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Abstract. In unweighted case, approximation ratio for the independent
set problem has been analyzed in terms of the graph parameters, such as
the number of vertices, maximum degree, and average degree. In weighted
case, no corresponding results are given for average degree. It is not ap-
propriate that we analyze weighted independent set algorithms in terms
of average degree, since inserting the vertices with small weight decreases
average degree arbitrarily without significantly changing approximation
ratio. In this paper, we introduce the “weighted” average degree and
“weighted” inductiveness, and analyze algorithms for the weighted inde-
pendent set problem in terms of these parameters.

1 Introduction

An independent set in a graph is a set of vertices in which no two vertices are
adjacent. The (weighted) independent set problem is that of finding a maximum
(weight) independent set. There have been proposed and analyzed numerous ap-
proximation algorithms for this problem. In unweighted case, an algorithm with
approximation ratio ∆/6 + O(1) was proposed by Halldórsson and Radhakrish-
nan [6] for the graphs with the maximum degree ∆. Vishwanathan proposed the
SDP-based algorithm whose approximation ratio is O(∆ log log ∆/ log ∆) [3]. For
the graphs with the average degree d, Hochbaum [7] proved that a version of
Greedy algorithm has approximation ratio (d + 1)/2. Halldórsson and Radhakr-
ishnan [5] improved this approximation ratio to (2d + 3)/5. Moreover, an algo-
rithm with approximation ratio O(d log log d/ log d) was proposed by Halldórsson
[2]. In weighted case, Halldórsson and Lau [4] gave an algorithm with approxi-
mation ratio (∆+2)/3. For the δ-inductive graphs approximation ratio (δ+1)/2
is known due to Hochbaum [7], and Halldórsson [2] proposed an algorithm with
approximation ratio O(δ log log δ/ log δ). Note that δ ≤ ∆ for any graph.

In this paper, we extend the approximation algorithms of [2, 7] to the weighted
case. Since inserting the vertices with small weight decreases d arbitrarily with-
out significantly changing approximation ratio, we introduce the weighted aver-
age degree dw and analyze the approximation ratio. For weighted graphs, there



exist approximation algorithms whose approximation ratio is analyzed in terms
of inductiveness. We extend inductiveness to weighted version and introduce the
weighted inductiveness δw.

The rest of this paper is organized as follows. In Section 2 we define the
weighted average degree and the weighted inductiveness. We also show the re-
lationship between various degrees. In Section 3 we propose a greedy algorithm
whose lower bound is max(W/(dw+1),W/(δw+1)), where W is the total weight.
We also prove that this algorithm has approximation ratio δw. In Section 4 we
prove that the approximation ratio of min((dw+1)/2, (δw+1)/2) can be achieved.
Finally we will prove that the approximation ratios of O(dw log log dw/ log dw)
and O(δw log log δw/ log δw) can be achieved in Section 5. We will assume that
the input graphs have no isolated vertices.

2 Preliminaries

2.1 Definitions

Let G be an undirected graph where each vertex v has positive weight wv. Let
V (G) and E(G) denote the vertex set and the edge set of G, respectively, as
usual. Let W (G) be the sum of the weights of all vertices. n(G) is the number of
vertices in G. Let ∆(G) and d(G) denote the maximum and the average degree
of G, respectively. d(v, G) is the degree of vertex v in G. The inductiveness δ(G)
of a graph G is given by

δ(G) = max
H⊆G

min
v∈V (H)

d(v, H), (1)

where H ⊆ G denotes that H is a subgraph of G. Let π be an ordering of vertices
in V , that is, a one to one map V → {1, 2, . . . , n}(n = |V |). We define the right
degree of a vertex v in G with respect to π as follows:

dπ(v, G) = |{u ∈ V |(u, v) ∈ E, π(u) > π(v)}|. (2)

The right degree of a vertex v is the number of adjacent vertices to the right
when we arrange vertices from left to right according to π. If there exists π such
that m ≥ maxv dπ(v,G), we call G an m-inductive graph.

For a vertex set X, let w(X) denote the sum of the weights of the vertices in
X. Let NG(v) denote the set of vertices adjacent to vertex v in G. For a vertex
v, we define the weighted degree dw(v, G) in G as follows:

dw(v, G) =
w(NG(v))

wv
. (3)

∆w(G) = maxv dw(v, G) is the maximum weighted degree of G. We will omit G
if it is clear from the context. We define the weighted average degree dw(G) of
graph G as follows:

dw(G) =
∑

v∈V wvd(v)
W

. (4)



In fact, we can represent the weighted average degree in the following form:

dw(G) =
∑

v∈V w(N(v))
W

(5)

=
∑

v∈V wvdw(v)
W

. (6)

The weighted inductiveness δw(G) of a graph G is given by

δw(G) = max
H⊆G

min
v∈V (H)

dw(v,H). (7)

We define the right weighted degree of a vertex v for an ordering π in G as
follows:

dπ
w(v, G) =

w({u ∈ V |(u, v) ∈ E, π(u) > π(v)})
wv

.

If there exists π such that m ≥ maxv dπ
w(v,G), we call G a weighted m-inductive

graph.
We denote αw(G) as the weight of the optimal solution of the weighted

independent set problem on G. For an algorithm A, A(G) denotes the weight of
the independent set obtained by A on G. Then the approximation ratio of A is
defined by

sup
G

αw(G)
A(G)

.

We will consider unweighted graphs as weighted ones where each vertex has unit
weight. α(G) denotes the size of a maximum independent set on G.

2.2 Weighted inductiveness

Let π be an ordering of the vertices of G and vi be a vertex with π(vi) = i. We
define V π

i = {vj |j ≥ i}. Let Gπ
i be the induced subgraph of G by V π

i . Smallest-
first ordering π is an ordering such that the weighted degree of vi is minimum
in Gπ

i for all i (1 ≤ i ≤ n). We can find a smallest-first ordering in polynomial
time. We can prove the following theorem in the same manner as in the case of
unweighted inductiveness [8].

Theorem 1. For any ordering π, the inequality

δw(G) ≤ max
v

dπ
w(v, G)

holds. Moreover, if π is a smallest-first ordering, then the equality

δw(G) = max
v

dπ
w(v, G)

holds.

Corollary 1. A smallest-first ordering π minimizes maxv dπ
w(v, G).



2.3 Relationship between weighted and unweighted degrees

Theorem 2. The following relationships hold for all graphs G:

δ ≤ ∆w (8)
δw ≤ ∆ (9)
d ≤ ∆w (10)

dw ≤ ∆. (11)

Proof. We can prove inequalities (8) and (9) straightforward by considering the
non-decreasing order and the non-increasing order of weight, respectively. (11)
follows immediately from the definition of measures. Finally, we prove inequality
(10). We can get the following inequalities:

∑

v∈V

dw(v) =
∑

v∈V

∑

u:(u,v)∈E

wu

wv
=

∑

(u,v)∈E

[
wu

wv
+

wv

wu

]
≥ 2|E| = nd.

Thus,

∆w = max
v∈V

dw(v) ≥ 1
n

∑

v∈V

dw(v) ≥ d.

Hence, this theorem holds. ut

3 Greedy algorithm

3.1 Previous results

For unweighted graphs, the greedy algorithm can be written as follows. We select
a minimum degree vertex as a vertex in the independent set I, and delete this
vertex and all of its neighbors from the graph. We repeat this process for the
remaining subgraph until the subgraph becomes empty. This algorithm attains
the Turán bound [5, 7];

|I| ≥ n

d + 1
. (12)

For weighted graphs, there exists an algorithm which attains the following lower
bound [2, 8]

w(I) ≥ W

δ + 1
. (13)

3.2 Algorithm for the weighted graphs

Our greedy algorithm for the weighted graphs is almost the same as the un-
weighted greedy algorithm. The difference is that, instead of selecting a mini-
mum degree vertex, our algorithm selects a minimum weighted degree vertex.
We call this algorithm WG.



3.3 Lower bound

We use the following proposition.

Proposition 1. Assume that ai > 0, bi > 0 for all 1 ≤ i ≤ n. Then the
inequality

∑

i

b2
i

ai
≥ (

∑
i bi)

2

∑
i ai

holds.

Proof. The inequality is equivalent to

∑

i

ai

∑

i

b2
i

ai
≥

(∑

i

bi

)2

.

This inequality comes from the Cauchy-Schwarz inequality
(∑

i x2
i

) (∑
i y2

i

) ≥
(
∑

i xiyi)
2
, by assigning xi =

√
ai and yi = bi/

√
ai. ut

Let I be the independent set obtained by WG. Let vi be the i-th vertex
selected into the independent set I. Let Gi be the subgraph induced by the
remaining vertices at the beginning of the i-th iteration.

Theorem 3. WG produces the independent set satisfying the inequality

WG(G) ≥ W

dw + 1
.

Proof. We first argue the lower bound of dwW as follows:

dwW =
∑

v∈V (G)

wvdw(v, G) ≥
∑

i

∑

v∈NGi
(vi)∪{vi}

wvdw(v, Gi)

≥
∑

i

∑

v∈NGi
(vi)∪{vi}

wvdw(vi, Gi) =
∑

i

(w(NGi(vi)) + wvi) dw(vi, Gi).

Adding W =
∑

i (w(NGi(vi)) + wvi), we can deduce the inequality

(
dw + 1

)
W ≥

∑

i

(w(NGi(vi)) + wvi)
2

wvi

.

Finally we apply Proposition 1 with ai = wvi , bi = w(NGi(vi)) + wvi . The
inequality

(
dw + 1

)
W ≥ W 2

WG(G)

holds, which implies the theorem. ut



Note that WG can find an independent set with the following lower bound
[9]:

WG(G) ≥
∑

v∈V

w2
v

w(N(v)) + wv
.

This lower bound also leads to Theorem 3.

Theorem 4. WG produces the independent set satisfying the inequality

WG(G) ≥ W

δw + 1
.

Proof. Because δw ≥ dw(vi, Gi) for all i and W =
∑

i (w(NGi
(vi)) + wvi

) , the
inequality

Wδw ≥
∑

i

(w(NGi
(vi)) + wvi

) dw(vi, Gi)

holds. With this inequality, we can prove this theorem in the same way as The-
orem 3. ut

Proposition 2. The lower bounds of Theorems 3 and 4 are tight.

Proof. We illustrate the tight example for both theorems. Let G be a star graph
with n vertices. We assign weight w to the central vertex and w/

√
n− 1 to the

other vertices. In this graph, dw = δw =
√

n− 1, W = (
√

n− 1 + 1)w. WG may
output the singleton with the central vertex. In this case, WG(G) = w and thus
the inequalities in Theorems 3 and 4 hold with equality. ut

3.4 Approximation ratio

Theorem 5. WG attains approximation ratio δw.

Proof. Let Vi = NGi(vi) ∪ {vi}, and Hi be the induced subgraph by Vi of G.
We will prove the inequality αw(Hi) ≤ wviδw. vi is adjacent to all other vertices
in Hi, so αw(Hi) ≤ max(wvi , w(NHi(vi))). By the property of WG and the
definition of the weighted inductiveness, the inequality dw(vi,Hi) ≤ δw holds. By
the definition of weighted degree, the inequality max(wvi , w(NHi(vi))) ≤ wviδw

holds. Thus, αw(Hi) ≤ wviδw is proved. The inequalities

αw(G) ≤
∑

i

αw(Hi) ≤
∑

i

wviδw = WG(G)δw

are immediate. ut

Proposition 3. The approximation ratio δw of WG is tight.

Proof. The graph in Proposition 2 is the tight example. ut



4 Linear programming algorithm

4.1 Unweighted results

We will consider the combination of linear programming and the greedy algo-
rithm. With the lower bound (12), Hochbaum [7] proved that this combination
achieves the approximation ratio (d+1)/2. In this section we extend Hochbaum’s
analysis to the weighted case and prove that the proposed algorithm has the ap-
proximation ratios (dw + 1)/2 and (δw + 1)/2.

4.2 LP relaxation for the weighted independent set problem

The weighted independent set problem can be formulated in the integer pro-
gramming as follows:

maximize
∑

i∈V wixi, (14)
subject to xi + xj ≤ 1 for all (i, j) ∈ E,

xi ∈ {0, 1} for all i ∈ V.

Relaxing the integral constraint, we can deduce the following linear program-
ming:

maximize
∑

i∈V wixi, (15)
subject to xi + xj ≤ 1 for all (i, j) ∈ E,

0 ≤ xi ≤ 1 for all i ∈ V.

We can obtain the optimal solution to this LP each of whose elements is 0, 1/2,
or 1 [10]. We classify the vertices into three sets according to the value of xi,
that is, S1 = {i ∈ V |xi = 1}, S1/2 = {i ∈ V |xi = 1/2}, S0 = {i ∈ V |xi = 0}.
Note that S1 is an independent set of G and no vertex in S1/2 has a neighbor in
S1. We also note that S1/2 induces the subgraph with no isolated vertices.

4.3 Algorithm

We first solve the LP relaxation to divide the vertex set V into three subsets S1,
S1/2, and S0 as above. We then apply WG to the subgraph H induced by S1/2

to obtain an independent set IH of H. Finally, we output the independent set
I = S1 ∪ IH . We call this algorithm WGL.

4.4 Approximation ratio

From Theorem 3, we can prove the following theorem in the same manner as
the Hochbaum’s proof [7] of the approximation ratio (d + 1)/2 for unweighted
graphs.

Theorem 6. Approximation ratio of WGL is (dw + 1)/2.



We prove the approximation ratio in terms of the weighted inductiveness.

Theorem 7. Approximation ratio of WGL is (δw + 1)/2.

Proof. From Theorem 4,

αw(G)
WGL(G)

≤
w(S1) + 1

2w(S 1
2
)

w(S1) +
w(S 1

2
)

δw(H)+1

≤ δw(H) + 1
2

≤ δw + 1
2

. ut

Proposition 4. The approximation ratio of Theorem 6 and 7 is tight.

Proof. We consider the split graph G = (V, E), where V = {u1, u2, . . . , ut,
v1, v2, . . . , v2t−1} and E = {(ui, vj)|1 ≤ i ≤ t, 1 ≤ j ≤ 2t− 1} ∪ {(ui, uj)|1 ≤ i <
j ≤ t}. The induced subgraph by {ui} is a clique and the set {vi} is an indepen-
dent set. We give each vertex ui weight w/t+ε, each vertex vi weight w/(2t−1),
where ε is a small positive constant. In the optimal solution for LP (15), each
value of xi is 1/2. Thus, S1/2 = V (G). In this graph, WGL(G) = w/t + ε and
αw = w. So, the following equations hold:

dw =2t− 1 +
3t2 − 2t

2w
ε,

αw(G)
WGL(G)

=
dw + 1

2
−

(
t2

w + εt
− 3t2 − 2t

4w

)
ε,

δw =2t− 1− t2

w + εt
ε,

αw(G)
WGL(G)

=
δw + 1

2
− t2

2(w + εt)
ε.

Hence, Theorems 6 and 7 are tight. ut

5 Semi-definite programming

5.1 Previous result

The following theorem was proved in [2]:

Theorem 8. For any fixed real k such that ϑw(G) ≥ 2W/k, we can construct
an independent set in G whose weight is Ω(W/(kδ1−1/(2k))).

The function ϑw(G), defined in [1], is the weighted version of Lovász’s ϑ-function.
This function can be computed using a semi-definite programming (SDP) in
polynomial time, and has the property αw(G) ≤ ϑw(G).

For the unweighted graphs, the combination of this theorem and the greedy
algorithm yields the approximation ratio O(d log log d/ log d).

5.2 Approximation ratio for the weighted graphs

We will prove the following result for the weighted version of the algorithm with
the approximation ratio O(d log log d/ log d).

Theorem 9. For any fixed real t such that t ≥ W (G)/αw(G), we can approxi-
mate the weighted independent set problem within O(t2d

1−1/(8t)

w ).



Proof. Assume that t ≥ W (G)/αw(G) is fixed. Let K be the subgraph induced
by the vertices whose degrees in G are less than 2tdw. Then we can estimate the
value dwW (G) as follows:

dwW (G) =
∑

v∈V (G)

wvd(v) ≥
∑

v∈V (G)\V (K)

wvd(v) ≥ 2tdw

∑

v∈V (G)\V (K)

wv.

Thus, the inequality
∑

v∈V (G)\V (K) wv ≤ W (G)/(2t) holds. From this inequality,
we can prove the theorem along with [2]. ut
Theorem 10. For any fixed real t such that t ≥ W (G)/αw(G), we can approx-
imate the weighted independent set problem within O(t2δ1−1/(8t)

w ).

Proof. Let π be an ordering of vertices in G with which the value of maxv dπ
w(v) is

equal to δw. Let π′ be the reverse ordering of π. Assume that t ≥ W (G)/αw(G)
is fixed. Let K be the subgraph induced by the vertices whose right degrees
dπ′(v,G) are less than 2tδw. Thus K is a 2tδw-inductive graph. Then the follow-
ing inequalities hold:

Wδw ≥
∑

v∈V (G)

wvdπ
w(v) =

∑

v∈V (G)

wvdπ′(v)

≥
∑

v∈V (G)\V (K)

wvdπ′(v) ≥ 2tδw

∑

v∈V (G)\V (K)

wv.

Thus, we can prove this theorem just like [2]. ut

5.3 Algorithm

In this section we propose two algorithms: WGSA, whose approximation ratio is
a function of dw, and WGSI, whose approximation ratio is a function of δw.

WGSA is the following algorithm. We get an independent set by applying WG.
Independently, we apply the algorithm given by Theorem 9 to obtain another
independent set. We output the one with larger weight.

Theorem 11. WGSA can achieve approximation ratio O(dw log log dw/ log dw)
for the weighted independent set problem.

Proof. From Theorems 3 and 9, we can prove this theorem in the same manner
as [2]. ut

WGSI is the following algorithm. We get an independent set by applying WG.
Independently, we apply the algorithm given by Theorem 10 to obtain another
independent set. We output the one with larger weight.

Theorem 12. WGSI can achieve approximation ratio O(δw log log δw/ log δw)
for the weighted independent set problem.

Proof. From Theorems 4 and 10, we can prove this theorem in the same way as
[2]. ut



6 Conclusion

In this paper, we defined the weighted average degree dw and the weighted induc-
tiveness δw, and proved the lower bound of the weight of the independent set ob-
tained by the weighted greedy algorithm. We also proved that this algorithm has
approximation ratio δw. Combining with LP, we obtained the approximation ra-
tio min((dw+1)/2, (δw+1)/2). Also combining with SDP, we proved that approx-
imation ratio can attain O(dw log log dw/ log dw) and O(δw log log δw/ log δw).
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5. M.M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating indepen-
dent sets in sparse and bounded-degree graphs. Algorithmica, 18:145–163, 1997.

6. M.M. Halldórsson and J. Radhakrishnan. Improved approximations of independent
sets in bounded-degree graphs via subgraph removal. Nordic Journal of Computing,
1(4):475–482, 1994.

7. D.S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics, 6:243–254, 1983.

8. D.W. Matula and L.L. Beck. Smallest-last ordering and clustering and graph col-
oring algorithms. Journal of the Association for Computing Machinery, 30(2):417–
427, 1983.

9. S. Sakai, M. Togasaki, K. Yamazaki. A note on greedy algorithms for maximum
weighted independent set problem. Discrete Applied Mathematics, 126:313–322,
2003.

10. V.V. Vazirani. Approximation algorithms. Springer-Verlag, 2001.


