
Under consideration for publication in Math. Struct. in Comp. Science

Final semantics for decorated traces

F. Bonchi,1 M. Bonsangue, 2,3 G. Caltais, 3,4 J. Rutten, 3,5 A. Silva, 3,5,6 †

1 ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)
2 LIACS - Leiden University, The Netherlands
3 Centrum voor Wiskunde en Informatica, The Netherlands
4 School of Computer Science - Reykjavik University, Iceland
5 Radboud University Nijmegen, The Netherlands
6 HASLab / INESC TEC, Universidade do Minho, Braga, Portugal

Received 30 October 2012

In concurrency theory, various semantic equivalences on labelled transition systems are

based on traces enriched or decorated with some additional observations, generally

referred to as decorated traces. Using the generalized powerset construction, recently

introduced by a subset of the authors (Silva, Bonchi, Bonsangue & Rutten 2010), we

give a coalgebraic presentation of decorated trace semantics. This yields a uniform

notion of minimal representatives for the various decorated trace equivalences, in terms

of final Moore automata. As a consequence, proofs of decorated trace equivalence can be

given by coinduction, using different types of (Moore-) bisimulation (up-to), which is

helpful for automation. The coalgebraic framework introduced in this paper handles

ready, failure, (complete) trace, possible-futures, ready trace and failure trace semantics.

1. Introduction

The study of systems equivalence has been an interesting research topic for many years

now. Several equivalences have been proposed throughout the years, each of which suit-

able for use in different contexts of application. Many of the equivalences that are im-

portant in the theory of concurrency were described in the well-known paper by van

Glabbeek (van Glabbeek 2001).

Proof methods for the different equivalences are an important part of this research

enterprise. In this paper, we propose coinduction as a general proof method for what van

Glabbeek calls decorated trace semantics, which includes ready, failure, (complete) trace,

possible-futures, ready trace and failure trace semantics.

Coinduction is a general proof principle which has been uniformly defined in the theory

† The work of Georgiana Caltais has been partially supported by a CWI Internship and by the project

‘Meta-theory of Algebraic Process Theories’ (nr. 100014021) of the Icelandic Research Fund. The
work of Alexandra Silva is partially funded by the ERDF through the Programme COMPETE and
by the Portuguese Government through FCT - Foundation for Science and Technology, project ref.
PTDC/EIA-CCO/122240/2010 and SFRH/BPD/71956/2010. We thank Luca Aceto and Anna Ingólfsdóttir
for comments and references to the literature.

Bonchi, Bonsangue, Caltais, Rutten, Silva 2

bisimilarity

possible-futures

ready trace

failure trace ready

failure

complete trace

trace

Fig. 1. Lattice of semantic equivalences.

of coalgebras for different types of state-based systems and infinite data types. Given a

functor F : Set → Set, an F-coalgebra is a pair (X, f) consisting of a set of states

X and a function f : X → F(X) defining the dynamics of the system. The functor F

determines the type of the transition system or data type under study. For a large class

of functors F, there exists a final coalgebra into which every F-coalgebra is mapped by

a unique homomorphism. Intuitively, one can see the final coalgebra as the universe

of all behaviours of systems and the unique morphism as the map assigning to each

system its behaviour. This provides a standard notion of equivalence called F-behavioural

equivalence. Moreover, these canonical behaviours are minimal, by general coalgebraic

considerations (Rutten 2000), in that no two different states are equivalent.

Labelled transition systems (LTS’s) can be modelled as coalgebras for the functor

F(X) = (PωX)A and the canonical behavioural equivalence associated with F is precisely

the finest equivalence of the spectrum in (van Glabbeek 2001). In the recent past, other

equivalences of the spectrum have been also cast in the coalgebraic framework. Notably,

trace semantics was widely studied (Hasuo, Jacobs & Sokolova 2007, Silva et al. 2010)

and, more recently, decorated trace semantics was recovered via a coalgebraic general-

ization of the classical powerset construction (Silva, Bonchi, Bonsangue & Rutten 2011).

In Fig. 1 we illustrate the hierarchy (based on the coarseness level) among bisimilarity,

ready, failure, (complete) trace, possible-futures, ready trace and failure trace seman-

tics, as introduced in (van Glabbeek 2001). For example, bisimilarity (the standard

behavioural equivalence on F-coalgebras) is the finest of the aforementioned semantics,

whereas trace is the coarsest one.

To get some intuition on the type of distinctions the equivalences above encompass,

Final semantics for decorated traces 3

consider the following labelled transition systems over the alphabet A = {a, b, c}:

p

a
a

q

a

r
aa

s

a
aa

• •
cb

•
cb

•
b

•
c

•
b

•

bc

•
c

• • • • • • • •

The semantic equivalences in Fig. 1 distinguish between p, q, r and s as summarized in

the table below:

p, q p, r p, s q, r q, s r, s

bisimilarity × × × × × ×

trace X X X X X X

complete trace × × × X X X

ready × × × × × ×

failure × × × × × X

possible-futures × × × × × ×

ready trace × × × × × ×

failure trace × × × × × X

where X to stands for an “yes” answer w.r.t. the behavioural equivalence of two of the

systems p, q, r and s, whereas × represents a “no” answer. More explicitly:

None of the systems above are bisimilar. Note that after executing action a from p a

deadlock state can be reached. Obviously, q and r have a different branching structure,

so they are not bisimilar. System s subsumes the (non-bisimilar) behaviours of both q

and r.

The traces of the states p, q, r and s are {a, ab, ac}, and therefore they are all trace

equivalent. Complete trace semantics identifies states that have the same set of complete

traces, that is, traces that lead to states where no further action are possible. Of the four

states above, q and r and s are complete trace equivalent, whereas p is the only state

that has a as a complete trace.

Ready semantics identifies states according to the set of actions they can trigger im-

mediately after a certain trace has been executed. None of the states above are ready

equivalent. Observe that after the execution of action a: process p can reach a deadlock

state, q has always to choose between actions b and c, process r can only do b or c,

whereas s subsumes the (not equivalent) behaviours of both q and r.

Failure semantics takes into account the set of actions that cannot be fired immediately

Bonchi, Bonsangue, Caltais, Rutten, Silva 4

after the execution of a certain trace. Only r and s are failure equivalent. Note that after

triggering action a, process p can fail executing {a, b, c}. Moreover, after firing a, process

q only fails executing {a}.

Possible-futures semantics identifies states that can perform the same traces w and,

moreover, the states reached by executing such w’s are trace equivalent. None of the

states above are possible-futures equivalent. After triggering action a: p can reach a

deadlock state (with no further behaviour), q can exfecute the set of traces {b, c}, state r

can trigger either trace b or c, whereas s inherits the behaviours of both q and r (which

are not possible-futures equvalent).

Ready (respectively failure) trace semantics identifies states that can trigger the same

traces w and the (pairwise-taken) intermediate states determined by such w’s are ready

(respectively refuse) to trigger the same sets of actions. None of the systems above is

ready trace equivalent. p is the only one that after triggering a can reach a deadlock

state. After preforming action a: process q reaches a state that is ready to trigger both b

and c, whereas r cannot. Moreover, s subsumes the behaviour of both q and r (which are

not ready trace equivalent). The analysis on failure trace equivalence follows a similar

reasoning.

This paper is an extended version of the conference paper (Bonchi, Bonsangue, Cal-

tais, Rutten & Silva 2012) where we a) proved that the coalgebraic ready, failure and

(complete) trace semantics are equivalent to the corresponding set-theoretic notions

from (van Glabbeek 2001), b) showed how the coalgebraic semantics lead to canoni-

cal representatives for the aforementioned decorated traces, and c) showed how to prove

decorated trace equivalence using coinduction, by constructing bisimulations (up-to con-

text) that witness the desired equivalence. The latter is interesting also from the point

of view of tool development: construction of bisimulations is known to be particularly

suitable for automation. Moreover, the up-to context technique also increases the effi-

ciency of reasoning, as verifications are performed under certain closure properties, which

means the bisimulations that are built are smaller (see Section 3, and Section 4 for ex-

amples). The techniques we used for up-to reasoning are an extension of the recent work

in (Bonchi & Pous 2013).

In this paper we extend a), b) and c) above also for the case of possible-futures, ready

trace and failure trace semantics. Moreover, we have included more details, proofs and

examples on how to use the coalgebraic framework (summarized in Fig. 16) for reasoning

on decorated trace equivalences.

The paper is organized as follows. In Section 2, we provide the basic notions from

coalgebra and recall the generalized powerset construction. In Section 3, we show how

the powerset construction can be applied for determinizing LTS’s in terms of Moore au-

tomata (X, f : X → B × XA), in order to coalgebraically characterize decorated trace

semantics. Detailed descriptions of coalgebraic decorated trace semantics are provided in

Section 4. Here we also prove that the obtained coalgebraic models are equivalent to the

original definitions, and illustrate how one can reason about decorated trace equivalence

by constructing bisimulations up-to context. Section 5 discusses that the canonical repre-

sentatives of LTS’s we obtain coalgebraically coincide with the minimal LTS’s one would

Final semantics for decorated traces 5

obtain by identifying all states equivalent w.r.t. a particular decorated trace semantics.

Section 6 contains concluding remarks and discusses future work.

2. Preliminaries

In this section, we briefly recall basic notions from coalgebra and the generalized powerset

construction (Silva et al. 2010). We first introduce some notation on sets.

We denote sets by capital letters X,Y, . . . and functions by lower case letters f, g,

The cartesian product of two sets X and Y is denoted by X × Y , and has the projection

maps X
π1←− X × Y

π2−→ Y . By XY we represent the family of functions f : Y → X ,

whereas the collection of finite subsets of X is denoted by PωX . For each of these oper-

ations defined on sets, there is an analogous one on functions (for details see for exam-

ple (Awodey 2010)). This turns the operations above into (bi)functors, which we shall

use throughout this paper.

For an alphabet A, we denote by A∗ the set of all words over A and by ε the empty

word. The concatenation of words w1, w2 ∈ A∗ is written w1w2.

Coalgebras : We consider coalgebras of functors F defined on Set – the category of sets

and functions. An F-coalgebra (or coalgebra, when F is understood) is a pair (X, c : X →

FX), where X ∈ Set. We call X the state space, and we say that F together with c

determine the dynamics, or the transition structure of the F-coalgebra.

An F-homomorphism between two F-coalgebras (X, f) and (Y, g), is a function h : X →

Y preserving the transition structure, i.e., g ◦ h = F(h) ◦ f .

An F-coalgebra (Ω, ω) is final if for any F-coalgebra (X, f) there exists a unique F-

homomorphism J−KX : X → Ω. A final coalgebra represents the universe of all possible

behaviours of F-coalgebras. The unique morphism J−KX : X → Ω maps each state in X

to its behaviour. Using this mapping, behavioural equivalence can be defined as follows:

for any two coalgebras (X, f) and (Y, g), the states x ∈ X and y ∈ Y are behaviourally

equivalent, written x ∼F y, if and only if they have the same behaviour, that is

x ∼F y iff JxKX = JyKY . (1)

We think of JxKX as the canonical representative of the behaviour of x. The image of

X under J−KX can be viewed as the minimization of (X, f), since the final coalgebra

contains no pairs of equivalent states.

For an example we consider deterministic automata (DA). A deterministic automaton

over the input alphabet A is a pair (X, 〈o, t〉), where X is a set of states and 〈o, t〉 : X →

2×XA is a function with two components: o, the output function, determines if a state

x is final (o(x) = 1) or not (o(x) = 0); and t, the transition function, returns for each

input letter a the next state. DA’s are coalgebras for the functor D(X) = 2 ×XA. The

final coalgebra of this functor is (2A
∗

, 〈ǫ, (−)a〉) where 2A
∗

is the set of languages over A

and 〈ǫ, (−)a〉, given a language L, determines whether or not the empty word ε is in the

language (ǫ(L) = 1 or ǫ(L) = 0, resp.) and, for each input letter a, returns the derivative

of L: La = {w ∈ A∗ | aw ∈ L}. From any DA, there is a unique map J−K into 2A
∗

which

Bonchi, Bonsangue, Caltais, Rutten, Silva 6

assigns to each state its behaviour (that is, the language that the state recognizes).

X
J−KX

〈o,t〉

2A
∗

〈ǫ,(−)a〉

2×XA

id×J−KAX

2× (2A
∗

)A

JxKX (ε) = o(x)

JxKX (aw) = Jt(x)(a)KX (w)

Therefore, behavioural equivalence for the functorD coincides with the classical language

equivalence of automata.

Another example (fundamental for the rest of the paper) is given by Moore automata.

Moore automata with inputs in A and outputs in B are coalgebras for the functor

M(X) = B × XA, that is pairs (X, 〈o, t〉) where X is a set, t : X → XA is the tran-

sition function (like for DA) and o : X → B is the output function which maps every

state in its output. Thus DA can be seen as a special case of Moore automata where

B = 2. The final coalgebra for M is (BA∗

, 〈ǫ, (−)a〉) where BA∗

is the set of all functions

ϕ : A∗ → B, ǫ : BA∗

→ B maps each ϕ into ϕ(ǫ) and (−)a : BA∗

→ (BA∗

)A is defined for

all ϕ ∈ BA∗

, a ∈ A and w ∈ A∗ as (ϕ)a(w) = ϕ(aw).

X
J−KX

〈o,t〉

BA∗

〈ǫ,(−)a〉

B ×XA

id×J−KAX

B × (BA∗

)A

JxKX (ε) = o(x)

JxKX (aw) = Jt(x)(a)KX (w)

Bisimulations : Coalgebras provide a useful technique for proving behavioural equiv-

alence, namely, bisimulation. Let (X, f) and (Y, g) be two F-coalgebras. A relation

R ⊆ X×Y is a bisimulation if there exists a function αR : R→ FR such that π1 : R→ X

and π2 : R→ Y are coalgebra homomorphisms. In (Rutten 2000), it is shown that under

certain conditions on F (which are met by all the functors considered in this paper),

bisimulations are a sound and complete proof technique for behavioural equivalence,

namely,

x ∼F y iff there exists a bisimulation R such that xRy. (2)

The generalized powerset construction: As shown above, every functor F induces both

a notion of F-coalgebra and a notion of behavioural equivalence ∼F. Sometimes, it is

interesting to consider different equivalences than ∼F for reasoning about F-coalgebras.

This is the case of labeled transition systems which are coalgebras for the functor

L(X) = (PωX)A. The induced behavioural equivalence ∼L coincides with the standard

notion of bisimilarity by Milner and Park (Park 1981, Milner 1989). However, in concur-

rency theory, many other equivalences have been studied, notably, decorated trace equiv-

alences (van Glabbeek 2001). Another example is given by non-deterministic automata

which are coalgebras for the functor N(X) = 2 × (PωX)A. The associated equivalence

∼N strictly implies language equivalence, which is often taken as an intended semantics.

For this reason, a subset of the authors has introduced in (Silva et al. 2011) the

generalized powerset construction, for coalgebras f : X → FT (X) for a functor F and a

monad T , with the proviso that that FT (X) is an algebra for the monad T . In (Silva

et al. 2011), all the technical details are explored and many interesting instances of the

Final semantics for decorated traces 7

construction are shown. In this paper, we will only be interested in the case where T = Pω

and M(X) = B×XA, for A an action alphabet and B a semilattice, and we will therefore

only explain the concrete picture for the functor and monad of interest. The fact that

we take B to be a semilattice is enough to guarantee that MT (X) = B × (PωX)A is

a semilattice to. This fulfills then the proviso above, since semilattices are precisely the

algebras of the monad Pω.

Given a coalgebra f : X →MPωX , and becauseM has a final coalgebra, we can extend

it uniquely to f ♯ : PωX →MPωX and consider the unique coalgebra homomorphism into

the final coalgebra, as summarized by the following diagram:

X

f

{·}
PωX

f♯

[[−]]
BA∗

〈ǫ,(−)a〉

B × (PωX)A
idB×[[−]]A

B × (BA∗

)A

(3)

With this construction, one can coalgebraically characterize language equivalence for

Moore automata and, in particular, for non-deterministic automata. Take T = Pω and

F = D, which is an instance of M for B = 2, the two-element semilattice. An MT -

coalgebra is a pair (X, f) with f : X → 2× (PωX)A, i.e., an NDA. Therefore every NDA

(X, f) is transformed into (PωX, f ♯) which is a DA. This corresponds to the classical

powerset construction for determinizing non-deterministic automata. The language recog-

nized by a state x can be defined by precomposing the unique morphism J−K : PωX → 2A
∗

with the unit of Pω, which is the function {−} : X → PωX mapping each x ∈ X into the

singleton set {x} ∈ PωX .

3. Decorated trace semantics via determinization

Our aim is to reason about decorated trace equivalences of labelled transition systems.

In this section, we use the generalized powerset construction and show how one can

determinize arbitrary labelled transition systems obtaining particular instances of Moore

automata (with different output sets) in order to model ready, failure, (complete) trace,

possible-futures, ready trace and failure trace equivalences. This paves the way to building

a general framework for reasoning on decorated trace equivalences in a uniform fashion,

in terms of bisimulations up-to context.

A labeled transition system is a pair (X, δ) where X is a set of states and δ : X →

(PωX)A is a function assigning to each state x ∈ X and to each label a ∈ A a finite set of

possible successors states. We write x
a
−→ y whenever y ∈ δ(x)(a). We extend the notion

of transition to words w = a1 . . . an ∈ A∗ as follows: x
w
−→ y if and only if x

a1−→ . . .
an−−→ y.

For w = ε, we have x
ε
−→ y if and only if y = x.

We now define in a nutshell the equivalences we will be dealing with in this paper.

(See (van Glabbeek 2001) for more details on the corresponding classical definitions.)

For a function ϕ ∈ (PωX)A, I(ϕ) denotes the set of all labels “enabled” by ϕ, given by

I(ϕ) = {a ∈ A | ϕ(a) 6= ∅}, while Fail(ϕ) denotes the set {Z ⊆ A | Z ∩ I(ϕ) = ∅}.

Let (X, δ) be a LTS and x ∈ X be a state. A failure pair of x is a pair (w,Z) ∈ A∗×PωA

Bonchi, Bonsangue, Caltais, Rutten, Silva 8

such that x
w
→ y and Z ∈ Fail(δ(y)). A ready pair of x is a pair (w,Z) ∈ A∗×PωA such

that x
w
→ y and Z = I(δ(y)).

A trace of x is a word w ∈ A∗ such that x
w
→ y for some y. A trace w of x is complete

if x
w
→ y and y stops, i.e., I(δ(y)) = ∅.

A pair 〈w, T 〉 ∈ A∗ × P(A∗) is a possible future of x ∈ X if there is y ∈ X such that

x
w
−→ y and T is the set of all traces of y.

We call a ready trace of a state x0 ∈ X a sequence I0a1I1a2 . . . anIn ∈ Pω(A) × (A ×

Pω(A))
∗, if there are x1, . . . , xn ∈ X such that x0

a1−→ x1
a2−→ . . .

an−−→ xn and Ii = I(δ(xi)),

for i = 1, . . . , n. Orthogonally, a sequence F0a1F1a2 . . . anFn is called a failure trace of

x0 if Fi ∈ Fail(δ(xi)).

We use T (x), CT (x), F(x), R(x), PF(x), RT (x), FT (x) to denote, respectively, the

set of all traces, complete traces, failure pairs, ready pairs, possible futures, ready traces

and failure traces of x.

For I ranging over T , CT ,F ,R,PF ,RT and FT , two states x and y are I-equivalent

iff I(x) = I(y) (van Glabbeek 2001).

Intuitively, these equivalences can be described as follows:

— ready semantics identifies states of LTS’s according to the set Z of actions they can

trigger immediately after a certain action sequence w has been “consumed”; we call

a pair (w,Z) a ready pair,

— failure semantics takes into account the set Z of actions that cannot be fired imme-

diately after the execution of sequences w; we call a pair (w,Z) a failure pair,

— trace semantics identifies system states if and only if they can execute the same sets

of action sequences w,

— complete trace semantics identifies system states that perform the same sets of “com-

plete” traces w; we call an action sequence w a complete trace of a state p if and only

if p
w
−→ q and q cannot execute any further action.

Note that the difference between trace and complete trace semantics consists in the

fact that trace semantics does not detect stagnation, whereas the latter semantics

takes into consideration deadlock states.

— possible-futures semantics distinguishes between states that either cannot execute the

same traces or, that by triggering the same sequences of actions can reach states that

are not trace equivalent,

— ready trace semantics identifies states that can execute the same sets of sequences w =

a1 . . . an and, moreover, the corresponding intermediate states reached by performing

action ai (for i = 1, . . ., n) are ready to trigger the same actions,

— failure trace semantics apply similarly to ready trace semantics, with the difference

that the associated intermediate states determined by sequences w ∈ A∗ refuse exe-

cuting the same sets of actions.

The coalgebraic characterization of ready, failure and (complete) trace was obtained

in (Silva et al. 2011) in the following way. Given an arbitrary LTS (X, δ : X → (PωX)A),

Final semantics for decorated traces 9

we associate a decorated LTS represented by a coalgebra of the functor FI(X) =

BI × (PωX)A, namely (X, 〈oI , id〉 ◦ δ : X → BI × (PωX)A), where the output operation

oI : (PωX)A → BI provides the observations of interest corresponding to the original

LTS and depending on the equivalence we want to study. (At this point, BI represents

an arbitrary semilattice with a ∨ operation, instantiated for each of the semantics un-

der consideration as in (Silva et al. 2011).) Then, we determinize the decorated LTS, as

depicted in Figure 2.

X
{−}

δ

PωX
J−K

〈o,t〉

(BI)
A∗

〈ǫ,(−)a〉(PωX)A

〈oI ,id〉

FIX = BI × (PωX)A
idBI

×J−KA
BI × ((BI)

A∗

)A

o(Y) =
∨

y∈Y
oI(δ(y))

t(Y)(a) =
⋃

y∈Y
δ(y)(a)

[[Y]](ε) = o(Y)

[[Y]](aw) = [[
⋃

y∈Y

δ(y)(a)]](w)

Fig. 2. The powerset construction for decorated LTS’s.

Note that both the output operation and its image are parameterized by I ∈

{R,F , T , CT }, depending on the type of decorated trace semantics under consideration.

The coalgebraic modelling of possible-futures semantics could easily be recovered by

following a similar approach. However, note that for the case of ready and failure trace

semantics a “preprocessing” procedure on the initial LTS is required before the deter-

minization. This consists in enriching the action alphabet A with additional information

represented by sets of actions ready (respectively actions refused) to be triggered as a

first step. Consequently, each LTS (X, δ : X → (PωX)A) is uniquely associated a coal-

gebra (X, δ̄ : X → (PωX)Ā), defined in a natural fashion, as we shall see later on. The

construction in Fig. 2 is eventually applied on (X, δ̄).

The explicit instantiations of oI and BI are provided in Section 4, where we will also

show that the coalgebraic modellings in fact coincide with the original definitions of the

corresponding equivalences. A fact that was not formally shown in (Silva et al. 2011), for

none of the aforementioned semantics.

Our coalgebraic modelling of decorated trace semantics enables the definition of the

corresponding equivalences as Moore bisimulations (Rutten 2000) (i.e., bisimulations for

a functor M = BI × XA). This way, checking behavioural equivalence of x1 and x2

reduces to checking the equality of their unique representatives in the final coalgebra:

J{x1}K and J{x2}K .

Bonchi, Bonsangue, Caltais, Rutten, Silva 10

Moreover, it is worth observing that when reasoning on behavioural equivalence it is

preferable to use relations as small as possible, that are not necessarily bisimulations,

but contained in a bisimulation relation. These relations are referred to as bisimulations

up-to (Sangiorgi & Rutten 2011).

In what follows we exploit the generalized powerset construction summarized in Fig. 2

and define bisimulation up-to context in the setting of decorated LTS’s determinized in

terms of Moore automata.

Let Ldec = (X, 〈oI , id〉 ◦ δ : X → BI × (PωX)A) be a decorated (possibly “prepro-

cessed”) LTS and (PωX, 〈o, t〉 : PωX → BI × (PωX)A) its associated Moore automaton,

as in Fig. 2. A bisimulation up-to context for Ldec is a relation R ⊆ (PωX)× (PωX) such

that:

X1 R X2 ⇒

{

o(X1) = o(X2)

(∀a ∈ A) . t(X1)(a) c(R) t(X2)(a)
(4)

where c(R) is the smallest relation which is closed with respect to set union and which

includes R, inductively defined by the following inference rules:

∅ c(R) ∅

X RY

X c(R)Y

X1 c(R)Y1 X2 c(R)Y2

X1 ∪X2 c(R) Y1 ∪ Y2
(5)

Remark 3.1. Observe that by replacing c(R) with R in (4) one gets the definition of

Moore bisimulation.

Theorem 3.1. Any bisimulation up-to context for decorated LTS’s is included in a

bisimulation relation.

Proof. The proof consists in showing that for any bisimulation up-to context R, c(R) is

a bisimulation relation (recall that R ⊆ c(R)). The result follows by structural induction,

as shown below.

Let Ldec = (X, δ♯ : X → BI × (PωX)A) be a decorated LTS and (PωX, 〈o, t〉 : PωX →

BI × (PωX)A) be its associated Moore automaton, derived according to the powerset

construction.

Let R be a bisimulation up-to context for Ldec.

In what follows we want to prove that c(R) is a bisimulation relation (that includes R,

by (5)).

We have to show that

X c(R) Y ⇒

{

o(X) = o(Y)

(∀a ∈ A) . t(X)(a) c(R) t(Y)(a)
(6)

We proceed by structural induction.

1 Let X R Y . Then (6) holds by definition.

2 LetX = X1∪X2 and Y = Y1∪Y2 such thatX1 c(R) Y1 and X2 c(R) Y2. By induction,

we have that o(X1) = o(Y1) and o(X2) = o(Y2). We now need to prove that o(X) =

o(Y).

o(X) = o(X1 ∪X2) = o(X1) ∪ o(X2)
IH
= o(Y1) ∪ o(Y2) = o(Y1 ∪ Y2) = o(Y)

Final semantics for decorated traces 11

We also have, by induction, that

(∀a ∈ A) . t(X1)(a) c(R) t(Y1)(a) and (∀a ∈ A) . t(X2)(a) c(R) t(Y2)(a)

Hence, for all a ∈ A, we can easily prove that t(X)(a) c(R) t(Y)(a):

t(X)(a) = t(X1 ∪X2)(a) = t(X1)(a) ∪ t(X2)(a) (IH)

c(R) t(Y1)(a) ∪ t(Y2)(a)

= t(Y1 ∪ Y2)(a) = t(Y)(a)

At this point it holds that c(R) ⊇ R is a bisimulation relation, as (6) holds for all

(X,Y) ∈ c(R).

Remark 3.2. Based on (1), (2) and Theorem 3.1, verifying behavioural equivalence of

two states x1, x2 in a decorated LTS consists in identifying a bisimulation up-to context

Rc relating {x1} and {x2}:

J{x1}K = J{x2}K iff {x1}R
c {x2}. (7)

Also note that Theorem 3.1 is not a very different, but useful generalization of Theorem

2 in (Bonchi & Pous 2013) to the context of decorated LTS’s.

More insight on how to derive canonical representatives of decorated trace semantics

and how to apply the bisimulation up-to context proof technique is provided in Section 4.

4. Coalgebraic modelling of decorated trace semantics

In what follows we a) provide the details on the coalgebraic modelling of ready, fail-

ure, (complete) trace, possible-futures, ready trace and failure trace semantics, b)

show that the corresponding representations coincide with their original definitions

in (van Glabbeek 2001) and c) show, by means of examples, how the associated coalge-

braic frameworks can be used in order to reason on the aforementioned equivalences in

terms of Moore bisimulations (up-to).

The approaches in the subsequent sections mainly follow the same steps. For each of the

decorated trace semantics we proceed by first instantiating the ingredients of Fig. 2 in Sec-

tion 3 (that summarizes the generalized powerset construction in (van Glabbeek 2001)).

Note that for the case of ready trace and failure trace semantics an additional “prepro-

cessing” step is required. This eventually generates equivalent LTS’s having transition

enriched with additional information used for obtaining the “right” derived Moore au-

tomata (more details on the “preprocessing” procedure are provided in Section 4.6 and

Section 4.7).

For I ranging over T , CT ,F ,R,PF ,RT and FT , showing that the corresponding

coalgebraic modelling and the set-theoretic definitions in (van Glabbeek 2001) are equiv-

alent reduces to proving that, given an arbitrary state x of an LTS, I(x) is in one-to-one

correspondence with the behaviour J{x}K in the final Moore coalgebra.

For a more concrete insight, we provide in each of the subsequent sections examples

Bonchi, Bonsangue, Caltais, Rutten, Silva 12

of (possibly not) I-equivalent systems, and show how the coalgebraic machinery is used

for reasoning on I-equivalence.

4.1. Ready semantics

In this section we show how the ingredients of Fig. 2 in Section 3 can be instantiated

in order to provide a coalgebraic modelling of ready semantics, as introduced in (Silva

et al. 2011). Moreover, we prove that the resulting coalgebraic characterization of this

semantics is equivalent to the original definition.

Consider an LTS (X, δ : X → (PωX)A) and recall that, for a function ϕ : A → PωX ,

the set of actions enabled by ϕ is given by

I(ϕ) = {a ∈ A | ϕ(a) 6= ∅}. (8)

For the particular case ϕ = δ(x), I(δ(x)) denotes the set of all (initial) actions ready to

be fired by x ∈ X .

Recall also that a ready pair of x is a pair (w,Z) ∈ A∗ × PωA such that x
w
−→ y and

Z = I(δ(y)). We denote by R(x) the set of all ready pairs of x.

Intuitively, ready semantics identifies states in X based on the actions a ∈ A they can

immediately trigger after performing a certain action sequence w ∈ A∗, i.e., based on

their ready pairs. It was originally defined as follows:

Definition 4.1 (R-equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A)

be an LTS and x, y ∈ X two states. States x and y are ready equivalent (R-equivalent)

if and only if they have the same set of ready pairs, that is R(x) = R(y).

Next, we instantiate oI of Fig. 2 to ready semantics, where I = R.

First note that in the setting of ready semantics, the observations provided by the

output operation, which we denote by oR, refer to the sets of actions ready to be executed

by the states of the LTS. Therefore, oR is defined as follows:

oR : (PωX)A → Pω(PωA)

oR(ϕ) = {I(ϕ)}.

For the case ϕ = δ(x), where x ∈ X , it holds that:

oR(δ(x)) = {I(δ(x))} = {{a ∈ A | δ(x)(a) 6= ∅}}.

Remark 4.1. Observe that the codomain of ōR is Pω(PωA), and not PωA, as one

might expect. This choice is motivated by the intention of “distinguishing” between the

ready actions of states y ∈ Y in the Moore automata derived according to the powerset

construction. See Example 4.3 for a concrete case study.

Consequently, BI = BR = Pω(PωA) and the final Moore coalgebra

((Pω(PωA))
A∗

, 〈ǫ, (−)a〉)

associates to each state {x} the set of action sequences w ∈ A∗ such that x
w
−→ x′,

together with the sets of actions ready to be triggered by (all such) x′, for x, x′ ∈ X .

Final semantics for decorated traces 13

Next, we will prove the equivalence between the coalgebraic modelling of ready seman-

tics and the original definition, presented above. More explicitly, given an arbitrary LTS

(X, δ : X → (PωX)A) and a state x ∈ X , we want to show that J{x}K is equal to R(x).

The first remark is that the behaviour of a state x ∈ X is a function J{x}K : A∗ →

Pω(PωA), whereas R(x) is defined as a set of pairs in A∗ × PωA. However, this is no

problem since the set of functions A∗ → Pω(PωA) and P(A∗ × PωA) are isomorphic.

The set of all ready pairs R(x) associated to x ∈ X is equivalently represented by ϕR
{x},

where, for w ∈ A∗ and Y ⊆ X ,

ϕR
Y : A∗ → Pω(PωA)

ϕR
Y (w) = {Z ⊆ A | ∃y ∈ t(Y)(w) ∧ Z = I(δ(y))}

At this point, showing the equivalence between the coalgebraic and the original definition

of ready semantics reduces to proving that

(∀x ∈ X) . J{x}K = ϕR
{x}. (9)

Equality (9) is a direct consequence of the following theorem:

Theorem 4.1. Let (X, δ : X → (PωX)A) be an LTS. Then for all Y ⊆ X and w ∈ A∗,

JY K(w) = ϕR
Y (w).

Proof. We proceed by induction on words w ∈ A∗.

— Base case. w = ε. Consider an arbitrary set Y ⊆ X . We have:

JY K(ε) = o(Y) =
⋃

y∈Y

{I(δ(y))}

ϕR
Y (ε) = {Z ⊆ A | ∃y ∈ Y ∧ Z = I(δ(y))} (by def., (∀y ∈ Y) . y

ε
−→ y)

=
⋃

y∈Y

{I(δ(y))}

Hence, JY K(ε) = ϕR
Y (ε), for all Y ⊆ X .

— Induction step.

Consider w ∈ A∗ and assume JY K(w) = ϕR
Y (w), for all Y ⊆ X . We want to prove

that JY K(aw) = ϕR
Y (aw), where a ∈ A.

JY K(aw) = Jt(Y)(a)K(w)

ϕR
Y (aw) = {Z | ∃y ∈ t(Y)(aw) ∧ Z = I(δ(y))}

= {Z | ∃y ∈ t(t(Y)(a))(w) ∧ Z = I(δ(y))}

= ϕR
t(Y)(a)(w)

By the induction hypothesis, it follows that JY K(aw) = ϕR
Y (aw), for all Y ⊆ X .

We have that JY K(w) = ϕR
Y (w), for all Y ⊆ X and w ∈ A∗.

Example 4.1. In what follows we illustrate the equivalence between the coalgebraic

and the original definitions of ready semantics by means of an example. Consider the

Bonchi, Bonsangue, Caltais, Rutten, Silva 14

following LTS.

p0
a

a

p1
bb

p2
c

p3
d

p4 p5

We write an to represent the action sequence aa . . . a of length n ≥ 1, with n ∈ N. The

set of all ready pairs associated to p0 is:

R(p0) = {(ε, {a}), (an, {a}), (an, {b}), (anb, {c}), (anb, {d}),

(anbc, ∅), (anbd, ∅) | n ∈ N ∧ n ≥ 1}.

We can construct a Moore automaton, for S = {p0, p1, . . . , p5},

(PωS, 〈o, t〉 : PωS → Pω(PωA)× (PωS)
A)

by applying the generalized powerset construction on the LTS above. The automaton

will have 26 = 64 states. We depict the accessible part from state {p0}, where the output

sets are indicated by double arrows:

{p0}

a

{{a}}

{p0, p1}

ba

{{a}, {b}}

{p2, p3}
dc

{{c}, {d}}

{∅} {p4} {p5} {∅}

Fig. 3. Ready determinization when starting from {p0}.

The output sets of a state Y of the Moore automaton in Fig. 3 is the set of actions

associated to a certain state y ∈ Y which can immediately be performed. For example,

process p0 in the original LTS above is ready to perform action a, whereas p1 can imme-

diately perform b. Therefore it holds that o({p0}) = {{a}} and o({p0, p1}) = {{a}, {b}}.

At this point, by simply looking at the automaton in Fig. 3, one can easily see that the

set of action sequences w ∈ A∗ the state {p0} can execute, together with the correspond-

ing possible next actions equals R(p0). Therefore, the automaton generated according

to the generalized powerset construction captures the set of all ready pairs of the initial

LTS.

As we remarked in Section 3, ready equivalence of LTS’s can be established in terms of

bisimulation up-to context on Moore automata with output in Pω(PωA), representing

the sets of actions ready to be triggered.

Final semantics for decorated traces 15

Next, we will explain how one can reason on ready equivalence of two LTS’s, by con-

structing bisimulations up-to context on the associated Moore automata generated ac-

cording to the powerset construction in Fig. 2.

Example 4.2. Consider the following LTS.

q0
a

a

a

a
q3a

q1
b

b

q2

b

q7

a

a

a

q4
c

q5

d

q6

d

q8 q9 q10

It is easy to check that q0 and p0 have the same ready pairs, that is R(q0) = R(p0),

where p0 is the state in the LTS Example 4.1.

Since we have shown the coincidence between the original definition involving equality

of ready pairs and the coalgebraic representation, we can now prove that q0 and p0 are

ready equivalent by building a bisimulation up-to context relating {p0} and {q0}.

First, we have to determinize the LTS above. In Fig. 4 we show the accessible part of

the determinized automaton starting from state {q0}:

{q0}

a

{{a}}

{q1, q2, q3, q7}
a

b

{{a}, {b}}

{{a}, {b}} {q0, q1, q2, q3, q7}

a

b
{q4, q5, q6}

c
d

{{c}, {d}}

{∅} {q8} {q9, q10} {∅}

Fig. 4. Ready determinization when starting from {q0}.

The next step is to build a bisimulation up-to context R on the sets of states of the

generated Moore automata in Fig. 3 and Fig. 4, such that ({p0}, {q0}) ∈ R.

We start by taking R = {({p0}, {q0})} and check whether this is already a bisimulation

up-to context, by considering the output values and transitions, and check whether no

new states appear in c(R) in the process. If new pairs of states appear, we add them to

R and repeat the process.

Eventually, we end-up with a bisimulation up-to context

R = {({p0}, {q0}), ({p0, p1}, {q1, q2, q3, q7}),

({p2, p3}, {q4, q5, q6}), ({p4}, {q8}), ({p5}, {q9, q10})}

By construction ({p0}, {q0}) ∈ R, so by (7) it follows that [[{p0}]] = [[{q0}]].

Bonchi, Bonsangue, Caltais, Rutten, Silva 16

Note that R is not a bisimulation relation since {p0, p1}
a
−→ {p0, p1} and

{q1, q2, q3, q7}
a
−→ {q0, q1, q2, q3, q7} but ({p0, p1}, {q0, q1, q2, q3, q7}) 6∈ R. Nevertheless,

observe that R is a bisimulation up-to context since ({p0, p1}, {q0, q1, q2, q3, q7}) ∈ c(R):

{p0, p1} = {p0} ∪ {p0, p1}

c(R) {q0} ∪ {p0, p1} (({p0}, {q0}) ∈ R)

c(R) {q0} ∪ {q1, q2, q3, q7} (({p0, p1}, {q1, q2, q3, q7}) ∈ R)

= {q0, q1, q2, q3, q7}

Also observe that the bisimulation up-to context given above is one pair smaller than

the Moore bisimulation relating the automata in Fig. 3 and Fig. 4, which would also

include ({p0, p1}, {q0, q1, q2, q3, q7}).

Example 4.3. In what follows we provide an example supporting the statement in

Remark 4.1. Consider the two LTS’s below:

p0
a a

q0
a

p1

b

p2
c

q1
b c

p3 p4 q2 q3

It is easy to see that p0 and q0 are not ready equivalent, as (a, {b, c}) is a ready pair of

q0 and not of p0. Now assume the following definition of ōR (having the codomain PωA

instead of Pω(PωA)):

oR : (PωX)A → PωA

oR(ϕ) = I(ϕ).

The derived Moore automata starting from {p0}, {q0} are (trivially) bisimilar:

{a} {p0}

a

{q0}

a

{a}

{b, c} {p1, p2}
b c

{q1}
b c

{b, c}

{p3} {p4} {q2} {q3}

∅ ∅ ∅ ∅

implying that p0 and q0 are ready equivalent – which is a contradiction! Obviously this is

a consequence of the fact that we identify states {p1, p2} and {q1}, as they both output

{b, c}. One way to annihilate this drawback is to “separate” the set of actions ready to

be triggered by p1 and p2, respectively, by considering

oR(ϕ) = {I(ϕ)} ∈ Pω(PωA).

The new Moore automata in Fig. 5 generated starting from {p0} and {q0} are not bisim-

Final semantics for decorated traces 17

ilar, as

o({p1, p2}) = {{b}, {c}}, whereas

o({q1}) = {{b, c}}.

Intuitively, the outputs above refer to the possibility of q0 to select between executing b

or c after triggering a, choice impossible for p0.

{a} {p0}

a

{q0}

a

{a}

{{b}, {c}} {p1, p2}
b c

{q1}
b c

{b, c}

{p3} {p4} {q2} {q3}

∅ ∅ ∅ ∅

Fig. 5. Determinization from {p0}, {q0}, when oR(ϕ) = {I(ϕ)} ∈ Pω(PωA)

4.2. Failure semantics

In this section, we present the coalgebraic modelling of failure semantics, along the lines

of the previous section. Moreover, we prove the equivalence of the coalgebraic modelling

with its standard definition, and show how one can reason on failure equivalence in terms

of bisimulations (up-to).

Consider an LTS (X, δ : X → (PωX)A) and a function ϕ : A→ PωX . The set of actions

ϕ fails to enable is given by

Fail(ϕ) = {Z ⊆ A | Z ∩ I(ϕ) = ∅}

where I(ϕ) is defined as in (8).

Note that for the particular case ϕ = δ(x), Fail(δ(x)) represents the set of subsets of

all (initial) actions that cannot be triggered by x ∈ X .

A failure pair of x is a pair (w,Z) ∈ A∗ × PωA such that x
w
−→ y and Z ∈ Fail(δ(y)).

Failure semantics identifies behaviours of states in X according to their failure pairs.

Definition 4.2 (F-equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A)

be an LTS and x, y ∈ X two states. States x and y are failure equivalent (F -equivalent)

if and only if F(x) = F(y), where

F(x) = {(w,Z) ∈ A∗ × PωA | ∃x
′ ∈ X. x

w
−→ x′ ∧ Z ∈ Fail(δ(x′))}.

The coalgebraic modelling of F -equivalence is obtained by again instantiating the ingre-

dients of Fig. 2 as follows.

The output operation oI = oF refers to the sets of actions the states of the LTS cannot

immediately fire and is defined as follows:

oF : (PωX)A → Pω(PωA)

oF (ϕ) = Fail(ϕ).

Bonchi, Bonsangue, Caltais, Rutten, Silva 18

If ϕ = δ(x), for x ∈ X , it holds that

oF(δ(x)) = Fail(δ(x)) = {Z ⊆ A | Z ∩ I(δ(x)) = ∅}.

Consequently, the output function o of the determinized automaton generated according

to the powerset construction is:

o : (PωX)→ Pω(PωA)

o(Y) =
⋃

y∈Y

ōF (δ(y)) =
⋃

y∈Y

Fail(δ(y)).

Intuitively, o outputs the sets of actions that cannot be executed as a first step by all

states y ∈ Y , for Y ∈ PωX . We have

BF = Pω(PωA)

and the final Moore coalgebra is then instantiated to

((Pω(PωA))
A∗

, 〈ǫ, (−)a〉)

where the final map associates to each state {x} the set of words w ∈ A∗ such that

x
w
−→ x′, together with the actions (all such) x′ cannot trigger, for x, x′ ∈ X .

In order to show the equivalence between the two representations of failure semantics,

we capture the set of all failure pairs F(x) associated to states x ∈ X by means of a

function ϕF
Y defined as follows:

ϕF
Y : A∗ → Pω(PωA)

ϕF
Y (w) = {Z ⊆ A | ∃y ∈ t(Y)(w) ∧ Z ∈ Fail(δ(y))}.

The set F(x) of all failure pairs of a state x ∈ X is equivalently represented by ϕF
{x}.

Therefore, the equivalence between the two representations of failure semantics reduces

to showing that

(∀x ∈ X) . J{x}K = ϕF
{x}. (10)

The statement in (10) follows directly from the following Theorem.

Theorem 4.2. Let (X, δ : X → (PωX)A) be an LTS. Then for all Y ⊆ X and w ∈ A∗,

JY K(w) = ϕF
Y (w).

Example 4.4. Consider the following LTS’s.

p1 p0

a

b c

a a
p2 q1 q0

a

b c

a a
q2

p3 a
b

c

p4 a

c
f

q3
b

c

a
q4
c

f

a

p5 p6
d

p7
e

p8 q5 q6
e

q7
d

q8

p9 p10 q9 q10

Let A = {a1, a2, . . . , an} be the set of actions a process fails executing as a first step. For

the simplicity of notation, we write [a1a2 . . . an] to denote the set of all non-empty subsets

Z ⊆ A. For example, if A = {a1, a2}, then [a1a2] stands for {{a1}, {a2}, {a1, a2}}.

Final semantics for decorated traces 19

Note that p0 and q0 are F -equivalent, according to Definition 4.2, as they have the

same sets of failure pairs:

F(p0) = F(q0) = {(ε, [def]), (b, [abcdef]), (c, [abcdef])}∪

{(an, [def]), (an, [bde]), (anb, [abcdef]), (anc, [abcdef]),

(anc, [abcef]), (anc, [abcdf]), (anf, [abcdef]),

(ancd, [abcdef]), (ance, [abcdef]) | n ∈ N, n ≥ 1}

The same conclusion can be reached by checking behavioural equivalence of the two

Moore automata generated according to the powerset construction, starting with {p0}

and {q0}. The fragments of the two automata starting from the states {p0} and {q0} are

depicted in Fig. 6.

{p0}
b

a
c

[def] {q0}
b

a
c

[def]

{p1} {p0, p3, p4}

a

b f
c

{p2} {q1} {q0, q3, q4}

a

b f
c

{q2}

[abcdef] [def]∪[bde] [abcdef] [abcdef] [def]∪[bde] [abcdef]

{p1, p5} {p2, p6, p7}

d e

{p8} {q1, q5} {q2, q6, q7}

ed

{q8}

[abcdef] [abcdef]∪

[abcef] ∪

[abcdf]

[abcdef] [abcdef] [abcdef]∪

[abcef] ∪

[abcdf]

[abcdef]

{p9} {p10} {q9} {q10}

[abcdef] [abcdef] [abcdef] [abcdef]

Fig. 6. Failure determinization when starting from {p0} and {q0}.

Obviously {p0} and {q0} are Moore bisimilar, since the automata above have the

same branching structure, the transitions have the same labels, and the states the same

outputs.

4.3. Trace semantics

In this section we adapt the setting illustrated in Fig. 2 in Section 3 and provide a coal-

gebraic modelling of trace semantics. We also show that the coalgebraic characterization

we get is equivalent to the original definition.

Consider an LTS (X, δ : X → (PωX)A). Trace semantics identifies states in X accord-

ing to the set of words w ∈ A∗ they can execute.

Definition 4.3 (T -equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A)

be an LTS and x, y ∈ X two states. States x and y are trace equivalent (T -equivalent) if

and only if T (x) = T (y), where

T (x) = {w ∈ A∗ | ∃x′ ∈ X. x
w
−→ x′}. (11)

Bonchi, Bonsangue, Caltais, Rutten, Silva 20

First note that for this type of semantics, one does not distinguish between traces and

complete traces. Intuitively, all states are accepting, so they have the same observable

behaviour, no matter the transitions they perform. Therefore, we define oT as:

oT : (PωX)A → 2

oT (ϕ) = 1.

Consequently, the output function o : PωX → 2 of the generated Moore automaton

according to the generalized powerset construction is defined by o(Y) = 1.

Note that BT = 2 and the final Moore coalgebra in Fig. 2 is the set of languages 2A
∗

over A (and the transition structure 〈ǫ, (−)a〉 is simply given by Brzozowski derivatives).

Therefore, we can state that the map into the final coalgebra associates to each state

Y ∈ PωX the set of all traces corresponding to states y ∈ Y , namely, the language:

L =
⋃

y∈Y

{w ∈ A∗ | (∃y′ ∈ X) . y
w
−→ y′}.

The set P(A∗) is isomorphic to the set of functions 2A
∗

which enables us to represent

the set T (x) in terms of a function ϕT
Y defined, for w ∈ A∗ and Y ⊆ X , as follows:

ϕT
Y : A∗ → 2

ϕT
Y (w) = 1 if (∃y ∈ Y, y′ ∈ X) . y

w
−→ y′

Equivalently, ϕT
Y (w) = 1 if and only if t(Y)(w) 6= ∅.

The set of all traces T (x) corresponding to x ∈ X is modelled by ϕT
{x}.

Recall that the behaviour of a state x ∈ X , i.e., the traces of x, is represented in the

final coalgebra by J{x}K. Therefore, proving the equivalence between the coalgebraic and

the classic definition of trace semantics reduces to showing that

(∀x ∈ X) . J{x}K = ϕT
{x}. (12)

Equality (12) is a direct result of the following theorem:

Theorem 4.3. Let (X, δ : X → (PωX)A) be an LTS. Then for all Y ⊆ X and w ∈ A∗,

JY K(w) = ϕT
Y (w).

Example 4.5. Consider the following LTS’s.

r0
a

a
r6 s0

a
a

r1
b b

s1
b

s2
b

r2
c

r3
d

s3
c d

s4
d d

r4 r5 s5 s6 s7 s8

It is easy to see that the set of all traces corresponding to r0 and s0 are equal:

T (r0) = T (s0) = {ε, a, ab, abc, abd}

therefore, they are trace-equivalent, according to Definition 4.3. Next we depict part of

the determinizations of the LTS’s above (omitting outputs, since they are all 1):

Final semantics for decorated traces 21

{r0}
a

{s0}
a

{r1, r6}

b

{s1, s2}

b

{r2, r3}
c d

{s3, s4}
c d

{r4} {r5} {s5} {s6, s7, s8}

Fig. 7. Trace determinizations when starting from {r0} and {s0}.

It is easy to observe that the generated Moore automata are bisimilar, therefore by (12)

it follows that r0 and s0 are indeed trace-equivalent.

4.4. Complete trace semantics

In this section we model coalgebraically complete trace semantics. Similar to the previous

sections, we also show that the coalgebraic representation of this semantics is equivalent

to the original definition in (van Glabbeek 2001).

Consider an LTS (X, δ : X → (PωX)A). Complete trace semantics identifies states

x ∈ X based on their set of complete traces. Recall that a trace w ∈ A∗ of x is complete

if and only if x can perform w and reach a deadlock state y or, equivalently,

(∃y ∈ X) . x
w
−→ y ∧ I(δ(y)) = ∅.

The difference with the trace semantics in Section 4.3 is that now an external observer

detects stagnation, or deadlock states of a system.

Formally, complete trace equivalence is defined as follows.

Definition 4.4 (CT -equivalence (Aceto, Fokkink & Verhoef 1999)). Let

(X, δ : X → (PωX)A) be an LTS and x, y ∈ X two states. States x and y are com-

plete trace equivalent (CT -equivalent) if and only if CT (x) = CT (y), where

CT (x) = {w ∈ A∗ | ∃x′ ∈ X. x
w
−→ x′ ∧ I(δ(x′)) = ∅}.

In what follows we instantiate the constituents of Fig. 2 in order to provide the coalgebraic

modelling of complete trace semantics.

The distinction between deadlock states and states that can still execute actions a ∈ A

is made by the function oCT defined as:

oCT : (PωX)A → 2

oCT (ϕ) =

{

1 if I(ϕ) = ∅

0 otherwise

As in the previous section, BCT = 2 and the final coalgebra is the set of languages 2A
∗

.

Consider, for example, the following LTS:

p1 p0
a

a

p2

b

Bonchi, Bonsangue, Caltais, Rutten, Silva 22

Note that (ab)∗a is a complete trace of p0, as

p0
a
−→ p2

b
−→ p0

a
−→ p2

b
−→ . . .

b
−→ p0

a
−→ p1 (13)

where p1 cannot perform any further action.

The above behaviour, described in terms of transitions between states of the Moore

automaton derived according to the generalized powerset construction, can be depicted

as follows:

{p0}
a
−→ {p1, p2}

b
−→ {p0}

a
−→ {p1, p2}

b
−→ . . .

b
−→ {p0}

a
−→ {p1, p2}

where p1 is a deadlock state and p2 is not.

Intuitively, we can state that (ab)∗a is a complete trace of {p0}, as the deadlock state

p2 ∈ {p1, p2} can be reached from {p0} by performing (ab)∗a (see (13)).

Therefore, given Y1, Y2 ⊆ X and w ∈ A∗ such that Y1
w
−→ Y2, we observe that w is a

complete trace of Y1 whenever there exists a deadlock state y ∈ Y2. Otherwise, w is not

a complete trace of Y1.

In the coalgebraic modelling, the above observations regarding (non)stagnating states

appear in the definition of the output function o : (PωX)A → 2:

o(Y) =

{

1 if (∃y ∈ Y) . I(δ(y)) = ∅

0 otherwise

According to Definition 4.4, in order for two processes x, y ∈ X to be CT -equivalent,

CT (x) = CT (y) must hold.

Recall that t(Y)(w) stands for the set of all states y that can be reached via transitions

x
w
−→ y, for some x ∈ Y . We further represent the set CT (x) associated to a state x ∈ X

in the initial LTS by means of the function ϕCT
Y : A∗ → 2 :

ϕCT
Y (w) =

{

1 if (∃y ∈ t(Y)(w)) . I(δ(y)) = ∅

0 otherwise

The set of complete traces corresponding to a state x ∈ X is modelled by ϕCT
{x}.

Proving that the coalgebraic modelling and the standard definition of complete trace

semantics coincide consists in showing that

(∀x ∈ X) . J{x}K = ϕCT
{x}. (14)

Equality (14) follows directly from the following theorem.

Theorem 4.4. Let (X, δ : X → (PωX)A) be an LTS. Then for all Y ⊆ X and w ∈ A∗,

JY K(w) = ϕCT
Y (w).

Example 4.6. Consider the following two LTS’s.

u0
a b

v0
a

b

u2 u1
a

a v4 v1
a

a

v3

a

a

u3 v2

Final semantics for decorated traces 23

The set of complete traces of states u0 and v0 are equal:

CT (u0) = CT (v0) = {a} ∪ {ban | n ∈ N, n ≥ 1}.

Therefore, by Definition 4.4, u0 and v0 are CT -equivalent.

We next show how one can prove equivalence using the coalgebraic modelling of com-

plete trace semantics introduced in this section or, more precisely, the generalized de-

terminization of the LTS’s above for complete traces, of which we show a fragment in

Fig. 8.

{u0}
a

b

0 {v0}
a

b

0

{u2} {u1}
a

0 {v4} {v1}
a

0

1 {u1, u3}

a

1 1 {v2, v3}
a

1

{v1, v2}

a

1

Fig. 8. Complete trace determinization when starting from {u0}, {v0}.

In Fig. 8, states such as {u2} or {v2, v3} output 1 as they contain deadlock states in

the initial LTS’s, namely u2 and v2. Therefore, {u2} and {v2, v3} are at the end of paths

corresponding to complete traces of the shape a and ban(n ≥ 1), respectively. It is easy to

see that the top states of the systems in Fig. 8 recognize the same sets of complete traces

as u0 and v0. Moreover, the states {u0} and {v0} of the systems above are behaviourally

equivalent, as ({u0}, {v0}) is contained in the following Moore bisimulation relation:

R = { ({u0}, {v0}), ({u2}, {v4}), ({u1}, {v1}),

({u1, u3}, {v2, v3}), ({u1, u3}, {v1, v2}) }.

Therefore, one can prove complete trace equivalence of u0 and v0 by employing Moore

bisimulations. Next, consider the following two LTS’s

w1 w0
a

a w′
0 a

Observe that w0 and w′
0 are trace equivalent (according to Definition 4.3), as they output

the same sets of traces

T (w0) = T (w
′
0) = {ε} ∪ {a

n | n ∈ N, n ≥ 1}

but they are not complete trace equivalent (according to Definition 4.4), as w′
0 can never

reach a deadlock state, whereas w0 can reach the stagnating state w1.

The complete trace determinization contains the sub-automata starting from states

{w0} and {w
′
0} depicted in Fig. 9:

Bonchi, Bonsangue, Caltais, Rutten, Silva 24

0 1 0

{w0}
a
{w0, w1}

a

{w′
0} a

Fig. 9. Complete trace determinization when starting from {w0}, {w
′
0}.

States {w0} and {w′
0} are not behaviourally equivalent, since {w0, w1} outputs 1,

whereas {w′
0} never reaches a state with this output. Hence, as expected, we will never

be able to build a bisimulation containing states {w0} and {w′
0}.

4.5. Possible-futures semantics

In what follows we provide a coalgebraic modelling of possible-futures semantics and

show that it coincides with the original definition in (van Glabbeek 2001). We also give

an example on how the generalized powerset construction and Moore bisimulations (up-

to) can be used in order to reason on possible-futures equivalence.

Let (X, δ : X → (PωX)A) be an LTS and recall that a possible future of x ∈ X is a

pair 〈w, T 〉 ∈ A∗×P(A∗) such that x
w
−→ y and T = T (y) (where T (y) is the set of traces

of y, as in Section 4.3).

Possible-futures semantics identifies states that can trigger the same sets of traces

w ∈ A∗ and moreover, by executing such w, they reach trace-equivalent states.

Definition 4.5 (PF-equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A)

be an LTS and x, y ∈ X two states. States x and y are possible-futures equivalent (PF -

equivalent) if and only if PF(x) = PF(y), where

PF(x) = {〈w, T 〉 ∈ A∗ × P(A∗) | ∃x′ ∈ X. x
w
−→ x′ ∧ T = T (x′)}.

The ingredients of Fig. 2 are instantiated as follows.

The output function ōI = ōPF , which refers to the set of traces enabled by states

x ∈ X of the LTS, is defined as

ōPF : (PωX)A → Pω(PA
∗)

ōPF (ϕ) = {a � T (ϕ(a)) | ϕ(a) 6= ∅}, where

T (ϕ(a)) =
⋃

y∈ϕ(a) T (y)

a � {wi | i ∈ I} = {awi | i ∈ I}.

For ϕ = δ(x), with x ∈ X , it holds that

ōPF(δ(x)) = {{a� T (δ(x)(a)) | δ(x)(a) 6= ∅}}

= {{aw | δ(x)(a) 6= ∅ ∧ ∃y ∈ δ(x)(a) . w ∈ T (y)}}

= T (x).

We consider Pω(PA
∗) instead of just PA∗ for the codomain of ōPF in order to dis-

tinguish between the traces of states y ∈ Y “collected” within states Y of the derived

Moore automata (see Remark 4.1 and Example 4.3 in Section 4.1 for more details on a

similar approach for the case of ready semantics).

Final semantics for decorated traces 25

Consequently,

BI = BPF = Pω(PA
∗)

and the behaviour of a state x ∈ X in the final coalgebra is given in terms of a function

J{x}K : A∗ → Pω(PA
∗)

which, intuitively, for each w ∈ A∗ returns the set of traces corresponding to states y ∈ X

such that x
w
−→ y.

Next we want to show that for each x ∈ X , J{x}K and PF(x) coincide.

First we choose to equivalently represent PF(x) ∈ Pω(A
∗ × P(A∗)) – the set of all

possible futures of a state x ∈ X – in terms of ϕPF
{x}, where

ϕPF
Y : A∗ → Pω(PA

∗)

ϕR
Y (w) = {T (y) | y ∈ t(Y)(w)}

(note that Pω(A
∗×P(A∗)) and (Pω(PA

∗))A
∗

are isomorphic structures). Therefore, show-

ing the equivalence between the coalgebraic and the original definition of possible-futures

semantics reduces to proving that

(∀x ∈ X) . J{x}K = ϕPF
{x}. (15)

Equality (15) is a direct consequence of the following theorem:

Theorem 4.5. Let (X, δ : X → (PωX)A) be an LTS. Then for all Y ⊆ X and w ∈ A∗,

JY K(w) = ϕPF
Y (w).

Example 4.7. Consider the following LTS’s.

p0
a a

p1
b

a
a

p2
a

a

p3 p4
b

c

p5
c

p6
c

p7
c

b

p8 p9

d

p10
e

p11

d

p12
e

p13

p14 p15 p16 p17

q0
a a

q1
a

a

q2
a

a
b

q3
b

c

q4
c

q5
c

q6
c

b
q7

q8 q9

d

q10
e

q11

d

q12
e

q13

q14 q15 q16 q17

Bonchi, Bonsangue, Caltais, Rutten, Silva 26

{p0}

a

{T (p0)}

{p1, p2}

b
a

{T (p1), T (p2)}

{T (p4), T (p5), T (p6), T (p7)} {p4, p5, p6, p7}

b
c

{p3} {∅}

{∅} {p8, p13} {p9, p10, p11, p12}
d

e

{T (p9), T (p10), T (p11), T (p12)}

{p14, p16} {p15, p17}

{∅} {∅}

{q0}

a

{T (q0)}

{q1, q2}

b
a

{T (q1), T (q2)}

{T (q3), T (q4), T (q5), T (q6)} {q3, q4, q5, q6}

b
c

{q7} {∅}

{∅} {q8, q13} {q9, q10, q11, q12}
d

e

{T (q9), T (q10), T (q11), T (q12)}

{q14, q16} {q15, q17}

{∅} {∅}

Fig. 10. Possible-futures determinization when starting from {p0}, {q0}.

Note that p0 and q0 are possible-futures equivalent, as the traces both can follow are

sequences w ∈ {a, ab, aa, aab, aac, aacd, aace} and moreover, by triggering the same w

they reach states with equal sets of traces. The equivalence between p0 and q0 can be

formally captured in terms of a bisimulation relationR on the associated Moore automata

(generated according to the generalized powerset construction) depicted in Fig. 10, where

R = { ({p0}, {q0}), ({p1, p2}, {q1, q2}), ({p3}, {q7}),

({p5, p5, p6, p7}, {q3, q4, q5, q6}), ({p8, p13}, {q8, q13}),

({p9, p10, p11, p12}, {q9, q10, q11, q12}),

({p14, p16}, {q14, q16}), ({p15, p17}, {q15, q17}) }.

It is easy to check that R is a bisimulation, since both automata in Fig. 10 have the same

branching structure, the corresponding transitions are labelled the same, and the outputs

Final semantics for decorated traces 27

associated to the related states are equal. (Note that equality of the outputs – which are

sets of traces – can be established using the framework introduced in Section 4.3.)

4.6. Ready trace semantics

In this section we provide a coalgebraic modelling of ready trace semantics by employing

the generalized powerset construction. Similarly to the other semantics tackled so far,

we show a) that the coalgebraic representation coincides with the original definition

in (van Glabbeek 2001) and b) how to reason on ready trace equivalence in terms of

Moore bisimulations (up-to).

We proceed by recalling some basic concepts.

Intuitively, ready trace semantics identifies two states if and only if they can follow

the same traces w, and moreover, the corresponding (pairwise-taken) states determined

by such w’s have equivalent one-step behaviours. Formally, the definition is as follows:

Definition 4.6 (RT -equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A)

be an LTS and x, y ∈ X two states. States x and y are ready trace equivalent (RT -

equivalent) if and only if RT (x) = RT (y), where

RT (x) = { I0a1I1a2 . . . anIn ∈ Pω(A) × (A× Pω(A))
∗ |

(∃x1, . . . , xn ∈ X) . x0
a1−→ x1

a2−→ . . .
an−−→ xn ∧

(∀i = 1, . . . , n) . Ii = I(δ(xi)) }.

We call an element of RT (x) a ready trace of x.

As an element of novelty, note that in the current setting (and for the case of failure

trace semantics in Section 4.7 as well), the instantiation of the ingredients in Fig. 2 is

performed in the context of “preprocessed” versions of the original LTS’s, enriched with

some additional information.

On short, the preprocessing process consists in encoding within transitions of shape

x
a
−→ y also the set of actions ready (respectively, failed) to be triggered by x. Namely,

x
〈a,I(δ(x))〉
−−−−−−−→ y (respectively, x

〈a,F 〉
−−−→ y where F = Fail(δ(x))). This will eventually

enable the construction of Moore automata “collecting” states that have been reached

not only via one-step transitions labelled the same, but also from processes sharing the

same sets of ready (respectively, failure) actions.

Each LTS (X, δ : X → (PωX)A) is associated a unique coalgebra (X, δ̄ : X → (PωX)Ā),

where

Ā = A× Pω(A)

δ̄(x)(〈a, Ix〉) =

{

δ(x)(a) if Ix = I(δ(x))

∅ otherwise

(See Example 4.8 for a more concrete insight on the preprocessing procedure and its

effect.)

Using the new construction (X, δ̄ : X → (PωX)Ā) as a starting point, defining the

constituents of Fig. 2 follows the recipe described in Section 4.1.

The output function ōI = ōRT provides information with respect to the actions ready

Bonchi, Bonsangue, Caltais, Rutten, Silva 28

to be triggered by a state x ∈ X as a first step:

oRT : (PωX)Ā → Pω(PωA)

oRT (δ̄(x)) = {I(δ(x))}.

Consequently, we define

BI = BRT = Pω(PωA)

o(Y) =
⋃

y∈Y ōRT (δ̄(y))

t(Y)(〈a, S〉) =
⋃

y∈Y δ̄(y)(〈a, S〉).

Proving that the coalgebraic modelling of ready trace semantics coincides with the

original definition in (van Glabbeek 2001) consists in showing that for x0 ∈ X , there is

a one-to-one correspondence between J{x0}K and RT (x0). Intuitively, each behaviour

J{x0}K(w̄) =
⋃

j∈J

{Ijn}, where w̄ = 〈a1, I0〉 . . . 〈an, In−1〉 ∈ (Ā)∗

corresponds to a set of ready traces of shape

I0a1I1a2 . . . In−1anI
j
n ∈ RT (x0)

such that

(∃x1, . . . , xn ∈ X) . x0
a1−→ x1

a2−→ . . .
an−−→ xn ∧

(∀i = 1, . . . , n− 1) . Ii = I(δ(xi)) ∧

Ijn = I(δ(xn)).

And similarly the other way around.

Given a state x ∈ X we choose to represent RT (x) ∈ P(Pω(A) × (A × Pω(A))
∗) =

P(Pω(A) × (Ā)∗) in terms of a function ϕRT
{x} such that

ϕRT
Y : (Ā)∗ → Pω(PωA)

ϕRT
Y (w̄) = {Z ⊆ A | ∃y ∈ t(Y)(w̄) ∧ Z = I(δ(y))}

(note that P(Pω(A)× (Ā)∗) and (Pω(PωA))
(Ā)∗ are isomorphic structures).

At this point, showing the equivalence between the coalgebraic and the original defi-

nition of ready trace semantics consists in proving that

(∀x ∈ X) . J{x}K = ϕRT
{x} . (16)

Equality (17) is a direct consequence of the following theorem:

Theorem 4.6. Let (X, δ : X → (PωX)A) be an LTS and (X, δ̄ : X → (PωX)Ā) the

corresponding LTS generated according to the “preprocessing” procedure. Then for all

Y ⊆ X and w̄ ∈ (Ā)∗, JY K(w̄) = ϕRT
Y (w̄).

Proof. The proof follows by induction on words w̄ ∈ (Ā)∗ (in the same fashion with

the proof of Theorem 4.1).

Final semantics for decorated traces 29

Example 4.8. Consider the following two systems:

p0
a a

q0
a a

p1
b

c

p2
c

f
q1

b
c

q2
c

f

p3 p4

d

p5
e

p6 q3 q4
e

q5

d

q6

p7 p8 q7 q8

Note that they are not ready trace equivalent as, for example, {a}a{c, f}c{e} is a ready

trace of p0 but not of q0.

By assuming only the generalized powerset construction (starting with {p0}, {q0}) as in

Section 4.1, without the “preprocessing” step, one gets the following (obviously) bisimilar

Moore automata:

{p0}

a

{{a}}

{p1, p2}
b

c
f

{{b, c}, {c, f}}

{∅} {p3} {p4, p5}
d

e

{p6} {∅}

{p7} {p8} {{d}, {e}}

{∅} {∅}

{q0}

a

{{a}}

{q1, q2}
b

c
f

{{b, c}, {c, f}}

{∅} {q3} {q4, q5}
d

e

{q6} {∅}

{q8} {q7} {{d}, {e}}

{∅} {∅}

which would indicate that the initial LTS’s are behavioural equivalent (which is false!).

The preprocessing of p0, q0 generates the automata (with actions in Ā = A×Pω(A)) in

Fig. 11. The determinization would therefore derive the two Moore automata in Fig. 12.

Note that the systems in Fig. 12 are not behaviourally equivalent as, for example,

both states {p4} and {q4} can be reached via transitions labelled the same, but they

output different sets of ready actions – namely {{d}} and {{e}}, respectively. Therefore

we conclude that p0 and q0 are not ready trace equivalent.

Bonchi, Bonsangue, Caltais, Rutten, Silva 30

p0
〈a,{a}〉 〈a,{a}〉

q0
〈a,{a}〉 〈a,{a}〉

p1
〈b,{b,c}〉

〈c,{b,c}〉

p2

〈c,{c,f}〉
〈f,{c,f}〉

q1
〈b,{b,c}〉

〈c,{b,c}〉

q2

〈c,{c,f}〉
〈f,{c,f}〉

p3 p4

〈d,{d}〉

p5

〈e,{e}〉

p6 q3 q4

〈e,{e}〉

q5

〈d,{d}〉

q6

p7 p8 q7 q8

Fig. 11. Preprocessed versions of p0, q0.

The purpose of enriching the transition labels with sets of ready actions is to collect in

a Moore state only states of the initial LTS’s that have been reached from “parents” with

the same one-step (initial) behaviour. Or dually, to distinguish between states that have

“parents” ready to trigger different sets of actions. This way one avoids the unfortunate

situation of encapsulating, for example, the states p4, p5, respectively q4, q5, fact which

eventually would lead to providing a positive answer with respect to the ready trace

equivalence of p0 and q0.

In other words, the preprocessing step is one of the ingredients needed in order to guar-

antee that whenever two states of an LTS are ready trace equivalent, the (pairwise-taken)

states determined by the executions of a given trace have the same initial behaviour.

Example 4.9. In what follows we show an example on how our framework can be used

in order to reason on ready trace equivalence. Assume the following two systems:

p0
a a

q0
a

p1

b

p2

b

q1
b b

p3
c

p3

d

q2
c

q3

d

p5 p6 q4 q5

Observe that p0 and q0 are ready trace equivalent, as:

RT (p0) = RT (q0) = { {a}, {a}a{b}, {a}a{b}b{c},

{a}a{b}b{d}, {a}a{b}b{c}c ∅, {a}a{b}b{d}d ∅ }.

It is straightforward to check that the Moore automata (starting with {p0}, {q0}) in

Fig. 13, derived from the corresponding “preprocessed” versions of the initial LTS’s, are

bisimilar. Therefore, p0 and q0 are ready trace equivalent.

Final semantics for decorated traces 31

{p3} {∅}

{p4}
〈d,{d}〉

{p7}

{{a}} {{d}} {∅}

{p0}
〈a,{a}〉

{p1, p2}

〈{b,c},b〉

〈{b,c},c〉

〈{c,f},c〉

〈{c,f},f〉

{{e}} {∅}

{{b, c}, {c, f}} {p5}
〈e,{e}〉

{p8}

{p6} {∅}

{q3} {∅}

{q4}
〈e,{e}〉

{q7}

{{a}} {{e}} {∅}

{q0}
〈a,{a}〉

{q1, q2}

〈{b,c},b〉

〈{b,c},c〉

〈{c,f},c〉

〈{c,f},f〉

{{d}} {∅}

{{b, c}, {c, f}} {q5}
〈d,{d}〉

{q8}

{q6} {∅}

Fig. 12. Determinization of the preprocessed LTS’s starting from {p0}, {q0}.

{{a}} {p0}

〈a,{a}〉

{q0}

〈a,{a}〉

{{a}}

{{b}} {p1, p2}

〈b,{b}〉

{q1}

〈b,{b}〉

{{b}}

{{c}, {d}} {p3, p4}

〈c,{c}〉 〈d,{d}〉

{q2, q3}

〈c,{c}〉 〈d,{d}〉

{{c}, {d}}

{p5} {p6} {q4} {q5}

{∅} {∅} {∅} {∅}

Fig. 13. Determinization of the preprocessed LTS’s, starting from {p0}, {q0}.

Bonchi, Bonsangue, Caltais, Rutten, Silva 32

4.7. Failure trace semantics

In this section we provide a coalgebraic modelling for the last semantics of our suite –

namely, failure trace semantics. We also show the equivalence between the coalgebraic

representation and the original definition in (van Glabbeek 2001), and give examples on

how to use the framework for reasoning on failure traces.

Intuitively, failure trace semantics identifies states that can trigger the same traces w,

and moreover, the (pairwise-taken) intermediate states occurring during the execution

of a such w fail triggering the same (sets of) actions.

Formally, this can be concluded from Corollary 5.1 in (van Glabbeek 2001), as follows:

Definition 4.7 (FT -equivalence). Let (X, δ : X → (PωX)A) be an LTS and x, y ∈ X

two states. States x and y are failure trace equivalent (FT -equivalent) if and only if

FT (x) = FT (y), where

FT (x) = { F0a1F1a2 . . . anFn ∈ Pω(A)× (A× Pω(A))
∗ |

(∃x1, . . . , xn ∈ X) . x0
a1−→ x1

a2−→ . . .
an−−→ xn ∧

(∀i = 1, . . . , n) . Fi ∈ Fail(δ(xi)) }.

We call an element of FT (x) a failure trace of x.

Similarly to the case of ready trace semantics (see Section 4.6), each LTS (X, δ : X →

(PωX)A) is uniquely associated a coalgebra (X, δ̄ : X → (PωX)Ā), where

Ā = A× Pω(Pω(A))

δ̄(x)(〈a, Fx〉) =

{

δ(x)(a) if Fx = Fail(δ(x))

∅ otherwise

Note that in the setting of failure trace semantics, the “preprocessing” above lifts

transitions of shape x
a
−→ y (in the initial LTS) to transitions x

〈a,Fx〉
−−−−→ y, where Fx =

Fail(δ(x)). This way, each (“structured”) state of the Moore automata derived according

to the generalized powerset construction will consist of states (of the initial LTS) that

have been reached not only via one-step transitions labelled the same, but also from

processes sharing the same sets of failure actions. This will eventually guarantee a sound

extension of failure trace equivalence of states in X (as in Definition 4.7) to equivalence

of “structured” states in PωX of the Moore systems.

From this point onwards, the coalgebraic modelling of failure traces follows the pattern

of the previous sections.

The ingredients of Fig. 2 are instantiated as follows. We start with the “preprocessed”

system (X, δ̄ : X → (PωX)Ā) and define the output function ōI = ōFT revealing infor-

mation with respect to the actions refused to be triggered by a state x ∈ X as a first

step:

oFT : (PωX)Ā → Pω(PωA)

oFT (δ̄(x)) = Fail(δ(x)) = {Z ⊆ A | Z ∩ I(δ(x)) = ∅}.

Final semantics for decorated traces 33

We further define

BI = BFT = Pω(PωA)

o(Y) =
⋃

y∈Y ōFT (δ̄(y))

t(Y)(〈a, S〉) =
⋃

y∈Y δ̄(y)(〈a, S〉).

Next we show that the coalgebraic modelling of failure trace semantics coincides

with the original definition in (van Glabbeek 2001), by exploiting the one-to-one cor-

respondence between J{−}K and FT (−). Given a state x ∈ X we represent FT (x) ∈

P(Pω(A) × (A× Pω(A))
∗) by means of ϕFT

{x}, where

ϕFT
Y : (Ā)∗ → Pω(PωA)

ϕFT
Y (w̄) = {Z ⊆ A | ∃y ∈ t(Y)(w̄) ∧ Z ∈ Fail(δ(y))}

(recall that Ā = A × Pω(Pω(A)), and note that P(Pω(A) × (A × Pω(A))
∗) and

(Pω(PωA))
(Ā)∗ are isomorphic structures). Therefore we have to show that

(∀x ∈ X) . J{x}K = ϕRT
{x} . (17)

Equality (17) is a direct consequence of the following theorem:

Theorem 4.7. Let (X, δ : X → (PωX)A) be an LTS and (X, δ̄ : X → (PωX)Ā) the

corresponding LTS generated according to the “preprocessing” procedure. Then for all

Y ⊆ X and w̄ ∈ (Ā)∗, JY K(w̄) = ϕFT
Y (w̄).

Example 4.10. Consider again the automata in Example 4.8 in Section 4.6:

p0
a a

q0
a a

p1
b

c

p2
c

f
q1

b
c

q2
c

f

p3 p4

d

p5
e

p6 q3 q4
e

q5

d

q6

p7 p8 q7 q8

Observe that they are not failure trace equivalent as, for example,

{b, c, d, e, f}a{a, d, e, f}c{a, b, c, e, f}d{a, b, c, d, e, f} is a failure trace of p0 but not

of q0.

We further show that our framework provides the same answer with respect to the

equivalence of p0 and q0.

First, recall from Section 4.2 that for the simplicity of notation, we write [a1a2 . . . an]

to denote the set of all non-empty subsets Z ⊆ A, where A = {a1, a2, . . . , an}.

The “preprocessed” LTS’s corresponding to p0, q0 are depicted in Fig. 14.

Consequently, the associated Moore automata (starting with {p0}, {q0}) derived ac-

cording to the generalized powerset construction are as follows are as illustrated in Fig. 15.

It is easy to see that the automata in Fig. 15 are not bisimilar as, for example, both {p4}

and {q4} are reached via transitions labelled the same, but have different outputs. There-

fore we conclude that p0 and q0 are not failure trace equivalent.

Note that the generalized powerset construction applied on the initial not “prepro-

Bonchi, Bonsangue, Caltais, Rutten, Silva 34

p0
〈a,[bcdef]〉 〈a,[bcdef]〉

q0
〈a,[bcdef]〉 〈a,[bcdef]〉

p1
〈b,[adef]〉

〈c,[adef]〉

p2

〈c,[abde]〉
〈f,[abde]〉

q1
〈b,[adef]〉

〈c,[adef]〉

q2

〈c,[abde]〉
〈f,[abde]〉

p3 p4

〈d,[abcef]〉

p5

〈e,[abcdf]〉

p6 q3 q4

〈e,[abcdf]〉

q5

〈d,[abcef]〉

q6

p7 p8 q7 q8

Fig. 14. Preprocessed versions of p0, q0.

{p3} [abcdef]

{p4}
〈d,[abcef]〉

{p7} [abcdef]

[abcef]

{p0}
〈a,[bcdef]〉

{p1, p2}

〈b,[adef]〉

〈c,[adef]〉

〈c,[abde]〉

〈f,[abde]〉

[abcdf]

[bcdef]
[adef] ∪

[abde]
{p5}

〈e,[abcdf]〉
{p8} [abcdef]

{p6} [abcdef]

{q3} [abcdef]

{q4}
〈e,[abcdf]〉

{q7} [abcdef]

[abcdf]

{q0}
〈a,[bcdef]〉

{q1, q2}

〈b,[adef]〉

〈c,[adef]〉

〈c,[abde]〉

〈f,[abde]〉

[abcef]

[bcdef]
[adef] ∪

[abde]
{q5}

〈d,[abcef]〉
{q8} [abcdef]

{q6} [abcdef]

Fig. 15. Determinization of the preprocessed LTS’s starting from {p0}, {q0}.

Final semantics for decorated traces 35

cessed” LTS’s p0, q0 would derive two bisimilar Moore automata, similarly to the case of

ready trace equivalence (in Section 4.6), with the only difference that the output function

is defined as o(Y) =
⋃

y∈Y

Fail(δ(y)) (instead of o(Y) =
⋃

y∈Y

{I(δ(y))}).

In a nutshell. Next we provide a more compact overview on the coalgebraic machineries

introduced in Section 4.1–Section 4.7. This also in order to emphasize on the generality

and uniformity of our coalgebraic framework.

Recall that for each of the decorated trace semantics we first instantiate the con-

stituents of Fig. 2 (summarizing the generalized powerset construction). Also, recall that

for ready trace and failure trace a preprocessing of the original LTS’s was required before

applying the determinization procedure. All this, together with the definitions of func-

tions ϕI
Y equivalently capturing the set-theoretic characterizations of all the semantics

under consideration are illustrated in Fig. 16, for an arbitrary LTS (X, δ : X → (PωX)A).

Once the ingredients of Fig. 2 and ϕI
Y are defined, we formalize the equivalence be-

tween the coalgebraic modelling of I-semantics (for I ranging over T , CT ,F ,R,PF ,RT

and FT) and its original definition in (van Glabbeek 2001) in terms of the (generic)

Theorem 4.8.

Theorem 4.8. Let (X, δ : X → (PωX)A) be an LTS. [For ready trace and failure trace:

let (X, δ̄ : X → (PωX)Ā) be the corresponding LTS generated according to the “prepro-

cessing” procedure.] Then for all Y ⊆ X and w ∈ A∗ [for ready trace and failure trace:

w ∈ (Ā)∗], JY K(w) = ϕI
Y (w).

For each of the semantics under consideration, the proof of Theorem 4.8 follows by

induction on words w ∈ A∗ (respectively w ∈ (Ā)∗). For more details see the proof of

Theorem 4.1 in Section 4.1.

Concrete examples on how to use the coalgebraic frameworks are provided for each of

the decorated trace semantics. We show how to (apply the preprocessing procedure and)

derive determinizations of LTS’s in terms of Moore automata, which eventually are used

to reason on the corresponding equivalences in terms of Moore bisimulations (up-to).

5. Canonical representatives

Given a decorated LTS (X, 〈oI , id〉◦δ), we showed in the previous section how to construct

a determinized decorated LTS (PωX, 〈o, t〉). The map J−K : PωX → BA∗

I provides us with

a canonical representative of the behaviour of each state in PωX . (A represents the –

possibly enriched – action alphabet.) The image (C, δ′) of (PωX, 〈o, t〉), via the map J−K,

can be viewed as the minimization w.r.t. the equivalence I.

Recall that the states of the final coalgebra (BA∗

I , 〈ǫ, (−)a〉) are functions ϕ : A∗ → BI

and that their decorations and transitions are given by the functions ǫ : BA∗

I → BI and

(−)a : BA∗

I → (BA∗

I)A, defined in Section 2. The states of the canonical representative

(C, δ′) are also functions ϕ : A∗ → BI , i.e., C ⊆ BA∗

I . Moreover, the function δ′ : C →

BI × CA is simply the restriction of 〈ǫ, (−)a〉 to C, that means δ′(ϕ) = 〈ϕ(ǫ), (ϕ)a〉 for

all ϕ ∈ C.

Bonchi, Bonsangue, Caltais, Rutten, Silva 36

I preprocessing BI ōI ϕI
Y

R no Pω(PωA)
oR : (PωX)A → Pω(PωA)

oR(ϕ) = {I(ϕ)}

ϕR
Y : A∗ → Pω(PωA)

ϕR
Y (w) = {Z ⊆ A | ∃y ∈ t(Y)(w) ∧ Z = I(δ(y))}

F no Pω(PωA)
oF : (PωX)A → Pω(PωA)

oF (ϕ) = Fail(ϕ)

ϕF
Y : A∗ → Pω(PωA)

ϕF
Y (w) = {Z ⊆ A | ∃y ∈ t(Y)(w) ∧ Z ∈ Fail(δ(y))}

T no 2
oT : (PωX)A → 2

oT (ϕ) = 1

ϕT
Y : A∗ → 2

ϕT
Y (w) = 1 if (∃y ∈ Y, y′ ∈ X) . y

w
−→ y′

CT no 2

ōCT : (PωX)A → 2

ōCT (ϕ) =

{

1 if I(ϕ) = ∅

0 otherwise

ϕCT
Y : A∗ → 2

ϕCT
Y (w) =

{

1 if (∃y ∈ t(Y)(w)) . I(δ(y)) = ∅

0 otherwise

PF no Pω(PA
∗)

ōPF : (PωX)A → Pω(PA
∗)

ōPF (δ(x)) = T (x)

ϕPF
Y : A∗ → Pω(PA

∗)

ϕR
Y (w) = {T (y) | y ∈ t(Y)(w)}

RT

yes

Ā = A× Pω(A)

δ̄(x)(〈a, Ix〉) =
{

δ(x)(a) if Ix = I(δ(x))

∅ otherwise

Pω(PωA)
oRT : (PωX)Ā → Pω(PωA)

oRT (δ̄(x)) = {I(δ(x))}

ϕRT
Y : (Ā)∗ → Pω(PωA)

ϕRT
Y (w̄) = {Z ⊆ A | ∃y ∈ t(Y)(w̄) ∧ Z = I(δ(y))}

FT

yes

Ā = A× Pω(Pω(A))

δ̄(x)(〈a,Fx〉) =
{

δ(x)(a) if Fx = Fail(δ(x))

∅ otherwise

Pω(PωA)
oFT : (PωX)Ā → Pω(PωA)

oFT (δ̄(x)) = Fail(δ(x))

ϕFT
Y : (Ā)∗ → Pω(PωA)

ϕFT
Y (w̄) = {Z ⊆ A | ∃y ∈ t(Y)(w̄) ∧ Z ∈ Fail(δ(y))}

Fig. 16. The coalgebraic framework in a nutshell.

Finally, it is interesting to observe that BA∗

I carries a semilattice structure (inherited by

BI) and that J−K : PωX → BA∗

I is a semilattice homomorphism. From this observation,

it is immediate to conclude that also C is a semilattice, but it is not necessarily freely

generated, i.e., it is not necessarily a powerset.

6. Conclusions and future work

In this paper, we have proved that the coalgebraic characterizations of ready, failure,

(complete) trace, possible-futures, ready trace and failure trace semantics are equivalent

with the corresponding standard definitions. More precisely, we have shown that for a

Final semantics for decorated traces 37

state x in a labelled transition system, the coalgebraic canonical representative J{x}K,

given by determinization and finality, coincides with the classical semantics I(x), for

I ranging over T , CT ,F ,R,PF ,RT and FT , representing the traces, complete traces,

ready pairs, failure pairs, possible futures, ready traces and respectively failure traces

of x. In addition, we have illustrated how to reason about decorated trace equivalence

using coinduction, by constructing suitable bisimulations up-to context. This is a very

efficient sound and complete proof technique, and represents an important step towards

automated reasoning, as it opens the way for the use of, for instance, coinductive theorem

provers such as CIRC (Roşu & Lucanu 2009).

A similar idea of system determinization was also applied in (Cleaveland & Hennessy

1993), in a non-coalgebraic setting, for the case of testing semantics where must testing

coincides with failure semantics in the absence of divergence. A coalgebraic character-

ization of the spectrum was also attempted in (Monteiro 2008), in a somewhat ad hoc

fashion. Connections with these works are still to be explored.

There are several possible directions for future works. One option is to investigate to

what extent the coalgebraic treatment of decorated trace semantics can be applied in the

context of probabilistic systems.

We would also like to understand how our approach can be combined with (Boreale &

Gadducci 2006) to obtain a coinductive approach to denotational (linear-time) semantics

of different kinds of processes calculi.

Nevertheless, it is worth mentioning our intention of providing coalgebraic modellings

for the remaining semantics of the spectrum in (van Glabbeek 2001), and maybe come up

with a new representation of possible-futures semantics. The latter is motivated by the

current drawback of storing for each state of the LTS’s the corresponding set of traces. In

this context it might be more appropriate considering the definition of possible-futures

semantics given in terms of nested bisimulations (Hennessy & Milner 1985), rather than

the set-theoretic one in (van Glabbeek 2001).

References

Aceto, L., Fokkink, W. & Verhoef, C. (1999), Structural operational semantics, in ‘Handbook of

Process Algebra’, Elsevier, pp. 197–292.
Awodey, S. (2010), Category theory, Oxford Logic Guides, Oxford University Press.
Bonchi, F., Bonsangue, M., Caltais, G., Rutten, J. & Silva, A. (2012), Final semantics for deco-

rated traces. To appear in ENTCS.
Bonchi, F. & Pous, D. (2013), Checking NFA equivalence with bisimulations up to congruence.

To appear in POPL.
Boreale, M. & Gadducci, F. (2006), ‘Processes as formal power series: A coinductive approach

to denotational semantics’, Theor. Comput. Sci. 360(1-3), 440–458.
Cleaveland, R. & Hennessy, M. (1993), ‘Testing equivalence as a bisimulation equivalence’, Formal

Asp. Comput. 5(1), 1–20.
Hasuo, I., Jacobs, B. & Sokolova, A. (2007), ‘Generic trace semantics via coinduction’, Logical

Methods in Computer Science 3(4).
Hennessy, M. & Milner, R. (1985), ‘Algebraic laws for nondeterminism and concurrency’, J. ACM

32(1), 137–161.

URL: http://doi.acm.org/10.1145/2455.2460

Bonchi, Bonsangue, Caltais, Rutten, Silva 38

Milner, R. (1989), Communication and concurrency, Prentice-Hall international series in com-

puter science, Prentice Hall.

Monteiro, L. (2008), A coalgebraic characterization of behaviours in the linear time - branching

time spectrum, in A. Corradini & U. Montanari, eds, ‘WADT’, Vol. 5486 of Lecture Notes in

Computer Science, Springer, pp. 251–265.

Park, D. M. R. (1981), Concurrency and automata on infinite sequences, in P. Deussen, ed.,

‘Theoretical Computer Science’, Vol. 104 of Lecture Notes in Computer Science, Springer,

pp. 167–183.

Roşu, G. & Lucanu, D. (2009), Circular Coinduction – A Proof Theoretical Foundation, in

‘CALCO’09’, LNCS.

Rutten, J. J. M. M. (2000), ‘Universal coalgebra: a theory of systems’, Theor. Comput. Sci.

249(1), 3–80.

Sangiorgi, D. & Rutten, J. (2011), Advanced Topics in Bisimulation and Coinduction, Cambridge

Tracts in Theoretical Computer Science, Cambridge University Press.

Silva, A., Bonchi, F., Bonsangue, M. M. & Rutten, J. J. M. M. (2010), Generalizing the powerset

construction, coalgebraically, in K. Lodaya & M. Mahajan, eds, ‘FSTTCS 2010’, Vol. 8 of

LIPIcs, pp. 272–283.

URL: http://drops.dagstuhl.de/opus/volltexte/2010/2870

Silva, A., Bonchi, F., Bonsangue, M. & Rutten, J. (2011), ‘Generalizing determinization from

automata to coalgebras’. Submitted.

van Glabbeek, R. (2001), The linear time - branching time spectrum I. The semantics of con-

crete, sequential processes, in J. Bergstra, A. Ponse & S. Smolka, eds, ‘Handbook of Process

Algebra’, Elsevier, pp. 3–99.

