
S
heduling Split IntervalsReuven Bar-Yehuda� Magn�us M. Halld�orssony Joseph (SeÆ) Naorz Hadas Sha
hnaixIrina Shapira{Abstra
tWe 
onsider the problem of s
heduling jobs that aregiven as groups of non-interse
ting segments on the realline. Ea
h job Jj is asso
iated with an interval, Ij ,whi
h 
onsists of up to t segments, for some t � 1, apositive weight, wj , and two jobs are in 
on
i
t if anyof their segments interse
t. Su
h jobs show up in awide range of appli
ations, in
luding the transmissionof 
ontinuous-media data, allo
ation of linear resour
es(e.g. bandwidth in linear pro
essor arrays), and in
omputational biology/geometry. The obje
tive is tos
hedule a subset of non-
on
i
ting jobs of maximumtotal weight.In a single ma
hine environment, our problem 
anbe formulated as the problem of �nding a maximumweight independent set in a t-interval graph (the spe
ial
ase of t = 1 is an ordinary interval graph). We showthat, for t � 2, this problem is APX-hard, even forhighly restri
ted instan
es. Our main result is a 2t-approximation algorithm for general instan
es, based ona novel fra
tional version of the Lo
al Ratio te
hnique.Previously, the problem was 
onsidered only for properunion graphs, a restri
ted sub
lass of t-interval graphs,and the approximation fa
tor a
hieved was (2t � 1 +1=2t). A bi-
riteria polynomial time approximations
heme (PTAS) is developed for the sub
lass of t-uniongraphs.In the online 
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onsider uniform weightjobs that 
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For general instan
es, we give a randomized O(log2R)-
ompetitive (or O((logR)2+�)-
ompetitive) algorithm,where R is the known (unknown) ratio between thelongest and the shortest segment in the input sequen
e.1 Introdu
tion1.1 Problem Statement and Motivation. We
onsider the problem of s
heduling jobs that are givenas groups of non-interse
ting segments on the real line.Ea
h job Jj is asso
iated with a t-interval, Ij , whi
h
onsists of up to t segments, for some t � 1, and a pos-itive weight, wj ; two jobs are in 
on
i
t if any of theirsegments interse
t. The obje
tive is to s
hedule on asingle ma
hine a subset of non-
on
i
ting jobs whosetotal weight is maximum.An instan
e of our problem 
an be modeled as theinterse
tion graph of t-intervals, known as a t-intervalgraph. Ea
h vertex in the graph 
orresponds to an in-terval that has been \split" into t parts, or segments,su
h that two verti
es u and v interse
t if and only ifsome segment in the interval 
orresponding to u inter-se
ts with some segment in the interval 
orrespondingto v. Note that 1-interval graphs are pre
isely inter-val graphs (an example is given in Figure 1). Thus,for a given instan
e of our problem, we seek to �nda maximum weight independent set (MWIS) in the re-sulting weighted t-interval graph, that is, a subset ofnon-adja
ent verti
es U � V , su
h that the weight of Uis maximized.We des
ribe below several pra
ti
al s
enarios in-volving t-interval graphs.Transmission of Continuous-media Data. Tradi-tional multimedia servers transmit data to the 
lientsby broad
asting video programs at pre-spe
i�ed times.Modern systems allow to repla
e broad
asts with the al-lo
ation of video data streams to individual 
lients uponrequest, for some time interval (see, e.g., [33, 9℄). In thisoperation mode, a 
lient may wish to take a break, andresume viewing the program at some later time. Thiss
enario is natural, e.g., for video programs that areused in remote edu
ation.Suppose that a 
lient starts viewing a program attime t0. At time t1 the 
lient takes a break, and resumes



viewing the program at t2, till the end of the program(at t3). This s
enario 
an be des
ribed by a split intervalI that 
onsists of two segments: I1 = (t0; t1) andI2 = (t2; t3). The s
heduler may get many requestsformed as split intervals; ea
h request is asso
iated witha pro�t whi
h is gained by the system only if all of thesegments 
orresponding to the request are s
heduled.The goal is to s
hedule a subset of non-overlappingrequests that maximizes the total pro�t, i.e., �nd aMWIS in the interse
tion graph of the split intervals.Most of the previous work in this area des
ribe ex-perimental studies, in whi
h VCR-like operations 
anbe used by the 
lients (see [9, 13, 33, 46℄); however,these studies fo
us on the eÆ
ient use of system re-sour
es while supporting su
h operations, rather thanthe s
heduling problem.Linear Resour
e Allo
ation. Another appli
ationis linear resour
e allo
ation [25℄. Requests for a linearresour
e 
an be modeled as intervals on a line; tworequests for a resour
e 
an be s
heduled together unlesstheir intervals overlap. A disk drive is a linear resour
ewhen requests are for 
ontiguous blo
ks [37℄. A lineararray network is a linear resour
e, sin
e a requestfor bandwidth between pro
essors i and j requiresthat bandwidth be allo
ated on all intervening edges.Consider a 
omputer system that 
onsists of a lineararray network and a large disk. A s
heduler mustde
ide when to s
hedule requests, where ea
h requestmay 
omprise distin
t requests to these two linearresour
es, e.g., \a 
ertain amount of bandwidth betweenpro
essors 4 and 7, and a lo
k on blo
ks 1000-1200 ofthe disk". Two requests are in 
on
i
t if they overlapon the disk or in their bandwidth requirements. Thus,when the goal is to maximize the amount of requestssatis�ed by the system, we get an instan
e of the MWISproblem on a sub
lass of 2-interval graphs, known as 2-union graphs (See Se
tion 2.1.)Genomi
 Sequen
e Similarity. Bafna et al. [5℄
onsider determining the similarity between geneti
 se-quen
es under large-s
ale mutational operations in
lud-ing reversal and transposition. The problem is modeledas that of determining a maximum weight independentset in an interse
tion graph of axis-parallel boxes: theboxes are in a t-dimensional spa
e, where t is the num-ber of sequen
es. A pair of boxes is independent (ornon-adja
ent in the graph) if their proje
tions in all taxes are disjoint. The non-negative weight of a box 
or-responds to the similarity of the substrings derived fromtheir lo
al alignment.Computational Geometry. This problem of �ndingan independent set among a set of multi-dimensionalaxis-parallel boxes is of independent interest in 
ompu-tational geometry. It 
orresponds to the MWIS problem

in t-union graphs, a sub
lass of t-interval graphs.1.2 Our Results.We give a 
omprehensive study ofthe MWIS problem in t-interval graphs. In Se
tion 2, weshow that MWIS is APX-hard even on highly-restri
tedinstan
es, namely, on (2; 2)-union graphs. Our mainresult (in Se
tion 3) is a 2t-approximation algorithmfor MWIS in any t-interval graph, for t � 2, whi
his based on a novel fra
tional version of the Lo
alRatio te
hnique. (This te
hnique was �rst developed[7℄ and later extended by [6, 8℄.) Previously, theproblem was 
onsidered only on proper union graphs[5℄, a restri
ted sub
lass of t-interval graphs, and theapproximation fa
tor a
hieved was (2t � 1 + 1=2t).Note that our approximation fa
tor is almost the bestpossible, given that any graph G 
an be representedas a d(� + 1)=2e-interval graph [20℄ (where � is themaximum degree), and that the maximum independentset problem 
annot be approximated better than withina fa
tor of �=2O(plog�) [43℄. The approximation fa
tor
an also be argued to be within a 
onstant of best
urrently possible, sin
e the problem properly in
ludesthe MWIS problem in (t + 1)-
law free graphs (seeSe
tion 2), whi
h is not known to be approximablewithin t=2 in polynomial time.For the 
lass of t-union graphs, we develop (inSe
tion 3.1) a bi-
riteria PTAS. Given a value TO and� > 0, our s
heme �nds a subset of intervals of optimalweight and a s
hedule where ea
h interval is delayedby at most �TO, assuming that there exists an optimalsolution, whose latest 
ompletion time is TO.In the online 
ase, we 
onsider the MIS (the un-weighted version) problem on 2-interval graphs. Weshow (in Se
tion 4) that when the graph is proper, anyrandomized algorithm has 
ompetitive ratio at least 2:5;a simple greedy algorithm is 3-
ompetitive. For gen-eral instan
es, we distinguish between two 
ases. Let Rdenote the ratio between the longest and the shortestsegment in the input sequen
e. When R is known weemploy the bounded 
apa
ity approa
h of [1℄ to obtain asimple 8-
ompetitive algorithm for inputs that 
onsistof small number of segment lengths. This algorithm isused as a pro
edure to yield an O(log2R)-
ompetitiverandomized algorithm for inputs with arbitrary segmentlengths. When R is unknown in advan
e we use themethod of randomized virtual sele
tion of [32℄ for de-veloping an O(logR)2+�)-
ompetitive algorithm.Our results 
ontain two te
hni
al 
ontributions.Our �rst 
ontribution is a fra
tional extension of theLo
al Ratio te
hnique. This enables us to apply thete
hnique for rounding a fra
tional solution obtainedfor an LP relaxation of our problem. We expe
t thatthis non-standard use of the Lo
al Ratio te
hnique will
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tion) graph (b), andinterval system (
).�nd more appli
ations. Our se
ond 
ontribution (inTheorem 2.2) is a bound on the in
lusive indu
tivenessof a weighted t-interval graph. As a 
orollary, we extendthe best bound known on the 
hromati
 number of t-interval graphs of Gy�arf�as [21℄. Our bound 
an beshown to be asymptoti
ally optimal.1.3 RelatedWork.We brie
y mention several worksthat are related to ours.Split interval graphs. Many NP-hard problemsin
luding MIS [16, 19℄ 
an be solved eÆ
iently ininterval graphs. Split interval graphs have a long historyin graph theory [44, 20, 38, 45℄, and more re
ently uniongraphs have been studied under the name of multitra
kinterval graphs [31, 22, 30℄. We mention some of themain results. For any �xed t � 2, determining whethera given graph is a t-interval graph is NP-
omplete [45℄,and so is determining if a graph is a 2-union graph[22℄. 2-union graphs 
ontain trees [44, 31℄ and moregenerally all outerplanar graphs [30℄, while 3-intervalgraphs 
ontain the 
lass of planar graphs [38℄. Graphsof maximum degree � are d 12 (� + 1)e-interval graphs[20℄.Coupled-tasks and 
ow shop s
heduling. Theproblem of s
heduling 2-intervals (known as 
oupled-task s
heduling) was 
onsidered in the area of o�inema
hine s
heduling with the obje
tive of minimizing themakespan (see e.g. [34, 41℄). Relaxed versions of theproblem that require only a lower bound on the timethat elapses between the s
hedules of the two tasks ofea
h job (also 
alled time-leg problems) were studied,e.g., in [36, 14, 12℄.Any instan
e of our s
heduling problem 
an beviewed as an instan
e of the 
ow shop problem, in whi
hthe segments and break times are represented by tasksthat need to be pro
essed on a set of m = 2t + 1 ma-
hines. (The pre
ise transformation is given in Se
-tion 3.1.) In general, the 
ow shop problem, where theobje
tive is to minimize the makespan, is NP-
ompleteeven on three ma
hines ([15℄). The best result known

is O(log2(m�)= log log(m�))-approximation algorithm,where � is the maximum number of operations per job,and m is the number of ma
hines ([39, 42℄). When mis �xed (but arbitrary) Hall [23℄ gave a PTAS for thisproblem.Online s
heduling of intervals. Lipton andTomkins [32℄ 
onsidered the problem of online s
hedul-ing of intervals on a single ma
hine (resour
e), wherethe obje
tive is to maximize the resour
e utilization.They gave an O(logR)-
ompetitive (O((logR)1+�)-
ompetitive) randomized algorithm for some � > 0,where R is the (unknown) ratio of longest to shortestinterval. Later works [17, 18℄ 
onsider a variant of theproblem, where ea
h interval (job) o�ers a sla
k, i.e., themaximal possible delay from the time it arrives until itis s
heduled.Call admission. Interval s
heduling 
an be viewed asa 
all admission problem on a line, where the obje
tiveis to maximize the number of a

epted 
alls. Awerbu
het al. [4℄ showed a lower bound of 
(logR) on the
ompetitive ratio of any algorithm for 
alls of arbitraryduration on a single link; R is the ratio between thelongest and shortest possible durations. Their proofimplies a lower bound of 
(logR) for online s
hedulingof (non-split) intervals, where R is the ratio between thelongest and shortest intervals. This lower bound 
arriesover to online s
heduling of split intervals.2 Preliminaries2.1 De�nitions and Notation. Let I be a 
olle
tionof segments (or intervals) on the real line partitionedinto disjoint groups 
ontaining at most t segments,where t � 1. A t-interval graph G = (V;E) is theinterse
tion graph of the groups of segments. Ea
hvertex in V 
orresponds to a group of segments, and(u; v) 2 E if one of the segments belonging to the groupof u interse
ts some segment belonging to the group ofv. We 
all a vertex in a t-interval graph a split interval.Given a t-interval graph, we assume that ea
h vertex
an be mapped to a set of segments, i.e., we 
an say



that a segment I belongs to a vertex v and denote itby (v; I). A t-interval graph is proper if no segmentproperly 
ontains another segment.In the subfamily of t-union graphs, the segmentsasso
iated with ea
h vertex 
an be labeled in su
h a waythat for any two verti
es u and v, the ith segment of uand the jth segment of v never interse
t for 1 � i; j � t,and i 6= j. Union graphs 
orrespond also to 
ertaingeometri
 interse
tion graphs. The t segments areviewed as intervals on orthogonal axes, 
orrespondingto a t-dimensional box; two boxes interse
t if theirproje
tions on any of the t axes do. We further de�nesub
lasses of union graphs, where 
oordinates are allintegral. In an (a; b)-union graph, all x-segments are oflength a and y-segments of length b.Finally, in a graph G = (V;E), we denote by N(v)the set of neighbors of v 2 V , and by N [v℄ the 
losedneighborhood of v, fvg [N(v).2.2 Hardness Results. Interval graphs are easy tosolve exa
tly sin
e they always 
ontain a vertex whoseneighborhood is a 
lique. In general t-interval graphs,this property fails strongly, as stated in our next result.Observation 2.1. For any n � 2, there exists a 2-interval graph, where jV j = n, in whi
h every vertexhas 
(pn) independent neighbors.Proof. For a given n � 2, let k = b(p4n+ 1 � 1)=2
.We show how to 
onstru
t a 2-interval graph, in whi
hevery vertex has k independent neighbors. We 
onstru
tthe graph from (k + 1) subsets of intervals; ea
h subset
onsists of k intervals, and ea
h interval is 
omposed oftwo segments. We denote the jth interval in subset i byIi;j .The graph is 
onstru
ted as follows. Pro
eedingfrom left to right, we pla
e under the intervals of subseti, Ii;1; : : : ; Ii;k the ith intervals of subsets 1; : : : ; k + 1,i.e., I1;i; : : : ; Ik+1;i, ex
luding Ii;i. This is repeated fori = 1; : : : ; k. Finally, under the intervals of the (k + 1)-th subset, we pla
e the intervals Ii;i, 1 � i � k (seeFigure 2).Thus, we get that any interval Ii;j with i 6= j,interse
ts k non-interse
ting intervals of subset j, andIi;i interse
ts k non-interse
ting intervals of subset k+1.Note that sin
e k(k + 1) � n, we may have someremaining intervals, whi
h are not 
ontained in anysubset. We 
an pla
e ea
h su
h interval I under anyof the subsets i, 1 � i � k + 1, providing that intervalk independent neighbors.We 
an modify the above 
onstru
tion to hold for2-union graphs.We now give a hardness result for a highly restri
ted
lass of proper 2-union graphs.

Theorem 2.1. The MWIS problem is APX-hard on(2; 2)-union graphs.The omitted proof pro
eeds by embedding degree-3 graphs in the plane as (2; 2)-union graphs. Sin
e theMWIS problem is APX-hard on degree-3 graphs [11, 26℄the theorem then follows.Unit segments are segments of unit size whose startpoints are integral. Let S = f1; 2; : : : ; ng and C be a
olle
tion of subsets of S. The k-set pa
king problem isthat of �nding a maximum 
ardinality sub-
olle
tion C 0of C su
h that the interse
tion of any two sets in C 0 isempty. It properly 
ontains the k-dimensional mat
hingproblem.Lemma 2.1. The k-set pa
king problem is equivalentto the MWIS problem in the spe
ial 
lass of k-intervalgraphs of unit segments.Proof. There is a bije
tive mapping between unit seg-ments and the set S, with [i; i + 1) mapping to i et
.Thus, there is a bije
tive mapping between sets of up tok elements from S and sets of up to k unit segments.Similarly, the k-dimensional mat
hing problem (k-DM) is equivalent to the MWIS problem in the spe
ial
lass of k-union graphs of unit segments. In spite of 
on-siderable resear
h, the best approximation ratio knownfor k-dimensional mat
hing is still k=2 + � [27℄. The2-set pa
king problem is equivalent to the polynomialsolvable Edge Cover problem, while 3-DM is APX-hard[35℄.Corollary 2.1. MWIS in (1; 1)-interval graphs ispolynomial solvable. MWIS in (1; 1; 1)-union graphs isAPX-hard.The 
orresponden
e of (1; 1)-union graphs to linegraphs of bipartite graphs, and the resulting polynomialsolvability of MWIS, was shown by Halld�orsson et al.[25℄.2.3 Stru
tural Properties. Re
all that the in-du
tiveness of a graph G is de�ned as D(G) =maxH�Gminv2V (H) d(v). The weighted analog is thein
lusive indu
tiveness of G. Let d+(v) =Pu2N [v℄ w(u)denote the in
lusive degree of v 2 V , and Æ+(G) be theminimum in
lusive degree of G. The in
lusive indu
-tiveness of G is given by D+(G) = maxH�G Æ+(H).Finally, the weighted 
lique number of G is given by!(G) = maxC�GPv2C w(v), where C is a 
lique. Inthe following we derive a bound on the in
lusive indu
-tiveness of t-interval graphs.



I1;1 I1;2 ... I1;kI2;1I3;1...Ik+1;1
I2;1 I2;2 ... I2;kI1;2I3;2...Ik+1;2

... Ik+1;1 Ik+1;2 ... Ik+1;k.........
I1;1I2;2...Ik;kFigure 2: An example of a 2-interval graph, in whi
h every vertex has k independent neighbors.Theorem 2.2. Let G� be a weighted t-interval graphand let G be the underlying interval graph, i.e. the inter-se
tion graph of the segments in G�. Then, D+(G�) �2t � !(G).Proof. Let S� be an arbitrary subgraph of G�, andS the 
orresponding indu
ed subgraph of G. Sin
eea
h vertex in S� 
orresponds to at most t verti
esin S, jV (S)j � t � jV (S�)j, and sin
e ea
h edge in S�
orresponds to one or more edges in S,W (S�) �W (S).Thus, Æ+(S�) � W (S�)jV (S�)j � t W (S)jV (S)j :If we remove minimum-degree verti
es one by one fromS, ea
h has in
lusive degree at most D+(S). Theweight of the subgraph is at most twi
e this sum,i.e., W (S) � 2D+(S). Sin
e S is an interval graph,D+(S) = !(S) � !(G). Thus,Æ+(S�) � t W (S)jV (S)j � 2t �D+(S) � 2t!(G):This holds for any subgraph S� ofG�, hen
e the theoremfollows from the de�nition of indu
tiveness.The above gives a 2t-approximation for 
oloring t-interval graphs via a greedy algorithm. Gy�arf�as [21℄showed that the 
hromati
 number of a t-interval graphG� is at most 2t(!(G�) � 1), where !(G�) is the
lique number of the graph. Our new bound (withslight improvements in the unweighted 
ase) repla
es!(G�) by !(G) in the latter expression, where G is theunderlying interval graph.Corollary 2.2. A greedy algorithm 
olors G� using2t(!(G)� 1) 
olors.3 The O�line CaseIn this se
tion we des
ribe a 2t-approximation algorithmfor the maximum weight independent set problem in at-interval graph G = (V;E). The algorithm is basedon rounding a fra
tional solution derived from a linear

programming relaxation of the problem. The standardlinear programming relaxation of the maximum weightindependent set problem is the following. For ea
hv 2 V , let x(v) be the linear relaxation of the indi
atorvariable for v, i.e., whether v belongs to the independentset. Let w;x 2 IRjV j be a weight ve
tor and a relaxedindi
ator ve
tor, respe
tively.maximize w � x subje
t to :for ea
h 
lique C 2 G : Xv2C x(v) � 1Unfortunately, it is not 
lear how to optimize in theabove over all 
liques in a t-interval graph. We say thata 
lique C in the graph is an interval 
lique if for everyvertex v 2 C, there is a segment (v; I) su
h that theinterse
tion of ((v; I)jv 2 C) is non-empty. We nowfurther relax the independent set problem and 
onsideronly interval 
liques. For ea
h vertex v 2 V and segmentI 2 v, x(v; I) denotes the value of segment I .(P) maximize w � x subje
t to :for ea
h interval 
lique C: X(v;I)2C x(v; I) � 1for ea
h v 2 V and I 2 v: x(v; I)� x(v) � 0for ea
h v 2 V and I 2 v: x(v); x(v; I) � 0The heart of our rounding algorithm is the followinglemma. In fa
t, it 
an be viewed as a fra
tional analogof Theorem 2.2.Lemma 3.1. Let x be a feasible solution to (P). Then,there exists a vertex v 2 V satisfying:Xu2N [v℄x(u) � 2tProof. For two adja
ent verti
es u and v, de�ney(u; v) = x(v) � x(u). De�ne y(u; u) = x(u)2. For asegment I , let R(I) be the interval 
lique de�ned bythe right endpoint of I (I 2 R(I)). We prove the 
laim



using a weighted average argument, where the weightsare the values y(u; v) for all pairs of adja
ent verti
es,u and v.Consider the sumPv2V Pu2N [v℄ y(u; v): An upperbound on this sum 
an be obtained as follows. For ea
hv 2 V , 
onsider all segments I 2 v, and for ea
h (v; I),add up y(u; v) for all (u; J) that interse
t with (v; I)(in
luding (v; I)). In fa
t, it suÆ
es to add up y(u; v)only for segments (u; J) su
h that (u; J) 2 R(I), andthen multiply the total sum by 2. This suÆ
es sin
e:(a) If, for segments (v; I) and (u; J), the right endpointof I pre
edes the right endpoint of J , then (v; I) \sees"(v; J) and vi
e-versa. Sin
e y(u; v) = y(v; u), ea
h ofthem 
ontributes the same value to the other. (b) Forsegments (v; I) and (u; J), the 
onstraints of (P) implythat x(v; I) = x(v) and x(u; J) = x(u). Hen
e, themutual 
ontribution of two segments (u; J) and (v; I)that interse
t depends only on u and v, i.e., it is y(u; v).Thus,Xv2V Xu2N [v℄ y(u; v) � 2 �Xv2VXI2v X(u;J)2R(I) y(u; v)Sin
e X(u;J)2R(I) y(u; v) � x(v) � X(u;J)2R(I)x(u) � x(v)we get thatXv2V Xu2N [v℄ y(u; v) � 2t �Xv2V x(v):Hen
e, there exists a vertex v satisfying(3.1) Xu2N [v℄ y(u; v) � 2t � x(v):If we fa
tor out x(v) from both sides of (3.1) we obtainthe statement of the lemma.We now de�ne a fra
tional version of the Lo
alRatio te
hnique. The proof of the next lemma isimmediate.Lemma 3.2. Let x be a feasible solution ve
tor to (P).Let w1 and w2 be a de
omposition of the weight ve
torw su
h that w = w1 +w2. Suppose that y is a feasibleintegral solution ve
tor to (P) satisfying: w1 � y �r(w1 � x) and w2 � y � r(w2 � x). Then,w � y � r(w � x):The rounding algorithm will apply a lo
al ratiode
omposition of the weight ve
torw with respe
t to anoptimal solution x to linear program (P). The algorithmpro
eeds as follows.

1. Delete all verti
es with non-positive weight. If noverti
es remain, return the empty set.2. Let v0 2 V be a vertex satisfying Pu2N [v0℄ x(u) �2t. De
ompose w by w = w1 +w2 as follows:w1(u) = � w(v0) if u 2 N [v0℄;0 otherwise:(In the de
omposition, the 
omponent w2 may benon-positive.)3. Solve the problem re
ursively using w2 as theweight ve
tor. Let I 0 be the independent setreturned.4. If I 0 [ fv0g is an independent set, return I =I 0 [ fv0g. Otherwise, return I = I 0.Clearly, the set I is an independent set. We nowanalyze the quality of the solution produ
ed by thealgorithm.Theorem 3.1. Let x be an optimal solution to linearprogram (P). Then, it holds for the independent set I
omputed by the algorithm that w(I) � 12t �w � xProof. The proof is by indu
tion on the number ofre
ursive 
alls. At the basis of the re
ursion, theindependent set returned is optimal (and hen
e a 2t-approximation), sin
e no verti
es remain. Clearly, the�rst step in whi
h verti
es of non-positive weight aredeleted 
annot de
rease the above RHS. We now provethe indu
tive step. Let y and y0 be the indi
atorve
tors of the sets I and I 0, respe
tively. Assume thatw2 � y0 � (1=2t) �w2 � x: Sin
e w2(v0) = 0, it also holdsthat w2 � y � (1=2t) � w2 � x: From Step (4) of thealgorithm it follows that at least one vertex from N [v0℄belongs to I. Hen
e, w1 � y � (1=2t) �w1 � x: Thus, byLemma 3.2, it follows thatw � y � 12t �w � xWe have thus proved that I is a 2t-approximate solutionto the MWIS problem.Extension. We note that our approximation results
an be generalized to k ma
hines. That is, the goal isto �nd a maximum weight k-
olorable subgraph of a t-interval graph. The approximation fa
tor obtained forthis 
ase is 2t+ 1.3.1 A Bi-
riteria Approximation S
heme forUnion Graphs. Re
all that MWIS is APX-hard al-ready on (2; 2)-union graphs. We 
onsider below thelarger sub
lass of t-union graphs in whi
h the possible



number of segment lengths is bounded by some 
on-stant. For this sub
lass we develop a bi-
riteria PTAS,whi
h �nds an MWIS by allowing some delays in thes
hedule.Let 
i denote the number of distin
t lengths of thei-th segment, 1 � i � t, where t is some 
onstant.Re
all that in the 
ow shop problem we are given aset of n jobs, J1; : : : ; Jn that need to be pro
essedon m ma
hines, M1; : : : ;Mm; ea
h job, Jj , 
onsistsof m operations, Oj;1; : : : ; Oj;m, where Oj;i must bepro
essed without interruptions on the ma
hine Mi, forpj;i time units. Any ma
hine, Mi, 
an either pro
essa single operation at a time, or an unbounded numberof operations; in the latter 
ase we 
all Mi a non-bottlene
k ma
hine. Ea
h job may be pro
essed by atmost one ma
hine at any time. For a given s
hedule,let Cj be the 
ompletion time of Jj . The obje
tive is tominimize the maximum 
ompletion time (or makespan),given by Cmax = maxj Cj . Denote by C�max the optimalmakespan.An instan
e of our problem 
an be transformedto an instan
e of the 
ow shop problem, where ea
hjob has 2t + 1 operations, and the ma
hines M2i+1,0 � i � t � 1, are non-bottlene
k ma
hines. Morespe
i�
ally, we represent ea
h t-interval, Ij , as a job Jj ,where ea
h segment is asso
iated with an \operation"of the job. In addition, we simulate the breaks withoperations of the same lengths that need to be pro
essedon non-bottlene
k ma
hines. Similarly, to in
lude therelease time rj of Ij , we add to Jj the operation Oj;1,whose length equals to rj ; the ma
hine M1 is a non-bottlene
k ma
hine. Thus, if Ij has t segments, Jj has2t operations.Re
all that in a union graph, ea
h interval hasa due date, dj , whi
h equals to its release time plusthe sum of its pro
essing times and break times. Tosimulate these due dates we de�ne a delivery time, qj ,for ea
h job, Jj . Let qj = �dj . We add to Jj theoperation Oj;(2t+1), where pj;(2t+1) = qj , and M2t+1is a non-bottlene
k ma
hine. Our obje
tive then is tominimize the maximum delivery 
ompletion time, givenby maxjfCj + qjg = maxjfCj � djg. This is equivalentto minimizing the maximum lateness of any job, givenby Lj = Cj � dj . Hen
e, our obje
tive 
an be viewedas minimization of Lmax = maxj Lj . Note that the qj 'sare negative. Given that the latest 
ompletion time ofthe optimal solution is TO, we de�ne ~dj = dj � TO.Then for any j, ~dj � 0. By setting qj = � ~dj weget that all the pro
essing times are positive. Theobje
tive is to minimize the maximum lateness, givenby Lmax = maxjfCj � dj + TOg. Note that sin
e in anoptimal s
hedule there are no \late" jobs, the minimallateness is L�max = TO.

In the following we use some ideas from [28, 24, 29℄.Our s
heme uses as pro
edure a PTAS for �ndinga (1 + �)-approximation for the 
ow shop makespanproblem with a �xed number of ma
hines (see, e.g.,[23℄). We represent a t-interval Ij by a (2t + 1)-ve
tor(pj;1; : : : ; pj;2t+1), where pj;1 is the release time, pj;2i(pj;2i+1), is the length of the i-th segment (break),1 � i < t, and pj;2t+1 (= qj) is the delivery time ofthe 
orresponding job, Jj . We then s
ale all parametervalues as follows. We divide the pro
essing and releasetimes by TO and round ea
h release time down and ea
hbreak time up to the nearest multiple of �=(2t). Thus,the number of ve
tors (pj;1; : : : pj;2t+1) isQti=1 
i(2t=�)t.We now summarize the steps of our s
heme, whi
hgets as parameter the value of TO and some �0 > 0. (i)Guess O, the number of intervals s
heduled by OPT ;(ii) Guess the subset SO of O intervals of maximalweight, s
heduled by OPT . (iii) Using a PTAS forminimizing the makespan in the 
ow shop instan
e ofSO, �nd a s
hedule of SO for whi
h Lmax � (1 +�0)L�max.Note that due to the above rounding, we need toadd �=2t to the release times; also, ea
h break time maydelay the optimal 
ompletion time by �=2t, therefore,taking �0 = �=2t we guarantee that the delay of ea
hinterval is at most (1 + �) times TO. Finally, we addTO = L�max to ea
h due date; thus, the maximumlateness of any job in our s
hedule equals to �C�max.For the 
omplexity of our s
heme, note that step(i) takes O(n). The number of possible guesses of SOis O(n(ttQti=1 
i)=�t). (In ea
h guess of a set of ve
torsrepresenting a subset of intervals, we take the subsetwhose weight is maximal.) This is multiplied by the
omplexity of the PTAS for 
ow shop. We summarizein the next result.Theorem 3.2. Let t � 1 be some �xed 
onstant. Givena t-union graph with 
onstant number of distin
t seg-ment lengths, let W be the weight of an optimal MWIS,whose latest 
ompletion time is TO. Then for any � > 0there is a PTAS that s
hedules an independent set ofweight at least W, su
h that any interval is late by atmost �TO.4 The Online CaseIn the online version of our problem, the set of inputintervals is not known to the s
heduler in advan
e. Wefo
us here on the 
ase where the jobs are uniform, andea
h job 
onsists of at most two segments. Thus, ourgoal is to sele
t a subset of non-overlapping jobs ofmaximum size, i.e., we deal with the MIS problem ina 2-interval graph. We assume that all the endpointsof the segments that belong to a 2-interval are known



upon its arrival. For simpli
ity, assume that the shortestsegment has length 1. Let k be the 
law number of thegraph.Consider the Greedy algorithm that s
hedules everyarriving interval if it does not 
on
i
t with any of thepreviously s
heduled intervals. Re
all that R is the ratiobetween the longest and the shortest segment in theinput sequen
e. We omit the proof of the next result.Theorem 4.1. The Greedy algorithm is stronglyminf2R+ 1; kg-
ompetitive.4.1 Proper graphs. When the graph is proper, theabove greedy algorithm has 
ompetitive ratio 3. In thefollowing we show that this is almost the best possible,even when we use randomization.
3 4 3

a
b

... ...

b1 1 a

2 42Figure 3: Constru
tion for a randomized lower boundTheorem 4.2. The performan
e ratio of any random-ized online MIS algorithm on proper 2-interval graphsis at least 2.5.Proof. We 
onstru
t a family graph, whose intervalrepresentation is shown in Figure 3. The graph 
ontainsverti
es 1 through 4, a and b, and ` verti
es shownfollowing vertex 3. Here ` is a parameter 
hosen atrandom from the range 1 to n. The intervals arepresented in the order shown. Only the order among2, a, and b is not known, and is 
hosen at random.The optimal solution 
onsists of intervals 2,3, and4. The reason why the algorithm is bound to obtaina non-optimal solution is three-fold: (i) it must 
hooseinterval 1 with signi�
ant probability, in order to be
ompetitive on the pre�x instan
e 
onsisting of thatinterval alone, (ii) when trying to 
hoose interval 2, itmay wind up with either a or b, in whi
h 
ase it 
anin
lude no more intervals, and (iii) it 
annot guess withnon-trivial probability the value of `, meaning that it isunlikely to add interval 3 and then 4.Let p1 be the probability that the algorithm addsinterval 1. The 
ompetitiveness on the instan
e 
onsist-ing of a single interval is then 1=p1. The algorithm 
anonly get two intervals if it either sele
ts 2, or sele
ts 3,and three only if it adds both. The probability of se-le
ting interval 3 is only 1=n, whi
h is negligible. Theprobability of sele
ting 2 is 1=3. It follows that the ex-pe
ted size A of the set obtained by the algorithm is at

mostE[A℄ � p1 + (1� p1)(23 � 1 + 13 � 2) = 4� p13 :Thus, the performan
e ratio of the algorithm is theworse of the performan
e on the single-interval instan
eand of the instan
e above, or � = max( 1p1 ; 34=3�p1=3 ) =max( 1p1 ; 94�p1 ) = 52 :4.2 General split interval graphs4.2.1 Known segment lengths. Consider the 
asewhere R is known in advan
e. We �rst present analgorithm for s
heduling intervals, in whi
h the �rstsegment is of length 1 and the se
ond of length l, forsome l � 1 ((1; l) intervals). Then we show how thisalgorithm 
an be used as a pro
edure by an onlinealgorithm that a

epts as input interval with segmentsof arbitrary lengths.Suppose that we 
an s
hedule the intervals on twoservers (i.e., the 
apa
ity of the resour
e is 2). Thealgorithm Double Sele
t (DS) pro
eeds as follows. Uponarrival of an interval I , if there is a resour
e available forI , we s
hedule the interval on some available resour
e;on the other resour
e, we s
hedule no interval whoselong segment interse
ts I 's long segment. Finally, we
hoose randomly, with probability 1=2, one of the twoservers.It 
an be shown that (i) if the length of the �rstsegment is in the range [1; 2℄, and the se
ond segmentis in the range [l=2; l℄, then the algorithm DS is 8-
ompetitive; (ii) if the length of the �rst segment is inthe range [l=2; l℄, and the se
ond segment is in the range[1; 2℄, then the Greedy algorithm is 5-
ompetitive.For the general 
ase, assume for simpli
ity that R =2k, where k � 1 is an integer. We partition the intervalsto lg2R barrels: the barrel (i; j), 1 � i; j � lgR � 1.
ontains the intervals I , in whi
h 2i � jI1j < 2i+1 and2j � jI2j < 2j+1.Denote by A the set of barrels in whi
h the �rstsegment is longer, i.e., 8I 2 A jI1j > jI2j. Thealgorithm Sele
t-from-Barrel (SB) pro
eeds as follows.We randomly 
hoose one barrel (i; j)�. If (i; j)� 2 A,we s
hedule the intervals in this barrel greedily; else weapply the algorithm DS on this barrel. We reje
t allother intervals.Note that for the barrels in A, the greedy s
hedulea
hieves the 
ompetitive ratio 5 from (i), while on theother barrels DS has the ratio 8. Sin
e half of the barrelsare in A we get that the 
ompetitive ratio of SB is6:5 log2R. Thus, we have shown the following.Theorem 4.3. The algorithm SB is O(log2R) 
ompet-itive.



4.2.2 Unknown segment lengths. Now we de-s
ribe an algorithm for the 
ase where R is unknownin advan
e. Using ideas similar to those of [32℄, wede�ne the algorithm HalfLengths (HL). For ea
h ar-riving interval, I , we examine separately the two seg-ments of I , I i; i 2 f1; 2g. The depth of I i, denotedby depth(I i), is d, if there is a set of segments Sj ,1 � j < d, su
h that (i) S1; : : : ; Sd�1 interse
t withI i, (ii) jSj j � 12 jSj�1j; 1 < j < d; (iii) Sj , 1 � j < d,was \sele
ted", but the resour
e may be allo
ated to an-other segment (satisfying 
ertain properties) before Sj
ompletes. (We say that Sj was virtually taken.)We use for 
oin tosses a probability distributionderived from the Riemann zeta fun
tion (see, e.g., [40℄):for a 
omplex number z 2 C, �(z) = Pn�1 1nz ; �(z)
onverges when jzj > 1, thus we 
hoose z = 1 + �for some small � > 0. Let 
d = 1=(d1+��(1 + �)), andpd = 
d=Qd�1j=1 (1�pj). Then 
d denotes the probabilitythat a segment in depth d will be taken; pd is the
onditional probability that a segment of depth d willbe taken, given that S1; : : : ; Sd�1 were not taken.We 
onsider s
heduling I i in depth d, only if jI ij �12 jSd�1j, in whi
h 
ase I i is taken with probabilitypd, and virtually taken with probability 1 � pd. Thisguarantees that if we virtually take an interval I , thenwe do not 
onsider any other interval, J , that interse
tsI i, i 2 f1; 2g, unless the segment of J whi
h interse
tswith I i is at least twi
e shorter than I i.Finally, we s
hedule the interval I only if both I1and I2 were s
heduled; if one of these segments was onlyvirtually taken, then I is virtually taken, and if any ofthe segments was reje
ted, then I is reje
ted.Theorem 4.4. The 
ompetitive ratio of algorithmHalfLengths is O((logR)2+�).Proof. Let O be some interval s
heduled by OPT. Thereare two possible 
ases: if HL has an opportunity tos
hedule O, (i.e., HL s
hedules O with some probability
O), then we are done, sin
e the maximal depth of anysegment is logR; thus, 
O � 
2logR; otherwise, HL hasan opportunity to s
hedule some other interval I , thatblo
ks O, i.e., I interse
ts O and either jO1j > jIij2or jO2j > jIij2 , i 2 f1; 2g. But in this 
ase, OPT
an s
hedule at most 5 intervals instead of I . For HLthe probability to s
hedule any interval (if this intervalis not blo
ked) is at least 
2logR, sin
e ea
h unblo
kedsegment is s
heduled with probability at least 
logR, ands
heduling of di�erent segments of the same interval isindependent. Therefore, for any interval that belongsto the optimal s
hedule, the gain of HL is at least 
2logR5 .Let OPT (�) and HL(�) denote the total gains ofOPT and HL, for some input sequen
e �, and OPT (O)

and HL(O) denote the gain of OPT and HL on theinterval O respe
tively. Then,E[HL(�)℄ � XO2OPT (�)HL(O)� XO2OPT (�) 
2logR5 OPT (O) = 
2logR5 OPT (�)This 
ompletes the proof.A
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