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Abstract. The stable marriage problem has received considerable at-
tention both due to its practical applications as well as its mathemat-
ical structure. While the original problem has all participants rank all
members of the opposite sex in a strict order of preference, two natu-
ral variations are to allow for incomplete preference lists and ties in the
preferences. Both variations are polynomially solvable by a variation of
the classical algorithm of Gale and Shapley. On the other hand, it has
recently been shown to be NP-hard to find a maximum cardinality stable
matching when both of the variations are allowed.
We show here that it is APX-hard to approximate the maximum cardi-
nality stable matching with incomplete lists and ties. This holds for some
very restricted instances both in terms of lengths of preference lists, and
lengths and occurrences of ties in the lists. We also obtain an optimal
Ω(N) hardness results for ’minimum egalitarian’ and ’minimum regret’
variants.

1 Introduction

An instance of the original stable marriage problem (SM) [5] consists of N men
and N women, with each person having a preference list that totally orders
all members of the opposite sex. A man and a woman form a blocking pair in a
matching if both prefer each other to their current partners. A perfect matching is
stable if it contains no blocking pair. For a matching M containing a pair (m, w),
we write that M(m) = w and M(w) = m. The stable marriage problem was
first studied by Gale and Shapley [2], who showed that every instance contains a
stable matching, and gave an O(N2)-time algorithm, so-called the Gale-Shapley
algorithm, to find one.

One natural relaxation is to allow for indifference [5, 8], in which each person
is allowed to include ties in his/her preference. This problem is denoted SMT
(Stable Marriage with Ties). When ties are allowed, the definition of stability
needs to be extended. A man and a woman form a blocking pair if each strictly
prefers the other to his/her current partner. A matching without such a blocking
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pair is called weakly stable (or simply “stable”). Variations in which a blocking
pair can involve non-strict preference suffer from the fact that a stable matching
may not exist, whereas the Gale-Shapley algorithm can be modified to always
find a weakly stable matching [5].

Another natural variation is to allow participants to declare one or more
unacceptable partners. Thus each person’s preference list may be incomplete.
Again, the definition of a blocking pair is extended, so that each member of
the pair prefers the other over the current partner or is currently single and
acceptable. The Gale-Shapley algorithm can also be modified to find a stable
matching of maximum size in this case [3].

The importance of stability in matchings has been clearly displayed by its
success in assigning resident interns to hospitals. For instance, the National Resi-
dent Matching Program in the U.S. has used a modified Gale-Shapley algorithm
to match more than 95% of its participants for over three decades [5]. Here,
residents apply to a subset of hospitals (i.e. incomplete preference lists), with
each hospital strictly ranking its applicants. A hospital-resident assignment is
actually a many-one matching, but most algorithms and properties carry over
from the one-one SM problem that we focus on here.

Strict ranking of all applicants is not reasonable for large hospitals; it is
more that they would strictly rank the top candidates, leaving the remainder
tied. Irving et. al. [9] report that in a planned Scottish matching scheme SPA,
ties are allowed but then resolved using arbitrary tie-breaking. However, different
tie-breakings can result in different sizes of stable matchings. Since the objective
is to successfully assign as many of the candidates as possible (or to fill as many
of the posts as possible, depending on viewpoint), it would be desirable to find
an algorithm for maximum cardinality stable matching in the presence of ties
and incomplete lists.

This problem SMTI (Stable Marriage with Ties and Incomplete lists) was
recently considered by Iwama et al. [10] which resolved that it is NP-hard to
find a maximum cardinality solution. Previously, such hardness results had been
known only for non-bipartite stable matchings, known as the Stable Roommates
problem [12]. This NP-hardness result for SMTI was further shown to hold for
the restricted case when all ties occur only at the end of a list, occur only in one
sex, and are of length only 2 [11]. 2-approximation is easy for this problem since
any stable matching is maximal. However, no other approximability results have
been shown up to the present.

We study in this paper the approximability of SMTI and several variants.
First, we show that Max cardinality SMTI is APX-hard, i.e. hard to approximate
within 1+ǫ, for some ǫ > 0. The construction applies to a very restricted class of
instances, where preference lists are of constant size and are either fully ordered
or contain a single tied group. We can further modify it to make ties be of
length 2. An important feature of the proof is to establish a “gap location at 1”;
namely, that it is NP-hard to distinguish between instances that have a complete
stable matching and those where any stable matching leaves a positive constant
fraction of participants unmatched.



We then consider two variants: ‘minimum egalitarian’ SMT and ‘minimum
regret’ SMT. Here preference lists are complete, but the quality of the stable
matching depends on how much “less preferred” partner a participant receives,
either in an average or a worst case sense. It is known that both problems are
NP-hard and cannot be approximated within N1−ǫ for any small ǫ unless P=NP
[10, 11]. We improve these results and show a worst possible Ω(N) lower bound
on the approximability. Note that both problems are solvable in polynomial time
if ties are not allowed [4, 5, 7].

Notation. Throughout this paper, instances contain equal number N of men
and women. A goodness measure of an approximation algorithm T of an opti-
mization problem is defined as usual: the performance ratio of T is the maximum
over all instances x of size N of max{T (x)/opt(x), opt(x)/T (x)}, where opt(x)
(T (x)) is the measure of the optimal (algorithm’s) solution, respectively. A prob-
lem is hard to approximate within f(N), if the existence of a polynomial-time
algorithm with performance ratio f(N) implies that P=NP.

2 Inapproximability of MAX SMTI

We focus on the maximum cardinality SMTI problem.

Problem: MAX SMTI.
Instance: N men, N women and each person’s preference list which may be
incomplete and may include ties.
Purpose: Find a stable matching of maximum cardinality.

Theorem 1. MAX SMTI is hard to approximate within 1+ǫ, for some constant
ǫ > 0.

Proof. Recall that MAX SAT is the problem of finding a truth assignment to
the variables of a given propositional formula in CNF form that satisfies as many
clauses as possible. MAX E3SAT(t) is a restriction of MAX SAT, where each
clause has exactly three literals, and each variable appears at most t times. It is
known that, if P 6=NP, there exists a positive constant α and an integer t such that
there is no approximation algorithm for MAX E3SAT(t) whose performance ratio
is less than 1 + α [1, 6]. More precisely, the problem has a useful ’gap location’
property: Suppose that an instance f of SAT is translated into an instance g
of MAX E3SAT(t). If f is satisfiable, then g is also satisfiable. Otherwise, i.e.,
if f is unsatisfiable, the number of unsatisfied clauses is more than δ(= α

1+α
)

fraction of clauses of g in any assignment.
We translate an instance f of MAX E3SAT(t) having the above property

into an instance T (f) of MAX SMTI. Our reduction has the following property:
If f is satisfiable, there is a stable matching for T (f) in which all the people are
matched (Lemma 2). If more than δ fraction of clauses of f are unsatisfied in any
assignment, then more than δ

9t
fraction of men are single in any stable match-

ing for T (f) (Lemma 4). Hence a polynomial-time 1/(1 − δ
9t

)-approximation
algorithm implies P=NP.



The reduction is similar to that of [10], with some important simplifications.
Let n and l be the numbers of variables and clauses of f , respectively, and let
Cj(1 ≤ j ≤ l) be the jth clause of f . Let ti be the number of appearances of
the variable xi. (Thus t = max{t1, t2, · · · , tn}.) We construct an instance T (f),
namely, the set of men and women, each man’s preference list, and each woman’s
preference list.

The Set of Men and Women T (f) contains 2n + 6l men and women. We
divide men and women into three groups, respectively, in the following way:

The Set of Men

Group (a): For each clause Cj , we introduce three men aj, a′

j and a′′

j .
Group (b): For each variable xi, we introduce two men bi and b′i.
Group (c): For each literal xi (or xi) in the clause Cj , we introduce a man

ci,j .

The Set of Women

Group (u): For each variable xi, we introduce a woman ui.
Group (v): For each variable xi, we introduce a woman vi.
Group (w): For each literal xi (or xi) in the clause Cj , we introduce two

women w1
i,j and w0

i,j .

Since there are n variables, we have 2n group-(b) men, and n group-(u) and
group-(v) women. Since there are l clauses and 3l literals, there are 3l group-(a)
and group-(c) men and 6l group-(w) women.

Men’s Preference Lists We then construct each man’s preference list. For
better exposition, we use an example of f ,

f0 = (x1 + x2 + x3)(x1 + x2 + x4)(x2 + x4 + x5).

For this instance, men’s preference lists will turn out to be as illustrated in Table
1, in which t is equal to 3. Note that Table 1 contains several blanks defined for
convenience for constructing the women’s preference lists, as detailed later.

For each clause Cj , three men aj , a′

j and a′′

j in Group (a) are introduced. We
show how to construct preference lists of men a1, a′

1 and a′′

1 who are associated
with C1 = (x1 + x2 + x3) of f0. Since literals x1, x2 and x3 appear in C1, six
women w0

1,1, w1
1,1, w0

2,1, w1
2,1, w0

3,1 and w1
3,1 have been introduced. a1 writes

w1
1,1, w0

2,1 and w1
3,1 at the first position. (These three women are tied in the list.)

Generally speaking, the man aj writes the woman w1
i,j if xi appears positively

in Cj , and writes w0
i,j if xi appears negatively in Cj . Both a′

1 and a′′

1 write all
the above six women at the first position.

Then we construct preference lists of Group-(b) men. We show how to con-
struct preference lists using men b2 and b′2 who are associated with the variable
x2 of f0. The man b2 writes the woman u2 at the 2nd position. (The 2nd position
is always determined without depending on f .) Then, b2 writes the woman v2

at the t + 4(= 7)th position. Since x2 appears in clauses C1, C2 and C3, three
women w0

2,1, w0
2,2 and w0

2,3 have been introduced. b2 writes w0
2,1, w0

2,2 and w0
2,3



at the 3rd, 4th and 5th positions, respectively. Generally speaking, there are ti
women of the form w0

i,j corresponding to the variable xi. (Recall that ti is the
number of appearances of the variable xi.) bi writes these women at 3rd through
(ti + 2)th positions. Since ti ≤ t, these women’s positions never reach (t + 4)th
position which is already occupied by vi.

b′2’s list is similarly constructed. b′2 writes the woman u2 at the 1st position
and writes the woman v2 at the t + 3(= 6)th position. There are three women
w1

2,1, w1
2,2 and w1

2,3 associated with the variable x2 since x2 appears in C1, C2 and
C3. b′2 writes w1

2,1, w1
2,2 and w1

2,3 at the 3rd, 4th and 5th positions, respectively.
Now we move to Group-(c) men. The man ci,j (associated with xi in Cj)

writes women w1
i,j and w0

i,j (associated with xi in Cj) at the t + 3(= 6)th and
t + 4(= 7)th positions, respectively. Now men’s lists are completed. Table 1
shows the whole lists of men of T (f0). As we have mentioned before, men’s lists
currently contain blanks. Blanks will be removed after we construct women’s
lists.

Women’s Preference Lists We construct women’s preference lists automat-
ically from men’s preference lists. First, we determine the total order of all men;
the position of each man in the order is called his rank. The rank of each man
of our current example T (f0) is shown in Table 1, e.g., a1 is the highest and c5,3

is the lowest. Generally speaking, men are lexicographically ordered, where the
significance of the indices of αδ

β,γ is in the order of α, β, γ and δ, e.g., α is the
most significant index and δ is the least significant index. For α, the priority is
given to a, b and c in this order. For β and γ, the smaller number precedes the
larger number. For δ, fewer primes has more priority.

Women’s lists are constructed based on this order. First of all, the preference
list of a woman w does not include a man m if w does not appear on m’s
preference list. Then consider two men mi and mj who write w in the list. w
strictly prefers mi to mj if and only if (1) the rank of mi is higher than that of
mj , and (2) the position of w in mi’s list is higher than or equal to the position
of w in mj ’s list. One might think that women’s lists can contain partial order in
this construction. However, in our translation, each woman’s list contains only
ties.

It helps much to know that by our construction of women’s preference lists,
we can determine whether a matching includes a blocking pair only from men’s
lists. Consider men mi and mj matched with wi and wj , respectively. Then,
(mi, wj) is a blocking pair if and only if (i) mi strictly prefers wj to wi, (ii) mi’s
rank is higher than mj ’s rank, and (iii) the position of wj in mi’s list is higher
than or equal to the position of wj in mj ’s list. Observe that the combination
of conditions (ii) and (iii) means that wj strictly prefers mi to mj .

Finally, we remove blanks in men’s lists. For each man’s list, we simply slide
women to the left until no blank remains.

Correctness of the reduction As mentioned before, the correctness follows
from two Lemmas 2 and 4.

Lemma2. If f is satisfiable, then there is a perfect stable matching for T (f).



Proof. Suppose that f is satisfied by an assignment A and let A(xi) ∈ {0, 1}
be the value assigned to xi under A. We construct a stable matching M whose
cardinality is N(= 2n + 6l) as follows. Each man in Group (b) is matched
according to the assignment A. If A(xi) = 0, then let M(bi) = vi and M(b′i) = ui,
and if A(xi) = 1, then let M(bi) = ui and M(b′i) = vi. There is a Group-(c) man
ci,j associated with a literal xi (or xi) in the clause Cj . If A(xi) = 0, then let
M(ci,j) = w1

i,j , and if A(xi) = 1, then let M(ci,j) = w0
i,j .

Now we go back to Group-(a) men. Recall that of the two women w0
i,j and

w1
i,j associated with the literal xi (or xi) in the clause Cj , one is matched with

a man in Group (c) and the other one is still unmatched. Namely, if A(xi) = 0
it is w0

i,j that is unmatched. These unmatched women will be matched with
Group-(a) men. Consider a clause Cj with literals zi1 , zi2 and zi3 (i.e., zik

is
xik

or xik
). Since Cj is satisfied by A, at least one of these three literals has

the value 1. Without loss of generality, let the literal be zi1 . If zi1 = xi1 then
A(xi1 ) must be 1 and hence, the woman w1

i1,j is unmatched as mentioned above.

By construction of preference lists of Group-(a) men, aj writes w1
i1,j in the list

because xi1 appears positively in Cj . Otherwise, i.e. if zi1 = xi1 , then w0
i1,j is

unmatched and aj writes w0
i1,j in the list. In either case, aj can be matched with

the woman corresponding to the literal that makes the clause true. There are
two other literals zi2 and zi3 in Cj . So there are two unmatched women; one is
w0

i2,j or w1
i2,j, and the other is w0

i3,j or w1
i3,j , depending on which value xi2 and

xi3 receive under A. a′

j and a′′

j will be matched with those two women.
Now we have a perfect matching. Since we have shown how to detect blocking

pairs, it is easy to check that this matching M is stable. ⊓⊔

Lemma3. Let M be an arbitrary stable matching for T (f). If the number of
unmatched men in M is k, then there is an assignment for f by which the number
of unsatisfied clauses is at most tk. (The proof is given in Sec. 2.1.)

Lemma4. If more than δ fraction of clauses of f are unsatisfied in any assign-
ment, then more than δ

9t
fraction of men are single in any stable matching for

T (f).

Proof. Recall that the number of men in T (f) is 2n+6l, where n is the number of
variables of f and l is the number of clauses of f . Since we can assume that each
variable appears at least twice, we have n ≤ 3l/2. Hence we have 2n + 6l ≤ 9l
men.

Suppose that there is a stable matching for T (f) such that the number of
single men is at most δ

t
l. Then, by Lemma 3, there must be an assignment for

f such that the number of unsatisfied clauses is at most δl, a contradiction.
Therefore, more than δ

t
l men are single in any stable matching for T (f). The

fraction of men that are single exceeds ( δ
t
l)/9l = δ

9t
. ⊓⊔

As we have mentioned in the beginning of this proof, there is a positive
constant δ such that it is NP-hard to distinguish the following two cases for
MAX E3SAT(t): (i) the formula is satisfiable, and (ii) the number of unsatisfied



clauses is more than δ fraction in any assignment. By Lemmas 2 and 4, the
theorem holds. ⊓⊔

The instances constructed in the proof above have quite restrictive properties.
All preference lists are of constant size, or at most t + 2, where t can be set as
small as 5. Also, preference lists are either totally ordered, or totally unordered
(i.e. a single tied list). In Sec. 2.2, we give a modification to ensure that ties are
all of length 2.

2.1 Proof of Lemma 3

Proof. First of all, it should be noted that Group-(a) men are matched in any
stable matching. The reason is as follows: Suppose there is a Group-(a) man m
who is single in some stable matching M . Then women written on m’s preference
list cannot be single since otherwise, that single woman and m form a blocking
pair. Thus every woman on m’s list must be matched in M . Since we have
assumed that m is single, at least one woman w on m’s list cannot be matched
with Group-(a) men, and hence she is matched with a man in Groups (b) or (c).
This can be easily checked by construction. m and w form a blocking pair since
Group-(w) women strictly prefers men in Group (a) to men in Groups (b) and
(c).

Given an arbitrary stable matching M for T (f), we first determine an incom-
plete assignment AM which is an assignment to literals of f depending on how
Group-(a) men are matched in M . AM is not an usual truth assignment for vari-
ables but an assignment for literals which may contain several contradictions.

We denote the literal xi (resp. xi) in the clause Cj by xj
i (resp. xj

i ). Suppose xi

appears positively (resp. negatively) in Cj . Then we say that the value of the

literal xj
i (resp. xj

i ) is consistent with the value of the variable xi if xj
i = xi

(resp. xj
i 6= xi). We say that two literals associated with xi are consistent if we

can assign the value to xi so that both literals are consistent with xi. Note that
the consistency of two literals does not depend on the value of variable xi.

Now we are ready to show how to construct AM . As we have seen before, every
man in Group (a) is matched in M . Suppose that the woman wd

i,j (d ∈ {0, 1})
is matched with a man in Group (a). This woman exists in Group (w) because
the variable xi appears in the clause Cj . We assign the value to the literal xj

i

(or xj
i ) so that the value of the literal is consistent with xi = d. Note that, in

an incomplete assignment, it can be the case that a literal receives both 0 and
1, or that a literal receives no value.

For example, recall the example in Table 1. Suppose that in a stable matching,
say M0, a1, a′

1 and a′′

1 are matched with w1
1,1, w0

1,1 and w1
2,1, respectively. Then,

under the incomplete assignment AM0
, x1

1 receives both 0 and 1, x1
2 receives 0

(to be consistent with x2 = 1), and x1
3 receives no value. Observe that, by this

incomplete assignment AM , each clause Cj contains at least one literal whose
value is 1, which corresponds to the woman who is matched with the man aj.



For each variable xi, define CLi = {j|xi appears in Cj}. Partition CLi into
three subsets according to AM : CL2

i (AM ) = {j|j ∈ CLi and xi in Cj receives
both 0 and 1 under AM}. CL1

i (AM ) = {j|j ∈ CLi and xi in Cj receives exactly
one value under AM}. CL0

i (AM ) = {j|j ∈ CLi and xi in Cj receives no value
under AM}.

We say that the variable xi has Type-I contradiction if CL2
i (AM ) 6= ∅. We say

that xi has Type-II contradiction if CL0
i (AM ) 6= ∅. We say that xi has Type-III

contradiction if there are j1 and j2 such that j1, j2 ∈ CL1
i (AM ) and literals in

Cj1 and Cj2 , associated with xi, are not consistent. Before proving Lemma 3,
we need to prove the following lemmas (Lemmas 5 through 8).

Lemma5. (1) If i1 6= i2, then (i) CL2
i1

(AM )∩CL2
i2

(AM ) = ∅, and (ii) CL0
i1

(AM )∩
CL0

i2
(AM ) = ∅. (2) (i) If j ∈ CL0

i1
(AM ) for some i1, then there exists i2 such

that j ∈ CL2
i2

(AM ). (ii) If j ∈ CL2
i1

(AM ) for some i1, then there exists i2 such
that j ∈ CL0

i2
(AM ).

Proof. Note that every man in Group (a) is matched in M . Thus, for each clause
Cj , the total number of values which three literals in Cj receive is exactly three.
Then it is an easy calculation to see that the lemma holds. ⊓⊔

Lemma6. Let M be a stable matching for T (f), and AM be an incomplete
assignment constructed from M . Suppose that xi has Type-II contradiction under
AM and j ∈ CL0

i (AM ), namely, xi in the clause Cj receives no value. Then the
man cp,j is single in M . Here p is an integer such that j ∈ CL2

p(AM ), whose
existence is guaranteed by Lemma 5 (2)-(i).

Proof. Since j ∈ CL2
p(AM ), the literal zj

p receives two values under AM . This
means that two women w1

p,j and w0
p,j associated with this literal are both

matched with some men in Group (a). Then the man cp,j cannot be matched in
M since this man writes only these two women in the list. ⊓⊔

Lemma7. Let M be a stable matching for T (f), and AM be an incomplete
assignment constructed from M . Suppose that xi has Type-III contradiction but
no Type-II contradiction under AM . Then at least one man among bi, b′i and
ci,j, where j ∈ CL1

i (AM ), is unmatched in M .

Proof. Suppose that appearance of xi in Cj1 and Cj2 causes Type-III contra-
diction. There are four cases according to the polarity of xi in Cj1 and Cj2 .
Assume that xi appears positively in Cj1 and negatively in Cj2 , namely, each

of these literals receive one value such that xj1
i = xj2

i under AM . Other three
cases are similar to this case and can be omitted. We still have two possibilities:

(i) xj1
i = xj2

i = 1, and (ii) xj1
i = xj2

i = 0. We give the proof for (i). The other
case is similar.

We assume that all bi, b′i and ci,j (j ∈ CL1
i (AM )) are matched in M and

show a contradiction. Consider a man ci,j for each j such that j ∈ CL1
i (AM ).

Since j ∈ CL1
i (AM ), one of w1

i,j and w0
i,j is matched with a man in Group (a)



and the other is matched with the man ci,j . Especially, M(ci,j1) = w0
i,j1

, and

M(ci,j2) = w1
i,j2

by our assumption that xj1
i = xj2

i = 1.

Now we turn to two men bi and b′i. As discussed above, w1
i,j and w0

i,j (j ∈

CL1
i (AM )) are all matched with men in Groups (a) or (c). Also, for each j such

that j ∈ CL2
i (AM ), w1

i,j and w0
i,j are both matched with men in Group (a).

Note that there is no j such that j ∈ CL0
i (AM ) since xi does not contain Type-

II contradiction. As a result, all Group-(w) women written on the list of bi or b′i
are matched with men in Group (a) or (c). Thus if both bi and b′i are matched
in M , it must be one of the following two cases: (1) M(bi) = vi and M(b′i) = ui,
and (2) M(bi) = ui and M(b′i) = vi. In case (1), bi and w0

i,j1
form a blocking

pair. In case (2), b′i and w1
i,j2

form a blocking pair. In either case, it contradicts
the fact that M is stable. ⊓⊔

Lemma8. Let M be a stable matching for T (f), and AM be an incomplete
assignment constructed from M . If the number of variables that have Type-II
and/or Type-III contradiction under AM is k, then there are at least k single
men in M .

Proof. Suppose that variables xi1 and xi2 (i1 6= i2) have Type-II or Type-III
contradiction. By Lemmas 6 and 7, at least one man associated with each variable
is single. Let them be mi1 and mi2 , respectively. All we have to show is that
mi1 6= mi2 . We consider the following four cases:
Case 1: Both xi1 and xi2 have Type-II contradiction. By Lemma 6, mi1

is cp,r and mi2 is cq,s for some p, q, r and s. Recall the proof of Lemma 6. This
means that xi1 in the clause Cr receives no value and so, xp in Cr receives both
0 and 1. Also xi2 in Cs receives no value and so, xq in Cs receives both 0 and
1. Namely, r ∈ CL0

i1
(AM ) and s ∈ CL0

i2
(AM ). By Lemma 5 (1)-(ii), r 6= s and

hence mi1 6= mi2 .
Case 2: Only xi1 has Type-II contradiction. In this case, mi1 is cp,r where
r ∈ CL2

p(AM ), and mi2 is one of bi2 , b′i2 and ci2,j , where j ∈ CL1
i2

(AM ). If mi2

is bi2 or b′i2 , then clearly mi1 6= mi2 . Suppose mi2 is ci2,j for some j such that
j ∈ CL1

i2
(AM ). If mi1 = mi2 , p and r must be equal to i2 and j, respectively.

This is impossible because it results that r ∈ CL1
p(AM ) and r ∈ CL2

p(AM ).
Case 3: Only xi2 has Type-II contradiction. Same to Case 2.
Case 4: Neither xi1 nor xi2 have Type-II contradiction. By Lemma 7,
mi1 must be one of bi1 , b′i1 and ci1,j1 for some j1, and mi2 must be one of bi2 ,
b′i2 and ci2,j2 for some j2. Clearly mi1 6= mi2 because i1 6= i2. ⊓⊔

Now we are ready to prove Lemma 3. Suppose there are k unmatched men
in M . Then, by Lemma 8, the number of variables that have Type-II or III con-
tradiction is at most k. We construct a truth assignment A′

M of f from AM in
the following way: If xi contains Type-II or Type-III contradiction, determine
A′

M (xi) arbitrarily. If xi does not contain any type of contradiction, all literals
associated with xi are consistent under AM . We determine A′

M (xi) so that all
the literals become consistent with xi. Otherwise, if xi contains only Type-I con-
tradiction, then CLi = CL1

i (AM ) ∪ CL2
i (AM ), namely, each literal associated



with xi receives both 1 and 0, or exactly one value because xi does not contain
Type-II contradiction. Furthermore, all literals which receive one value are con-
sistent since xi does not contain Type-III contradiction. We determine A′

M (xi)
so that those literals become consistent with xi.

Recall that, under the incomplete assignment AM , every clause has at least
one literal to which the value 1 is assigned. We count an upper bound on the
number of clauses that become 0 by changing AM into A′

M . Let L be the set
of all clauses that contain a variable having Type-II or Type-III contradiction
and let L be the set of all remaining clauses. Since there are at most k variables
that have Type-II or III contradiction, and since each variable appears at most
t times, it turns out that |L| ≤ tk. We claim that clauses in L are all satisfied

by A′

M . Let Cj be a clause in L and zj
i (which is xj

i or xj
i ) be a literal in

Cj . If xi does not contain any contradiction under AM , then the value of zj
i is

equivalent under AM and A′

M . Suppose xi contains only Type-I contradiction,
i.e., j ∈ CL1

i (AM ) or j ∈ CL2
i (AM ). If j ∈ CL1

i (AM ), then again the value of

zj
i is equivalent under AM and A′

M by definition of AM ′ . We then claim that
j 6∈ CL2

i (AM ): If j ∈ CL2
i (AM ) then there must be p such that j ∈ CL0

p(AM )
by Lemma 5 (2)-(ii). So Cj contains a variable containing Type-II contradiction
and hence Cj must be in L.

Now, for any Cj ∈ L, the value of every literal in Cj under A′

M is equivalent
to the value of it under AM . Again, recall that all the clauses have at least one
literal having the value 1 under AM . So every clause in L is satisfied by A′

M . ⊓⊔

2.2 Hardness for Restricted Instances

In this section, we show how to modify the construction in the proof of Theorem 1
to obtain the same hardness result for restricted instances where the length of
ties is at most two.

Theorem9. MAX SMTI is hard to approximate within 1 + ǫ, for some ǫ > 0,
even if each person writes at most one tie of length two.

Proof. In the problem MAX ONE-IN-THREE E3SAT(t), we are given a CNF
formula such that each clause contains exactly three literals and each variable
appears at most t times. A clause is satisfied if and only if exactly one literal in the
clause is true. The purpose of this problem is to find an assignment which satisfies
a maximum number of clauses. By a simple polynomial-time reduction [13] from
MAX E3SAT(t), we can show that there exists a constant δ > 0 such that it is
NP-hard to distinguish the following two cases: (i) There is an assignment that
satisfies all the clauses of f . (ii) In any assignment, at least δ fraction of the
whole clauses are unsatisfied.

We will slightly modify the reduction in the proof of Theorem 1 in the fol-
lowing way. In the reduction in the proof of Theorem 1, men a′

j and a′′

j write six
women corresponding to literals in the jth clause. In the new reduction, these
two men write only three women, that is, three women among six, who do not
appear in aj’s list. We can similarly show that the resulting MAX SMTI instance



has a gap property. Observe that, in men’s side, ties appear only in Group-(a)
men’s lists, each of length three.

Let I be an instance of SMTI constructed as above. We modify I and con-
struct a new instance I ′ with preserving the gap property. Consider a Group-(a)
man m who writes three women w1, w2 and w3 in the list. We replace this man
m with two men m1 and m2 and a woman y whose preference lists are as follows:

m1: y (w1 w2) y: (m1 m2)

m2: y (w2 w3)

Here, persons within a parenthesis are tied. In w1’s list, m is replaced by m1,
and in w3’s list, m is replaced by m2. In w2’s list, m is replaced by m1 and m2

in this order of perference. We call these three persons m1, m2 and y a block of
m. The size of I ′ (i.e. the number of men in I ′) is bounded by a constant times
of the size of I. The correctness follows from following two lemmas:

Lemma10. If there is a perfect stable matching for I, then there is a perfect
stable matching for I ′.

Proof. Let M be a perfect stable matching for I. We construct a perfect stable
matching M ′ for I ′. Consider a Group-(a) man m of I who is replaced by m1,
m2 and y as above. Recall that all Group-(a) men are matched in any stable
matching. Hence m is matched in M . If m is matched with w1 (w2) in M , then
m1 is matched with w1 (w2) and m2 is matched with y in M ′. If m is matched
with w3 in M , then m2 is matched with w3 and m1 is matched with y in M ′.
Men in Group (b) or (c) are matched in the same way as M . It is not hard to
see that M ′ is stable in I ′. ⊓⊔

Lemma11. If more than k men are unmatched in any stable matching for I,
then more than k men are unmatched in any stable matching for I ′.

Proof. Suppose that there is a stable matching M ′ for I ′ in which k men are
unmatched. We construct a stable matching M for I in which k men are un-
matched.

Suppose that a man m of I is replaced by m1, m2 and y as above. Then, it is
not hard to see that y is matched with m1 or m2 in any stable matching for I ′.
Hence exactly one man (m1 or m2) is unmatched with a woman in m’s block.
Although details are omitted, we can show that this man has a partner in any
stable matching for I ′, namely, he is matched with a woman outside m’s block.

Now we construct a matching M from M ′. Each man except for Group-(a)
men is matched with the same woman as M ′, or unmatched if he is unmatched
in M ′. Consider a Group-(a) man m. As discussed above, in M ′, there is one
man, say mi, who is matched with outside m’s block. In M , m is matched with
the woman with whom mi is matched in M ′. We can easily verify that M is
stable. The number of unmatched men is same in M and M ′. ⊓⊔



We can further show that the hardness result holds for instances in which ties
appear only in one sex. Because of the space restriction, we give only a rough
sketch of its proof.

Theorem12. MAX SMTI is hard to approximate within 1 + ǫ, for some ǫ > 0,
even if ties appear in only men’s lists, each man writes at most one tie of length
at most three.

Proof. As in the proof of Theorem 9, we modify an SMTI instance, say I, trans-
lated from MAX ONE-IN-THREE E3SAT(t). Recall that in I, ties of length
three appear in Group-(a) men’s lists and ties of length two appear in Group-
(u) and Group-(v) women’s lists. For each i (1 ≤ i ≤ n), consider two men bi, b′i
and two women ui, vi:

bi: ui · · · vi ui: (bi b′i)

b′i: ui · · · vi vi: (bi b′i)

In our reduction, these four people will be replaced by eight people whose pref-
erence lists are shown in the following figure:

su : (ui1 ui2) ui1 : su bi

sv : (vi1 vi2) ui2 : su b′i
bi : ui1 · · · vi1 vi2 vi1 : sv bi b′i
b′i : ui2 · · · vi2 vi1 vi2 : sv b′i bi

The correctness follows from a similar argument as in the proof of Theorem 9.
⊓⊔

3 Inapproximability of MIN Egalitarian SMT and MIN

Regret SMT

The regret of a person p in a matching M is defined to be the rank (within p’s
preference list) of p’s partner in M . Namely, regretM (p) is the number of persons
that p strictly prefers to his/her current partner M(p) plus one. Given that there
can be many possible solutions to a stable marriage instance, it is natural to
seek a solution that maximizes the overall satisfaction with the assignment, or
alternatively minimizes the dissatisfaction.

Minimum egalitarian stable matching The cost of a stable matching M
is defined to be

∑
p regretM (p), where the sum is taken over all persons. For the

classical stable marriage instances without ties, a polynomial-time algorithm is
known for finding an optimal stable matching [5, 7]. However, when ties are
allowed, the problem becomes intractable even with complete preference lists.
Denote this problem, with ties but complete lists, as MIN egalitarian SMT. We



give here a lower bound Ω(N) on the approximation ratio. Note that the cost of
a matching is between 2N and 2N2. Hence an approximation ratio N is trivial.
Our inapproximability result is optimal within a constant factor.

Theorem 13. MIN egalitarian SMT is hard to approximate within ǫN , for some
ǫ > 0.

Proof. Let I be an instance of SMTI constructed in the proof of Theorem 1. Let
X = {m1, m2, · · ·mN} be the set of men and Y = {w1, w2, · · ·wN} be the set
of women of I. Let Pi be the preference list of mi and Qi that of wi. For each
1 ≤ i ≤ N , we call women in Pi proper women for mi and men in Qi proper men
for wi.

We translate I into an instance I ′ of MIN egalitarian SMT. I ′ consists of
X and Y , along with new men X ′ = {m′

1, m
′

2, · · · , m
′

N} and women Y ′ =
{w′

1, w
′

2, · · · , w
′

N}. Preference lists of I ′ are constructed as follows:

m′

i : w′

i [other 2N − 1 women arbitrarily] (1 ≤ i ≤ N)

mi : Pi [women in Y ′ arbitrarily] [other women in Y arbitrarily] (1 ≤ i ≤ N)

w′

i : m′

i [other 2N − 1 men arbitrarily] (1 ≤ i ≤ N)

wi : Qi [men in X ′ arbitrarily] [other men in X arbitrarily] (1 ≤ i ≤ N)

Note that each m′

i is matched with w′

i in any stable matching for I ′ since
they write each other strictly first in their lists. Thus, there is a one-to-one
correspondence between stable matchings for I and I ′. We know that either I
has a stable matching of size N , or the size of any stable matching for I is at
most (1−δ)N for a constant δ. If I has a stable matching of size N , then there is
a stable matching, say M ′, for I ′, where each man in X is matched with a proper
woman and each woman in Y is matched with a proper man. Since all preference
lists in I are of constant length, say, at most d, the regret of each person with
respect to M ′ is constant and the total cost of M ′ is at most 2N + 2dN .

On the other hand, suppose that the size of any stable matching for I is at
most (1−δ)N . Then, any stable matching for I ′ has at least δN men and women
that cannot be matched with proper persons. Since they cannot be matched with
persons in X ′ ∪ Y ′, their regret must be larger than N , and hence the sum of
their regrets is at least 2× δN2. Hence, a δ

d+1
N -approximation algorithm would

solve an NP-complete problem. ⊓⊔

Minimum regret stable matching Another measure of general satisfaction
with the assignment would be to measure the worst case regret, i.e. maxp regretM (p).
This problem is solvable in polynomial time for complete lists without ties [4].
Here we show an optimal inapproximability of problem when ties are allowed.
Refer to this problem as MIN regret SMT.

Theorem 14. MIN regret SMT is hard to approximate within ǫN , for some
ǫ > 0.



Proof. We use the same reduction as described in the proof of Theorem 13. Let
I and I ′ be as above. Hence I has N men and N women, and I ′ has 2N men
and 2N women. If I has a perfect stable matching, then I ′ has a stable matching
in which all persons are matched with proper persons. In this matching, every
person’s cost is constant and hence the optimal cost is constant, say, d. If I
does not have a perfect stable matching, then there is at least one person who
is not matched with a proper person and his/her cost is at least N . Therefore,
a polynomial-time N

d
-approximation algorithm implies P=NP. ⊓⊔
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a1 w1

1,1 w0

2,1 w1

3,1

a′

1 w0

1,1 w0

2,1 w0

3,1 w1

1,1 w1

2,1 w1

3,1

a′′

1 w0

1,1 w0

2,1 w0

3,1 w1

1,1 w1

2,1 w1

3,1

a2 w0

1,2 w1

2,2 w1

4,2

a′

2 w0

1,2 w0

2,2 w0

4,2 w1

1,2 w1

2,2 w1

4,2

a′′

2 w0

1,2 w0

2,2 w0

4,2 w1

1,2 w1

2,2 w1

4,2

a3 w1

2,3 w0

4,3 w0

5,3

a′

3 w0

2,3 w0

4,3 w0

5,3 w1

2,3 w1

4,3 w1

5,3

a′′

3 w0

2,3 w0

4,3 w0

5,3 w1

2,3 w1

4,3 w1

5,3

b1 u1 w0

1,1 w0

1,2 v1

b′1 u1 w1

1,1 w1

1,2 v1

b2 u2 w0

2,1 w0

2,2 w0

2,3 v2

b′2 u2 w1

2,1 w1

2,2 w1

2,3 v2

b3 u3 w0

3,1 v3

b′3 u3 w1

3,1 v3

b4 u4 w0

4,2 w0

4,3 v4

b′4 u4 w1

4,2 w1

4,3 v4

b5 u5 w0

5,3 v5

b′5 u5 w1

5,3 v5

c1,1 w0

1,1 w1

1,1

c1,2 w0

1,2 w1

1,2

c2,1 w0

2,1 w1

2,1

c2,2 w0

2,2 w1

2,2

c2,3 w0

2,3 w1

2,3

c3,1 w0

3,1 w1

3,1

c4,2 w0

4,2 w1

4,2

c4,3 w0

4,3 w1

4,3

c5,3 w0

5,3 w1

5,3

Table 1. Preference lists of men of T (f0)

f0 = (x1 + x2 + x3)(x1 + x2 + x4)(x2 + x4 + x5)


