
Online Selection of Intervals and t-Intervals
✩

Unnar Th. Bachmanna, Magnús M. Halldórssona,1, Hadas Shachnaib

aICE-TCS, School of Computer Science, Reykjavik University, 101 Reykjavik, Iceland.
bDepartment of Computer Science, Technion, Haifa 32000, Israel.

Abstract

A t-interval is a union of at most t half-open intervals on the real line. An
interval is the special case where t = 1. In this paper we study the problems
of online selection of intervals and t-intervals. We derive lower bounds and
(almost) matching upper bounds on the competitive ratios of randomized
algorithms for selecting intervals, 2-intervals and t-intervals, for any t > 2.
While offline t-interval selection has been studied before, the online version
is considered here for the first time.

Keywords: interval selection, online algorithms, competitive analysis

1. Introduction

Interval scheduling is a resource allocation problem in which jobs, with
known start and completion times, are allocated processing time on a ma-
chine. Suppose you are running a resource online. Customers call and
request to use it from time to time, for up to t time periods, not necessarily
of equal length. These requests must either be accepted or declined. If a
request is accepted then it occupies the resource for these periods of time.
A request cannot be accepted if one or more of its periods intersect a period
of a previously accepted request. The goal is to accept as many requests as
possible.

This can be modeled as the following online t-interval selection problem
(t-Isp), where t is the maximum number of periods involved in any request.
Each request is represented by a t-interval, namely, a union of at most t

✩A preliminary version of this paper appeared in the Proceedings of the 12th Scandi-
navian Symposium and Workshops on Algorithm Theory (SWAT), Bergen, June 2010.

Email addresses: unnar07@ru.is (Unnar Th. Bachmann), mmh@ru.is (Magnús M.
Halldórsson), hadas@cs.technion.ac.il (Hadas Shachnai)

1Supported by the Icelandic Research Fund (grant 060034022).

Preprint submitted to Elsevier October 7, 2013

half-open intervals (or segments) on the real line. The t-intervals arrive
one by one (not necessarily in order of their left endpoints) and need to be
processed non-preemptively on a single machine. Two t-intervals, I and J ,
are disjoint if none of their segments intersect, and intersect if a segment of
one intersects a segment of the other.

Upon arrival of a t-interval, the scheduler needs to decide whether it is
accepted; if not, it is lost forever. The goal is to select a maximum cardinality
subset of non-intersecting t-intervals. The special case where t = 1 is known
as the online interval selection problem (Isp). An example of an instance
of online 2-Isp is given in Figure 1.

Our problems of online selection of intervals and t-intervals show up
in Video-on-Demand services, high speed networks and molecular biology,
among others.

a b
c d

e f g

a b
d c

e f g

Figure 1: A linear resource is requested by customers a, b, c, d, e, f and g in that order,
for two periods each. If b is accepted then each of the following requests must be declined.
An optimal selection consists of a, f and g. (For the first segments alone, a, c, f, g form an
optimal solution, while a, e, f, g form an optimal solution for the second segments alone.)

The performance of an online algorithm is measured in terms of its com-
petitive ratio. Formally, let OPT be an optimal offline algorithm for the
problem. The competitive ratio of A is defined as supσ

OPT (σ)
A(σ) , where σ

is an input sequence, and OPT (σ), A(σ) are the number of t-intervals se-
lected by OPT and A, respectively. For randomized algorithms, we re-
place A(σ) with the expectation E[A(σ)] and define the competitive ratio

as ρA = supσ
OPT (σ)
E[A(σ)] . An algorithm with competitive ratio of at most ρ is

called ρ-competitive. Let n be the number of intervals in the instance; also,
denote by ∆ the ratio between the longest and shortest segment lengths.

1.1. Related Work

Selecting intervals and t-intervals. We can view the offline t-Isp as the prob-
lem of finding a maximum independent set (IS) in a t-interval graph. While
the problem is polynomially solvable in the special case of interval graphs
(see, e.g., [1]), it already becomes APX-hard for t = 2 [2]. Bar-Yehuda et
al. [2] present a 2t-approximation algorithm for the offline weighted t-Isp.
Later works extended the study to the selection of t-intervals with demands,

2

where each t-interval is associated with a set of segments and a demand for
machine capacity [3], as well as the study of other optimization problems on
t-interval graphs (see, e.g., [4]).

There is a wide literature on the IS problem in various classes of graphs.
The online version was considered in [5], where an Ω(n)-lower bound on
the competitive ratios of randomized algorithms was given, even for interval
graphs (but not when the interval representation is given). A survey of other
works is given in [6].

Online interval selection. Lipton and Tomkins [7] considered an online in-
terval selection problem where the intervals have weights proportional to
their length, and the intervals arrive by time (i.e., in order of their left end-
points). They showed that a θ(log∆)-competitive factor is optimal, when ∆
is known, and introduced a technique that gives an O(log1+ǫ∆)-competitive
factor when ∆ is unknown.

Similar problems have been studied also in the area of call admission. Isp
can be viewed as call admission on a line, with the objective of maximizing
the number of accepted calls. Awerbuch et al. [8] give a ⌈logN⌉-competitive
algorithm that applies more generally for a tree; here, the set of N possible
endpoints is known in advance. While this setting differs from Isp, their
technique can easily be adapted to give an O(log∆)-competitive algorithm
for general Isp instances when ∆ is known a priori. Our algorithm for 2-Isp
(see Section 4.3) can be modified to yield (almost) the same ratio for Isp

when ∆ is unknown. They also gave a matching lower bound on the line,
which implies a matching lower bound for Isp.

Recently, Halldórsson et al. [9] studied the problem of online scheduling
with interval conflicts. Specifically, given a ground set of (indexed) items,
the input is a collection of conflicts, each containing all the items whose
index lies within some interval on the real line. Only one item can survive
from each conflict. The goal is to maximize the number (or, total weight)
of selected items. The paper presents centralized as well as distributed
algorithms for the problem, whose competitive ratios are O(log σ), where σ
is the size of the largest conflict, as well as matching lower bounds.

The preemptive version of online interval selection turns out to be signif-
icantly easier: Adler and Azar [10] devise a 16-competitive randomized algo-
rithm. In the weighted case, there is still a lower bound of Ω(log∆/ log log∆)
even for randomized algorithms [11], but constant competitiveness becomes
possible if the intervals arrive by time, i.e., in order of left endpoints [12, 13].
Another way of easing the task of the algorithm is to assume the instance
is monotone, i.e., the order of the right endpoints of the intervals coincide

3

with that of the left endpoints [14].

Interval scheduling. Numerous results are known about interval scheduling
under the objective of minimizing the number of machines, or alternatively,
online coloring interval graphs. In particular, a 3-competitive algorithm was
given by Kierstead and Trotter [15]. The t-Isp problem bears a resemblance
to the JISP problem see, e.g., [16, 17], where each job consists of several
intervals and the task is to complete as many jobs as possible. The difference
is that in JISP, it suffices to select only one of the possible segments of the
job.

1.2. Our Results

We derive the first lower and upper bounds on the competitive ratios of
online algorithms for t-Isp and new or improved bounds for Isp. Table 1
summarizes the results for various classes of instances of Isp, 2-Isp and t-
Isp. All of the results apply to randomized algorithms against an oblivious
adversary. In comparison, proving strong lower bounds for deterministic
algorithms (including a lower bound of ∆ + 1 for Isp) is straightforward.
The depth parameter (used in the last row) is defined in Section 3.1.

Isp 2-Isp t-Isp
l.b. u.b. l.b. u.b. l.b. u.b.

General inputs Ω(n) · · · · n†
Unknown ∆ · O(lg1+ε∆) · O(lg2+ε∆) · −
Known ∆ Ω(lg∆)‡ O(lg ∆)‡ · O(lg2∆) · −
Two lengths 4 4† 6 16 · −
Unit length 2 2 † 3 4 † Ω(t) 2t †
Bounded depth s 2− 1/s 3/2 (s = 2) − − − −

Table 1: Results for randomized online interval and t-interval selection. Entries marked
with · follow by inference from other table entries, while entries marked with † are trivially
known. Entries marked with ‡ are due to [8], and entries marked by − are open.

2. Technique: Stacking Construction

We use the following technique to derive lower bounds on randomized
algorithms for (t-)interval selection. The adversary takes advantage of the
fact that it knows the algorithm it is interacting with and that it can foresee

4

the probability with which the algorithm selects any given action, even if it
does not know the outcome. The adversary presents intervals on top of each
other, or “stacks” them, until some interval is chosen with sufficiently low
probability. The adversary uses that to force a desirably poor outcome for
the algorithm. This general idea is similar to a lower bounding technique of
Awerbuch et al. [8] for call control.

Let R be an Isp-algorithm, and let q, x be parameters, where 0 < x ≤ 1.
A (q, x)-stacking construction for R is a collection of q intervals positioned
on the real line with their left endpoints x/q apart, that are staggered
towards the left. Formally, consider the unit intervals I1, ..., Iq, where
Ii = [x(1 − i/q), 1 + x(1 − i/q)), for 1 ≤ i ≤ q. Let pi be the (uncondi-
tional) probability that R selects Ii. The adversary knows the values pi and
forms its construction accordingly. Let m be the smallest value such that
pm ≤ 1/q; it exists since

∑
i pi ≤ 1. The input sequence construction con-

sists of I = 〈I1, I2, . . . , Im, Jm〉, where Jm = [1+x(1−m/q), 2+x(1−m/q)).
This is illustrated in Figure 2.

I1
...

Im−1

Im Jm

X

I
X

q

1 x

Figure 2: A (q, x)-stacking construction (left). A symbolic picture for a (q, x)-stacking con-
struction with unit intervals I; the ′1′ in the top left corner indicates that the construction
consists of unit intervals (right).

Let ER[I] be the expected size of the solution found by R on an input
sequence I of intervals. Further, for any interval I ∈ I in the input, let
ER[I : I] be the expected contribution of I to the solution size ER[I], and
for a subsequence I ′ ⊆ I, let ER[I ′ : I] = ∑

I∈I′ ER[I : I]. Observe that if
I ′ and I ′′ partition I, then ER[I] = ER[I ′ : I] + ER[I ′′ : I].

Observation 2.1. A (q, x)-stacking construction I has the following prop-
erties.

1. All intervals in I \ {Im} overlap the segment [1, 1 + x).

2. All intervals in I are contained within the interval [0, 2 + x).

3. The intervals in I \ {Im} have a common intersection of length x/q,
given by the segment X = Im−1∩Jm = [1+x(1−m/q), 1+x(1− (m−
1)/q)).

5

4. ER[Im : I] = pm ≤ 1/q. Thus, ER[I] = ER[I \{Im} : I]+ER[Im : I] ≤
1 + 1/q.

5. OPT (I) = 2.

From Observation 2.1 (4) and (5) it follows that the performance ratio of R
is at least 2/(1+1/q). By taking q arbitrarily large, we obtain the following
performance bound.

Theorem 1. Any randomized online algorithm for Isp with unit intervals
has competitive ratio at least 2.

We may use the stacking construction shifted by a displacement f , by
adding f to the starting point of each interval. We may also use intervals
of non-unit length. In basic usage, the parameter x equals the length of the
intervals, but it can be reduced if required to fit within a given window.

We can apply the stacking construction with 2-intervals by repeating
the construction for both segments. We refer to this as a 2-interval (q, x)-
stacking construction.

3. Online Interval Selection

3.1. Unit Intervals and Depth

We give upper and lower bounds on the competitiveness of Isp with unit
intervals. We parameterize the problem in terms of the depth of the interval
system, which is the maximum number of intervals that overlap a common
point and equals the clique number of the corresponding interval graph.

Theorem 2. The competitive ratio of any randomized algorithm for Isp of
unit intervals is at least 2− 1/s, where s is the depth of the instance.

Proof. We modify the (s, 1)-stacking construction slightly. Let pi be the
unconditional probability that the given algorithm R selects interval Ii, for
i = 1, 2, . . . , s. We distinguish between two cases.

(i) If p1 ≤ 1/(2 − 1/s) = s/(2s − 1), then we conclude the input with
the unit sequence 〈I1〉. The performance ratio is then at least 1/p1 ≥
2− 1/s.

(ii) Otherwise, when p1 > s/(2s − 1), we stop the sequence at Im, where
m ≤ s is the smallest number such that pm ≤ 1/(2s − 1). This num-
ber exists since otherwise

∑s
i=1 pi > p1 + (s − 1)/(2s − 1) > 1, which

6

contradicts the fact that the s intervals overlap. As before, the se-
quence 〈I1, . . . , Im〉 is followed by the interval Jm, intersecting only
the first m − 1 intervals. The algorithm obtains expected value at
most 1+pm ≤ 1+1/(2s−1) = 2s/(2s−1), while the optimal solution
value is 2, for a ratio of at least 2/(2s/(2s − 1)) = 2− 1/s.

The above procedure can be repeated arbitrarily often, ensuring that the
lower bound holds also in the asymptotic case.

We now describe a randomized algorithm RoG (Random or Greedy) that
achieves the ratio in Theorem 2 for s = 2. The algorithm handles each arriv-
ing interval I with the following rule: If I does not overlap any previously
presented interval, select I with probability 2/3, and otherwise select it
greedily.

Theorem 3. Algorithm RoG is 3/2-competitive for unit intervals with depth
2.

Proof. Consider any connected component separately. The depth restric-
tion means that each interval can intersect at most two other intervals: one
from the left and one from the right. The instance is therefore a chain of
unit intervals. We divide the intervals into three types, based on the num-
ber of previous intervals the given interval intersects. A type-i interval, for
i = 0, 1, 2, intersects i previously presented intervals. Two type-2 intervals
cannot intersect, as otherwise the one that appears earlier will have degree
3, leading to depth at least 3. Therefore, the instance consists of chains
of type-0 and type-1 intervals attached together by type-2 intervals. Each
chain is started by a type-0 interval, followed by type-1 intervals. Let ni

denote the number of intervals of type i, we then have that

n0 ≥ n2 + 1 . (1)

Consider now the unconditional probability that intervals of each type
are selected, i.e. the probability independent of other selections. The prob-
ability of type-0 intervals being selected is 2/3. The probability of the se-
lection of type-1 intervals alternates between 1/3 and 2/3. The expected
number of intervals selected by the algorithm is then, using (1), bounded
below by

2

3
n0 +

1

3
n1 ≥

1

3
(n0 + n1 + n2 + 1) =

n+ 1

3
.

On the other hand, the number of intervals in an optimal solution is the
independence number of the path on n vertices, or

⌈
n
2

⌉
≤ n+1

2 . Hence, the
competitive ratio is at most 3/2.

7

3.2. ISP with intervals of two lengths

Consider now Isp instances where the intervals can be of two different
lengths, 1 and d. It is easy to argue a 4-competitive algorithm by the
Classify-and-Select approach (see, e.g., in [18]): Flip a coin, choosing either
the unit intervals or the length-d intervals, and then greedily add intervals
of that length only. We find that it is not possible to significantly improve
on that very simplistic approach.

Theorem 4. Any randomized online algorithm for Isp with intervals of two
lengths, 1 and d, has performance ratio at least 4−O(1/

√
d).

Proof. Consider any randomized online Isp algorithm R. Let q = ⌊
√
d⌋.

I

X

q

d d

= I

}
= Î

= J ,

1 1

· · ·
1

Figure 3: Lower bound for Isp with segments of lengths 1 and d ≫ 1.

We start with a (q, d)-stacking construction I for R, using intervals of
length d. Recall that, by Observation 2.1 (4), the expected gain of R on
interval Im is ER[Im : I] ≤ 1/q. Let p be the probability that R selects one
of the intervals in I ′ = I \{Im} = {Jm}∪{I1, I2, . . . , Im−1}. If p < 1/2 then
we stop the construction. In that case, the expected solution size found by
R is ER[I] = ER[Im : I] + ER[I ′ : I] ≤ p+ 1/q, while the optimal solution is
of size 2 (given by Im and Jm), for a ratio of

2

p+ 1/q
≥ 2

1/2 + 1/q
=

4

1 + 2/q
= 4−O(1/q).

Assume then that p ≥ 1/2. Let X be the common intersection of inter-
vals in I ′, and let f denote the starting point of X. By Observation 2.1 (3),
the length of X is d/q ≥

√
d. Let s = q/3. We now form a sequence of s

disjoint (q, 1)-stacking constructions of unit intervals which, by Observation

8

2.1 (2), can all be contained within the span of X. Let Î denote the union
of these s gadgets, and let J = I ∪ Î. This completes the construction.

Observe that OPT (J) ≥ 2s, given by the non-overlapping pairs of the
gadgets of Î. All intervals in Î overlap X. The expected gain of the algo-
rithm on J is

ER[J] ≤ ER[I] + (1− p)ER[Î] ≤ p+
1

q
+ (1− p)s

(
1 +

1

q

)

≤ 1 +
1

q
+

s

2

(
1 +

1

q

)
≤ s

2
+ 2 .

The last inequality follows from the fact that p ≥ 1/2. Hence, the perfor-
mance ratio of R on J is given by

OPT (J)

ER[J]
≥ 2s

s/2 + 2
= 4−O(1/

√
d) ,

since s = θ(
√
d).

3.3. ISP with Parameter n

Isp is easily seen to be difficult for a deterministic algorithm on instances
without constraints on the length of the intervals. The adversary keeps
introducing disjoint intervals until the algorithm selects one of them, I; the
remaining intervals presented will then be contained in I. This leaves the
algorithm with a single interval, while the optimal solution contains the rest,
for a ratio of n − 1. It is less obvious that a linear lower bound holds also
for randomized algorithms against oblivious adversary.

Theorem 5. Any randomized online algorithm for Isp has competitive ra-
tio Ω(n).

Proof. We use Yao’s principle [19]; namely, we show a lower bound for
any deterministic algorithm on a random input sequence. Given an integer
n > 1, let r1, r2, . . . , rn be a sequence of uniformly random bits. Let bi =∑i−1

j=1 rj ·2n−j . Denote by I1, ..., In a sequence of intervals, where Ii = [bi, bi+

2n−i). Observe that the position of Ii depends only on the previous random
bits r1, . . . , ri−1, but not on ri. The collection A = {Ii : ri = 1} ∪ {In}
forms an independent set, informally referred to as the “good” intervals.
The set B = In \ A = {Ii : ri = 0} forms a clique. Moreover, any interval
Ii ∈ B contains all the intervals Ii+1, . . . , In. Informally, these are the “bad”
intervals.

9

Consider an algorithm R and the sequence of intervals chosen by R. The
event that a chosen interval is good is a Bernoulli trial, and these events are
independent. Thus, the number of intervals chosen until a bad one is chosen
is a geometric random variable with a mean of 2. Even accounting for the
last interval, which is known to be good, the expected number of accepted
intervals E[R(σ)] is at most 3.

On the other hand, the expected number of good intervals is (n−1)/2+1,
and so the expected size of the optimal solution is n/2. Applying Yao’s
principle, the competitive ratio of R on In is at least n/6.

Observe that the intervals constructed have special properties. For one,
they form a laminar family of intervals, i.e., they form a containment inter-
val graph: whenever two intervals overlap one contains the other. Also, the
interval graph is a split graph, as the vertex set can be partitioned into an
independent set A and a clique B.

We note that, in Theorem 5, the intervals are presented in order of
increasing left endpoints. Thus, the bound holds also for the scheduling-
by-time model. The adversary in Theorem 5 has also the property of being
transparent [20] in the sense that as soon as the algorithm has made its
decision on an interval, the adversary reveals its own choice.

Corollary 3.1. There is an Ω(n)-lower bound on the competitive ratio of
any randomized online algorithm for Isp, even on laminar interval systems
that induce a split graph. This holds also in the scheduling-by-time model.

It is instructive to contrast our result with the Ω(log∆)-lower bound of
[8]. Their construction works on a discrete line with N known points. If our
construction was placed on this discrete line, it would have N = log n, which
does not improve on the Ω(logN)-lower bound obtained by [8]. However,
their construction potentially involves many more intervals, and thus does
not give an Ω(n)-lower bound. In particular, if the algorithm picked intervals
with probability 1/ log n, their construction yields only an Ω(log n)-lower
bound.

4. Online 2-Interval Selection

4.1. Unit Segments

In this section we derive a lower bound on the competitive ratio of ran-
domized online algorithms for 2-Isp with unit intervals. Our proof relies on
a unit 2-interval stacking construction for a randomized online 2-Isp algo-
rithm R, which consists of two steps:

10

1. Layout step: Let h be a parameter, and h′ = 3h/2. Form a 2-interval
(h′, 1)-stacking construction Ig = {I1, . . . , Im−1, Im, Jm} for R (see the
top half of Figure 4).

2. Extension step: Let X1 be the common intersection of the first seg-
ments of the 2-intervals in I ′

g = Ig \ {Im}, and X2 be the common
intersection of the second segments. Let fi denote the starting point
of Xi, i = 1, 2.

(a) Form an (h, x)-stacking construction, Ig1, of 2-intervals shifted by
f1 − x, where x = |X1| = 1/h′. The first segments are positioned
to overlap X1; the second segments are immaterial as long as
they do not intersect any previous intervals. This is shown in the
bottom left of Figure 4.

(b) Form an identical construction, Ig2, shifted by f2 − x; again, the
second segments do not factor in.

We now make several observations about the combined construction J =
Ig ∪ Ig1 ∪ Ig2.

Observation 4.1. The following holds for the construction J .

1. All intervals in Ig1 overlap X1, and all intervals in Ig2 overlap X2.

2. OPT (J) = 4, given by the last two 2-intervals in both Ig1 and Ig2.
3. Let p be the probability that algorithm R selects some interval in I ′

g.
Then, ER[Ig1 : I] ≤ (1− p)(1+ 1/h), by Observation 2.1 (3) and item
1 of this observation.

4. The total space occupied by J , excluding the second segments of 2-
intervals in Ig1 and Ig2, is of length at most 12, or at most 3 for each
of the four disjoint single-segment structures.

Theorem 6. Any randomized online algorithm for 2-Isp of unit intervals
has competitive ratio at least 3− o(1).

Proof. Consider any randomized online 2-Isp algorithm R. Let h be an
even number and h′ = 3h/2. We start with the Layout step to form a 2-
interval (h′, 1)-stacking construction Ig. Recall that the expected gain of R
on interval Im is ER[Im : Ig] ≤ 1/h′. Let p be the probability that R selects
some interval in I ′

g = Ig \ {Im}. If p < 2/3 then we stop the construction.
The expected solution size found by R is then

ER[Ig] ≤ p+ 1/h′ , (2)

11

Ig

X1

h′

1 x = 1

Ig1
h

1 x = 1/h′

Ig

X2

h′

1 x = 1

Ig2
h

1 x = 1/h′
= J

Figure 4: Unit 2-interval stacking construction

while the optimal solution is of size 2, for a ratio of

2

p+ 1/h′
≥ 2

2/3 + 2/(3h)
=

3

1 + 1/h
= 3(1 + o(1)).

Assume therefore that p ≥ 2/3. Let X1 be the common intersection of
the first segments of the 2-intervals in I ′

g , and X2 be the common intersec-
tion of the second segments. Let fi denote the starting point of Xi, i = 1, 2.
By Observation 2.1 (3), the length of each Xi is 1/h

′.
We now apply the Extension step to complete the unit 2-interval stacking

construction. Using Observation 4.1 (3) and Eqn. (2), we have that

ER[J] = ER[Ig : J] + ER[Ig1 : J] + ER[Ig2 : J]

≤ p+ 1/h′ + 2(1 − p)(1 + 1/h)

= 2− p+

(
8

3
− 2p

)
1

h
.

Since p ≥ 2
3 , ER[J] ≤ 4

3(1 +
1
h), thus the performance ratio of R on J is at

least
OPT (J)

ER[J]
≥ 4

4
3(1 +

1
h)

=
3

1 + 1
h

= 3− o(1) , (3)

taking the value of h to be sufficiently large and using Observation 4.1 (2).

4.2. Segments of Two Lengths

We treat in this section instances of 2-Isp where the 2-interval segments
have lengths either 1 or d, for some d > 1. We give a 16-competitive algo-
rithm and an asymptotic lower bound of 6 for the competitive ratio of any
online algorithm.

12

Consider the following algorithm Av, which either selects a given 2-
interval, rejects it, or selects it virtually.2 A virtually selected interval does
not occupy the resource, and will not be a part of the online solution, but
it blocks other 2-intervals from being selected. The length of each segment
is either short (1) or long (d). A 2-interval is short-short (long-long) if both
segments are short (long), respectively, and short-long if one is short and
the other long. In processing a 2-interval I that overlaps with no selected
interval, Av applies the following rules,

1. I is short-short: Select I greedily (with probability 1).

2. A long segment of I intersects a virtually selected 2-interval:
Reject I.

3. Otherwise: Select I greedily with probability 1/2 and select it virtu-
ally with probability 1/2.

Theorem 7. Algorithm Av is 16-competitive for online 2-Isp with segments
of length 1 and d.

Proof. Consider a particular input instance I and a fixed optimal solution
SOPT for I. For each J ∈ SOPT, let B(J) consist of the intervals in I with
an endpoint in J , and informally refer to it as J ’s bucket. We now fix a
particular interval J ∈ SOPT. We shall show that the expected gain of the
algorithm on B(J) is EAv [B(J)] ≥ 1/4; this will imply the theorem, since
each interval I ∈ I is contained in at most four buckets.

We shall say that an interval is considered in a particular execution of
the algorithm, if it is not rejected (because it intersects an interval already
selected or virtually selected), and thus either selected or virtually selected.
Let S(J) = {I ∈ I : I ∩ J 6= ∅} denote the set of intervals intersecting J ;
besides B(J), it includes the intervals that properly contain a segment of J .
For I ′ ∈ S(J), let σI′ = σI′,J denote the event that I ′ was the first interval
in S(J) that was considered. This is well defined, because J itself will
be considered, unless it intersects an already (possibly virtually) selected
interval that was considered before. Note that {σI′}I′∈S(J) partitions the
space of all possibilities. Thus,

EAv [B(J)] =
∑

I′∈S(J)

EAv [B(J)|σI′] · Pr[σI′] .

2This term has been used before, e.g., in [7].

13

We shall show that the expected gain of the algorithm on B(J) is at least 1/4,
assuming that I ′ was considered first in S(J), or formally EAv [B(J)|σI′] ≥
1/4, for any I ′ ∈ S(J). This implies the theorem.

Let I ′ be a particular interval in S(J), and assume σI′ holds. We consider
some cases depending on the nature of the intersection of I ′ and J . If I ′ is
in B(J), then I ′ is selected with probability at least 1/2, which implies the
claim. So, we assume from now that I ′ ∈ S(J) \ B(J). That means that
I ′ contains a long segment that properly includes a short segment of J . By
the definition of the algorithm, I ′ is virtually selected with probability 1/2.
To establish the claim, it suffices then to show that (assuming that I ′ was
virtually selected, contained in S(J) \B(J) and the first considered interval
in S(J)), the expected gain on B(J) is at least 1/2.

We now observe that another interval I ′′ ∈ S(J) \ {I ′} gets considered.
Namely, if J itself is not considered, it is because it either intersects an
already selected interval, or it intersects a virtually selected interval with
a long segment. Neither of these cases apply to I ′, so there must be yet
another interval considered. Let I ′′ be the first interval in S(J) considered
after I ′. I ′′ cannot have a long segment intersecting I ′, as otherwise rule
2 of the algorithm would apply. If I ′′ is in B(J), then I ′′ is selected with
probability at least 1/2, establishing the claim. So, assume from now that
I ′′ is in S(J)\B(J). Then, both I ′ and I ′′ properly contain a different short
segment of J . Thus, J is short-short.

With probability 1/2, I ′′ is virtually selected. We now claim that some
interval in B(J) will be selected with probability 1, which establishes the
theorem. Namely, J will be greedily selected, unless it intersects an already
selected interval Î. That interval, Î, cannot properly include a segment of
J , because it would then contain a long segment overlapping either I ′ or
I ′′, both of which were virtually selected, and this would conflict with rule
2 of the algorithm. Hence, J is selected unless some other Î ∈ B(J) gets
selected. This completes the proof of the theorem.

We now give a lower bound of 6 for this problem using (q, d)-stacking
constructions of length d 2-intervals, as well as the unit 2-interval stacking
construction of Section 4.1.

Theorem 8. Any randomized online algorithm for 2-Isp with segments of
two lengths 1 and d has performance ratio at least 6−O(d−1/4).

Proof. We construct a combination of stacking constructions, built pro-
gressively depending on the choices made by the algorithm.

14

Consider any randomized online 2-Isp algorithm R. Let q be the largest

even number such that q ≤
√
⌊
√
d⌋. Furthermore, let q′ = 3q.

We initially form a (q′, d)-stacking construction I for R with length-d
2-intervals, as illustrated in Figure 5. Recall that I = {I1, I2, . . . , Im, Jm},
where m is the smallest number (m ≤ q′) such that the probability that R
chooses Im satisfies pm ≤ 1/q′; thus, the expected gain of the algorithm on
that interval is ER[Im : I] ≤ 1/q′. Recall that the intervals Ĩ = I \ {Im} =
{I1, I2, . . . , Im−1, Jm} have a common intersection, and let X1 (X2) denote
their common intersection of the left (right) segments, respectively. Let p be
the probability that R selects some 2-interval in Ĩ. We distinguish between
several cases.

(i) Suppose that p < 1/3. Then, the construction is completed with I.
In this case, the expected solution size found by R is ER[I] ≤ p+1/q′,
while the optimal solution is of size 2. The competitive ratio is then

2

p+ 1/q′
≥ 2

1/3 + 1/(3q)
=

6

1 + 1/q
≥ 6− 6

q
= 6−O(d−1/4) .

(ii) Otherwise, p ≥ 1/3. In this case, we continue the construction (as in
the proof of Theorem 6) to form K = I ∪ I1 ∪ I2, where I1 and I2
are separate (q, d/q′)-stacking constructions with segments of length
d for R. They are positioned so that the right endpoint of the first
left segment of I1 (I2) is the right endpoint of X1 (X2), respectively,
while the right segments are located somewhere separate away from I
or the rest of the construction. See Figure 5 for illustration.

I X1

q′
d x = d

I X2

q′
d x = d

I1q

d x = d/q′

Y1, |Y1| ≥ d/(q · q′)

I2q

d x = d/q′

= I

Case i

= K
Case ii/a

= I3
}

= L,
Case ii/b

· · ·

Figure 5: The cases in the proof of Theorem 8. The small boxes represent the gadgets
composing I3.

15

Notice that all intervals in I1 = {I ′1, ..., I ′m′ , J ′
m′} intersect X1, and all

intervals in I2 = {I ′′1 , ..., I ′′m′′ , J ′′
m′′} intersect X2, since the extent with

which they are shifted is less than d/q′.
Let p′ (p′′) be the probability that R selects some 2-interval in I1 \
{I ′m′} = {I ′1, . . . , I ′m′−1, J

′
m′} (I2 \{I ′′m′′}), conditioned on R being able

to (i.e., not having chosen any 2-interval in I \ {Im}), respectively.
By symmetry, assume w.l.o.g. that p′ ≥ p′′. We further distinguish
between two sub-cases.

(a) If p+ 2p′(1− p) < 2/3, then the construction is terminated with
K. Observe that

ER[K] = ER[I : K] + ER[I1 : K] + ER[I2 : K]

= ER[I] + (1− p)ER[I1] + (1− p)ER[I2]

≤ p+
1

q′
+ 2(1 − p)(p′ +

1

q
)

= p+ 2p′(1 − p) +O(1/q) ,

while OPT (K) = 4. The performance ratio is then

OPT (K)

ER[K]
=

4

2/3 +O(1/q)
= 6−O(1/q) .

(b) Otherwise, p+ 2p′(1− p) ≥ 2/3. We then continue the construc-
tion on top of K. Let Y1 be the common intersection of X1 and
the intervals in I1 \ {I ′m′}. The length of Y1 is at least 1

3 · d/q2,
since

|Y1| = |I ′m′−1∩J ′
m′ | = |[d+ d

q′
(1−m′

q
), d+

d

q′
(1−m′ − 1

q
))| = d

3q2
.

Within the segment Y1, ⌊d/(36q2)⌋ disjoint unit 2-interval stack-
ing constructions (see Figure 4) are formed, taking h = q. Each
such gadget takes space at most 12 by Observation 4.1 (4), and
thus they fit within Y1.
Let I3 form the union of the gadgets, and let L = K ∪ I3. The
probability that the algorithm is in position to select anything
from I3 is (1− p)(1− p′). Thus, from (3), its expected gain from
I3 is given by

ER[I3] ≤ (1− p)(1− p′)
OPT (I3)(1 + 1/q)

3
. (4)

16

Note that the lower bounds on p and 2p′(1− p) imply that

(1−p)(1−p′) = 1−p/2−(p+2p′(1−p))/2 ≤ 1−1/6−1/3 = 1/2 .
(5)

Clearly, ER[L] = O(1) + ER[I3], and OPT (L) ≥ OPT (I3); thus,
using (4) and (5), we have that

OPT (L)
ER[L]

≥ OPT (I3)
ER[I3] +O(1)

≥ OPT (I3)
(1− p)(1− p′)OPT (I3)(1 + 1/q)

3
+O(1)

≥ 3(1 +O(1/q))

(1− p)(1 − p′)

≥ 6−O(1/q) .

4.3. Segments of Arbitrary Lengths

We now treat instances with intervals of arbitrary lengths. We do so by
partitioning the intervals into groups, where each group consist of intervals
with segments of roughly equal length.

We first apply algorithm Av to 2-Isp instances where the length of the
short segment is in [1, 2) and the long segment in [d, 2d). Av makes selections
as before, using the new definitions of ‘short’ and ‘long’ segments.

Theorem 9. Algorithm Av is 24-competitive for 2-Isp instances with seg-
ments of two types: short with lengths in [1, 2), and long with lengths in
[d, 2d), where d ≥ 1.

Proof. Each interval I now intersects at most six intervals in SOPT that it
does not dominate. For instance, a long segment can now contain one long
segment from SOPT and properly overlap two other segments. B(J) can
contain intervals properly containing J that are of the same length class,
but at most one per segment. So, an interval can be contained in at most 6
buckets. The rest of the proof of Theorem 7 is unchanged.

Consider next more general instances of 2-Isp, in which the ratio between
the longest and shortest segment is ∆, for some ∆ > 1. Without loss

17

of generality, we may assume that the short segment is of length 1. We
partition the set of first segments into K = ⌈log ∆⌉ groups, such that the
segments in group i have lengths in [2i−1, 2i), 1 ≤ i ≤ K. Partition the
second segments similarly into K groups. A 2-interval whose first segment
is of length in [2i−1, 2i), and whose second segment is of length [2j−1, 2j),
1 ≤ i, j ≤ K, is in group (i, j).

Given a general instance of 2-Isp, suppose that ∆ is known a priori.
Consider algorithm Avg which applies Av on groups of 2-intervals. The
instance is partitioned into K2 = ⌈log ∆⌉2 groups, depending on the lengths
of the first and second segments of each 2-interval. Avg selects uniformly at
random a group (i, j), 1 ≤ i, j ≤ K and considers selecting only 2-intervals
in this group. All other 2-intervals are declined. The next result follows
from Theorem 9.

Theorem 10. Avg is O(log2 ∆)-competitive for 2-Isp with intervals of var-
ious lengths, when ∆ is known in advance.

For the case when ∆ is a priori unknown, we apply a technique of Lipton
and Tomkins [7] to form algorithm Ãvg, which produces groups as follows.
Each group is identified with the first interval assigned to the group. A
presented 2-interval, I, belongs to a group identified by an interval I ′ if the
ratio between the lengths of the first segments, as well as the ratio between
the lengths of the second segments, is between 1 and 2. If I can belong to
more than one group, it is assigned to one arbitrarily. If it does not belong
to any group, a new group is created for I.

Each group can then be indexed by i ∈ {1, . . . , ⌈log ∆⌉2}. The algo-
rithm chooses randomly at most one group from the countably infinite set
of groups, and selects only 2-intervals from that group, using algorithm Av.
For i ≥ 1 and ǫ > 0, define

ci =
1

ζ(1 + ǫ/2) · i1+ǫ/2
and pi =

ci

Πi−1
j=1(1− pj)

, (6)

where ζ(x) =
∑

∞

r=1 r
−x is the Riemann zeta function.3 Recall that ζ(x) <

∞, for x > 1.
If a given 2-interval belongs to a new group i, and none of the groups

1, 2, . . . , i − 1 has been selected, then group i is chosen with probability pi
and rejected with probability 1 − pi. If a given 2-interval belongs to an

3Lipton and Tomkins made similar use of the zeta-function for online interval schedul-
ing [7].

18

already selected group i, it is selected using algorithm Av; if the given 2-
interval belongs to an already rejected group then it is rejected. Note that
by the definition of pi, as given in (6), it follows that ci is the unconditional
probability that Ãvg chooses the i-th group.

In analyzing Ãvg we first show that the values pi form valid probabilities,
and that the ci values give a probability distribution.

Lemma 11.

∞∑

i=1

ci = 1. Also, pi ≤ 1, for all i ≥ 1.

Proof. Observe that
∑

∞

i=1 ci =
1

ζ(1+ǫ/2)

∑
∞

i=1
1

i1+ǫ/2 = 1, proving the first

half of the lemma. It follows that ci ≤ 1 − ∑i−1
j=1 cj . To prove the second

half of the lemma, it suffices to show that

pi =
ci

1−∑i−1
j=1 cj

, (7)

for each i ≥ 1. We prove (7) by induction on i. The base case holds since
p1 = c1. Suppose now that (7) holds for i = k − 1. Then, using (6) we have
that

pk =
ck
ck−1

· pk−1

1− pk−1
.

Plugging in the value of pk−1 from (7) we get the equation in (7) for i = k.

The value ǫ is a parameter of the algorithm. The smaller it gets, the
larger the coefficient hidden in the big-oh notation.

Theorem 12. Ãvg is O(log2+ǫ∆)-competitive for 2-Isp with intervals of
various lengths, when ∆ is unknown in advance.

Proof. Let Si denote the set of 2-intervals in group i, 1 ≤ i ≤ log2 ∆. The
probability that Ãvg chooses any given group Si is at least clog2 ∆. After

choosing the group, Ãvg uses Av to select the 2-intervals in the group. For a
given group, Si, we have:

E[Ãvg(Si)] ≥ clog2 ∆ · E[Av(Si)] ≥
1

ζ(1 + ǫ/2)(log ∆)2+ǫ
· 1

24
· E[OPT (Si)] ,

applying Theorem 9. Thus, by linearity of expectation, Ãvg is O(log2+ǫ∆)-
competitive. Observe that ζ(1+ ǫ/2) ≤ 2

ǫ , and thus the competitiveness can
be bounded by O(ǫ−1 log2+ǫ∆), as a function of both ∆ and ǫ.

19

5. Online t-Interval Selection

In this section we show that any online algorithm for t-Isp has competi-
tive ratio Ω(t). Our approach, which uses reduction to a known problem, is
standard in the offline setting, but rather unusual in the online case. We re-
duce from the online version of the independent set (IS) problem in graphs:
Given the vertices of a graph one by one, along with edges to previous ver-
tices, determine for each vertex whether to add it to a set of independent
vertices.

Theorem 13. Any randomized online algorithm for t-Isp with unit seg-
ments has competitive ratio Ω(t).

Proof. Let n be a positive integer. We show that any graph on n vertices,
presented vertex by vertex, can be converted on-the-fly to an n-interval rep-
resentation with unit seqments. Then, an f(t)-competitive online algorithm
for t-Isp applied to the n-interval representation yields an f(n)-competitive
algorithm for the independent set problem. As shown in [5], there is no
cn-competitive algorithm for the online IS problem, for any fixed 0 < c < 1.
The theorem then follows.

LetG = (V,E) be a graph on n vertices with vertex sequence 〈v1, v2, . . . , vn〉.
Given a vertex vi and the induced subgraph G[〈v1, v2, . . . , vi〉], form the n-
interval Ii by

Ii =

n⋃

j=1

Xij , where Xij =

{
[nj + i, nj + i+ 1) if j < i and (i, j) ∈ E
[ni+ j, ni+ j + 1) otherwise.

It is not hard to verify that Ii ∩ Ij 6= ∅ iff (i, j) ∈ E. Hence, solutions to the
t-Isp instance are in one-one correspondence with independent sets in G.

A greedy selection of t-intervals yields a 2t-competitive algorithm for
unit t-Isp, implying that the bound above is tight.

6. Conclusions

We have given tight bounds on the competitive ratios of randomized
algorithms for online interval selection with different assumptions on interval
lengths. An obvious open question is to close the gaps for 2-intervals. The
case of unit 2-intervals is of particular interest. Finally, our algorithms and
the stacking technique apply for intervals with the same (unit) weights. It
is natural to consider Isp and its variants with arbitrary interval weights.

Acknowledgment. We thank the anonymous referees for many helpful
comments on the paper.

20

References

[1] J. Kleinberg, E. Tardos, Algorithm Design, Addison Wesley, 2005.

[2] R. Bar-Yehuda, M. M. Halldórsson, J. Naor, H. Shachnai, I. Shapira,
Scheduling split intervals, SIAM J. Comput. 36 (1) (2006) 1–15.

[3] R. Bar-Yehuda, D. Rawitz, Using fractional primal-dual to schedule
split intervals with demands, Discrete Optimization 3 (4) (2006) 275 –
287. doi:DOI: 10.1016/j.disopt.2006.05.010.
URL http://www.sciencedirect.com/science/article/

B7GWV-4KH47VX-1/2/7053c8a82ad1a60f2b2ccfafe871a45c

[4] A. Butman, D. Hermelin, M. Lewenstein, D. Rawitz, Optimization
problems in multiple-interval graphs, ACM Transactions on Algorithms
6 (2).

[5] M. M. Halldórsson, K. Iwama, S. Miyazaki, S. Taketomi, Online
independent sets, Theoretical Computer Science 289 (2) (2002) 953 –
962. doi:DOI: 10.1016/S0304-3975(01)00411-X.
URL http://www.sciencedirect.com/science/article/

B6V1G-44VG6N2-4/2/4be84498c735c24c704b8f7ea7b771bb

[6] U. T. Bachmann, Online t-interval scheduling, M.Sc. thesis, School of
Computer Science, Reykjavik University (Dec. 2009).

[7] R. J. Lipton, A. Tomkins, Online interval scheduling, in: Proceedings
of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1994, pp. 302–311.

[8] B. Awerbuch, Y. Bartal, A. Fiat, A. Rosen, Competitive non-
preemptive call control, in: Proceedings of the Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 1994, pp. 312–320.

[9] M. M. Halldórsson, B. Patt-Shamir, D. Rawitz, Online scheduling with
interval conflicts, in: Proc. of 28th International Symposium on Theo-
retical Aspects of Computer Science, STACS 2011, LIPIcs # 9, 2011,
pp. 472–483.

[10] R. Adler, Y. Azar, Beating the logarithmic lower bound: Randomized
preemptive disjoint paths and call control algorithms, J. Scheduling
6 (2) (2003) 113–129.

21

[11] R. Canetti, S. Irani, Bounding the power of preemption in randomized
scheduling, SIAM J. Comput. 27 (4) (1998) 993–1015.

[12] G. J. Woeginger, On-line scheduling of jobs with fixed start and end
times, Theor. Comput. Sci. 130 (1) (1994) 5–16.

[13] L. Epstein, A. Levin, Improved randomized results for the interval se-
lection problem, Theor. Comput. Sci. 411 (34-36) (2010) 3129–3135.

[14] H. Miyazawa, T. Erlebach, An improved randomized on-line algorithm
for a weighted interval selection problem, J. of Scheduling 7 (4) (2004)
293–311. doi:http://dx.doi.org/10.1023/B:JOSH.0000031423.39762.d3.

[15] H. A. Kierstead, W. T. Trotter, An extremal problem in recursive com-
binatorics, in: Congr. Numer. 33, 1981, pp. 143–153.

[16] F. Spieksma, On the approximability of an interval scheduling problem,
J. Sched. 2 (1999) 215–227.

[17] T. Erlebach, F. C. R. Spieksma, Interval selection: Applications, algo-
rithms, and lower bounds, J. Algorithms 46 (1) (2003) 27–53.

[18] A. Borodin, R. El-Yaniv, Online computation and competitive analysis,
Cambridge University Press, 1998.

[19] A. C.-C. Yao, Probabilistic computations: Toward a unified
measure of complexity, in: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society, Washington, DC, USA, 1977, pp. 222–227.
doi:http://dx.doi.org/10.1109/SFCS.1977.24.

[20] M. M. Halldórsson, M. Szegedy, Lower bounds for on-line graph color-
ing, Theoretical Comput. Sci. 130 (1994) 163–174.

22

