
Online Selection of Intervals and t-Intervals
∗
.

Unnar Th. Bachmann† Magnús M. Halldórsson∗‡ Hadas Shachnai§

Abstract

A t-interval is a union of at most t half-open intervals on the real line. An interval is
the special case where t = 1. Requests for contiguous allocation of a linear resource can be
modeled as a sequence of t-intervals. We consider the problems of online selection of intervals
and t-intervals, which show up in Video-on-Demand services, high speed networks and molecular
biology, among others. We derive lower bounds and (almost) matching upper bounds on the
competitive ratios of randomized algorithms for selecting intervals, 2-intervals and t-intervals,
for any t > 2. While offline t-interval selection has been studied before, the online version is
considered here for the first time.

1 Introduction

Interval scheduling is a form of a resource allocation problem, in which the machines are the
resource. As argued by Kolen et al. [12], operations management has undergone a “transition in
the last decennia from resource oriented logistics (where the availability of resources has dictated the
planning and completion of jobs) to demand oriented logistics (where the jobs and their completion
are more or less fixed and the appropriate resources must be found).” They suggest that this
implies a move from traditional scheduling to interval scheduling.

Suppose you are running a resource online. Customers call and request to use it from time
to time, for up to t time periods, not necessarily of same length. These requests must either be
accepted or declined. If a request is accepted then it occupies the resource for these periods of
time. A request cannot be accepted if one or more of its periods intersect a period of a previously
accepted request. The goal is to accept as many requests as possible.

This can be modeled as the following online t-interval selection (t-Isp) problem. Let t be the
maximum number of periods involved in any request. Each request is represented by a t-interval,
namely, a union of at most t half-open intervals (referred to as segments) on the real line. The
t-intervals arrive one by one and need to be scheduled non-preemptively on a single machine. Two
t-intervals, I and J , are disjoint if none of their segments intersect, and intersect if a segment of
one intersects a segment of the other. Upon arrival of a t-interval, the scheduler needs to decide
whether it is accepted; if not, it is lost forever. The goal is to select a subset (or “form a schedule”)
of non-intersecting t-intervals of maximum cardinality. The special case where t = 1 is known as
the online interval selection problem (Isp). An example of an instance of online t-Isp is given in
Figure 1.

∗Supported by Icelandic Research Fund (grant 060034022)
†School of Computer Science, Reykjavik University, 101 Reykjavik, Iceland. {unnar07,mmh}@ru.is.
‡Research supported by grant 060034022 from Iceland Research Foundation
§Department of Computer Science, The Technion, Haifa 32000, Israel. hadas@cs.technion.ac.il.

1

a b
c d

e f g

a b
d c

e f g

Figure 1: A linear resource is requested by customers a, b, c, d, e, f and g in that order, for two
periods each. If b is accepted then each of the following requests must be declined. An optimal
selection consists of a, f and g.

The performance of an online algorithm is measured in terms of its competitive ratio. Formally,
let OPT be an optimal offline algorithm for the problem. The competitive ratio of A is defined as
supσ

OPT (σ)
A(σ) , where σ is an input sequence, and OPT (σ), A(σ) are the number of t-intervals selected

by OPT and A, respectively. For randomized algorithms, we replace A(σ) with the expectation

E[A(σ)] and define the competitive ratio as ρA = supσ
OPT (σ)
E[A(σ)] . An algorithm with competitive

ratio of at most ρ is called ρ-competitive. Let n be the number of intervals in the instance; also,
denote by ∆ the ratio between the longest and shortest segment lengths.

1.1 Applications

We list below several natural applications of our problems.

Crew scheduling: This is the problem of assigning flight crews to flights, where each flight has a
start-time, end-time and duration. The aim is to find the minimum number of flight crews needed
for a given set of flights. Each flight is represented by an interval, and each crew by a machine.
The problem is to minimize the number of crews/machines needed.

Bandwidth allocation: A set of users communicate via a network with limited bandwidth. Each
communication request can be thought of as an interval requiring a certain amount of bandwidth
(demand). Communications requests can have different priorities. The competitiveness of the
system is with respect to throughput, or the number of requests satisfied. Here, the online version
is particularly important. Preemption usually improves the competitive ratio (see, e.g., [4]).

Video-on-Demand Service: Scheduling of continuous-media data occurs where multimedia
servers broadcast streams of data to clients upon request. Requests from the clients can be modeled
as t-intervals, since each request can be split into viewing-intervals and breaks.

Pattern Matching: Vialette [15] studies two problems of pattern matching over a set of 2-
intervals. The first problem is to find a given 2-interval pattern and the second is to find the
longest 2-interval from a given graph. This problem arises in molecular biology, where a given
RNA secondary structure has to be found in a database.

Other applications include high speed networks, storage subsystems and molecular biology (see
a survey in [2]).

1.2 Related Work

Selecting intervals and t-intervals: We can view t-Isp as the problem of finding a maximum
independent set (IS) in a t-interval graph. While for the special case of interval graphs the problem
is known to be polynomially solvable (see, e.g., [11]), already for t = 2 the IS problem becomes
APX-hard [5]. The paper [5] presents a 2t-approximation algorithm for the offline weighted tISP.
Later works extended the study to the selection of t-intervals with demands, where each interval is

2

associated with a set of segments and a demand for machine capacity [6], as well as the study of
other optimization problems on t-interval graphs (see, e.g., [7]).

There is a wide literature on the maximum independent set problem in various classes of graphs.
The online version of the IS problem was studied in [8], where a Ω(n)-lower bound on the competitive
ratios of randomized algorithms was given, even for interval graphs (but not when the interval
representation is given). A survey of other works is given in [2].

Online interval selection: Lipton and Tomkins [13] considered an online interval selection
problem where the intervals have weights proportional to their length and the intervals arrive by
time (i.e., in order of their left endpoints). They showed that θ(log ∆)-competitive factor was
optimal, when ∆ is known, and introduced a technique that gives a O(log1+ǫ ∆)-competitive factor
when ∆ is unknown. Woeginger [16] considered a preemptive version of weighted Isp and gave an
optimal 4-competitive algorithm. Numerous results are known about interval scheduling under the
objective of minimizing the number of machines, or alternatively, online coloring interval graphs. In
particular, a 3-competitive algorithm was given by Kierstead and Trotter [10]. The t-Isp problem
bears a resemblance to the JISP problem [14], where each job consists of several intervals and the
task is to complete as many jobs as possible. The difference is that in JISP, it suffices to select only
one of the possible segments of the job.

Call admission: Similar problems have been studied also in the area of call admission. We note
that Isp can be viewed as call admission on a line, where the objective is to maximize the number
of accepted calls. The paper [1] presents a strongly ⌈log N⌉-competitive algorithm for the problem,
where N is the number of nodes on the line. This yields an O(log ∆)-competitive algorithm for
general Isp instances when ∆ is known a-priori. We give an algorithm that achieves (almost) the
same ratio for the case where ∆ is unknown.

1.3 Our Results

We derive the first lower and upper bounds on the competitive ratios of online algorithms for
t-Isp and new or improved bounds for Isp. Table 1 summarizes the results for various classes of
instances of Isp, 2-Isp and t-Isp. All of the results apply to randomized algorithms against oblivious
adversary. In comparison, proving strong lower bounds for deterministic algorithms (including a
lower bound of ∆ + 1 for Isp) is straightforward. The upper bounds for general inputs are for the
case where ∆ is unknown in advance.

Isp 2-Isp t-Isp

u.b. l.b. u.b. l.b. u.b. l.b.

General inputs O(log1+ε ∆) Ω(log ∆)† O(log2+ε ∆) Ω(log ∆)† − ·
Two lengths 4 4 16 6 − ·
Unit length 2 † 2 4 † 3 2t † Ω(t)

Bounded depth s 3/2 (s = 2) 2 − 1/s − − − −

Table 1: Results for randomized online interval and t-interval selection. Entries marked with ·
follow by inference. Entries marked with † were known; the lower bound for Isp follows from [1],
while the upper bounds for unit lengths are trivial.

Due to space constraints, some of the results (or proofs) are omitted. The detailed results

3

appear in [3] (see also [2]).

2 Technique: Stacking Construction

When deriving lower bounds for randomized algorithms for (t-)interval selection, we use the follow-
ing technique. The adversary can take advantage of the fact that he can foresee the probability with
which the algorithm selects any given action, even if he doesn’t know the outcome. He presents
intervals on top of each others, or “stacks” them, until some interval is chosen with sufficiently low
probability. The adversary uses that to force a desirably poor outcome for the algorithm. The
general idea is similar to a lower bounding technique of Awerbuch et al. [1] for call control.

Let R be an Isp-algorithm and let parameters q and x be given. A (q, x)-stacking construction
for R is a collection of intervals formed as follows, where q is an upper bound on the number of
intervals stacked and x is the extent to which intervals can be shifted. Form q unit intervals I1,
..., Iq that mutually overlap with left endpoints spaced x/q apart towards the left. Namely, Ii =
[x(1− i/q), 1 + x(1− i/q)), for i = 1, . . . , q. Let pi be the (unconditional) probability that R selects
Ii. The adversary knows the values pi and forms its construction accordingly. Namely, let m be the
smallest value such that pm ≤ 1/q. Since

∑

i pi ≤ 1, there must be at least one such value. The input
sequence construction consists of 〈I1, I2, . . . , Im, Jm〉, where Jm = [1+x(1−m/q), 2+x(1−m/q)).
This is illustrated in Fig. 2.

I1
...

Im−1

Im Jm

X

Figure 2: (q, x)-stacking construction.

Lemma 1 A (q, x)-stacking construction I has the following properties.

1. All intervals in I \ {Im} overlap the segment [1, 1 + x).

2. All intervals in I are contained within the interval [0, 2 + x).

3. The intervals in I \ {Im} have a common intersection of length x/q, given by the segment
X = Im−1 ∩ Jm = [1 + x(1 − m/q), 1 + x(1 − (m − 1)/q)).

4. ER[Im] = pm ≤ 1/q. Thus, ER[I] ≤ 1 + 1/q,

5. OPT (I) = 2. Thus, the performance ratio of R is at least 2/(1 + 1/q).

By taking q arbitrarily large, we obtain the following performance bound.

Theorem 2 Any randomized online algorithm for Isp with unit intervals has competitive ratio at
least 2.

4

We can imitate the stacking construction with 2-intervals by repeating the construction for both
segments. We refer to this as a 2-interval (q, x)-stacking construction.

We shall also use the stacking construction shifted by a displacement f , by adding f to the
starting point of each interval. We may also use intervals of non-unit length.

3 Online Interval Selection

3.1 Unit Intervals and Depth

We give upper and lower bounds on the competitive ratios for Isp with unit intervals. We param-
eterize the problem in terms of the depth of the interval system, which is the maximum number of
intervals that overlap a common point. This corresponds to the clique number of the corresponding
interval graph.

Theorem 3 The competitive ratio of any randomized algorithm for Isp of unit intervals is at least
2 − 1/s, where s is the depth of the instance.

Proof. We modify the (s, 1)-stacking construction slightly. Let pi be the probability that the
given algorithm R selects interval Ii. If p1 ≤ 1/(2 − 1/s) = s/(2s − 1), then we conclude with
the unit sequence 〈I1〉. The performance ratio is then at least 1/p1 ≥ 2 − 1/s. Otherwise we
stop the sequence at Im, where m is the smallest number such that pm ≤ 1/(2s − 1). This is
well defined since s/(2s − 1) +

∑s
i=2 1/(2s − 1) = 1. As before, this is followed by the interval

Jm intersecting only the first m − 1 intervals. The algorithm obtains expected value at most
1 + pm ≤ 1 + 1/(2s− 1) = 2s/(2s− 1), versus 2 for the optimal solution. The above procedure can
be repeated arbitrarily often, ensuring that the lower bound holds also in the asymptotic case.

We now describe a randomized algorithm that achieves the above ratio for s = 2. Consider the
algorithm RoG (Random or Greedy), which handles an arriving interval as follows. If the interval
does not overlap any previously presented interval, select it with probability 2/3, else select the
interval greedily.

Theorem 4 Algorithm RoG is 3/2-competitive for unit intervals with depth 2.

Proof. Assume that the instance is connected; otherwise, we can argue the bound for each compo-
nent separately.

The depth restriction means that each interval can intersect at most two other intervals: one
from the left and one from the right. The instance is therefore a chain of unit intervals. We divide
the intervals into three types, based on the number of previous intervals the given interval intersects.
A type-i interval, for i = 0, 1, 2, intersects i previously presented intervals. Two type-2 intervals
cannot intersect, as otherwise the one that appears earlier will have degree 3, leading to depth at
least 3. Therefore, the instance consists of chains of type-0 and type-1 intervals attached together
by type-2 intervals. Each chain is started by a type-0 interval, followed by type-1 intervals. Let ni

denote the number of intervals of type i, then we have that

n0 ≥ n2 + 1 . (1)

Consider now the unconditional probability that intervals of each type are selected, i.e. the
probability independent of other selections. The probability of type-0 intervals being selected is

5

2/3. The probability of the selection of type-1 intervals alternates between 1/3 and 2/3. The
expected number of intervals selected by the algorithm is then, using (1), bounded below by

2

3
n0 +

1

3
n1 ≥

1

3
(n0 + n1 + n2 + 1) =

n + 1

3
.

On the other hand, the number of intervals in an optimal solution is the independence number of
the path on n vertices, or

⌈

n
2

⌉

≤ n+1
2 . Hence, the competitive ratio is at most 3/2.

3.2 ISP with intervals of two lengths

Consider now Isp instances where the intervals can be of two different lengths, 1 and d. It is easy to
argue a 4-competitive algorithm by the classic Classify-and-Select approach: Flip a coin, choosing
either the unit intervals or the length-d intervals, and then greedily adding intervals of that length
only.

We find that it is not possible to significantly improve on that very simple approach (we omit
the proof).

Theorem 5 Any randomized online algorithm for Isp with intervals of two lengths 1 and d has
performance ratio at least 4, asymptotically with d.

3.3 ISP with Parameter n

Isp is easily seen to be difficult for deterministic algorithm on instances without constraints on the
size of the intervals. The adversary keeps introducing disjoint intervals until the algorithm selects
one of them, I; the remaining intervals presented will then be contained in I. This leaves the
algorithm with a single interval, while the optimal solution contains the rest, for a ratio of n − 1.
It is less obvious that a linear lower bound holds also for randomized algorithms against oblivious
adversary.

Theorem 6 Any randomized online algorithm for Isp has competitive ratio Ω(n).

Proof. Let n > 1 be an integer. Let r1, r2, . . . , rn−1 be a sequence of uniformly random bits. Let
the sequence x1, x2, . . . , xn of points be defined inductively by x1 = 0 and xi+1 = xi + ri · 2

n−i. We
construct a sequence In of n intervals I1, . . . , In, where Ii = [xi, xi + 2n−i), for i = 1, . . . n.

The collection A = {Ii : ri = 1} ∪ {In} forms an independent set, informally referred to as the
“good” intervals. The set B = In \A = {Ii : ri = 0} forms a clique; informally, these are the “bad”
intervals.

Consider a randomized algorithm R and the sequence of intervals chosen by R. The event that
a chosen interval is good is a Bernoulli trial, and these events are independent. Thus, the number
of intervals chosen until a bad one is chosen is a geometric random variable with a mean of 2.
Even accounting for the last interval, which is known to be good, the expected number of accepted
intervals E[(σ)] is at most 3.

On the other hand, the expected number of good intervals is (n− 1)/2+1, and so the expected
size of the optimal solution is n/2. By standard arguments, this holds also with high probability,
up to lower order terms. The competitive ratio of R on In is therefore at least n/6.

Notice that in Theorem 6, the intervals are presented in order of increasing left endpoints. Thus,
the bound holds also for the scheduling-by-time model. The adversary in Theorem 6 has also the
property of being transparent [9] in the sense that as soon as the algorithm has made its decision
on an interval, the adversary reveals his own choice.

6

4 Online 2-Interval Selection

4.1 Unit Segments

Theorem 7 Any randomized online algorithm for 2-Isp of unit intervals has competitive ratio at
least 3.

Proof. Consider any randomized online 2-Isp algorithm R. Let q be an even number and let
q′ = 3q/2.

We start with 2-interval (q′, 1)-stacking construction I for R. See the top half of Fig. 3. Recall
that the expected gain of R on interval Im is ER[Im] ≤ 1/q′. Let p be the probability that R selects
some interval in I ′ = I \ {Im} = {I1, . . . , Im−1, Im+1}. If p < 2/3, then we stop the construction.
The expected solution size found by R is then ER[I] ≤ p+1/q′, while the optimal solution is of size
2, for a ratio of 2/(p + 1/q′) ≥ 2/(2/3 + 2/(3q)) = 3/(1 + 1/q).

Assume therefore that p ≥ 2/3. Let X1 be the common intersection of the first segments of the
2-intervals in I ′ , and X2 be the common intersection of the second segments. Let fi denote the
starting point of Xi, i = 1, 2. By Lemma 1, the length of each Xi is 1/q′.

We now form a (q, x)-stacking construction I1 of 2-intervals for R shifted by f1, where x =
|X1| = 1/q′. The first segments are positioned to overlap X1, where x = |X1| = 1/q′; the second
segments are immaterial as long as they do not intersect any previous intervals. This is shown in
the bottom left of Fig. 3. We then do an identical construction I2 shifted by f2; again, the second
segments do not factor in. This completes the construction.

We can make the following observations about the combined construction J = I ∪ I1 ∪ I2.

Observation 4.1 1. All intervals in I1 overlap X1.

2. All intervals in I2 overlap X2.

3. OPT (J) = 4, given by I2
m, J2

m, I3
m, I3

m.

4. ER[I1] ≤ (1 − p)(1 + 1/q), by Lemma 1 (3) and part 1. of this observation.

It follows that

ER[J] = ER[Im] + ER[I ′] + ER[I1] + ER[I2] ≤ 1/q′ + p + 2(1 − p)(1 + 1/q) = 2 − p + (4/3 − 2p)q .

Since p ≥ 2/3, ER[J] ≤ 2−p, and the performance ratio of R on J is OPT (J)/ER[J] ≥ 4/(4/3) =
3.

4.2 Segments of Two Lengths

In this section, we give a 16-competitive algorithm for 2-Isp where the 2-interval segments have
lengths either 1 or d. A lower bound of 6 for d ≫ 1 is omitted in this version.

Consider the following algorithm Av, which either schedules (i.e., selects) a given 2-interval,
rejects it, or schedules it virtually.1 A virtually scheduled interval does not occupy the resource
but blocks other 2-intervals from being scheduled. The length of each segment is either short (1) or
long (d). A 2-interval is short-short (long-long) if both segments are short (long), respectively, and
short-long if one is short and the other long. In processing a 2-interval I, Av applies the following
rules, which depend on the availability of the resource.

1The term was used before, e.g., in [13].

7

Im+1Im+1Im Im

Im−1 Im−1

...
...

I1 I1

X1 X2

...
...

I1
1 I2

1

I1
m1

J1
m1

I2
m2

J2
m2

Figure 3: Construction of a lower bound of 3 for unit 2-Isp

1. I is short-short. Schedule I greedily (with probability 1).

2. A long segment of I intersects a virtually selected 2-interval. Do nothing.

3. Otherwise, schedule I with probability 1/2 and schedule it virtually with probability 1/2.

Our analysis of Av uses the following charging scheme. Let SOPT be an optimal solution and SAv

the set of 2-intervals selected by Av. For any I ∈ SAv and J ∈ SOPT, we assign w(I, J) = 1/4·t(I, J),
where t(I, J) is the number of endpoints of I that intersect with J . In particular, w(I, J) = 0 when
I and J do not overlap or if segments of I properly contain segments of J . Also, w(J, J) = 1.
Since each 2-interval has 4 endpoints, and the 2-intervals in SOPT are disjoint, it follows that
∑

J∈SOPT
w(I, J) ≤ 1. Intuitively, we distribute the value that Av receives for selecting I among the

2-intervals in SOPT that intersect it. Let w(bucket(J)) =
∑

I∈SAv
w(I, J), for J ∈ SOPT. To show

that Av is c-competitive it suffices to prove that, for any J ∈ SOPT, E[w(bucket(J))] ≥ 1/c.

Theorem 8 Algorithm Av is 16-competitive for online 2-Isp with segments of length 1 and d.

Proof. Consider an interval J ∈ SOPT. We shall show that E[w(bucket(J)] ≥ 1/16, which yields
the theorem. The argument is based on considering the various possible configurations of intervals
overlapping J that were presented before J . In what follows, we shall say that an interval was
addressed if it precedes J , overlaps J , and was either scheduled or virtually scheduled, i.e. was not
blocked when presented. We say that I dominates J if a short segment of J is properly contained
in a long segment of I.

We consider cases depending on the lengths of J ’s segments.

J is long-long. Consider the first interval addressed, I (which is possibly J itself). Then w(I, J) ≥
1/4 and I is scheduled with probability at least 1/2. Hence, E[w(bucket(J))] ≥ 1/2·1/4 = 1/8.

J is short-long. Then, there is at most one interval in SAv that dominates J . With probability
at least 1/2, this interval is not selected (so, either virtually selected or blocked). Some other
interval I overlapping J (possibly J itself) is then selected with probability at least 1/2,
assigning a weight w(I, J) ≥ 1/4. Thus, E[w(bucket(J))] ≥ 1/2 · 1/2 · 1/4 = 1/16.

J is short-short. At most two intervals are addressed that dominate J (if they dominate the
same segment of J , then the latter interval is blocked by the former). With probability at

8

least 1/4, neither of them are selected. With probability 1, some other interval I intersecting
J (possibly J itself) is selected, since J is short-short. A weight of at least w(I, J) ≥ 1/4 is
transferred. Hence, E[w(bucket(J))] ≥ 1/4 · 1 · 1/4 = 1/16.

4.3 Segments of Arbitrary Lengths

Consider now more general instances of 2-Isp, in which the ratio between the longest and shortest
segment is ∆, for some ∆ > 1. W.l.o.g. we may assume that the short segment is of length 1.
We partition the set of first segments to K = ⌈log ∆⌉ groups, such that the segments in group
i have lengths in [2i−1, 2i), 1 ≤ i ≤ K. Partition the second segments similarly into K groups.
A 2-interval whose first segment is of length in [2i−1, 2i), and whose second segment is of length
[2j−1, 2j), 1 ≤ i, j ≤ K, is in group (i, j).

We now apply algorithm Av to 2-Isp instances where the length of the short segment is in [1, 2)
and the long segment in [d, 2d). Av makes scheduling decisions as before, using the new definitions
of ‘short’ and ‘long’ segments.

Theorem 9 Algorithm Av is 24-competitive for 2-Isp instances with segments of two types: short
with lengths in [1, 2), and long with lengths in [d, 2d).

Proof. Each interval I intersects now at most 6 intervals in SOPT that it does not dominate. For
instance, a long segment can now contain one long segment from SOPT and properly overlap two
other segments. Thus, we change the charging scheme to w(I, J) = 1/6 · t(I, J). The rest of the
proof of Theorem 8 is unchanged.

Now, given a general instance of 2-Isp, suppose that ∆ is known a-priori. Consider algorithm
Avg which applies Av on groups of 2-intervals. The instance is partitioned to K2 = ⌈log ∆⌉2 groups,
depending on the lengths of the first and second segments of each 2-interval. Avg selects uniformly
at random a group (i, j), 1 ≤ i, j,≤ K and considers scheduling only 2-intervals in this group. All
other 2-intervals are declined. The next result follows from Theorem 9.

Theorem 10 Avg is O(log2 ∆)-competitive for 2-Isp with intervals of various lengths, where ∆ is
known in advance.

For the case where ∆ is a priori unknown, consider algorithm Ãvg, which proceeds as follows.2

A presented 2-interval, I, is in the same group as a previously presented 2-interval, I ′, if the ratio
between the length of the first/second segment of I and I ′ is between 1 and 2. If not, I belongs to a
new group. Thus, each group has an index i ∈ {1, . . . , ⌈log ∆⌉2}. The algorithm chooses randomly
at most one group and selects only 2-intervals from that group, using algorithm Av. Define

ci =
1

ζ(1 + ǫ/2)i1+ǫ/2
, and pi =

ci

Πi−1
j=1(1 − pj)

, (2)

where ζ(x) =
∑∞

i=1 i−x is the Riemann zeta function. Recall that ζ(x) < ∞, for x > 1.
If a given 2-interval belongs to a new group i, and none of the groups 1, 2, . . . , i − 1 has been

selected, then group i is chosen with probability pi and rejected with probability 1 − pi. If a given
2-interval belongs to an already selected group i, it is scheduled using algorithm Av; if the given

2W.l.o.g., we assume that ∆ is an integral power of 2.

9

2-interval belongs to an already rejected group then it is rejected. Note that by the definition of pi,
as given in (2), it follows that ci is the unconditional probability that Ãvg chooses the i-th group.

In analyzing Ãvg we first show that the values pi form valid probabilities, and that the ci values
give a probability distribution.

Lemma 11

∞
∑

i=1

ci = 1. Also, pi ≤ 1, for all i ≥ 1.

Proof. Observe that
∑∞

i=1 ci = 1
ζ(1+ǫ/2)

∑∞
i=1

1
i1+ǫ/2 = 1, proving the first half of the lemma. It

follows that ci ≤ 1 −
∑i−1

j=1 cj. To prove the second half of the lemma, it suffices then to prove the
following claim that

pi =
ci

1 −
∑i−1

j=1 cj

, (3)

for each i ≥ 1. We prove the claim by induction on i. The base case then holds since p1 = c1.
Suppose now that

pk−1 =
ck−1

1 − c1 − c2 − ... − ck−2
(4)

then using (2) we have that

pk =
ck

ck−1
·

pk−1

1 − pk−1
.

Plugging in the value of pk−1 in (4) we get the claim.

Theorem 12 Ãvg is O(log2+ǫ ∆)-competitive for 2-Isp with intervals of various lengths, where ∆
is unknown in advance.

Proof. Let Si denote the set of 2-intervals in group i, 1 ≤ i ≤ log2 ∆.
The probability that Ãvg chooses any given group Si is at least clog2 ∆. After selecting the group,

Ãvg uses Av to schedule the 2-intervals in the group. For a given group, Si, we have:

E[Ãvg(Si)] ≥ clog2 ∆ · E[Av(Si)] ≥
1

ζ(1 + ǫ/2)(log ∆)2+ǫ
·

1

12
· E[OPT (Si)].

Thus, by linearity of expectation Ãvg is O(log2+ǫ ∆)-competitive.

5 Online t-Interval Selection

We show here that any online algorithm for t-Isp has competitive ratio Ω(t). This is done by a
reduction to a known problem; this is standard for offline problems but rather unusual approach in
the online case. We reduce the problem to the online version of the independent set (IS) problem in
graphs: given vertices one by one, along with edges to previous vertices, determine for each vertex
whether to add it to a set of independent vertices.

Theorem 13 Any randomized online algorithm for t-Isp with unit segments has competitive ratio
Ω(t).

10

Proof. Let n be a positive integer. We show that any graph on n vertices, presented vertex by
vertex, can be converted on-the-fly to an n-interval representation. Then, an f(t)-competitive online
algorithm for t-Isp applied to the n-interval representation yields an f(n)-competitive algorithm
for the independent set problem. As shown in [8] (and follows also from Theorem 6), there is no
cn-competitive algorithm for the online IS problem, for some fixed c > 0. The theorem then follows.

Let G = (V,E) be a graph on n vertices with vertex sequence 〈v1, v2, . . . , vn〉. Given vertex vk

and the induced subgraph G[〈v1, v2, . . . , vi〉], form the n-interval Ii by

Ii =
⋃

j=1

Xij , where Xij =

{

[nj + i, nj + i + 1) if j < i and (i, j) ∈ E
[ni + j, ni + j + 1) otherwise.

Observe that Ii ∩ Ij 6= ∅ iff (i, j) ∈ E. Hence, solutions to the t-Isp instance are in one-one
correspondence with independent sets in G.

A greedy selection of t-intervals yields a 2t-competitive algorithm for unit t-Isp, implying that
the bound above is tight.

References

[1] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive non-preemptive call control. In
SODA, pages 312–320, 1994.

[2] U. T. Bachmann. Online t-Interval Scheduling. MSc thesis, School of CS, Reykjavik Univ.,
Dec. 2009.

[3] U. T. Bachmann, M. M. Halldórsson, and H. Shachnai. Online scheduling intervals and
t-intervals. Full version, http://www.cs.technion.ac.il/∼hadas/PUB/onint full.pdf,
2010.

[4] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber. Bandwidth allocation with
preemption. In STOC, pages 616–625, 1995.

[5] R. Bar-Yehuda, M. M. Halldórsson, J. S. Naor, H. Shachnai, and I. Shapira. Scheduling split
intervals. In SODA, pages 732–741, 2002.

[6] R. Bar-Yehuda and D. Rawitz. Using fractional primal-dual to schedule split intervals with
demands. Discrete Optimization, 3(4):275 – 287, 2006.

[7] A. Butman, D. Hermelin, M. Lewenstein, and D. Rawitz. Optimization problems in multiple-
interval graphs. In SODA, 2007.

[8] M. M. Halldórsson, K. Iwama, S. Miyazaki, and S. Taketomi. Online independent sets. Theo-
retical Computer Science, 289(2):953 – 962, 2002.

[9] M. M. Halldórsson and M. Szegedy. Lower bounds for on-line graph coloring. Theoretical
Comput. Sci., 130:163–174, Aug. 1994.

[10] H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combinatorics. In Congr.
Numer. 33, pages 143–153, 1981.

[11] J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2005.

11

[12] A. W. Kolen, J. K. Lenstra, C. H. Papadimitriou, and F. C. Spieksma. Interval scheduling: A
survey. Naval Research Logistics, 54:530–543, 2007.

[13] R. J. Lipton and A. Tomkins. Online interval scheduling. In SODA, pages 302–311, 1994.

[14] F. Spieksma. On the approximability of an interval scheduling problem. J. Sched., 2:215–227,
1999.

[15] S. Vialette. On the computational complexity of 2-interval pattern matching problems. Theor.
Comput. Sci., 312(2-3):223–249, 2004.

[16] G. J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theor. Comput.
Sci., 130(1):5–16, 1994.

12

