Scheduling Split Intervals

Reuven Bar-Yehuda*

Magntis M. Halldérsson'

Joseph (Seffi) Naor* ~ Hadas Shachnai®

Irina Shapira¥

Abstract

We consider the problem of scheduling jobs that are
given as groups of non-intersecting segments on the real
line. Each job J; is associated with an interval, I;,
which consists of up to ¢ segments, for some ¢t > 1, a
positive weight, w;, and two jobs are in conflict if any
of their segments intersect. Such jobs show up in a
wide range of applications, including the transmission
of continuous-media data, allocation of linear resources
(e.g. bandwidth in linear processor arrays), and in
computational biology/geometry. The objective is to
schedule a subset of non-conflicting jobs of maximum
total weight.

In a single machine environment, our problem can
be formulated as the problem of finding a mazimum
weight independent set in a t-interval graph (the special
case of t = 1 is an ordinary interval graph). We show
that, for ¢+ > 2, this problem is APX-hard, even for
highly restricted instances. Our main result is a 2¢-
approximation algorithm for general instances, based on
a novel fractional version of the Local Ratio technique.
Previously, the problem was considered only for proper
union graphs, a restricted subclass of ¢-interval graphs,
and the approximation factor achieved was (2 — 1 +
1/2%). A bi-criteria polynomial time approximation
scheme (PTAS) is developed for the subclass of t-union
graphs.

In the online case, we consider uniform weight
jobs that consist of at most two segments. We show
that when the resulting 2-interval graph is proper, a
simple greedy algorithm is 3-competitive, while any
randomized algorithm has competitive ratio at least 2.5.

~ *Computer Science Dept., Technion, Haifa 32000, Israel.
E-mail: reuven@cs.technion.ac.il.

TComputer Science Dept., University of Iceland, 1S-107 Reyk-
javik, Iceland, and Iceland Genomics Corp. E-mail: mmh@hi.is.

fComputer Science Dept., Technion, Haifa 32000, Israel.
E-mail: naor@cs.technion.ac.il.

§Computer Science Dept., Technion, Haifa 32000, Is-
rael. Currently on leave at Bell Laboratories, Lucent
Technologies, 600 Mountain Ave., Murray Hill, NJ 07974.
E-mail: hadas@research.bell-labs.com.

YComputer Science Dept., Technion, Haifa 32000, Israel.
E-mail: csira@cs.technion.ac.il.

For general instances, we give a randomized O(log® R)-
competitive (or O((log R)?*¢)-competitive) algorithm,
where R is the known (unknown) ratio between the
longest and the shortest segment in the input sequence.

1 Introduction

1.1 Problem Statement and Motivation. We
consider the problem of scheduling jobs that are given
as groups of non-intersecting segments on the real line.
Each job J; is associated with a t-interval, I;, which
consists of up to ¢t segments, for some ¢t > 1, and a pos-
itive weight, w;; two jobs are in conflict if any of their
segments intersect. The objective is to schedule on a
single machine a subset of non-conflicting jobs whose
total weight is maximum.

An instance of our problem can be modeled as the
intersection graph of t-intervals, known as a t-interval
graph. Each vertex in the graph corresponds to an in-
terval that has been “split” into t parts, or segments,
such that two vertices u and v intersect if and only if
some segment in the interval corresponding to u inter-
sects with some segment in the interval corresponding
to v. Note that l-interval graphs are precisely inter-
val graphs (an example is given in Figure 1). Thus,
for a given instance of our problem, we seek to find
a mazimum weight independent set (MWIS) in the re-
sulting weighted t-interval graph, that is, a subset of
non-adjacent vertices U C V', such that the weight of U
is maximized.

We describe below several practical scenarios in-
volving t¢-interval graphs.

Transmission of Continuous-media Data. Tradi-
tional multimedia servers transmit data to the clients
by broadcasting video programs at pre-specified times.
Modern systems allow to replace broadcasts with the al-
location of video data streams to individual clients upon
request, for some time interval (see, e.g., [33, 9]). In this
operation mode, a client may wish to take a break, and
resume viewing the program at some later time. This
scenario is natural, e.g., for video programs that are
used in remote education.

Suppose that a client starts viewing a program at
time tg. At time ¢; the client takes a break, and resumes

viewing the program at to, till the end of the program
(at ¢3). This scenario can be described by a split interval
I that consists of two segments: I' = (tg,t;) and
I? = (t3,t3). The scheduler may get many requests
formed as split intervals; each request is associated with
a profit which is gained by the system only if all of the
segments corresponding to the request are scheduled.
The goal is to schedule a subset of non-overlapping
requests that maximizes the total profit, i.e., find a
MWIS in the intersection graph of the split intervals.

Most of the previous work in this area describe ex-
perimental studies, in which VCR-like operations can
be used by the clients (see [9, 13, 33, 46]); however,
these studies focus on the efficient use of system re-
sources while supporting such operations, rather than
the scheduling problem.

Linear Resource Allocation. Another application
is linear resource allocation [25]. Requests for a linear
resource can be modeled as intervals on a line; two
requests for a resource can be scheduled together unless
their intervals overlap. A disk drive is a linear resource
when requests are for contiguous blocks [37]. A linear
array network is a linear resource, since a request
for bandwidth between processors i and j requires
that bandwidth be allocated on all intervening edges.
Consider a computer system that consists of a linear
array network and a large disk. A scheduler must
decide when to schedule requests, where each request
may comprise distinct requests to these two linear
resources, e.g., “a certain amount of bandwidth between
processors 4 and 7, and a lock on blocks 1000-1200 of
the disk”. Two requests are in conflict if they overlap
on the disk or in their bandwidth requirements. Thus,
when the goal is to maximize the amount of requests
satisfied by the system, we get an instance of the MWIS
problem on a subclass of 2-interval graphs, known as 2-
union graphs (See Section 2.1.)

Genomic Sequence Similarity. Bafna et al. [5]
consider determining the similarity between genetic se-
quences under large-scale mutational operations includ-
ing reversal and transposition. The problem is modeled
as that of determining a maximum weight independent
set in an intersection graph of axis-parallel boxes: the
boxes are in a t-dimensional space, where ¢ is the num-
ber of sequences. A pair of boxes is independent (or
non-adjacent in the graph) if their projections in all ¢
axes are disjoint. The non-negative weight of a box cor-
responds to the similarity of the substrings derived from
their local alignment.

Computational Geometry. This problem of finding
an independent set among a set of multi-dimensional
axis-parallel boxes is of independent interest in compu-
tational geometry. It corresponds to the MWIS problem

in t-union graphs, a subclass of t-interval graphs.

1.2 Ouwur Results. We give a comprehensive study of
the MWIS problem in ¢-interval graphs. In Section 2, we
show that MWIS is APX-hard even on highly-restricted
instances, namely, on (2,2)-union graphs. Our main
result (in Section 3) is a 2t-approximation algorithm
for MWIS in any t-interval graph, for ¢ > 2, which
is based on a novel fractional version of the Local
Ratio technique. (This technique was first developed
[7] and later extended by [6, 8].) Previously, the
problem was considered only on proper union graphs
[5], a restricted subclass of t-interval graphs, and the
approximation factor achieved was (2¢ — 1 + 1/2%).
Note that our approximation factor is almost the best
possible, given that any graph G can be represented
as a [(A + 1)/2]-interval graph [20] (where A is the
maximum degree), and that the maximum independent
set problem cannot be approximated better than within
a factor of A/20(VI°8A) [43]. The approximation factor
can also be argued to be within a constant of best
currently possible, since the problem properly includes
the MWIS problem in (¢ 4+ 1)-claw free graphs (see
Section 2), which is not known to be approximable
within ¢/2 in polynomial time.

For the class of ¢-union graphs, we develop (in
Section 3.1) a bi-criteria PTAS. Given a value Tp and
€ > 0, our scheme finds a subset of intervals of optimal
weight and a schedule where each interval is delayed
by at most €T, assuming that there exists an optimal
solution, whose latest completion time is Tp.

In the online case, we consider the MIS (the un-
weighted version) problem on 2-interval graphs. We
show (in Section 4) that when the graph is proper, any
randomized algorithm has competitive ratio at least 2.5;
a simple greedy algorithm is 3-competitive. For gen-
eral instances, we distinguish between two cases. Let R
denote the ratio between the longest and the shortest
segment in the input sequence. When R is known we
employ the bounded capacity approach of [1] to obtain a
simple 8-competitive algorithm for inputs that consist
of small number of segment lengths. This algorithm is
used as a procedure to yield an O(log2 R)-competitive
randomized algorithm for inputs with arbitrary segment
lengths. When R is unknown in advance we use the
method of randomized virtual selection of [32] for de-
veloping an O(log R)?*¢)-competitive algorithm.

Our results contain two technical contributions.
Our first contribution is a fractional extension of the
Local Ratio technique. This enables us to apply the
technique for rounding a fractional solution obtained
for an LP relaxation of our problem. We expect that
this non-standard use of the Local Ratio technique will

a b al bl al a2
q — —
1 2
a? b? b b
o 1 2
1 1 < ~C
c d c' d g e
c? d? — —
e [) [
e —

(a)

Figure 1: An example of a 2-interval graph (a), corresponding interval (segment intersection) graph (b), and

interval system (c).

find more applications. Our second contribution (in
Theorem 2.2) is a bound on the inclusive inductiveness
of a weighted ¢-interval graph. As a corollary, we extend
the best bound known on the chromatic number of t-
interval graphs of Gyarfis [21]. Our bound can be
shown to be asymptotically optimal.

1.3 Related Work. We briefly mention several works
that are related to ours.

Split interval graphs. Many NP-hard problems
including MIS [16, 19] can be solved efficiently in
interval graphs. Split interval graphs have a long history
in graph theory [44, 20, 38, 45], and more recently union
graphs have been studied under the name of multitrack
interval graphs [31, 22, 30]. We mention some of the
main results. For any fixed ¢ > 2, determining whether
a given graph is a t-interval graph is NP-complete [45],
and so is determining if a graph is a 2-union graph
[22]. 2-union graphs contain trees [44, 31] and more
generally all outerplanar graphs [30], while 3-interval
graphs contain the class of planar graphs [38]. Graphs
of maximum degree A are [£(A + 1)]-interval graphs
[20].

Coupled-tasks and flow shop scheduling. The
problem of scheduling 2-intervals (known as coupled-
task scheduling) was considered in the area of offline
machine scheduling with the objective of minimizing the
makespan (see e.g. [34, 41]). Relaxed versions of the
problem that require only a lower bound on the time
that elapses between the schedules of the two tasks of
each job (also called time-leg problems) were studied,
e.g., in [36, 14, 12].

Any instance of our scheduling problem can be
viewed as an instance of the flow shop problem, in which
the segments and break times are represented by tasks
that need to be processed on a set of m = 2t + 1 ma-
chines. (The precise transformation is given in Sec-
tion 3.1.) In general, the flow shop problem, where the
objective is to minimize the makespan, is NP-complete
even on three machines ([15]). The best result known

is O(log®(mu)/ loglog(mp))-approximation algorithm,
where p is the maximum number of operations per job,
and m is the number of machines ([39, 42]). When m
is fixed (but arbitrary) Hall [23] gave a PTAS for this
problem.

Online scheduling of intervals. Lipton and
Tomkins [32] considered the problem of online schedul-
ing of intervals on a single machine (resource), where
the objective is to maximize the resource utilization.
They gave an O(log R)-competitive (O((log R)!*¢)-
competitive) randomized algorithm for some ¢ > 0,
where R is the (unknown) ratio of longest to shortest
interval. Later works [17, 18] consider a variant of the
problem, where each interval (job) offers a slack, i.e., the
maximal possible delay from the time it arrives until it
is scheduled.

Call admission. Interval scheduling can be viewed as
a call admission problem on a line, where the objective
is to maximize the number of accepted calls. Awerbuch
et al. [4] showed a lower bound of Q(log R) on the
competitive ratio of any algorithm for calls of arbitrary
duration on a single link; R is the ratio between the
longest and shortest possible durations. Their proof
implies a lower bound of Q(log R) for online scheduling
of (non-split) intervals, where R is the ratio between the
longest and shortest intervals. This lower bound carries
over to online scheduling of split intervals.

2 Preliminaries

2.1 Definitions and Notation. Let 7 be a collection
of segments (or intervals) on the real line partitioned
into disjoint groups containing at most ¢ segments,
where t > 1. A t-interval graph G = (V,E) is the
intersection graph of the groups of segments. FEach
vertex in V' corresponds to a group of segments, and
(u,v) € E if one of the segments belonging to the group
of u intersects some segment belonging to the group of
v. We call a vertex in a t-interval graph a split interval.
Given a t-interval graph, we assume that each vertex
can be mapped to a set of segments, i.e., we can say

that a segment I belongs to a vertex v and denote it
by (v,I). A t-interval graph is proper if no segment
properly contains another segment.

In the subfamily of ¢-union graphs, the segments
associated with each vertex can be labeled in such a way
that for any two vertices u and v, the ith segment of u
and the jth segment of v never intersect for 1 <i,5 <'t,
and ¢ # j. Union graphs correspond also to certain
geometric intersection graphs. The ¢ segments are
viewed as intervals on orthogonal axes, corresponding
to a t-dimensional box; two boxes intersect if their
projections on any of the ¢ axes do. We further define
subclasses of union graphs, where coordinates are all
integral. In an (a, b)-union graph, all z-segments are of
length a and y-segments of length b.

Finally, in a graph G = (V, E), we denote by N (v)
the set of neighbors of v € V, and by N[v] the closed
neighborhood of v, {v} U N (v).

2.2 Hardness Results. Interval graphs are easy to
solve exactly since they always contain a vertex whose
neighborhood is a clique. In general t-interval graphs,
this property fails strongly, as stated in our next result.

OBSERVATION 2.1. For any n > 2, there erists a 2-

interval graph, where |V| = n, in which every vertex
has Q(y/n) independent neighbors.

Proof. For a given n > 2, let k = [(vV4n+1 —1)/2].
We show how to construct a 2-interval graph, in which
every vertex has k independent neighbors. We construct
the graph from (k + 1) subsets of intervals; each subset
consists of k intervals, and each interval is composed of
two segments. We denote the jth interval in subset ¢ by
Ii’j.

The graph is constructed as follows. Proceeding
from left to right, we place under the intervals of subset
i, I;i1,..., ;1 the ith intervals of subsets 1,...,k + 1,
ie, I, ..., Ixy1,i, excluding I; ;. This is repeated for
i =1,...,k. Finally, under the intervals of the (k + 1)-
th subset, we place the intervals I;;, 1 < i < k (see
Figure 2).

Thus, we get that any interval I; ; with ¢ # j,
intersects k non-intersecting intervals of subset j, and
I; ; intersects k non-intersecting intervals of subset k+1.

Note that since k(k + 1) < n, we may have some
remaining intervals, which are not contained in any
subset. We can place each such interval I under any
of the subsets i, 1 < i < k + 1, providing that interval
k independent neighbors. []

We can modify the above construction to hold for
2-union graphs.

We now give a hardness result for a highly restricted
class of proper 2-union graphs.

THEOREM 2.1. The MWIS problem is APX-hard on
(2,2)-union graphs.

The omitted proof proceeds by embedding degree-
3 graphs in the plane as (2, 2)-union graphs. Since the
MWIS problem is APX-hard on degree-3 graphs [11, 26]
the theorem then follows.

Unit segments are segments of unit size whose start
points are integral. Let S = {1,2,...,n} and C be a
collection of subsets of S. The k-set packing problem is
that of finding a maximum cardinality sub-collection C’
of C such that the intersection of any two sets in C’ is
empty. It properly contains the k-dimensional matching
problem.

LEMMA 2.1. The k-set packing problem is equivalent
to the MWIS problem in the special class of k-interval
graphs of unit segments.

Proof. There is a bijective mapping between unit seg-
ments and the set S, with [i,i + 1) mapping to i etc.
Thus, there is a bijective mapping between sets of up to
k elements from S and sets of up to k unit segments. W

Similarly, the k-dimensional matching problem (k-
DM) is equivalent to the MWIS problem in the special
class of k-union graphs of unit segments. In spite of con-
siderable research, the best approximation ratio known
for k-dimensional matching is still k£/2 + € [27]. The
2-set, packing problem is equivalent to the polynomial
solvable Edge Cover problem, while 3-DM is APX-hard
[35].

COROLLARY 2.1. MWIS in (1,1)-interval graphs is
polynomial solvable. MWIS in (1,1,1)-union graphs is
APX-hard.

The correspondence of (1,1)-union graphs to line
graphs of bipartite graphs, and the resulting polynomial
solvability of MWIS, was shown by Halldérsson et al.
[25].

2.3 Structural Properties. Recall that the in-
ductiveness of a graph G is defined as D(G) =
maxgcq mingey () d(v). The weighted analog is the
inclusive inductiveness of G. Let d*(v) = > ueny w(w)
denote the inclusive degree of v € V, and 67 (G) be the
minimum inclusive degree of G. The inclusive induc-
tiveness of G is given by DV(G) = maxpcqd™(H).
Finally, the weighted clique number of G is given by
w(G) = maxoca Y ,ec w(v), where C' is a clique. In
the following we derive a bound on the inclusive induc-
tiveness of t-interval graphs.

Il,l I1,2 Il,k I2,1 I2,2 I2,k
b 1t i b i b 1t R
I2,1 I1,2
Ig,l I3,2
Iitia Iit1,2

Iiv11 Tpy1p2 Tpq1k
— e
L
I
Iy

Figure 2: An example of a 2-interval graph, in which every vertex has k independent neighbors.

THEOREM 2.2. Let G* be a weighted t-interval graph
and let G be the underlying interval graph, i.e. the inter-
section graph of the segments in G*. Then, DT(G*) <
2t - w(QG).

Proof. Let S* be an arbitrary subgraph of G*, and
S the corresponding induced subgraph of G. Since
each vertex in S* corresponds to at most ¢ vertices
in S, [V(S)] < t-|V(S*)|, and since each edge in S*
corresponds to one or more edges in S, W(S*) < W(S).
Thus,

bigey < V(ST _ W(S)
TS e =)
If we remove minimum-degree vertices one by one from
S, each has inclusive degree at most D*(S). The
weight of the subgraph is at most twice this sum,
i.e.,, W(S) < 2D*(S). Since S is an interval graph,
D*(S) =w(S) < w(G). Thus,

6+(S*) S tW(S)

. + w .
T <2 DHS) < 20(6)

This holds for any subgraph S* of G*, hence the theorem
follows from the definition of inductiveness. [|

The above gives a 2t-approximation for coloring ¢-
interval graphs via a greedy algorithm. Gyarfis [21]
showed that the chromatic number of a t-interval graph
G* is at most 2t(w(G*) — 1), where w(G*) is the
clique number of the graph. Our new bound (with
slight improvements in the unweighted case) replaces
w(G*) by w(G) in the latter expression, where G is the
underlying interval graph.

COROLLARY 2.2. A greedy algorithm colors G* using
2t(w(G) — 1) colors.

3 The Offline Case

In this section we describe a 2¢-approximation algorithm
for the maximum weight independent set problem in a
t-interval graph G = (V, E). The algorithm is based
on rounding a fractional solution derived from a linear

programming relaxation of the problem. The standard
linear programming relaxation of the maximum weight
independent set problem is the following. For each
v € V, let z(v) be the linear relaxation of the indicator
variable for v, i.e., whether v belongs to the independent
set. Let w,x € R!V! be a weight vector and a relaxed
indicator vector, respectively.

maximize w-x subject to:
for each clique C € G : Zaz(v) <1
veC

Unfortunately, it is not clear how to optimize in the
above over all cliques in a t-interval graph. We say that
a clique C in the graph is an interval clique if for every
vertex v € C, there is a segment (v,I) such that the
intersection of ((v,I)[v € C) is non-empty. We now
further relax the independent set problem and consider
only interval cliques. For each vertex v € V' and segment
I € v, z(v,I) denotes the value of segment I.

(P) maximize w-x subject to:
for each interval clique C: Z z(v,I) < 1
(v,I)eC
foreachveVand I €v: z(v,I)—z(®) > 0
foreachveVand I €v: z(v),z(v,I) > 0

The heart of our rounding algorithm is the following
lemma. In fact, it can be viewed as a fractional analog
of Theorem 2.2.

LEMMA 3.1. Let x be a feasible solution to (P). Then,
there exists a vertex v € V' satisfying:
Z x(u) <2t
u€Nv]
Proof. For two adjacent vertices w and v, define
y(u,v) = z(v) - x(u). Define y(u,u) = z(u)?. For a

segment I, let R(I) be the interval clique defined by
the right endpoint of I (I € R(I)). We prove the claim

using a weighted average argument, where the weights
are the values y(u,v) for all pairs of adjacent vertices,
w and v.

Consider the sum 3, oy >°, e npyy ¥(u,). An upper
bound on this sum can be obtained as follows. For each
v € V, consider all segments I € v, and for each (v, T),
add up y(u,v) for all (u,J) that intersect with (v, I)
(including (v, I)). In fact, it suffices to add up y(u,v)
only for segments (u,J) such that (u,J) € R(I), and
then multiply the total sum by 2. This suffices since:
(a) If, for segments (v, I) and (u, J), the right endpoint
of I precedes the right endpoint of .J, then (v, T) “sees”
(v,J) and vice-versa. Since y(u,v) = y(v,u), each of
them contributes the same value to the other. (b) For
segments (v, I) and (u, J), the constraints of (P) imply
that z(v,I) = z(v) and z(u,J) = z(u). Hence, the
mutual contribution of two segments (u,.JJ) and (v,I)
that intersect depends only on u and v, i.e., it is y(u,v).
Thus,

d. >) <23 3)

vEV uEN[v] veEV I€v (u,J)ER(I)

y(u,v)

Since

(u,J)ER(I) (u,J)ER(I)
we get that
Z Z y(u,v) < 2t- Z z(v).
veEV ueN[v] veV

Hence, there exists a vertex v satisfying

Z y(u,v) < 2t-z(v).

uENv]

(3.1)

If we factor out z(v) from both sides of (3.1) we obtain
the statement of the lemma.]

We now define a fractional version of the Local
Ratio technique. The proof of the next lemma is
immediate.

LEMMA 3.2. Let x be a feasible solution vector to (P).
Let wy and wo be a decomposition of the weight vector
w such that w = wq + wa. Suppose that 'y is a feasible
integral solution vector to (P) satisfying: wq -y >
r(wy -x) and wa -y > r(wo -x). Then,

w-y >r(w-x).

The rounding algorithm will apply a local ratio
decomposition of the weight vector w with respect to an
optimal solution x to linear program (P). The algorithm
proceeds as follows.

1. Delete all vertices with non-positive weight. If no
vertices remain, return the empty set.

2. Let v' € V be a vertex satisfying 3°, ¢ vy, 2(u) <
2t. Decompose w by w = w1 + wg as follows:

if u € N[v'],
otherwise.

(In the decomposition, the component wa may be
non-positive.)

3. Solve the problem recursively using wg as the
weight vector. Let Z' be the independent set
returned.

4. If 7' U {v'} is an independent set, return Z =
Z' U {v'}. Otherwise, return Z = 7.

Clearly, the set 7 is an independent set. We now
analyze the quality of the solution produced by the
algorithm.

THEOREM 3.1. Let x be an optimal solution to linear
program (P). Then, it holds for the independent set T
computed by the algorithm that w(Z) > 2% “W-X

Proof. The proof is by induction on the number of
recursive calls. At the basis of the recursion, the
independent set returned is optimal (and hence a 2t-
approximation), since no vertices remain. Clearly, the
first step in which vertices of non-positive weight are
deleted cannot decrease the above RHS. We now prove
the inductive step. Let y and y’ be the indicator
vectors of the sets 7 and 7', respectively. Assume that
wa -y > (1/2t) - wa - x. Since wo(v') = 0, it also holds
that wo -y > (1/2t) - wa - x. From Step (4) of the
algorithm it follows that at least one vertex from N[0/
belongs to Z. Hence, wy -y > (1/2¢t) - wq - x. Thus, by
Lemma 3.2, it follows that

1
w-yzﬂ-w-x

We have thus proved that 7 is a 2¢-approximate solution
to the MWIS problem. []

Extension. We note that our approximation results
can be generalized to £ machines. That is, the goal is
to find a maximum weight k-colorable subgraph of a ¢-
interval graph. The approximation factor obtained for
this case is 2t + 1.

3.1 A Bi-criteria Approximation Scheme for
Union Graphs. Recall that MWIS is APX-hard al-
ready on (2,2)-union graphs. We consider below the
larger subclass of ¢t-union graphs in which the possible

number of segment lengths is bounded by some con-
stant. For this subclass we develop a bi-criteria PTAS,
which finds an MWIS by allowing some delays in the
schedule.

Let ¢; denote the number of distinct lengths of the
i-th segment, 1 < ¢ < ¢, where ¢ is some constant.
Recall that in the flow shop problem we are given a
set of n jobs, Ji,...,J, that need to be processed
on m machines, Mji,..., My,; each job, J;, consists
of m operations, Oj1,...,0jm, where O;; must be
processed without interruptions on the machine M;, for
pj,i time units. Any machine, M;, can either process
a single operation at a time, or an unbounded number
of operations; in the latter case we call M; a non-
bottleneck machine. Each job may be processed by at
most one machine at any time. For a given schedule,
let C; be the completion time of J;. The objective is to
minimize the mazimum completion time (or makespan),
given by C,qp = max; C;. Denote by C7, .. the optimal
makespan.

An instance of our problem can be transformed
to an instance of the flow shop problem, where each
job has 2t + 1 operations, and the machines Ma;11,
0 < i < t—1, are non-bottleneck machines. More
specifically, we represent each t-interval, I;, as a job J;,
where each segment is associated with an “operation”
of the job. In addition, we simulate the breaks with
operations of the same lengths that need to be processed
on non-bottleneck machines. Similarly, to include the
release time r; of I;, we add to .J; the operation O; 1,
whose length equals to 7;; the machine M; is a non-
bottleneck machine. Thus, if I; has ¢ segments, J; has
2t operations.

Recall that in a union graph, each interval has
a due date, d;, which equals to its release time plus
the sum of its processing times and break times. To
simulate these due dates we define a delivery time, g;,
for each job, J;. Let ¢ = —d;. We add to J; the
operation Oj 2¢41), where pj 2111y = ¢qj, and Mgy
is a non-bottleneck machine. Our objective then is to
minimize the maximum delivery completion time, given
by max;{C; + ¢;} = max;{C; —d;}. This is equivalent
to minimizing the maximum lateness of any job, given
by L; = C; — d;. Hence, our objective can be viewed
as minimization of L,,,, = max; L;. Note that the g;’s
are negative. Given that the latest completion time of
the optimal solution is Ty, we define dj =d; — To.
Then for any j, dj < 0. By setting ¢; = —cij we
get that all the processing times are positive. The
objective is to minimize the maximum lateness, given
by Lmas = max;{C; —d; + To}. Note that since in an
optimal schedule there are no “late” jobs, the minimal

M * —
lateness is L}, ... = To.

In the following we use some ideas from [28, 24, 29].
Our scheme uses as procedure a PTAS for finding
a (1 + e)-approximation for the flow shop makespan
problem with a fixed number of machines (see, e.g.,
[23]). We represent a t-interval I; by a (2t + 1)-vector
(Pja,.--sDj2t+1), where p;; is the release time, p;o;
(pj2i+1), is the length of the i-th segment (break),
1 <i <t and pj2y1 (= gj) is the delivery time of
the corresponding job, J;. We then scale all parameter
values as follows. We divide the processing and release
times by T and round each release time down and each
break time up to the nearest multiple of €¢/(2¢). Thus,
the number of vectors (pj1, - .. pjocs1) is [Tiey ci(2t/€).

We now summarize the steps of our scheme, which
gets as parameter the value of T and some €' > 0. (i)
Guess O, the number of intervals scheduled by OPT;
(i7) Guess the subset So of O intervals of maximal
weight, scheduled by OPT. (iii) Using a PTAS for
minimizing the makespan in the flow shop instance of
So, find a schedule of Sp for which L., < (1 +
el)L:’;’lafE'

Note that due to the above rounding, we need to
add €/2t to the release times; also, each break time may
delay the optimal completion time by €/2t, therefore,
taking € = €/2t we guarantee that the delay of each
interval is at most (1 + €) times Tp. Finally, we add
To = L} to each due date; thus, the maximum

max
lateness of any job in our schedule equals to eC7, .-

For the complexity of our scheme, note that step
(1) takes O(n). The number of possible guesses of S
is O(n® Tz e)/€"y " (In each guess of a set of vectors
representing a subset of intervals, we take the subset
whose weight is maximal.) This is multiplied by the
complexity of the PTAS for flow shop. We summarize

in the next result.

THEOREM 3.2. Lett > 1 be some fized constant. Given
a t-union graph with constant number of distinct seg-
ment lengths, let YW be the weight of an optimal MWIS,
whose latest completion time is Tey. Then for any e > 0
there is a PTAS that schedules an independent set of
weight at least VW, such that any interval is late by at
most €T .

4 The Online Case

In the online version of our problem, the set of input
intervals is not known to the scheduler in advance. We
focus here on the case where the jobs are uniform, and
each job consists of at most two segments. Thus, our
goal is to select a subset of non-overlapping jobs of
maximum size, i.e., we deal with the MIS problem in
a 2-interval graph. We assume that all the endpoints
of the segments that belong to a 2-interval are known

upon its arrival. For simplicity, assume that the shortest
segment has length 1. Let k be the claw number of the
graph.

Consider the Greedy algorithm that schedules every
arriving interval if it does not conflict with any of the
previously scheduled intervals. Recall that R is the ratio
between the longest and the shortest segment in the
input sequence. We omit the proof of the next result.

THEOREM 4.1. The Greedy
min{2R + 1, k}-competitive.

algorithm is strongly

4.1 Proper graphs. When the graph is proper, the
above greedy algorithm has competitive ratio 3. In the
following we show that this is almost the best possible,
even when we use randomization.

2 2 3 4 3 ¢

b
a

b

1 1 a

Figure 3: Construction for a randomized lower bound

THEOREM 4.2. The performance ratio of any random-
ized online MIS algorithm on proper 2-interval graphs
is at least 2.5.

Proof. We construct a family graph, whose interval
representation is shown in Figure 3. The graph contains
vertices 1 through 4, a and b, and ¢ vertices shown
following vertex 3. Here £ is a parameter chosen at
random from the range 1 to n. The intervals are
presented in the order shown. Only the order among
2, a, and b is not known, and is chosen at random.

The optimal solution consists of intervals 2,3, and
4. The reason why the algorithm is bound to obtain
a non-optimal solution is three-fold: () it must choose
interval 1 with significant probability, in order to be
competitive on the prefix instance consisting of that
interval alone, (i) when trying to choose interval 2, it
may wind up with either a or b, in which case it can
include no more intervals, and (#4) it cannot guess with
non-trivial probability the value of £, meaning that it is
unlikely to add interval 3 and then 4.

Let p; be the probability that the algorithm adds
interval 1. The competitiveness on the instance consist-
ing of a single interval is then 1/p;. The algorithm can
only get two intervals if it either selects 2, or selects 3,
and three only if it adds both. The probability of se-
lecting interval 3 is only 1/n, which is negligible. The
probability of selecting 2 is 1/3. It follows that the ex-
pected size A of the set obtained by the algorithm is at

most

2 1 4 — P1
E[A] < 1- —14--2)= .
Al <p+A-p)(5-1+3-2) 3
Thus, the performance ratio of the algorithm is the
worse of the performance on the single-interval instance
and of the instance above, or p = max(

1 9
max(p—l, T

1 3) _
5 p1’4/3—p1/3/

4.2 General split interval graphs

4.2.1 Known segment lengths. Consider the case
where R is known in advance. We first present an
algorithm for scheduling intervals, in which the first
segment is of length 1 and the second of length [, for
some | > 1 ((1,1) intervals). Then we show how this
algorithm can be used as a procedure by an online
algorithm that accepts as input interval with segments
of arbitrary lengths.

Suppose that we can schedule the intervals on two
servers (i.e., the capacity of the resource is 2). The
algorithm Double Select (DS) proceeds as follows. Upon
arrival of an interval I, if there is a resource available for
I, we schedule the interval on some available resource;
on the other resource, we schedule no interval whose
long segment intersects I’s long segment. Finally, we
choose randomly, with probability 1/2, one of the two
servers.

It can be shown that (i) if the length of the first
segment is in the range [1,2], and the second segment
is in the range [I/2,l], then the algorithm DS is 8-
competitive; (i) if the length of the first segment is in
the range [I/2,1], and the second segment is in the range
[1,2], then the Greedy algorithm is 5-competitive.

For the general case, assume for simplicity that R =
2% where k > 1is an integer. We partition the intervals
to lg? R barrels: the barrel (i,5), 1 < 4,5 < IgR — 1.
contains the intervals I, in which 2! < |I'| < 27! and
27 < |I?| < 27+,

Denote by A the set of barrels in which the first
segment is longer, ie., VI € A |I'| > |I?|. The
algorithm Select-from-Barrel (SB) proceeds as follows.
We randomly choose one barrel (z,7)*. If (i,7)* € A,
we schedule the intervals in this barrel greedily; else we
apply the algorithm DS on this barrel. We reject all
other intervals.

Note that for the barrels in A, the greedy schedule
achieves the competitive ratio 5 from (¢), while on the
other barrels DS has the ratio 8. Since half of the barrels
are in A we get that the competitive ratio of SB is
6.51og” R. Thus, we have shown the following.

THEOREM 4.3. The algorithm SB is O(log® R) compet-
itive.

4.2.2 Unknown segment lengths. Now we de-
scribe an algorithm for the case where R is unknown
in advance. Using ideas similar to those of [32], we
define the algorithm HalfLengths (HL). For each ar-
riving interval, I, we examine separately the two seg-
ments of I, I',i € {1,2}. The depth of I', denoted
by depth(I?), is d, if there is a set of segments S,
1 < j < d, such that (i) Sy,...,S4—1 intersect with
I3, () 1851 < 3185-l, 1< j < di (i) 85,1 < j < d,
was “selected”, but the resource may be allocated to an-
other segment (satisfying certain properties) before S;
completes. (We say that S; was virtually taken.)

We use for coin tosses a probability distribution
derived from the Riemann zeta function (see, e.g., [40]):
for a complex number z € C, ((2) = Y ,5; == ¢(2)
converges when |z| > 1, thus we choose z = 1 + €
for some small € > 0. Let ¢ = 1/(d'*<¢(1 + ¢€)), and
Da = cd/ H;tll(l —p;)- Then ¢4 denotes the probability
that a segment in depth d will be taken; py is the
conditional probability that a segment of depth d will
be taken, given that Si,...,S4_1 were not taken.

We consider scheduling I? in depth d, only if |If| <
11S4-1], in which case I' is taken with probability
pa, and wvirtually taken with probability 1 — pg. This
guarantees that if we virtually take an interval I, then
we do not consider any other interval, J, that intersects
It i € {1,2}, unless the segment of J which intersects
with I? is at least twice shorter than I°.

Finally, we schedule the interval I only if both I'
and I? were scheduled; if one of these segments was only
virtually taken, then I is virtually taken, and if any of
the segments was rejected, then I is rejected.

THEOREM 4.4. The competitive ratio of algorithm
HalfLengths is O((log R)**¢).

Proof. Let O be some interval scheduled by OPT. There
are two possible cases: if HL has an opportunity to
schedule O, (i.e., HL schedules O with some probability
co), then we are done, since the maximal depth of any
segment is log R; thus, co > c%og r; otherwise, HL has
an opportunity to schedule some other interval I, that

blocks O, i.e., I intersects O and either |O| > |12—|

or |0? > %, i € {1,2}. But in this case, OPT
can schedule at most 5 intervals instead of I. For HL
the probability to schedule any interval (if this interval
is not blocked) is at least c%og g since each unblocked
segment is scheduled with probability at least ciog g, and
scheduling of different segments of the same interval is
independent. Therefore, for any interval that belgngs
to the optimal schedule, the gain of HL is at least fog R
Let OPT (o) and HL(o) denote the total gains of

OPT and HL, for some input sequence o, and OPT(O)

and HL(O) denote the gain of OPT and HL on the
interval O respectively. Then,

E[HL(s)] > Y. HL(O)
O€OPT (o)
> > cﬁ)—gROPT(O) = C‘Q"—gROPT(a)
- 5 5
O€eOPT (o)
This completes the proof. [|
Acknowledgments. We thank Yossi Azar for many

helpful comments on this paper.

References

[1] R. Adler, and Y. Azar. “Beating the Logarithmic Lower
Bound: Randomized Preemptive Disjoint Path and
Call Control Algorithms”. In SODA ’99, 1-10.

[2] A. Aggarwal, J. Garay, and A. Herzberg. “Adaptive
Video on Demand”. In ESA 95, 538-553.

[3] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton.
“Making commitments in the face of uncertainty: how
to pick a winner almost every time”. In STOC 96, 519—
530.

[4] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén.
“Competitive Non-Preemptive Call Control”. In SODA
’94, 312-320.

[6] V. Bafna, B. Narayanan, and R. Ravi. “Nonoverlapping
Local Alignments (Weighted Independent Sets of Axis
Parallel Rectangles)”. In Discrete Applied Mathemat-
ies, vol. 71, Special issue on Computational Molecular
Biology, 1996, pp. 41-53.

[6] V. Bafna, P. Berman, and T. Fujito. “A 2-
approximation Algorithm for the Undirected Feedback
Vertex Set Problem,” SIAM J. on Disc. Mathematics,
vol. 12, pp. 289-297, 1999.

[7] R. Bar-Yehuda and S. Even. “A Local Ratio Theorem
for Approximating the Weighted Vertex Cover Prob-
lem,” Annals of Discrete Mathematics, vol. 25, pp. 27—
46, 1985.

[8] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and
B. Schieber. “A Unified Approach to Approximating
Resource Allocation and Scheduling”. In STOC 00,
735-744.

[9] P.Basu, A. Narayanan, R. Krishnan, and T.D.C. Little.

“An Implementation of Dynamic Service Aggregation

for Interactive Video Delivery”. In SPIE ’98.

P. Berman. “A d/2 Approximation for Maximum

Weight Independent Set in d-Claw Free Graphs”.

Nordic Journal of Computing, vol. 7, 2000, p. 178.

P. Berman, and T. Fujito. “Approximating Indepen-

dent Sets in Degree 3 Graphs”. In WADS ’95, LNCS

955, 449-460.

P. Brucker, T. Hilbig, and J. Hurink. “A Branch

and Bound Algorithm for a Single-Machine Scheduling

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

29]

[30]

problem with Positive and Negative Time-Lags”. In
Discrete Applied Mathematics, vol. 94, 1999, pp. 77—
99.

A. Dan, P. Shahabuddin, and D. Sitaram. “Channel
Allocation Under Batching and VCR Control in Movie-
On-Demand Servers”, IBM Research Report RC19588,
May 1994.

M. Dell‘Amico. “Shop Problems with Two machines
and Time Lags”. In Operations Research, vol. 44, no.
5, 1996, pp. 777-787.

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
completeness. Freeman, 1979.

F. Gavril. “Algorithms for Minimum Coloring, Maxi-
mum Clique, Minimum Coloring by Cliques, and Max-
imum Independent Set of a Chordal Graph”. In STAM
J. Computing, vol. 1, No. 2, 1972, pp. 180-187.

S. Goldman, J. Parwatikar, and S. Suri. “On-line
Scheduling with Hard Deadlines”. In WADS 97, 258-
271.

M. Goldwasser. “Patience is a Virtue: The Effect of
Slack on Competitiveness for Admission Control”. In
SODA 99, 396-405.

M. Golumbic. Algorithmic Graph Theory and Perfect
Graphs. Academic Press, 1980.

J.R. Griggs, and D.B. West. “Extremal Values of the
Interval Number of a Graph”. In SIAM J. Algebraic
and Discrete Methods, 1980, vol. 1, No. 1, pp. 1-7.

A. Gyérfds. “On the chromatic number of multiple
interval graphs and overlap graphs”. In Discrete Math.
55 (1985), 161-166.

A. Gyéarfis and D. B. West. “Multitrack Interval
Graphs”. Congr. Numer. 109 (1995), 109-116.

L.A. Hall. “Approximability of Flow Shop Scheduling”.
In Mathematical Programming, 1998, vol. 82, pp. 175-
190.

L.A.Hall, and D.B. Shmoys. “Approximation Algo-
rithms for Constrained Scheduling Problems”. In FOCS
’89, 134-139.

M. M. Halldérsson, S. Rajagopalan, H. Shachnai,
and A. Tomkins. “Scheduling Multiple Resources”.
Manuscript, 1999.

M. M. Halldérsson, K. Yoshihara. “Approximation
Algorithms for Maximum Independent Set Problem on
Cubic Graphs”, In ISAAC ’95, LNCS 1004, 152-161.
C. A. J. Hurkens, and A. Schrijver. “On the size of
systems of sets every ¢ of which have an SDR, with
an application to the worst-case ratio of heuristics for
packing problems”. SIAM J. Discrete Math., vol 2,
1989, pp. 68-72.

K. Jansen, R. Solis-Oba, and M. Sviridenko.
“Makespan Minimization in Job Shops: A Polynomial
Time Approximation Scheme”. In STOC ’99, 394-399.
D. Karger, C. Stein, and J. Wein. “Scheduling Al-
gorithms”. Algorithms and Theory of Computation
Handbook, CRC Press, 1997.

A. V. Kostochka and D. B. West. “Every outerplanar
graph is the union of two interval graphs”. Congr.

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Numer. 139 (1999), 5-8.

N. Kumar and N. Deo. “Multidimensional interval
graphs”. Congr. Numer. 102 (1994), 45-56.

R. Lipton and A. Tomkins. “Online Interval Schedul-
ing”. In SODA 94, 302-311.

C. Martin, P. S. Narayanan, B. Ozden, R. Rastogi,
and A. Silberschatz. “The Fellini Multimedia Storage
Server”. In Multimedia Information Storage and Man-
agement, Kluwer Academic Publishers, 1996.

A.J. Orman, and C.N. Potts. “On the Complexity of
Coupled-Task Scheduling”. In Discrete Applied Mathe-
matics, vol. 72, 1997, pp. 141-154.

C.H. Papadimitriou, and M. Yannakakis. “Optimiza-
tion, approximation, and complexity classes”. In J.
Computer and System Sciences, 1991, vol. 43, pp. 425—
440.

A H.G. Rinnooy Kan. Machine Scheduling Problems.
Martinus Nijhoff, The Hague, 1976.

D. Rotem, and S. Seshadri. “Analysis of Disk Arm
Movement for Retrieval of Large Objects”. In PODS
"92.

E.R. Scheinerman and D. B. West. “The interval num-
ber of a planar graph — three intervals suffice”. J. Com-
bin. Theory (B) 35 (1983), 224-239.

J.P. Schmidt, A. Siegel, and A. Srinivasan. “Chernoff-
Hoeffding Bounds for Applications with Limited Inde-
pendence”. In SIAM J. Discrete Math., vol. 6, 1995,
pp. 223-250.

R. Sedgewick and P. Flajolet. An Introduction to the
Analysis of Algorithms. Addison-Wesley, 1996.

R.D. Shapiro. “Scheduling Coupled Tasks”. In Naval
Research Logistics Quarterly, vol. 27, 1980, 489-498.
D.B. Shmoys, C. Stein, and J. Wein. “Improved Ap-
proximation Algorithms for Shop Scheduling Prob-
lems”. In SIAM J. Computing, vol. 23, 1994, pp. 617—
632.

L. Trevisan. “Non-approximability results for optimiza-
tion problems on bounded degree instances”. In STOC
01, 453-461.

W.T. Trotter, Jr. and F. Harary. “On Double and
Multiple Interval Graphs”. In Journal of Graph Theory,
vol. 3, 1979, pp. 205-211.

D.B. West, and D.B. Shmoys. “Recognizing Graphs
with Fixed Interval Number is NP-Complete”. In Dis-
crete Applied Mathematics, vol. 8, 1984, pp. 295-305.
P.S. Yu, J.L. Wolf, and H. Shachnai. “Design and
Analysis of a Look_ahead Scheduling Scheme to Sup-
port Pause-Resume Video-on-Demand Applications”.
In ACM Multimedia Systems Journal, vol. 3, 1995, pp.
137-149.

