+1



 ≤ α ·
(

thp+1 −
1

2

p+1
∑

i=1

yh
i +

1

α
− 1

2

)

.

Proof: We bound the expected waiting time of an edge, or the expected number of matchings

that precede its round. We first bound the number of those coming from earlier buckets, and then

those coming from the same bucket as h.

The expected sum of fractions chosen per bucket is α ·∑M∈M xMt = α. Thus the unconditional

expected waiting time of h due to the tp+1 − 1 first rounds is α(thp+1 − 1). However, we are given

that previous events involving h did not occur. Let B = {Ah
i , i ≤ p | thi < thp+1} be the set of
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events concerning h that belong to earlier buckets. Then, h waits

α



thp+1 − 1−
∑

Ah
i ∈B

yh
i



 (5)

in expectation for previous buckets.

We now consider the matchings belonging to the current bucket thp+1. Let W = {Ah
i | i ≤

p, thi = thp+1} be the set of events involving h that precede it in the initial order but also concern

the same bucket. The expected number of matchings in bucket thp+1, conditioned on ∩A∈WA (i.e.

none of its preceding events involving h occurring), equals

α



1−
∑

Ah
i ∈W

yh
i



 .

This amount is independent of the random ordering step, but the matchings will be spread within

the bucket randomly. Hence, taking the expectation also over the random orderings, the waiting

time of h for this bucket is at most

α



1/2 −
∑

Ah
i ∈W

yh
i /2− yh

p+1/2



 . (6)

We now add the waiting times of (5) and (6), observing that worst case occurs when B = ∅. In

that case the expected waiting time is bounded by

α

(

thp+1 −
1

2
−

p+1
∑

i=1

yi
h/2

)

.

Adding the round of Mh
p+1 itself yields the claim.

Remark: The above number can indeed be strictly larger then the round of h. The round of h

can be smaller if the following events happen. There is a matching containing h located after Mh
p+1

in the initial ordering, this matching reaches slot thp+1 and is located before Mh
p+1 by the random

ordering. However, it seems hard to use this fact to improve the ratio.

The proof of the next claim appears in the appendix

Proposition 3.3 Let y1, y2, . . . , yk be non-negative numbers satisfying
∑k

i=1 yi = 1. Then,

y2
1

2
+ y2 ·

(

y1 +
y2

2

)

+ y3

(

y1 + y2 +
y3

2

)

+ . . .+ yk ·
k−1
∑

i=1

yi +
y2

k

2
=

1

2
. (7)

The next claim appeared many times in the approximation algorithms literature. Chudak and

Shmoys [CS03] were the first ones to use it. A simpler proof from [FGMS06] is given in the appendix.
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Proposition 3.4 Let t1, . . . , tk be positive numbers so that t1 ≤ t2 ≤ · · · ≤ tk, and x1, . . . , xk be

positive numbers such that
∑k

i=1 xi ≤ 1. Then:

t1 · x1 + t2 · (1− x1) · x2 + · · ·+
k−1
∏

i=1

(1− xi) · xktk ≤

(

1−∏k
i=1(1− xi)

)

·∑k
i=1 tixi

∑k
i=1 xi

.

Proposition 3.5 The probability that an edge h is not covered is bounded by

1

eα

(

1− 3

n2

)

≤ Pr[h ∈ Eu] =

kh
∏

i=1

(

1− αyh
i

)

≤ 1

eα
.

Proof: Observe that

kh
∑

i=1

yh
i =

∑

t

∑

M∈Mh

n4

∑

j=1

yj
Mt =

∑

t

∑

M∈Mh

xMt = 1, (8)

by constraint (2) of the LP. Therefore, the upper bound follows from the fact that 1− x ≤ e−x.

To get the lower bound we need to group the yj
Mt variables according to their M, t values:

Pr[h ∈ Eu] =
∏

t,M∈Mh

n4

∏

i=1

(

1− α · yi
Mt

)

=
∏

t,M∈Mh

(

1− α · xMt

n4

)n4

.

The following inequality holds:

(

1− α · xMt

n4

)n4

≥ 1

eαxMt
·
(

1− α · xMt

n4

)α·xMt

because (1− 1/x)x−1 > 1/e holds for all x > 1. As xMt ≤ 1 and α ≤ 1 we get:

(

1− α · xMt

n4

)n4

≥ 1

eαxMt
·
(

1− 1

n4

)

.

By assumption, {xMt} is a basic feasible solution. Hence, the number of non-zero xMt is at most

the number of edges plus the number of rounds, or at most 2n2. Thus

kh
∏

i=1

(1− yh
i ) ≥

(

1− 1

n4

)2n2

·
∏

t,M∈Mh

1

eαxMt
≥ 1

eα

(

1− 3

n2

)

.

We used Equality (2) in the LP and (1− 1/n4)2n2 ≥ (1− 3/n2).

Remark: More generally, if there are parallel edges, the fractions need to be chopped into at least

|E| · n2 pieces.

Notation 3.6 Let bhi = α ·



thi −





i
∑

j=1

yh
j



 /2 + 1/α − 1/2



 .
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Lemma 3.7 The expected covering contribution of an edge h is bounded by

E [fc(h)] ≤
(

1 +
1

n

)

·
(

1− 1

eα

)

·





(

1− 3α

4

)

+ α
∑

t,M∈Mh

xMt · t



 .

Proof: By Proposition 3.2, E
[

fc(h) | ⋂i−1
j=1A

h
j ∩Ah

i

]

≤ bhi . Thus,

E [fc(h)] = E
[

fc(h) | Ah
1

]

· Pr[Ah
1 ] + E

[

fc(h) | Ah
1 ∩Ah

2

]

· Pr[Ah
1 ∩Ah

2 ] + . . .

+ E



fc(h) |
⋂

i<kh

Ah
i ∩Ah

kh



 · Pr[∩i<kh
Ah

i ∩Ah
kh

] + 0 · Pr[
⋂

i≤kh

Ah
i ]

≤ α · yh
1 · bh1 +

(

1− α · yh
1

)

· α · yh
2 · bh2 +

(

1− α · yh
1

)

· (1− α · yh
2 ) · αyh

3 · bh3

+ . . . +

kh−1
∏

i=1

(

1− α · yh
i

)

α · yh
kh
· bhkh

≤
(

1−
(

kh
∏

i=1

(

1− α · yh
i

)

))

·
kh
∑

i=1

yh
i b

h
i . (By Proposition 3.4)

The α term that multiplied every term before the last inequality was canceled because
∑kh

i=1 αy
h
i =

α.

The lemma now follows from the combination of the following two propositions.

Proposition 3.8

kh
∑

i=1

yh
i b

h
i ≤ α

∑

t,M∈M

xMt · t+ (1− 3α/4).

Proof: Recall that

yh
i b

h
i = αyh

i t
h
i + α ·



yh
i ·



−1

2

i
∑

j=1

yh
j +

1

α
− 1

2







 .

We break the sum into three parts, and analyze first the total contribution of the two last terms

(−α · yh
i

(

∑i
j=1 y

h
j

)

/2 and α · yh
i (1/α − 1/2)) when summing over all i. By Proposition 3.3,

−α
kh
∑

i=1

yh
i ·





1

2

i
∑

j=1

yh
j



 ≤ −α
2

kh
∑

i=1

yh
i ·





i−1
∑

j=1

yh
j +

yh
i

2



 = −α/4 . (9)

Since
∑kh

i=1 y
h
i = 1 we have that

α

(

1

α
− 1

2

)

·
kh
∑

i=1

yh
i =

(

1− α

2

)

. (10)
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Finally, consider the sum of the terms αyh
i t

h
i . By re-indexing, we have that

kh
∑

i=1

αyh
i · thi = α

∑

t,M∈Mh

n4

∑

i=1

yi
Mt · t = α

∑

t,M∈Mh

xMt · t . (11)

Adding (9), (10) and (11) now yields the claim.

The proof of the following lemma is given in the appendix.

Proposition 3.9

(

1−
(

kh
∏

i=1

(

1− α · yh
i

)

))

≤
(

1 +
1

n

)

·
(

1− 1

eα

)

.

We now turn to bounding the expected contribution of uncovered edges.

Proposition 3.10 The expected number of covered edges incident on a vertex v is bounded by

E [dc(v)] ≤
(

1 +
1

n

)(

1− 1

eα

)

deg(v) .

Proof: By Proposition 3.5, we have for each h ∈ E(v) that

Pr[h ∈ Ec] = 1− Pr[h ∈ Eu] ≤ 1− 1

eα

(

1− 3

n2

)

=

(

1− 1

eα

)

+
3

n2 · eα .

Using α ≥ 1/2, we have that, for large enough n,

Pr[h ∈ Ec] ≤
(

1 +
1

n

)(

1− 1

eα

)

.

By linearity of expectation,

E [dc(v)] ≤
(

1 +
1

n

)(

1− 1

eα

)

deg(v) .

Remark: It appears difficult to bound the expectation of dc(v) as above without the chopping

operation, especially when degrees are small.

We are ready to bound from above the expectation of the sum of finish times in the greedy

phase. Consider an uncovered edge (u, v) ∈ Eu. This edge would first have to wait a total of at

most dc(v) + dc(u) rounds until all covered edges incident on v and u are scheduled. After that,

each time the edge (u, v) is not selected, at least one of u or v is matched. Thus, each time the

edge (u, v) waits can be charged to an edge in Eu that is incident on either u or v. Thus, the

contribution of the greedy step to the sum of finish times is at most

∑

v∈V

deg(v)
∑

i=dc(v)+1

i =
∑

v∈V





deg(v)
∑

i=1

i−
dc(v)
∑

i=1

i



 =
∑

w∈V

((

deg(w) + 1

2

)

−
(

dc(w) + 1

2

))

. (12)
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Now, divide the term
(

deg(v)+1
2

)

−
(

dc(v)+1
2

)

, equally among the edges in Eu(v). Then, the edge

h = (z, v) is charged

(

deg(z)+1
2

)

−
(

dc(z)+1
2

)

deg(z) − dc(z)
+

(

deg(v)+1
2

)

−
(

dc(v)+1)
2

)

deg(v) − dc(v)
=
deg(z) + dc(z)

2
+
deg(v) + dc(v)

2
+ 1 .

Definition 3.1 Define

f ′u(h) =







deg(z)+dc(z)
2 + deg(v)+dc(v)

2 + 1, if h ∈ Eu

0, otherwise.

Observe that
∑

h∈E f
′
u(h) ≥∑h∈E fu(h). Hence, for the purpose of evaluating the sum of the

expected values, it is enough to bound the expectation of f ′u(h).

Lemma 3.11 The contribution of an uncovered edge h = (z, v) is bounded by

E
[

f ′u(h)
]

≤
(

1 +
1

n

)

· 1

eα

[(

2− 1

eα

)

·
(

deg(z) + deg(v)

2
+ 1

)

−
(

1− 1

eα

)]

Proof: The probability that h is uncovered is at most 1/eα (see Proposition 3.5). Thus,

E
[

f ′u(h)
]

≤ 1

eα
· E
[

deg(z) + dc(z)

2
+
deg(v) + dc(v)

2
+ 1

]

≤ 1

eα

(

1 +
1

n

)(

2− 1

eα

)(

deg(z) + deg(v)

2
+ 1

)

− 1

eα

(

1 +
1

n

)(

1− 1

eα

)

. (By Proposition 3.10)

The following measure has been useful for lower bounding the cost of the optimal solution.

Definition 3.2 Let q(G) =
∑

v∈V

(

deg(v) + 1

2

)

.

Let opt(G) denote the cost of the optimal sum edge coloring of G, and recall that opt∗ denotes the

value of the linear program. It was shown in [BBH+98] that opt(G) ≥ q(G)/2.

Observation 3.12 opt(G) ≥ q(G)/2 =
∑

(z′,v′)∈E

(

deg(z′) + deg(v′)

4
+

1

2

)

Proof:

q(G)/2 =
∑

v∈V

deg(v)(deg(v) + 1)

4
=
∑

v∈V

deg2(v)

4
+
|E|
2

=
∑

(z′,v′)∈E

(

deg(z′) + deg(v′)

4
+

1

2

)

.

Theorem 3.13 The expected approximation ratio of the algorithm is at most 1.8298.
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Proof: Each edge h′ contributes two terms that depend only on n and α. There is the positive

contribution (see Lemma 3.7) of

(

1 +
1

n

)

·
(

1− 1

eα

)

·
(

1− 3α

4

)

(13)

and the negative term from Lemma 3.11 of

− 1

eα
·
(

1 +
1

n

)

·
(

1− 1

eα

)

. (14)

This amounts to
(

1 +
1

n

)

·
(

1− 1

eα

)

·
(

1− 3α

4
− 1

eα

)

. (15)

For α ≥ 0.606, the above term is negative and only makes the upper bound smaller.

Ignoring the terms (13) and (14) we get:

E

[

∑

h

f(h)

]

=
∑

h

(E [fc(h)] + E [fu(h)]) =
∑

h

(

E [fc(h)] + E
[

f ′u(h)
])

≤
∑

h





(

1 +
1

n

)

α ·
(

1− 1

eα

)

∑

t,M∈Mh

xMt · t



 (By Lemma 3.7)

+
∑

h=(z,v)

((

1 +
1

n

)

2

eα

(

2− 1

eα

)

·
(

deg(z) + deg(v)

4
+

1

2

))

(By Lemma 3.11)

=

(

1 +
1

n

)

α

(

1− 1

eα

)

opt∗ +

(

1 +
1

n

)

2

eα

(

2− 1

eα

)

· q(G)

2

≤
(

1 +
1

n

)

·
(

α ·
(

1− 1

eα

)

+
2

eα

(

2− 1

eα

))

opt(G) . (By Observation 3.12)

For α = 0.9076 and large enough n, the right hand side evaluates to 1.8298opt(G).

4 Combinatorial Approach

We give a combinatorial algorithm that applies to simple graphs. We use the algorithm ACS of

[HKS01]. This algorithm is designed to operate in rounds, finding in each round a sub-solution of

maximum throughput.

A b-matching is a subgraph where each node has at most b incident edges. A maximum weight

b-matching can be found in polynomial time by a reduction to matching (cf. [CCPS98]). Denote

this algorithm by b-Mat.

In each round i, the algorithm ACS finds a maximum ki-matching, where k1, k2, . . . forms a

geometric sequence. The base q of the sequence is a parameter to the algorithm, while the offset
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α is selected uniformly at random from the range [0, 1). We show later how to derandomize this

strategy. The b-matching is then turned into a collection of matchings, using Vizing’s algorithm,

and those are then scheduled in the natural non-decreasing order of size. See Fig. 2.

ACS(G,q)

α = U[0, 1); i← 0

while (G 6= ∅) do

ki = ⌊qi+α⌋
Gi ← b-Matching(G,ki).

Color the edges of Gi using Vizing’s algorithm

Schedule the colors in non-increasing order of cardinality

G← G−Gi

i← i+ 1;

end

Figure 2: Combinatorial algorithm ACS for simple graphs

This algorithm attains a performance ratio of 1.796 when an algorithm is available for obtaining

an maximum k-(edge)-colorable subgraph [HKS01]. This leads to a 1.796-approximation of BPSMS

in bipartite graphs [GHKS04]. The main issue for analysis is to assess the extra cost per round due

to the application of Vizing’s algorithm. We use ideas from [EHLS08] for simplifying parts of the

analysis.

Analysis The analysis proceeds as follows. After defining a simple lower bound on the cost of

edges in an optimal solution, we introduce a series of notation, followed by an expression that we

show forms an upper bound on the amortized cost of each edge in the algorithm’s solution. We

simplify it and break it into parts that can be viewed as the asymptotic cost on one hand, and

the nearly-additive incremental cost due to the application of Vizing’s algorithm. The main effort

lies in evaluating the latter precisely. In particular, we utilize that when the first block involves a

1-matching, then we already have a single matching and avoid paying the extra cost incurred by

Vizing’s algorithm. The performance ratio is then derived from these upper and lower bounds.

For any natural number r, denote by dr the minimum number of colors needed to color at least

r vertices from V . Observe the following easy bound.

Observation 4.1
∑n

r=1 dr ≤ opt(G).

Let the edges be indexed r = 1, 2, . . . , n in agreement with the schedule formed by ACS. Let the

block containing edge r denote the iteration i of ACS (starting at 0) in which the edge is scheduled.

Let δ be characteristic function of the event that the first block is of size 1, i.e. δ = 1 if α < logq 2

and 0 otherwise. Let br be the minimum value i such that dr ≤ ki. Let βr be the characteristic
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function of the event that br is positive, i.e. βr = 1 if α < min(logq dr, 1) and 0 otherwise. We

analyze the following amortized upper bound on the algorithm’s cost of coloring edge r:

πr =

br−1
∑

i=0

(ki + 1) +
kbr

+ 2

2
− βr + 1

2
δ .

Lemma 4.2 ACS(G) ≤∑n
r=1 πr.

Proof: Define b′r as the block number of edge r. Recall that a maximum b-matching contains at

least as many edges as can be colored with b colors. Thus, b′r ≤ br, for all r. We first argue that

ACS(G) ≤∑n
r=1 π

′
r, where

π′r =







∑b′r−1
i=0 (ki + 1) +

kb′r
+2

2 − δ if br′ > 0

k0+2−δ
2 if br′ = 0.

(16)

First, let us consider nodes r that fall into block later than the first one, i.e. b′r > 0. The

first two terms of the first case of (16) bound the amortized cost of coloring the edge r, under

the assumption that all blocks use an additional color due to the application of Vizing’s theorem.

The first term represents the number of colors used on blocks preceding that of r’s. Each block

is formed by a ki-matching and is colored into ki + 1 matchings. The second term represents an

upper bound on the contribution of the last block. This bound is the mean over two orderings of

the block: some arbitrary ordering and its reverse. The cost of the order obtained by the algorithm

is at most the cost of the smaller of these two.

The last term, δ, takes into account the fact that the first block, when of unit size, has no

additive cost. Thus, we subtract the additive 1 for the first block when the first block is of unit

size, i.e. when α < logq 2.

Consider now nodes r that fall into the first block, i.e. b′r = 0. The size of that block is k0 = ⌊qα⌋.
If α < logq 2, the block is of unit size and the node will be colored π′r = 1+2−1

2 = 1. If α ≥ logq 2,

the block is of non-unit size, and k0 + 1 colors will be used. The average cost of nodes in the block

is again at most the average of two opposite orderings, or (k0 + 2)/2 = π′r.

Finally, we claim that
∑n

r=1 π
′
r ≤

∑n
r=1 πr. Recall that b′r ≤ br. Observe that when b′r = br, for

all r, then π′r = πr. We argue that π′r is monotone with the values of {b′r}r. Namely, it is easy to

verify that if one b′r value increases, the cost of some π′r values will strictly increase and none will

decrease. Hence, the claim.

We split our treatment into two terms that intuitively represent the asymptotic contribution of

the r-th edge and the nearly-additive incidental cost. The following characterization is obtained by

rewriting ki as (⌊qα⌋ − qα) + qα.

Lemma 4.3 For each edge r,

πr ≤ ϕr

[

1

q − 1
+

1

2

]

+ br + 1− qα

q − 1
+ γr .
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where ϕr = qbr+α and

γr =
βr + 1

2
(⌊qα⌋ − qα − δ) .

The following bound on the asymptotic costs of πr was given in [HKS01] (see also [EHLS08]).

Lemma 4.4 E[ϕr] = q−1
ln q

dr.

Proof: Let s be a real number such that dr = qs+α. Recall that br is the smallest integer i such

that ⌊qs+α⌋ = dr ≤ ⌊qi+α⌋. Thus, br = ⌈s⌉. Hence, ϕr = qbr−sdr = q⌈s⌉−sdr. Since α ∼ U[0, 1), so

is ⌈s⌉ − s. Thus,

E[ϕr]

dr
= E

[

ϕr

dr

]

= E
[

q⌈s⌉−s
]

= E[qα] =

∫ 1

0
qxdx =

q − 1

ln q
.

We evaluate the incidental costs in the following lemma, whose somewhat tedious proof is

deferred to the appendix.

Lemma 4.5 For q ∈ [3, 4),

E[γr] =































1
2

(

3− logq 12− q−1
ln q

)

if dr = 1

1
2

(

3− logq 12− q
ln q

)

if dr = 2

1
2

(

3− logq 16/3 − q+1
ln q

)

if dr = 3, and

3− logq 12− q−1
ln q

if dr ≥ 4.

Theorem 4.6 The performance ratio of ACS is at most 1.8886.

Proof: By Lemma 4.2 and Observation 4.1 it suffices to show that E[
∑n

r=1 πr] ≤ 1.8886
∑n

r=1 dr.

We use q = 3.666, which is slightly larger than the value used in [HKS01] when there was no

additive overhead. By Lemmas 4.3, 4.4 and 4.5, it then holds for any r that

E[πr] ≤ Πdr

.
=































1.54361 if dr = 1

1.74407 if dr = 2

1.84111 if dr = 3

logq dr − .73474 if dr ≥ 4.

The function Πd/d, plotted in Figure 3, attains a maximum of 1.90488 at d = 7, establishing that

E[πr] ≤ 1.90488dr , for any r.

A slightly better performance ratio can be argued as follows. We can view the dr-values (that

intuitively represent the costs in the optimal solution) as a histogram; see Figure 4. Formally,
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Figure 3: Plots of performance ratios. The upper line is the per-edge bound of Πd/d, while the

lower line is an amortized bound.
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the dr-values as a his-

togram

Figure 4: A graph and its dr-values

define fx = 1 + |{r : dr = x}| as the number of items mapped by d to value x, or equivalently,

the height of column x. Similarly, gy = max{x : fx ≥ y} is the length of row y. Observe that the

lower bound on the optimal solution can be expressed as
∑n

r=1 dr =
∑

x=1 x · fx =
∑

y=1

(

gy+1
2

)

.

Let ψg =
∑g

d=1 Πd, for g = gy. We bound the algorithm’s cost by

∑

r

Πdr
=
∑

y=1

ψg.

It suffices therefore to bound the ratio of ψg to
(

g
2

)

, maximized over g. This ratio can easily be seen

to be a concave function of g with a single maxima. We show this function in Figure 3 along with

the bound Πr/dr, observing that it has a maximum of 1.8886 at g = 14.

Derandomization and weighted graphs The algorithm can be derandomized as described in

[HKS01] and improved in [EHLS08]. We describe here the latter approach.

By Theorem 4.6, there exists a value for α that results in the proven expected performance ratio

of ACS. Once the sequence ⌊qi+α⌋i=0 is fixed, the operation of the algorithm is deterministic. Each
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value dr can belong to at most two ranges of the form [⌊qi+α⌋, . . . , ⌊qi+1+α⌋] as α varies. Thus,

there are at most n threshold values for α when a value moves from one range to another. Hence,

it suffices to test the at most n solutions to find the best value for α.

The analysis above is given for unweighted graphs. It is most easily extended to weighted graphs

by viewing each weighted edge as being represented by multiple units all of which are scheduled

in the same color. The analysis holds when we view each value dr (or πr) as corresponding to one

of these small units. By making these units arbitrarily small, we obtain a matching performance

ratio.

Finally, we remark that the algorithm obtains better approximation on non-sparse graphs (al-

beit, again it is restricted to graph with no parallel edges). Namely, when the average degree is

high, the cost-per-edge in the optimal solution is linear in the average degree, while the additional

charges will be only logarithmic. Hence, in the case of non-sparse simple graphs, we obtain an

improvement over the LP-based approach. This approach, however, fails to work in the case of

multigraphs.

Theorem 4.7 For a simple graph, ACS obtains a solution of cost 1.796opt(G) + O(log opt(G)).

Hence, it achieves a 1.796-factor approximation for simple graphs of average degree ω(1).
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[HKS08] M. M. Halldórsson, G. Kortsarz, and M. Sviridenko. Min sum edge coloring in multigraphs

via configuration LP. In Proc. 13th Conf. Integer Prog. Combin. Optimiz. (IPCO), 2008.

[HSSW97] L. A. Hall, A. Schulz, D. B. Shmoys and J. Wein. Scheduling to minimize average

completion time: Off-line and on-line approximation algorithms. Math. Oper. Res. 22:513–

544, 1997.

[J2001] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.

Combinatorica 21:39–60, 2001.

[K96] M. Kubale. Preemptive versus non-preemptive scheduling of biprocessor tasks on dedicated

processors. European J. Operational Research 94:242–251, 1996.

[Kh80] L. Khachiyan. Polynomial-time algorithm for linear programming. USSR Comput. Math.

and Math. Physics 20(1):53–72, 1980

[KK85] H. Krawczyk and M. Kubale. An approximation algorithm for diagnostic test scheduling

in multicomputer systems. IEEE Trans. Comput. 34:869–872, 1985

[LLRS] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys. Sequencing and schedul-

ing: Algorithms and complexity. In: Handbook in Operations Research and Management Sci-

ence, Vol. 4, North-Holland, 1993, 445-522.

[M04] D. Marx. Complexity results for minimum sum edge coloring. Manuscript, http://www.cs.

bme.hu/~dmarx/publications.php, 2004.

[M05] D. Marx. A short proof of the NP-completeness of minimum sum interval coloring. Oper.

Res. Lett. 33(4):382–384, 2005.

[M06] D. Marx. Minimum sum multicoloring on the edges of trees. Theoret. Comput. Sci. 361(2–

3):133–149, 2006.

[M05’] D. Marx. Minimum sum multicoloring on the edges of planar graphs and partial k-trees.

In Proc. 2nd Int’l Workshop on Approx. and Online Algorithms (WAOA 2004) pages 9–22,

Lecture Notes in Comput. Sci., 3351, Springer, Berlin, 2005.

[M08] J. Mestre. Adaptive Local Ratio. In Proc. 19th Ann. ACM-SIAM Symp. Disc. Algor.

(SODA), ACM Press, pages 152–161, 2008.

21



[NBY06] Z. Nutov, I. Beniaminy and R. Yuster. A (1 − 1/e)-approximation algorithm for the

generalized assignment problem. Oper. Res. Lett. 34(3):283–288, 2006.

[QS02] M. Queyranne and M. Sviridenko. A (2+epsilon)-approximation algorithm for generalized

preemptive open shop problem with minsum objective. J. Algorithms 45:202–212, 2002

[QS02’] M. Queyranne and M. Sviridenko. Approximation Algorithms for Shop Scheduling Prob-

lems with Minsum Objective, J. Scheduling 5:287–305, 2002.

[ScSk02] A. Schulz and M. Skutella. Scheduling Unrelated Machines by Randomized Rounding,

SIAM J. Disc. Math. 15(4):450-469, 2002.

[V64] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskrete Analiz 3:23–30,

1964.

[Y05] Y.-A. Kim. Data migration to minimize the total completion time. J. Algorithms 55:42–57,

2005.

A Proofs of Some Lemmas

Proposition 3.3 Let y1, y2, . . . , yk be non-negative numbers satisfying
∑k

i=1 yi = 1. Then,

y2
1

2
+ y2 ·

(

y1 +
y2

2

)

+ y3

(

y1 + y2 +
y3

2

)

+ . . .+ yk ·
k−1
∑

i=1

yi +
y2

k

2
=

1

2
. (17)

Proof: Denote the left hand side by S and rearrange its terms to obtain

S = y1

(y1

2
+ y2 + · · · + yk

)

+ y2

(y2

2
+ y3 + · · ·+ yk

)

+ · · ·+ yk

(yk

2

)

.

Applying the equality
∑k

i=1 yi = 1 to each of the parenthesized sums, we have that

S = y1

(

1− y1

2

)

+ y2

(

1− y1 −
y2

2

)

+ · · ·+ yk

(

1− y1 − y2 − · · · − yk−1 −
yk

2

)

=

k
∑

i=1

yi − S = 1− S .

Hence, S is 1/2, as claimed.

Proposition 3.4 Let t1, . . . , tk be positive numbers so that t1 ≤ t2 ≤ · · · ≤ tk, and x1, . . . , xk be

positive numbers such that
∑k

i=1 xi ≤ 1. Then:

t1 · x1 + t2 · (1− x1) · x2 + · · ·+
k−1
∏

i=1

(1− xi) · xktk ≤

(

1−∏k
i=1(1− xi)

)

·∑k
i=1 tixi

∑k
i=1 xi

.
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Proof:

Proposition 3.9

(

1−
(

kh
∏

i=1

(

1− α · yh
i

)

))

≤
(

1 +
1

n

)

·
(

1− 1

eα

)

.

Proof: The term is maximized when
∏kh

i=1

(

1− α · yh
i

)

is minimized. Recall the first inequality of

Proposition 3.5:

1

eα

(

1− 3

n2

)

≤
kh
∏

i=1

(

1− αyh
i

)

.

We then get

(

1−
(

kh
∏

i=1

(

1− α · yh
i

)

))

≤
(

1− 1

eα
·
(

1− 3

n2

))

≤
(

1 +
1

n

)

·
(

1− 1

eα

)

.

The above is easily reduced to 3/(eα − 1) ≤ n which holds for large enough n as α ≥ 1/2.

Lemma 4.3 For each edge r,

πr ≤ ϕr

[

1

q − 1
+

1

2

]

+ br + 1− qα

q − 1
+ γr .

where ϕr = qbr+α and

γr =
βr + 1

2
(⌊qα⌋ − qα − δ) .

Proof: For r for which br > 0, and thus βr = 1, we have

πr =

br−1
∑

i=0

⌊qi+α + 1⌋ − δ +
⌊qbr+α⌋+ 2

2

≤ (⌊qα⌋ − qα) +

br−1
∑

i=0

(qi+α + 1)− δ +
qbr+α + 2

2

= qbr+α

[

1

q − 1
+

1

2

]

− qα

q − 1
+ (br + 1) + (⌊qα⌋ − qα)− δ

= ϕr

[

1

q − 1
+

1

2

]

+ br + 1− qα

q − 1
+ γr .

For r with br = 0, and thus βr = 0, we have

πr =
⌊qα⌋+ 2− δ

2
= qα

[

1

q − 1
+

1

2

]

− qα

q − 1
+1+

⌊qα⌋ − qα − δ
2

= ϕr

[

1

q − 1
+

1

2

]

+br+1− qα

q − 1
+γr .

23



Lemma 4.5 For q ∈ [3, 4),

E[γr] =































1
2

(

3− logq 12− q−1
ln q

)

if dr = 1

1
2

(

3− logq 12− q
ln q

)

if dr = 2

1
2

(

3− logq 16/3 − q+1
ln q

)

if dr = 3, and

3− logq 12− q−1
ln q

if dr ≥ 4.

Proof: Let s be a real number such that dr = qs+α. Recall from the proof of Lemma 4.4 that

br = ⌈s⌉ = ⌈logq dr − α⌉. This can be rewritten as br = ⌊logq dr⌋ + tr, where tr is a Bernoulli

variable with probability logq dr − ⌊logq dr⌋. Thus,

E[br] = logq dr . (18)

Note that

E [⌊qα⌋] =

⌊q⌋
∑

i=1

i ·
∫ min(1,logq i+1)

α=logq i

dα = ⌊q⌋ −
⌊q⌋
∑

i=2

logq i = 3− logq 6, (19)

whenever 3 ≤ q < 4.

For r with dr ≥ 4, we have that br > 0, and thus β = 1. Hence, using (19), we have that

E[γr] = E [⌊qα⌋]−E [qα]−E[δ] = (3− logq 6)− q − 1

ln q
− logq 2 = 3− logq 12− q − 1

ln q
.

For r with dr = 1 it holds that br = βr = 0. Hence,

E[γr] =
1

2
(E [⌊qα⌋]−E [qα]−E[δ]) =

1

2

(

3− logq 12− q − 1

ln q

)

.

For the remaining two cases, we need to consider three regions for the value of α, with break-

points at logq 2 and logq 3. The variables ⌊qα⌋, δ and βr are constant in each of these regions.

Namely,

⌊qα⌋ =



















1 α ∈ [0, logq 2)

2 α ∈ [logq 2, logq 3)

3 α ∈ [logq 3, 1),

δ =







1 α ∈ [0, logq 2)

0 α ∈ [logq 2, 1),
βr =







1 α ∈ [0,min(logq dr, 1))

0 otherwise.)

When dr = 2,

E[γr] =

∫ logq 2

x=0
(1− qx − 1)dx+

∫ logq 3

x=logq 2

1

2
(2− qx)dx+

∫ 1

x=logq 3

1

2
(3− qx)dx

= −
[

qx

ln q

]logq 2

x=0

+ [x]
logq 3

x=logq 2 +

[

3x

2

]1

x=logq 3

−
[

qx

2 ln q

]1

x=logq 2

=
1

2

(

3− logq 12− q

ln q

)

.
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while when dr = 3,

E[γr] =

∫ logq 2

x=0
(1− qx − 1)dx +

∫ logq 3

x=logq 2
(2− qx)dx+

∫ 1

x=logq 3

1

2
(3− qx)dx

= −
[

qx

ln q

]logq 3

x=0

+ [2x]
logq 3

logq 2 +
1

2

[

3x− qx

ln q

]1

logq 3

=
1

2

(

3− logq 16/3 − q + 1

ln q

)

.
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