SDP-based Algorithms for Maximum
Independent Set Problems on Hypergraphs

Geir Agnarsson', Magnts M. Halldérsson?, and Elena Losievskaja3

! Dept. of Mathematical Sciences, George Mason University, Fairfax, VA, USA,
geir@math.gmu. edu,
2 School of Computer Science, Reykjavik University, IS-103 Reykjavik, Iceland
mmh@ru.is,
3 Faculty of Industrial-, Mechanical Engineering and Computer Science, University of
Iceland, IS-107 Reykjavik, Iceland elenal@hi.is,

Abstract. This paper deals with approximations of maximum indepen-
dent sets in non-uniform hypergraphs of low degree. We obtain the first
performance ratio that is sublinear in terms of the maximum or average
degree of the hypergraph. We extend this to the weighted case and give
a O(Dloglog D/log D) bound, where D is the average weighted degree
in a hypergraph, matching the best bounds known for the special case
of graphs. Our approach is to use an semi-definite technique to sparsify
a given hypergraph and then apply combinatorial algorithms to find a
large independent set in the resulting sparser instance.

1 Introduction

This paper deals with approximations of maximum independent sets in hyper-
graphs of low degree. Recall that a hypergraph (set system) H = (V, E) has a
vertex set V' and a collection E of (hyper)edges that are arbitrary subsets of
V. A hypergraph is weighted if vertices in V are assigned weights. It has rank
r if all edges are of size at most r, and is r-uniform if all are of size exactly
r. A set of vertices is independent if it does not properly contain any edge in
E. The degree of a vertex is its number of incident edges. We consider approx-
imation algorithms for the maximum independent set (MIS) problem in sparse
non-uniform hypergraphs.

The MIS problem is of fundamental interest, capturing conflict-free sets in a
very general way. It generalizes the classic independent set problem in graphs,
and thus inherits all its hardness properties. The vertices not in an independent
set form a hitting set of the hypergraph. Algorithms for MIS can therefore be
viewed as set covering algorithms with a differential measure, which lends it an
additional interest.

Hypergraph problems tend to be more difficult to resolve than the corre-
sponding graph problems, with the MIS problem a typical case. The best per-
formance ratio known for MIS in general hypergraphs, in terms of the number
n of vertices, is only O(n/logn), which has a rather trivial argument [7]. For
the graph case, for comparison, the ratio is O(n(loglogn)?/log®n) [4]. In terms
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of the maximum degree A, a ratio of A is trivial, while previous work on MIS
in hypergraphs has improved only the constant term [2,8]. More specifically, a
A/1.365-upper bound was obtained for a greedy algorithm and a tight (A+1)/2-
ratio for a local search method, while in [8] a tight bound of (A + 1)/2 was
obtained for the greedy algorithm as well as the best previously known bound
of (A + 3)/5. The main sign of success has been on sparse hypergraphs, where
Turan-like bounds have been proven [3, 16, 15]. Unlike graphs, however, the exact
constant in the bounds is not known.

The most powerful approach for the approximation of challenging optimiza-
tion problems has involved the use of semi-definite programming (SDP). It is
responsible for the best ratio known for IS in graphs of O(Aloglog A/log A)
[6]. It is also involved in the complementary vertex cover problem [9], both in
graphs and in hypergraphs. Yet, it has failed to yield much success for MIS in hy-
pergraphs, except for some special cases. One intuition may be that hyperedges
result in significantly weaker constraints in the semi-definite relaxation than the
graph edges. The special cases where it has been successful — 2-colorable k-
uniform hypergraphs [6] and 3-uniform hypergraphs with a huge independence
number [11] — have properties that result in strengthened constraints. The use-
fulness of SDP for general MIS has remained open.

This state-of-the-art suggests several directions and research questions. A key
question is to what extent approximation ratios for IS in graphs can be matched
in hypergraphs. This can be asked in terms of different degree parameters, as
well as extensions. Given that graphs are 2-uniform hypergraphs and k-uniform
hypergraphs have certain nice properties, the question is also how well we can
handle non-uniform hypergraphs.

Our results. We derive the first o(A)-approximation for IS in hypergraphs match-
ing the O(Aloglog A/ log A)-approximation for the special case of graphs. Our
approach is to use an SDP formulation to sparsify the part of the instance formed
by 2-edges (edges of size 2), followed by a combinatorial algorithm on the result-
ing sparser instance. This is extended to obtain an identical bound in terms of the
average degree d of an unweighted hypergraph. As part of the method, we also
obtain a k®/2-1/kql—1/k+o(1)_approximation for hypergraphs with independence
number at least n/k.

We generalize the results to the vertex-weighted problem. In that case, no
non-trivial bound is possible in terms of the average degree alone, so we turn
our attention to a weighted version. The average weighted degree D is the
node-weighted average of the vertex degrees. We give a O(D loglog D/log D)-
approximation for MIS.

We apply two combinatorial algorithms to hypergraphs with few 2-edges.
One is a greedy algorithm analyzed by Caro and Tuza [3] for the k-uniform
case and Thiele [16] for the non-uniform case. The bound obtained in [16] is in
general unwieldy, but we can show that it gives a good approximation when the
number of 2-edges has been reduced. The other is a simple randomized algorithm
analyzed by Shachnai and Srinivasan [15].
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Organization. The paper is organized in the following way. In Sect. 2 we de-
scribe how to find a large sparse hypergraph in a given hypergraph H using
SDP technique. In Sect. 3 we give analysis of the greedy algorithm for MIS on
hypergraphs of rank 3 with small 2-degree, and then show how to apply this
greedy algorithm together with SDP to find a large hypergraph in H. In Sect.
4 we describe how to use a randomized algorithm together with SDP to find a
good approximation of a weighted MIS in hypergraphs.

2 Definitions

Given a hypergraph H = (V, E), let n and m be the number of vertices and
edges in H, respectively. We assume that H is a simple hypergraph, i.e. no edge
is a proper subset of another edge. An edge of size t is a t-edge. A hypergraph is
r-uniform if all edges are r-edges. A graph is a 2-uniform hypergraph. The rank
r of a hypergraph H is the maximum edge size in H.

Let di(v) be t-degree of a vertex v, or the number of t-edges incident on wv.
We denote by A; and d; the maximum and the average t-degree in a hypergraph,
respectively. The degree d(v) of a vertex v is the total number of edges incident

ks

on v, i.e. d(v) = Y di(v). We denote by A and d the maximum and the average
i=2

degree in a hyperéraph, respectively.
Given a function f : V — R that assigns weights to the vertices of H, let

w(H) =w(V) = w(v). Wedefine D(v) = w(v)d(v)and D = 3 w(v)d(v)/ 3. w(v)
veV veV veV
to be the weighted degree of a vertex v and the average weighted degree in H,

respectively.

By deleting a vertex v from a hypergraph H we mean the operation of deleting
v and all incident edges from H. By deleting a vertex v from an edge e we mean
the operation of replacing e by e\ {v}.

A (weak) independent set in H is a subset of V that doesn’t properly contain
any edge of H. Let a(H,w) be the weight of a maximum independent set in H.
If H is unweighted, then it is denoted as a(H).

3 Semidefinite Programming

We use semidefinite programming to find large subgraphs with few 2-edges. More
generally, we find subgraphs of large weight and small weighted average degree.
This is obtained by rounding the vector representation of a suitable subgraph;
such a subgraph is found by a result of Alon-Kahale. Along the way, we twice
eliminate vertices of high-degree to ensure degree properties.

Let us recall the definition of a vector coloring of a graph [10].

Definition 3.1 ([10]). Given a graph G and a real number h > 1, a vector
h-coloring of G is an assignment of a |V (G)|-dimensional unit vector v; to each
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vertex v; of G so that for any pair vi,v; of adjacent vertices the inner product
of their vectors satisfies
1

'vi-ng——h_l . (1)

The vector chromatic number X (G) is the smallest positive number h, such that
there exists a feasible vector h-coloring of G.

A vector representation given by a vector coloring is used to find a sparse
subgraph by the means of vector rounding [10]: choose a random vector b, and
retain all vertex vectors whose inner product with b is above a certain thresh-
old. The quality (i.e. sparsity) of the rounded subgraph depends on the vector
chromatic number of the graph. In order to approximate independent sets we
need to use this on graphs that do not necessarily have a small vector chromatic
number but have a large independent set.

A graph with a large independent set contains a large subgraph with a small
vector chromatic number, and there is a polynomial time algorithm to find it.
This comes from the following variation of a result due to Alon and Kahale [1]:

Theorem 3.2 ([7]). Let G = (V, E,w) be a weighted graph and £,p be numbers
such that a(G,w) > w(G)/L+p. Then, there is a polynomial time algorithm that
gives an induced subgraph Gy in G with w(G1) > p and X(G1) <.

Let us now present our algorithm for finding a large-weight low 2-degree
hypergraph. It assumes that it is given the size « of the maximum independent
set in the graph. We can sidestep that by trying all possible values for «, up to
a sufficient precision (say, factor 2).

Algorithm SPARSEHYPERGRAPH

Input: Hypergraph H(V, E), and its independence number «

Output: Induced hypergraph H in H of maximum degree 2kD and maximum 2-
degree V2kD

Let k=w(H)/aanda = 1 + 5.
Let G be the graph induced by the 2-edges of H.
Let Go be the subgraph of G induced by nodes of degree at most 2kD in H.
Find an induced subgraph G1 in Go with w(GﬂE%
with a vector 2ak-coloring.
Choose a random |V (G1)|-dimensional vector b.

Let G2 be the subgraph of G induced by vertices {v € V(G1) : v - b > ¢},

where ¢ = /25-21n (2kD).
Let V be the set of vertices of degree at most \/A2kD in Ga.
Output H, the subhypergraph in H induced by V.

Fig. 1. The sparsifying algorithm
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The algorithm SPARSEHYPERGRAPH can be implemented to run in polyno-
mial time. The subgraph G in Gy with small vector chromatic number and large
independent set can be found in polynomial time [1]. A vector representation
can be found within an additive error of € in time polynomial in In1/e and n
using the ellipsoid method [5] and Choleski decomposition.

Analysis

Lemma 3.3. The graph Go has weight at least w(H)(1 — 1/2k) and indepen-
dence number at least a(H)/2.

Proof. The graph G has the same weight as H, or w(V). The independence
number of G is also at least that of H, since it contains only a subset of the
edges. Let X = V(G) — V(Gy) be the high-degree vertices deleted to obtain Gy.
Then,

> w)d(v) > Y w(v) - 2kD = 2kDw(X) . (2)

veX veX

Since
Dw(v) = Y wed) > 3 wlv)d(v) . 8
veV veX
we get from combining (3) with (2) that the weight w(X) of the deleted vertices
is at most w(V)/2k. Thus, w(G) > (1 — 1/2k)w(H). Also, Gy has a maximum
independent set of weight at least a(Go,w) > a(G,w) — w(X) > o(H,w) —
w(X) > w(H)/2k.

Observe that a(Go,w) > w(H)/2k > w(Gy)/2k = w(Go)/2ak + w(Gop)(a —
1)/2ak. Then, Theorem 3.2 ensures that a subgraph G; can be found with
w(G1) > w(Go)(a —1)/2ak and X(G1) < 2ak. From that, a vector 2ak-coloring
of G1 can be found.

The main task is to bound the properties of the rounded subgraph Gs. Karger
et al. [10] estimated the probability that G2 contains a given vertex or an edge.
Let N (x) denote the tail of the standard normal distribution: N(z) = [ ¢(z)dz,

2(ak—1)

where ¢(z) = \/%—F exp (—%2) is the density function. Let 7 = oy P

Lemma 3.4 ([10]). A graph Gy induced in G1(Vh, E1) after vector-rounding
contains a giwen vertex in Vi with probability N(c) and a given edge in Ey with
probability N (cT).

The following lemma states well-known bounds on the tail of the normal distri-
bution.

Lemma 3.5 ([14]). For every z >0, ¢(z) (2 — &) < N(z) < ¢(z)L.
We can now bound the weight of the subgraph found.

Lemma 3.6. V has expected weight {2 (#7@)' This can be deran-
domized to obtain an induced subgraph V with this much weight and mazimum

2-degree at most V2kD.
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Proof. First, for any edge (u,v) in G; and G2 we define a weight function
w(u,v) =wu)+w). Letw(Vh) = > w(v)and w(Ey) = > (w(v) + w(u))
veV(G1) (v,u)EE(G1)

be the weight of vertices and edges in Gp. Similarly, let w(V2) and w(Es)
be the weight of vertices and edges in Ga. Let X; be an indicator random
variable with X; = 1, if V5 contains v; € V3 and X; = 0 otherwise. Then,

w(Va) = > w(v;)X;. Using Lemma 3.4 and linearity of expectation we bound
v, €VY
E[w(V2)] by
Elw(V2)] = w(Vi)N(c) . (4)

Similarly, we bound E[w(FE2)] by
Elw(Es)] = w(E1)N(cr) < 2kDw(Vy)N(er) (5)

where in the last inequality we use the fact that maximum degree in Gy is
bounded by 2kD (since we deleted the high-degree vertices from G and Gy is an
induced subgraph in G). Combining (4) and (5), we get that

w(Fs)
V2kD

Ekw@— ]—wWWW@— 2kDw(Vi)N (er) . (6)

Observe that

and
exp(—(cr)?/2) = (2kD)~1FY/ak

Then, by Lemma 3.5

NY—1+1/ak
N(er) < gler)~ = — KD ™)

T Vor /2 2k D)

and

1 1 (2kD)71/2+1/ak ~ ak
N(e) > ¢(e)7 (1 cz) = W2 124 D) (1 (ak — 2)1n(2kD))
(8)

Combining (6), (7) and (8), we deduce that

B w(Es) . (2kD)—1/2+1/ak B ak B ak — 2
E [w(Vz) \/%] > (Vl)m. w2 12k D) (1 (ak — 2)In(2kD) 2(ak—1)>

_0 w(Vi)
(kD)1/2=1/k\/In(kD) )

9)
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N S
InlnD-1"

The weight of vertices with degree greater than vV2kD is at most > w(v;)d(v;)/V2kD =
v, €Va
w(E)/V2kD. After deleting all such vertices from Gy, the expected weight of

Vis B |w(Ve) — “22 | which is bounded by (9).

Finally, we can apply derandomization technique from [13] to derandomize
the vector rounding in polynomial time. In our algorithm an elementary event
corresponds to an edge in G2 and involves only two vectors corresponding to the
endpoints of the edge. This completes the proof.

where in the last line we use a = 1 +

We can bound the weight of the resulting hypergraph H in terms of the

% w(G1)

original hypergraph. We have that w(V) = 2 itV ) while using

a:l—i-m,we have that
(a-Dw(@) _ w(@ _ wH)(1-5) _Q< w(H) )

Gi) = = _ = _ o\
w(G1) 2ak 2kInln D 2kInln D klnln D

Theorem 3.7. Let H be a hypergraph with average weighted degree D. The
SPARSEHYPERGRAPH algorithm finds an induced hypergraph in H of weight

9 ( _wl) — ), mazimum 2-degree at most V2kD, and maz-
k3/2=1/k D1/2-1/k In1n D/In(kD)

imum degree at most 2kD.

4 Greedy Algorithm

Given a hypergraph H on n vertices with average degree d, our GREEDYSDP
algorithm first finds a sparse induced hypergraph H' in H using the SPARSE-
HYPERGRAPH algorithm and then uses the GREEDY algorithm to find an inde-
pendent set in H'.

The GREEDY algorithm is a natural extension of the max-degree greedy
algorithm on graphs and uniform hypergraphs and was analyzed by Thiele [16].
Given a hypergraph H(V, E) with rank r, for any vertex v € V let d(v) =
(d1(v),...,dr(v)) be the degree vector of v, where d;(v) is the number of edges
of size ¢ incident on v. Then, for any vertex v € V' let

dy(v) d2(v) dr(v) ]Z::l K

f(d(w)) = Z Z Z H(QH(QH(@%

(j—1i;+1

andlet F(H) = Y f(d(v)). The GREEDY algorithm iteratively chooses a vertex
veV
v € V with F(H\v)>F(H) and deletes v with all incident edges from H until

the edge set is empty. The remaining vertices form an independent set in H.
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Caro and Tuza [3] showed that in r-uniform hypergraphs the GREEDY algo-
rithm always finds a weak independent set of size at least © (n/Aﬁ) Thiele

[16] extended their result to non-uniform hypergraphs and gave a lower bound
on the independence number as a complicated function of the degree vectors of
the vertices in a hypergraph. Using these two bounds, we prove the following
lemma.

Lemma 4.1. Given a hypergraph H on n vertices with mazimum 2-degree /d
and mazximum degree d, the GREEDY algorithm finds an independent set of size

Qn/Vd).

Proof. First, we truncate edges in H to a maximum size three by arbitrarily
deleting excess vertices. The resulting hypergraph H’ still has maximum 3-degree
d and maximum 2-degree v/d, and is now of rank 3. Moreover, an independent
set in H' is also independent in H. Thus, to prove the claim it is sufficient to
bound from below the size of an independent set found by the greedy algorithm
in H'.

As shown in [16], GREEDY finds an independent set in a rank-3 hypergraph

of size at least
=SSO w

' we can simplify (10) as:

o(H') Zn _ﬂ(—1>i<\/,3)% _d @jﬁi

I
)
£
|
&‘
—
—~
8
+
3
~

i=0 l par V) (i+1)/2
Vd . -1
_on (VAN ((i+1)/2+4d
T 2(d+1) Z_:O(_l) < i )( d+1 ) ' (11)

We show that for any value of d

e i(_l)i (\/ZE) ((i +d1l/i + d) -t 2)

is lower bounded by v/d for some > 0. Then, from (11) the GREEDY algorithm
finds an independent set of size at least £2(n/\/d).

; -1
Let fq(i) = (\/E) ((z+cllzr/12+d) . Abusing binomial notation, we assume that

2

(‘/3) =0, for any i > Vd and Vd integral. Then,

K3

\/3 .
Fa= Y (-1 fali) - (13)

=0
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We define
(i+2)(i+4)---(E+2d+2)

(t+3)(i+5)---(i+2d+1)
for any 7 > 0. Using Stirling’s approximation for the factorial function* we obtain

qa(1) = 22d+18d++1§<)d+ 1) g (1 o G))

Note that q4(i +2) = %qd(i) > qa(i), and so qq(i) > V/d for any i > 0.

Then, from the definition of f4(i) and (14) we have that £ “}S:;)l) = \q/;_i(;)i < 1.

From (12) and (13) it follows that Fy; > f4(0) — f4(1) and f4(0) = ¢q(0), then

Fq > fa(0) — fa(1)

qa(i) = (14)

and

= qa(0) — Vd
= (V7 - 1)Vd (1+0(§>) : (15)

Thus, from (11), (12) and (15) the GREEDY algorithm finds an independent set
of size at least 2(n/V/d).

The bound on the performance ratio of GREEDYSDP then follows from
Lemma 4.1, Theorem 3.7 and the fact that truncating edges in SPARSEHY-
PERGRAPH doesn’t increase the weight of a maximal independent set in a hy-
pergraph.

Theorem 4.2. Given a hypergraph H on n vertices with average degree d and
the independence number a(H) = n/k, the GREEDYSDP algorithm finds an

n
k5/2=1/kdt=1/k Inln dy/In(kd) )

independent set of size at least {2

From Theorem 4.2 it is easy to see that if the maximum independent set in H

is relatively big, say {2 (%), ie. k=0 (l;rl’iz), then GREEDYSDP obtains

d_

an approximation ratio of O ( 75 ).

However, if the maximum independent set is

nlnl{l(i
Ind

fore, we run both GREEDY and GREEDYSDP and output the larger independent
set found.

at most 2 ( ), then GREEDY alone is within a factor of O (Jll‘:]—ll’ii“i ) . There-

4 Stirling’s approximation: N! = /271N (%)N (1 + O (%))
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Theorem 4.3. Given a hypergraph H with average degree d, the GREEDYSDP-

MIS approzimates the mazimum independent set within a factor of O (‘ﬂl“n—lé“i).

Corollary 4.4. For small k the approzimation factor of GREEDYSDP-MIS is
O (@-trew).

The implication is the first approximation factor for the independent set
problem in hypergraphs that is sublinear in the average degree.

Corollary 4.5. The independent set problem in hypergraphs is o( A)-approximable.

5 Randomized Algorithm

The RANDOMIS algorithm extends the randomized version of Turan bound on
graphs and was analyzed by Shachnai and Srinivasan in [15]. Given a hypergraph
H(V, E), the algorithm creates a random permutation 7 of V" and adds a vertex
v to the independent set I, if there is no edge e such that e contains v and v
appears last in 7 among the vertices of e. Clearly, RANDOMIS outputs a feasible
independent set I, since it never contains the last vertex in any edge under the
permutation .

Shachnai and Srinivasan [15] analyzed RANDOMIS on weighted hypergraphs.
They gave a lower bound on the probability that a vertex v € H is added by the
algorithm to the independent set, using conditional probabilities and the FKG
inequality. In uniform hypergraphs the lower bound on the size of a independent
set found by RANDOMIS follows by summing the probabilities over the vertices
and applying linearity of expectation, giving a bound identical to that of Caro
and Tuza [3].

Theorem 5.1 ([15], Theorem 2). For any k > 2 and any k-uniform hyper-

d<v>+1/(k—1>)*1 _

graph H, RANDOMIS finds an independent set of size at least ( ()
veV

Q< —wl) )
v%:v (d(v)FT

To extend the bound to non-uniform weighted hypergraphs, Shachnai and Srini-
vasan introduced the following potential function on a vertex v:

1
— : d‘ T Ei(v)—1
flo)y=__ min  (dj(v)) * ;
where a vertex v lies in edges of a(v) different sizes: k;(v), for j =1,2,---,a(v),

and d;j(v) is the number of edges of size k;(v). Using similar analysis as in
Theorem 5.1, they proved the following bound:

Theorem 5.2 ([15], Theorem 3). Given a weighted hypergraph H(V, E), the

expected weight of the independent set produced by RANDOMIS is at least {2 < > %Jc(v)) ,
veV

where b(v) = (min;(k;(v) — 1)).
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Shachnai and Srinivasan also show in [15] how to derandomize RANDOMIS for
hypergraphs with bounded maximum degree, or logarithmic degree and sparse
neighborhoods.

Our algorithm RANDOMSDP first uses SPARSEHYPERGRAPH to find an in-
duced hypergraph H’ in H with maximum 2-degree at most v2kD and maxi-
mum degree at most 2kD; and then uses RANDOMIS to find an independent set
in H'.

The bound on the performance ratio of RANDOMSDP follows from Theorem

3.7 and Theorem 5.2, using that 2 ( > %f(@) =0 2 20| by
veV veV Ny ait
=2

the definitions of a(v), b(v) and f(v).
Theorem 5.3. Given a weighted hypergraph H with average weighted degree

D, the RANDOMSDP algorithm finds an independent set of weight at least

0 w(H)
k2=1/k D1/2=1/k In1n D/In(kD)

From Theorem 5.3 it follows that the RANDOMSDP algorithm approxi-

mates MIS within a factor of O (%) if a(H,w) = 2 (%%IHD), whereas

RANDOMIS alone finds an approximation within a factor of O (D Inln D ) if

InD

a(H,w) =0 (%). Therefore, given a hypergraph H, we run both RAN-

DOMIS and RANDOMSDP on H and output the larger of the independent sets.

Theorem 5.4. Given a hypergraph H(V, E) with average weighted degree D,
the RANDOMSDP-MIS approximates the weight of a mazximum independent set

in H within a factor of O (%).

6 Conclusions

In this paper we propose a new approach to the Maximum Independent Set
problem in weighted non-uniform hypergraphs. Our approach is to use SDP
techniques to sparsify a given hypergraph and then apply a combinatorial al-
gorithm to find a large independent set. Using this approach we derive o(d)-
approximation for IS in unweighted hypergraphs, matching the best known ratio
for IS in graphs, both in terms of maximum and average degree. We general-
ize the results to weighted hypergraphs, proving similar bounds in terms of the
average weighted degree D.

For further work one possible direction is to extend the result on the GREEDYSDP-
MIS to weighted hypergraphs. Another (and perhaps more interesting) open
question is to prove similar bounds in terms of the maximum and average
weighted hyperdegree, where the hyperdegree d*(v) of a vertex v is defined as

T

d*(v) = d; (U)ﬁ The hyperdegree is a generalization of a vertex degree in a
=2

graph.
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