
Contributions to the Meta-Theory of Struc-
tural Operational Semantics

Matteo Cimini
Doctor of Philosophy
November 2011
School of Computer Science
Reykjavík University

Ph.D. DISSERTATION
ISSN 1670-8539

Contributions to the Meta-Theory of Structural
Operational Semantics

by

Matteo Cimini

Thesis submitted to the School of Computer Science
at Reykjavík University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

November 2011

Thesis Committee:

Luca Aceto, Supervisor
Prof., Reykjavík University

Willem Jan Fokkink
Prof., VU University Amsterdam

Matthew Hennessy, Examiner
Prof., Trinity College Dublin

Anna Ingólfsdóttir, Co-Supervisor
Prof., Reykjavík University

MohammadReza Mousavi
Dr., Eindhoven University of Technology

Copyright
Matteo Cimini

November 2011

Date

Luca Aceto, Supervisor
Prof., Reykjavík University

Willem Jan Fokkink
Prof., VU University Amsterdam

Matthew Hennessy, Examiner
Prof., Trinity College Dublin

Anna Ingólfsdóttir, Co-Supervisor
Prof., Reykjavík University

MohammadReza Mousavi
Dr., Eindhoven University of Technology

The undersigned hereby certify that they recommend to the School of Com-
puter Science at Reykjavík University for acceptance this thesis entitled Con-
tributions to the Meta-Theory of Structural Operational Semantics sub-
mitted by Matteo Cimini in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

Date

Matteo Cimini
Doctor of Philosophy

The undersigned hereby grants permission to the Reykjavík University Li-
brary to reproduce single copies of this thesis entitled Contributions to the
Meta-Theory of Structural Operational Semantics and to lend or sell such
copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatsoever without the author’s prior written
permission.

Contributions to the Meta-Theory of Structural Operational
Semantics

Matteo Cimini

November 2011

Abstract

Structural Operational Semantics (SOS) is one of the most natural ways for
providing programming languages with a formal semantics. Results on the
meta-theory of SOS typically (but not solely) say that if the inference rules
used in writing the semantic specification of a language conform to some
syntactic template then some semantic property is guaranteed to hold or
some technique is applicable in order to gain some result. These syntactic
templates are called rule formats.

This thesis presents four contributions on the meta-theory of SOS.

As a first contribution, (1) we offer a method for establishing the validity of
equations (modulo bisimilarity). The method is developed under the vest of
an equivalence relation that is suitable for mechanization, the rule-matching
bisimilarity. Given a semantic specification defined in SOS and given the
desired equation to check, the method runs a matching, bisimulation-like,
procedure in order to determine the validity of the given equation. For the
method to be applicable, the SOS specification must fit a well-known rule
format called GSOS, which is fairly expressive. For instance most of the
process algebras can be defined within GSOS. The method is general and, not
surprisingly, might not terminate. We however show that relevant equations
can be checked in finite time.

As another contribution, (2) we present rule formats ensuring that certain
constants of a language act as zero elements. An example of zero element,
though in the context of mathematics, is the number 0, that is a zero element
for the multiplication operator ×, i.e., x × 0 = 0. Based on the design of one
of the formats, we provide also a rule format for unit elements. The same
number 0 is for instance an example of unit element for the sum operator +,
as the algebraic law x + 0 = x is valid.

As a third contribution, (3) we offer rule formats guaranteeing the validity
of the distributivity law. Examples of distributivity laws in the context of

4

mathematics are (x + y) × z = (x × z) + (y × z), i.e., the multiplication
distributes over the sum, and (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), i.e., the
set intersection distributes over the union. The algebraic laws addressed by
contributions (2) and (3) are considered modulo bisimilarity. In both con-
tributions, the proposed rule formats are mostly mechanizable and some of
them are also very simple to check. Nonetheless, the rule formats we offer
are expressive enough to check the validity of classic zero and unit elements
as well as well-known distributivity laws from the literature.

Thanks to contributions (2) and (3), now the meta-theory of SOS tackles all
the basic algebraic laws, i.e., commutativity, idempotency, associativity, zero
and unit elements and distributivity.

Finally, (4) we propose Nominal SOS, an SOS based framework with special
syntax and primitives for the definition of languages with binders. Binders
bind a name in a context in order to give it a certain meaning or to denote
that a special treatment for it is required. The ordinary SOS framework lacks
a dedicated account for binders. Binders, however, proliferate both in math-
ematics (one example is the universal quantification ∀x.Φ) and in computer
science (one example is the abstraction λx.M of the λ-calculus). We provide
evidence that the framework is expressive enough to model interesting cal-
culi. For instance, we formulated the λ-calculus and the π-calculus within
the framework of Nominal SOS and we established the operational correct-
ness of these formulations with regard to the original ones. We offer a suit-
able notion of bisimilarity that is aware of binding and we have embarked
on a study of the relationship between this notion of bisimilarity and classic
equivalences from the context of the λ- and π-calculus. We believe that the
meta-theory of SOS is by now a mature field and times are ripe for a system-
atic study of the meta-theory that concerns also those phenomena that are
specifically related to binders. In this respect, we believe that our framework
might be a good candidate to carry out such a study.

Contributions to the Meta-Theory of Structural Operational
Semantics

Matteo Cimini

Nóvember 2011

Útdráttur

Structural Operational Semantics (SOS) er eðlilegasta leiðin til að gefa for-
ritunarmálum formlega merkingu. Niðurstöður er yfirkenningu fyrir SOS
segja almennt (þó ekki alltaf) að ef málskipan (e. syntax) sem notuð er fyrir
mekingarfræðilega (e. semantic) skilgreiningu máls fylgir tilteknu sniðmáti
þá er ákveðnir merkingarfræðilegir eiginleikar tyggðir, eða að einhver tækni-
leg aðferð sé nothæf til að fá niðurstöður. Þessi málskipunar sniðmát (e.
syntactic templates) eru kölluð regluform (e. rule formats).

Þessi lokariterð kynnir fjögur framlög til yfirkenningar fyrir SOS.

Sem fyrsta framlag, (1) kynnum við aðferð til meta lögmæti jafna (mótað við
bisimilarity). Aðferðirnar eru þróaðar sem jafngildis vensl sem eru nothæf
til sjálfvirknivæðingar sem rule-matching bisimilarity. Að gefnu merkingar-
fræðilegum skilgreiningum á SOS formi auk jöfnu sem á að prófa, gefur
aðferðin matching, bisimulation-like, algrím til að ákvarða lögmæti jöfnun-
nar. Til að aðferðin sé nothæf verða SOS skilgreiningarnar að falla að vel
þekktu formi GSOS reglna, sem er tiltölulega lýsandi. Sem dæmi er hægt
að tákna flestar process algebrur með GSOS. Aðferðin er almenn en ekki er
tryggt að útreikningum ljúki. Við sýnum þó að mikilvægar jöfnunur er hægt
að prófa í endanlegum tíma.

Sem næsta framlag, (2) kynnum við regluform sem þar sem tilteknir fastar
málsins virka sem núll stök. Dæmi um núll stak, í stærðfræðilegu samhengi
er talan 0, en hún er núll stak fyrir margföldunarvirkjan ×, þ.e. x × 0 = 0. òt
frá þessu formi skilgreinum við regluform fyrir einingastak. Sama talan, það
er 0, er dæmi um einingarstak fyrir summu virkjan +, þar sem algebru reglan
x + 0 = x heldur ávalt.

Sem þriðja framlag, (3) kynnum við regluform sem tryggir dreifni-lögmálið.
Dæmi um dreifni-lögmálið í stærðfræðilegu samhengi er (x + y) × z =
(x × z) + (y × z), það er margföldun dreifist yfir summu, og (A∪ B)∩C =
(A∩C)∪(B∩C), það er sniðmengi dreifist yfir sammengi. Algebru lögmálin

vi

sem kynnt eru í (2) og (3) eru skoðuð mótuð við bisimilarity. Í báðum fram-
lögunum eru regluformin sem kynnt eru að mestu leyti hægt sjálfvirknivæða
og sum þeirra er einfalt að sannreyna. Þrátt fyrir það, eru reglu formin nógu
lýsandi til að kanna lögmæti klassískra núll- og einingastaka, og vel þekktra
dreifni-lögmála úr fræðunum.

Með framlagi (2) og (3) þá er yfirkenning SOS fær um að leysa öll grunn al-
gebru lögmálin, það er, víxlun, sjálfvöldun, tengireglu, núll og einingarstaka
auk dreifireglu.

Að lokum, (4) kynnum við Nominal SOS, sem er rammi byggður á SOS
með tilteknum syntax og primatives fyrir skilgreiningar á máli með binders.
Binders binda nöfn í samhengi til að gefa merkingu eða tákna þó að þörf sé
á sérstakri meðferð. Heffbundin SOS rammi skortir skilgreiningar sem lýsa
binders. Binders er að finna víða í stærðfræði (dæmi um binder er allsh-
erjarvirkinn ∀x.Φ) og í tölvunarfræði (sem gæmi má nefna sértekninguna
λx.M í λ-calculus). Við sýnum að raminn er nægjanlega lýsandi til að
módela áhugaverð mál. Sem dæmi þá formuðum við λ-calculus ogπ-calculus
innan ramma Nominal SOS og við sýndum fram á lögmæti formanna með
tilliti til upprunalegu formanna. Við kynntum viðeigandi táknun á bisimi-
larity og klassískra jafngilda í samhengi λ- og π-calculus. Við teljum að
yfirkenning SOS sé nú orðið þroskað svið og tími sé tilkominn til að rannsaka
yfirkenningu í samhengi hluta sem tengjast binders. Í þessu samhengi þá
teljum við að ramminn sem kynntur er sé henntugt kerfi til að framkvæma
slíkar rannsóknir.

vii

Preface

Twenty years from now you will be more disappointed by the things you
didn’t do than by the ones you did do. So throw off the bowlines, sail away
from the safe harbor. Catch the trade winds in your sails. Explore. Dream.
Discover.
Mark Twain.

Like all great travelers, I have seen more than I remember, and remember more
than I have seen.
Benjamin Disraeli.

This was really the way my whole road experience began, and the things that
were to come are too fantastic not to tell.
Jack Kerouac, from the book On The Road.

So I asked my gut, and it said that the compass was pointing North.
From Matteo Cimini’s Ph.D. Thesis Preface.

After my Master’s Degree I was faced with a looming question: What will I do?
I knew I wanted to do research on some theoretical aspect of computer science,
and perhaps get a Ph.D. along the way. I also knew myself well enough to realize
that I was on the hunt for something different, surely an experience abroad.

I have to admit that, at the time, moving to Iceland was beyond my wildest
expectations. Of all the twists and turns of my life, winding up in Iceland ranks
among the most special. I believe that mine was, at very best, a non conventional
decision. This preface is about this choice and briefly of what I ventured into by
living this decision for the past three years.

Searching for a job, I eventually came across an announcement by Luca. He and
Anna opened a position as a Ph.D. student in one of their projects. It was at the
Reykjavik University. The subject matched perfectly my interests, I did not know
Luca or Anna personally but I knew their work and I heard only extremely good

viii

words about them. I however recall that I did not know much about Iceland.
Reminiscing now through the foggy memories I have of that time, I would say
that I applied for the position with almost no hesitation and with a light mind,
delegating to a future Matteo the actual dealing with a possible acceptance.

When Anna and Luca informed me that the position was mine if I wanted, a
million thoughts raced through my mind. To add further complexity to my
doubts, another great job offer came along in the meanwhile. But I will not get
into the latter matter, as though the main deal of that moment still was whether I
was willing to throw myself into the Icelandic adventure. And we will get quite
a long way talking of this.

Committing to a 3-year long Ph.D. program is not a joke. Furthermore, committing
to living long-term in a country like Iceland is something you have to mull over
with care.

As per usual, when faced with a high-stakes decision, you want to think things
through. It was no time for snap decisions.

I honestly had little knowledge about Iceland that time. It was way back in early
summer 2008 and Iceland did not appear much in Italian news papers by then,
I guess. Iceland had always been something of a mysterious and unknown land
for me, and I can fairly say that people back home would second this feeling, too.
This is witnessed by the countless bizarre questions that I am always asked about
this country.

The big Icelandic economic default was on its way, and would take place a couple
of months later. In a way, it is only fortunate that the crisis came up later than my
decision. In all likelihood, it would have played a negative role in my decision
process and I might have ended up being too reluctant to go, missing out on one
of the most valuable experiences of my life.

Knowing so little about Iceland, I began a thorough search and I also called up
some people who happened to have lived there for a short while. I was craving for
information. I heard incredible things and many misconceptions just fell apart.
I had a feeling that much was there, yet to be discovered and just willing to be
seen, whatever it was.

I had never lived abroad and Iceland was quite a long shot as a first try. This
country appeared to be light years different from Italy, it was a big jump for me,
a jump to an unfamiliar and remote world. I envisioned complexities of higher

ix

levels. If I were to take a map, Iceland would seem just a spot in the middle of
nowhere.

Inevitably, my mind would peg this place as mysterious and foreign as outer
space. And for as much as I tried to picture myself in Iceland, still I could not
develop the slightest hunch as to what my life could look like once there. If I
looked at my crystal ball I could see only foggy and hazy images. No, the "picture
yourself in Iceland" game was not working.

So there I was, with a huge life-decision to make, and despite all the search in
the world no clear idea was shining through to me. For a time, I was racking my
brain over this matter and, I have to say, not a few people would find it bizarre
that I was even considering the idea of moving to Iceland.

But sometimes you take a leap into something that is neither risk free nor popular.
Somehow, a wave of instinctive attraction towards this little country was pulsing
its way into my head. I was divided but this thought was inescapable and I
wanted to see what life had lined up for me in such a remote, yet fascinating,
land. So I asked my gut, and it said that the compass was pointing North. I took
the leap and I said to Luca and Anna to wait for my arrival. A few months from
there I was in Iceland.

Next thing I know, I was in Iceland indeed. It was way back in January 2009, and
my journey to the unfamiliar just began, right there.

"Different" became the byword of my Icelandic adventure since the very first day.
Iceland really is different from anywhere else I have been. In a space of three
years, I could enjoy landscapes of unmatched beauty and natural phenomena
that would shake me to speechlessness.

The reader might have noticed that the quotations that open this preface are about
the very concept of travelling. In some sense, Iceland has been a long voyage for
me.

But I have to say, my real journey had little to do with touristic sightseeings, and
a whole lot to do with the people I met along the way and the experiences I had
with them. Living the culture and the dynamics of this country, too, has been a
core part of this journey.

Admittedly, Iceland might not be easy to live in sometimes. This is especially
true for someone coming from a completely different country, as Italy is indeed.
There are many things I had to learn to roll with. But as years rolled around, I

x

grew fond of this little country in its entirety and, magically enough, that one non
conventional decision led me to one of the greatest experiences of my life.

Had I known that it would have all worked out the way it has, I would not have
had a shred of doubt in my mind.

xi

Acknowledgements

Even though the cover of this book displays only one name, many people con-
tributed to the existence of this thesis, whether directly or not. This is my chance
to thank them properly.

The first two persons I am itching to thank are Anna Ingólfsdóttir and Luca Aceto.
Finally I can do it black and white. I set my first foot in this jungle called "academic
world" with them and I did not know exactly what to expect. We walked this long
road towards my Ph.D. together, they coached me through every step of the way
and taught me a multitude of things. It has been an honor to be their first Ph.D.
student. With their knowledge and experience they have been an extraordinary
guide for me. Moreover, their passion for their work has always been contagious
and motivational and they always provided me with warm encouragement and
support in countless occasions and in countless ways. I am indebted to them
more than they know and I am only happy to finally write a capitalized THANK
YOU for them.

I defended my thesis on the 18th of November, in one of the longest days of my
life. Besides my supervisors, the members of my Thesis Committee are Matthew
Hennessy, Wan Fokkink and MohammadReza Mousavi. I feel very honored
for having had such an excellent committee. I thank them for their thoughtful
comments and for finding me worth a Ph.D. title, turning a day that on calendars
appears as a November Friday like any other into such a special day for me. They
have all my gratitude.

I am grateful to Dale Miller and Andrew Pitts. The work presented on Chapter 5
is strongly related to work they have carried out and their comments improved
significantly the related work section of that chapter.

I thank Reykjavik University in its entirety. The university provided me with
an excellent environment where I could work in freedom. The first adjectives
that spring to my mind about my work environment are: beautiful, peaceful

xii

and stimulating. During these past three years I really could work under perfect
conditions. Reykjavik University is one of those universities you just feel proud of
being part of. The new premise of the university is a beautiful majestic building.
Various research projects are going on in there and you deal with interesting
people and with their visions. The university always has been an oasis of ideas
and nowhere I found my work inspired more than in there. Living through the
dynamics and the changes that the university underwent over these years has
been interesting and stimulating, and I have been lucky to have had wonderful
colleagues I could share all of this with.

I met a number of people at Reykjavik University that I would like to acknowledge.
During my Ph.D. time I inevitably had a number of bureaucratic or technical
matters to handle. Although all the university offices have been helpful to me, I
wish to thank especially two girls who never failed to promptly assist me: Kristine
Helen Falgren and Sigrún María Ammendrup. Ari Kristinn Jónsson, currently
president of Reykjavik University, was the Dean of the Computer Science School
when I first started my Ph.D. path. He never failed in being helpful and letting
me feel welcome since the very first day. I am also thankful to Marjan Sirjani for
involving me in her research activities and for being nice and playful company
any time. Also, the current Dean of the Computer Science School, Björn Þór
Jónsson, has been precious to me a number of times.

At one point within the space of these three years I spent many months in the
Netherlands. The purpose of such a stay was a collaboration with Moham-
madReza Mousavi and Michel Reniers in Eindhoven. I thank them for this op-
portunity. Living in the Netherlands has been a valuable experience. Working
with them at Eindhoven University of Technology has been a fruitful and also
fun time. I also thank Tineke van den Bosch, the secretary of the Department
of Mathematics and Computer Science, for being precious with regard to logistic
matters. I remember and greatly cherish the interactions I had with Bas Lutik,
Erik De Vink, Jan Friso Groote, Jos Baeten, Matthias Raffelsieper, Paul Van Tilburg
and Tim Willemse.

My time in the Neatherlands would not have been as joyful as it had been if
it were not for a group of Italians I met there. I spent a nice time with Antonio
Corradi, Alberto Nucciarelli, Daniela Scalise, Daniel Trivellato and Elisa Costante.
I am also greatly thankful that during my Dutch stay I spent time with Paul Van
Tilburg and his friends, and also some with Alexandra Silva.

xiii

My indebtment to people goes further back than my Ph.D. time. As I am writing
these acknowledgments I find myself in Bologna for a short visit. Bologna is the
city where I had lived for many years and where I received both my Bachelor’s
and Master’s degrees. At the University of Bologna. I am grateful to those years
and to those professors who molded me the most on my way to my graduations.
In particular, I send special thanks to Davide Sangiorgi and Claudio Sacerdoti
Coen.

Also, I would like to mention that it was a nice surprise to find out that the School
of Computer Science at Reykjavik University has an agreement for double grad-
uations with the Department of Computer Science at the University of Camerino.
I did not know this until I came to Iceland and it was a surprise because this
university is really close to my home town in Italy. Because of this agreement,
over the years I have met a number of students coming from the University of
Camerino and mostly from around my place in Italy, the beautiful region Marche.
It also has been nice to meet every now and then people from that department, in
particular Emanuela Merelli, Luca Tesei and Nicola Paoletti.

I have met many other people who have been a positive note during these years.
I find it difficult to place them in categories, and also I am not sure I want to.
Some of them are great friends I already had back in Italy, some of them are
friends I made along the way, some are even great companions of adventures
and experiences while others simply affected positively a short part of this long
journey and that for some reasons I would like to acknowledge. Whether in the
little or big way, they all contributed to making this experience one such that
trumps any other I had so far in my life and they deserve resonating thanks.
My gratitude goes to Alessio Ciricugno, Alisa Widmer, Andrea Ellen Jones,
Angelo Cafaro, Anu Palomäki, Ari Þór Arnbjörnsson, Arnar Birgisson, Bruno
Fanini, Candy Caldwell, Carlos Gregorio-Rodríguez, Carlos Hernandez Corbato,
Carmine Oliva, Chris Severs, Claire Johnstone, Claudio Pedica, Daniella Gul-
lans, David de Frutos-Escrig, Emanuele Travanti, Enrico Rossomando, Eugen-
Ioan Goriac, Fabio Marziali, Federico Buti, Francesco Stablum, Georgiana Cal-
tais, Giuseppe Esposito, Giuseppe Servici, Hannes Högni Vilhjálmsson, Ingib-
jörg Vagnsdóttir, Jacopo Penazzi, Joshua Sack, Luca Mandrioli, Manuela Berardi,
Marco Ciaschini, Maria Guidi, Mario Bravetti, Mark Dukes, Martina Patone, Na-
talia Jerzak, Niccolò Rossetti, Pradipta Mitra, Raffaele Gaito, Riccardo Pancotti,
Robert Parviainen, Rolanda Simenaite, Sabrina Stiegler, Shishir Patel, Stefanía
Helga Stefánsdóttir, Stephan Schiffel, Steve Widmer, Tom Matthews, Ute Schif-

xiv

fel, Verena Steinbauer, Victor Carazo Robles, Viðar Hrafnkelsson and Vincenzo
Negrone.

English words, and words at all for that matter, fail me to express my gratitude
to my parents Giampalma and Sergio and to my brother Gianluca. Il più grande
grazie va davvero a voi.

xv

Contents

1 Introduction 1
1.1 Semantics . 1
1.2 Structural Operational Semantics . 3
1.3 Meta-theory of SOS . 7
1.4 Contributions: A summary . 15

1.4.1 Publications resulting from the thesis work 17

2 Proving Equivalence of Open Terms 19
2.1 Introduction . 19
2.2 Preliminaries . 21

2.2.1 Eliminating junk rules . 25
2.3 Ruloids and the operational specification of contexts 28
2.4 A logic of transition formulae . 32
2.5 Rule-matching bisimulation . 34
2.6 Examples . 39
2.7 Partial completeness results . 44
2.8 Extending rule-matching bisimilarity to GSOS with predicates . . . 46

2.8.1 GSOS with predicates . 46
2.8.2 A ruloid theorem for GSOS languages with predicates . . . 48
2.8.3 The logic of initial transitions with predicates 48
2.8.4 Rule-matching bisimilarity 50
2.8.5 Examples . 52

2.9 Related and future work . 56
2.10 Proof of Theorem 2.5.3 . 58
2.11 Proof of Theorem 2.7.2 . 60
2.12 Proof of Theorem 2.7.4 . 61

3 Rule Formats for Zero and Unit Elements 67
3.1 Introduction . 67

xvi

3.2 Preliminaries . 69
3.2.1 Transition system specifications and bisimilarity 69
3.2.2 Predicates . 72

3.3 Rule format . 73
3.4 Examples . 80
3.5 Discussion of the format . 84

3.5.1 Premises of rules . 84
3.5.2 Checking the format, algorithmically 86

3.6 A rule format for zero elements based on GSOS 87
3.6.1 The logic of initial transitions 87
3.6.2 An alternative rule format for zero elements 90

3.7 From zero to unit . 94
3.8 Conclusions . 100
3.9 Proof of Theorem 3.3.2 . 100
3.10 Proof of Theorem 3.6.2 . 102
3.11 Proof of Theorem 3.7.2 . 104

4 Rule Formats for Distributivity 109
4.1 Introduction . 109
4.2 Preliminaries . 112

4.2.1 Transition system specifications and bisimilarity 112
4.3 The left-distributivity rule formats 116

4.3.1 The firability condition . 117
4.3.2 The matching-conclusion condition 119
4.3.3 The second left-distributivity format 123

4.4 Analyzing the distributivity compliance 131
4.5 Examples . 133
4.6 Examples of left-distributivity laws involving unary operators . . . 136
4.7 Impossibility results . 139

4.7.1 Left-inheriting operators . 139
4.7.2 The use of negative premises 142

4.8 Conclusions . 145
4.9 Proof of Theorem 4.3.6 . 146
4.10 Proof of Theorem 4.3.8 . 146
4.11 Proof of Theorem 4.3.22 . 151
4.12 Proof of Theorem 4.7.6 . 153

5 Structural Operational Semantics with Binders 155

xvii

5.1 Introduction . 155
5.2 Nominal terms . 157
5.3 Nominal SOS . 161

5.3.1 Semantics of NTSS’s . 164
5.4 Substitution and α-conversion . 165

5.4.1 Substitution transitions . 166
5.4.2 α-conversion Transitions . 169

5.5 Examples . 171
5.5.1 The lazy λ-Calculus . 171
5.5.2 The early π-calculus . 172
5.5.3 A remark on the Barendregt Convention 177

5.6 Nominal bisimilarity . 179
5.7 Applicative Bisimilarity . 182
5.8 Related Work . 184

5.8.1 MLSOS and αML . 184
5.8.2 FOλ∆∇ . 188
5.8.3 SOS in Abella . 189
5.8.4 SOS with Ott . 190
5.8.5 General Remarks . 192

5.9 Conclusions and Future works . 193
5.9.1 Extensions of the framework 195

5.10 Useful definitions for nominal terms. 196
5.11 Useful definitions for λ-terms. 197
5.12 Useful definitions for π-terms. 197
5.13 Correctness of Substitution Transitions w.r.t. Syntactic Substitution:

Proof of Theorem 5.4.2 . 199
5.14 Correctness ofα-Conversion Transitions w.r.t. Syntacticα-Conversion:

Proof of Theorem 5.4.4 . 200
5.15 Correctness of λ: Proof of Theorem 5.5.1 204
5.16 Correctness of early π: Proof of Theorem 5.5.2 207
5.17 Correctness of substitutions for λ: Proof of Lemma 5.15.1 213
5.18 Correctness of substitutions for π: Proof of Lemma 5.16.1 214
5.19 Correctness of α-conversions for λ: Proof of Lemma 5.15.2 217
5.20 Correctness of α-conversions for π: Proof of Lemma 5.16.2 219
5.21 Bisimilarity when ignoring substitution transitions: Proof of Theo-

rem 5.6.3 . 221
5.22 Open bisimilarity and Bisimilarity coincide: Proof of Theorem 5.6.6 223

xviii

5.23 Simulation of Substitutions by One-Step Substitutions: Proof of
Theorem 5.22.5 . 228

5.24 Nominal bisimilarity equates too much in λ-calculus: Proof of The-
orem 5.7.4 . 230

6 Conclusions 237

1

Chapter 1

Introduction

"Begin at the beginning,", the King said, very gravely, "and go on till you
come to the end: then stop.".
Lewis Carroll, from the book Alice’s Adventures in Wonderland.

1.1 Semantics

The word semantics generally denotes the science of the meaning communicated
through language. The most established areas that are related to semantics are
linguistics and philosophy, where it concerns the study of the meaning of linguistic
expressions in a natural language.

As an example, the reader may consider the sentence "It is raining." This sentence
is nothing but a piece of syntax formed by a sequence of well-formed words from
a vocabulary. This syntactic object has no meaning per se and is of the same nature
as any other mere syntactic expression the reader may think of, for instance the
mathematical equation

i=n∑
i=1

i =
n ∗ (n + 1)

2
.

Semantics gives a meaning to these sequences of symbols. Indeed, the meaning
is the actual item we want to express, and language is only one vehicle by which
we (try to) express it. In particular, with the above sentence "It is raining." our
aim is to state a subsisting fact upon the actual world we live in and we say that
this sentence is true if, looking at the actual world, it really is raining.

2 Meta-theory of SOS

Natural language is however a very elusive and somehow deceptive monster to
tame, and although this example might make it seem as though its semantics
analysis is simple, the reader surely would have no difficulty in realizing that the
way we communicate with one another is conversely full of varieties and shades.
The study of the semantics of natural languages is indeed a difficult research
area.

In computer science, languages proliferate too, and they are artificial tools whose
purpose is describing computations that a computer can perform (programming
languages) or modelling some scenario or ontology of interest (specification lan-
guages). Assuming that the reader is familiar with common imperative program-
ming, let us consider the following piece of pseudo-code.

while (i <= n)

x=x+i;

i=i+1;

Again, the reader may notice that the piece of program above is merely a syntactic
object, I might have used the expression "as long as" in place of "while" if I wished,
or I might have used the symbol ∗ in order to denote arithmetic addition, in place of
the standard symbol +. What matters at the very end is the meaning we associate
with all of these syntactic entities. In this case we would want the meaning of the
above piece of program to express that

if the variable i is less than or equal to the variable n, sum the value
of the variables x and i and store the result as value of the variable x,
increment the value of the variable i by one, and repeat this procedure
as long as i is less than or equal to n.

Unlike natural languages, programming and specification languages are given
a well-established syntax, provided by means of a formal grammar. Moreover,
while the semantics of a natural language is perforce inferred a posteriori via its
use, the semantics of programming languages must be specified beforehand and is a
vital part of a language specification in order to have the possibility to implement
the language on a computer and also to obtain a common understanding of it
among its users.

In the early days of computer science, the semantics of programming and spec-
ification languages was often left to informal natural language descriptions,
which may be ambiguous and leave open questions to their implementors and
users.

Matteo Cimini 3

In contrast to these informal semantic descriptions, programming and specifi-
cation languages can instead be given a formal semantics, which provides their
expressions with a precise meaning. Providing a formal semantics is moreover
useful because it associates some kind of mathematical structure to programs,
opening the possibility of performing mathematical analysis of their behaviour.
As software is omnipresent in our lives, this turns out to be very important nowa-
days. Indeed, being software embedded in airplanes, medical devices and in
many other delicate contexts, program errors may cause loss of lives, money and
even may have environmental impact. Having techniques to reason formally
about the correctness of programs is therefore of increasing importance, and this
is possible only if languages are provided with a formal semantics.

It is thus not surprising that the field of semantics has received considerable
attention from the computer science community since the very beginning. Over
the years, many approaches and techniques have been developed in order to
give semantics to computer languages, and the study of the semantics represents
without doubt an important and exciting area of research in computer science,
which is still evolving.

As the reader may expect, despite the great effort devoted to the study of tech-
niques for providing formal semantics to programming languages, no silver bullet
has been found and a number of theories of semantics have been developed over
the years, each of which coming with its own peculiarities and pragmatics.

One of the most successful theories of semantics is the so called operational seman-
tics. This is the general subject of my thesis and the next section is devoted to
a brief presentation of the ideas behind this method. There are of course other
methods which may be used to give formal semantics to programming languages;
for overviews of this field, we refer the reader to some excellent general textbooks
such as [113], [152], [70], [133], [73] and [80], just to name a few.

1.2 Structural Operational Semantics

Operational Semantics In operational semantics the execution of a program is
described by the series of steps it can take. More precisely, the computation is
described by a transition system whose states describe the configurations a pro-
gram might be in during its execution and whose transitions are the computation
steps possible from one state to another. Transitions may be labelled. The label

4 Meta-theory of SOS

of a transition yields information on the computation step/action that caused the
transition. An example of transition is

(x := 3; P, σ) τ
→ (P, σ[x 7→ 3]),

which must be read as from the state (x := 3; P, σ) a computational step labelled τ can
be performed, ending up in the state (P, σ[x 7→ 3]).

Intuitively, the state of the system is a pair formed by a program and a store
σ, which keeps track of the associations variable-value. In this case x := 3; P is
the program, which is an assignment of the value 3 to the variable x followed
by the evaluation of the program P. The operator ; is the standard sequential
composition of programs. The label τ for transitions conventionally denotes an
internal progress of the system in the world of process algebra. We employed
this label as the transition represents the execution of a statement which has no
interaction with the external environment. As we would expect, with the above
computation step we end up in a state where the program to evaluate next is P
and it must be evaluated in the environment σ modified so that the variable x is
mapped to the value 3.

Structural Operational Semantics During my thesis work I contributed to a
particular approach to giving operational semantics to programming and speci-
fication languages, the so-called Structural Operational Semantics, SOS from now
onwards, and in particular, I contributed to its meta-theory.

In 1981, Gordon Plotkin introduced SOS in his seminal lecture notes [119] to give
a logical means to defining the operational semantics of programming languages.
In this approach, the operational semantics is specified by a series of inference
rules whose aim is to prove transitions. Rules are of the form

premises
conclusion

Roughly speaking, a rule like the one above means that if the premises are satisfied
then the conclusion, which must be a transition, can be proved. Typically, the
inference rules are used to describe the behaviour of the operators of the language
at hand, and this is typically done in terms of the behaviour of its arguments.

For the sake of concreteness, the reader may want to consider the following
example containing the formalization of a simple concurrent language.

Matteo Cimini 5

Example 1.2.1 We assume a set Act, the actions that processes can perform. We consider
a language with parallel composition, denoted by ‖, non-deterministic choice, denoted by
+, action prefixing a._ for each a ∈ Act and the inaction constant 0. The informal
behaviour of the operators is as follows.

• The operator a (one for each a ∈ Act) is unary, and the process a.P performs the
action a and then executes the process P.

• The operator +, called the choice operator, is binary, and the process P1 + P2 behaves
either like P1 or P2; the choice is made upon the performance of the first action of
either P1 or P2.

• The binary operator ‖, called the parallel operator, is binary, and the behaviour of
the process P1 ‖ P2 is the interleaving of those of P1 and P2.

• The operator 0 has arity 0, i.e. it is a constant of the language. It stands for the
process that does not make any computation step.

The generated grammar of such a language is thus:

P = 0 | a.P | P1 ‖ P2 | P1 + P2,

where a ∈ Act.

The informal behaviour of the operators is formalized by means of the following inference
rules.

a.x a
→ x

d1 =
x a
→ x′

x + y a
→ x′

d2 =
y a
→ y′

x + y a
→ y′

x a
→ x′

x ‖ y a
→ x′ ‖ y

y a
→ y′

x ‖ y a
→ x ‖ y′

The reader should notice that the actions are employed as labels for transitions and that
the constant 0 affords no transitions. Indeed, no rule defines its behaviour.

In order to prove transitions for a process, we can use the inference rules above.
Consider for instance the process a.0 + b.0. We can pattern match the process

6 Meta-theory of SOS

a.0 + b.0 with the term x + y of the conclusion x + y a
→ x′ of the rule d1 and with

the term x + y of the conclusion x + y a
→ y′ of the rule d2. The reader can easily

see that these are the only options when proving transitions for a.0 + b.0. Let us
consider using the rule d1. The pattern matching is successful, when x is mapped
to a.0 and y is mapped to b.0. In order to apply the rule d1 we must verify that its
premise x a

→ x′ is satisfied. This amounts to verifying whether the process a.0 is
able to perform a transition labelled a. Repeating the process, we can see that the
axiom a.x a

→ x can be used to prove the transition a.0 a
→ 0, more precisely when

the variable x is mapped to 0. Thus, the premise of d1 is satisfied when we also
map x′ to 0, and the rule can be used in order to prove the transition a.0 + b.0 a

→ 0.
Applying the same reasoning, considering the rule d2 this time, we can prove the
transition a.0 + b.0 b

→ 0. These are the two transitions that we would expect from
the process term a.0 + b.0.

The reader may see that SOS is a restriction on the more general operational
semantics. In SOS we commit to calculating the steps of programs by means of
an inference system whose rules are based on premises and conclusions.

This restriction should not be seen as an actual limitation by the reader. Rather,
it is a useful way to structure the use of the operational semantics. Indeed, many
benefits come from restricting ourselves to SOS, and these benefits are coming
while retaining great expressiveness in modelling interesting calculi.

First of all, the premises/conclusion language provided by SOS is a natural, clean
and flexible approach to model the semantics of languages. The reader may
consider again the examples of the choice and parallel operators, which clearly
show how naturally the semantics of these operators is formulated within SOS.
These operators are formalized not only easily, but, in some sense, also in the
way they are supposed to be formalized. This is possible thanks to the inductive
nature of the rules. Gordon Plotkin, commenting on the SOS rules in their early
stage of development, says in [120] that:

I saw the [SOS] rules as directly formalizing the natural English de-
scription...

Also Milner, in his first book on CCS, [96], where the structural operational se-
mantics for that calculus was first published, remarked that the original definition
of Algol68, though strongly verbal, is in essence a set of reduction rules.

Matteo Cimini 7

Not only with SOS can the user formulate the semantics easily, but, equally
importantly, SOS is easy enough to allow users not to have difficulty in reading
and understanding the semantics of languages written by others.

From a technical point of view, one of the main remarkable benefits of this syntax
driven approach is that proof techniques based on induction turn out to be a
sufficient tool to prove many of the relevant properties about the evolution of
programs.

Even though SOS is a restricted discipline within the general framework of oper-
ational semantics, still the literature shows it to be an expressive way to define the
semantics for many languages, see [99, 121, 97, 1, 48, 55] for a few examples.

1.3 Meta-theory of SOS

Due to its popularity, SOS became quickly itself a subject of investigation in the
research community. This led to the birth of the meta-theory of SOS.

According to Encyclopædia Britannica Online1, a meta-theory is

a theory the subject matter of which is another theory.

Given a mathematical theory, we can use it to prove facts within the theory, proving
the so-called theorems. Often, it is fruitful to consider the theory itself as the subject
of investigation. The main point is to take a more abstract viewpoint and look
from a higher vantage point at the considered theory in order to draw general
statements about the way it works and find regularities and laws. These laws are
called meta-theorems and they state general facts about the theory considered.

While the concept of meta-theory has always been addressed unconsciously by
mathematicians, we can fairly attribute to David Hilbert a first clear separation of
the distinction between theory and meta-theory. He was the first mathematician
to raise, in his famous list of 20 problems in 1900, meta-reasoning questions about
mathematics.

Namely, he proposed to the community the use of mathematical tools in order
to investigate the formal systems employed in doing mathematics itself. Since
Hilbert, the mathematical community has been engaged in a fruitful and exciting
path to the discovery of very basic truths about the expressiveness and limits of

1 http://www.britannica.com/EBchecked/topic/378037/metatheory

8 Meta-theory of SOS

formal systems. These meta-reasoning over formal systems led to meta-theorems
that shook the foundations of mathematics and led to the development of com-
puter science [50].

For the sake of concreteness, perhaps the reader may want to consider one of
the most famous problems posed by Hilbert to the mathematical community,
which concerns Peano arithmetic, formulated by Giuseppe Peano in [116]2. This
is a striking example that clearly explains the distinction between theory and
meta-theory. Peano arithmetic forms the ordinary arithmetic adopted so far in
mathematics and consists of a set of axioms which is closed under some notion
of inference rule. In particular, the axioms of the theory state basic facts, i.e.
the ordinary definitions of natural numbers, sum and multiplication, that the
number 0 cannot be successor to any number, that if two numbers have the same
successor then they are the same number, and the induction principle. These
axioms are used along with the standard inference rules of logic and equational
reasoning.

The reader can see that by playing the game of applying the inference rules starting
from the axioms, and so in a sense by playing the game from within the system,
we can manipulate sentences syntactically and see which other sentences we can
end up with. These are the theorems that we can prove in Peano arithmetic. For
instance, we can prove the commutativity and associativity of the sum operation
and, by a more tortuous path of applications of the rules we can also prove the
Fundamental Theorem of Arithmetic, and so on, along this line, we can derive
other theorems of arithmetic.

One of David Hilbert’s question was whether Peano arithmetic could prove its
own consistency, namely that it is not the case that applying the inference rules,
the system is able to prove a theorem and, by some other proof path, the negation
of the same theorem. This is an example of a meta-theoretic question. Now,
the question is indeed about Peano Arithmetic and the way it works. In order
to answer this question, Peano Arithmetic itself is to be investigated with some
mathematical tool in order to understand its peculiarities. As we know, Gödel an-
swered this question negatively in his second incompleteness theorem, [79].

Another example of distinction between theory and meta-theory comes from
geometry, in particular from Euclidean geometry. In its original formulation
by Euclid, given more than 2000 years ago, this theory consists of 5 postulates

2 The reader can find an english translation of [116] in [148].

Matteo Cimini 9

and a number of common notions. They are basically what we call axioms and
inference rules, and, remarkably, it is an early example of formal system capable
to rigorously, almost syntactically, derive the theorems of geometry. Hilbert
noticed that, as rigorous as Euclid’s formulation may appear, it is still not syntactic
enough to let one play a mechanical, say merely syntactical, transformation of
sentences in order to derive theorems. One of the many contributions by Hilbert
to mathematics is a formalization of Euclidean geometry as a formal system in
this strict sense, in [75].3

Again, applying the inference rules starting from the axioms of geometry, so by
playing the game from within, we are able to prove the theorems of geometry,
such as the famous Pythagoras’ theorem among others. From the outside, anyway,
many questions are interesting about geometry. As a striking example, for instance,
mathematicians quickly realized that one of the postulates of the theory, namely
the 5-th postulate, is of a different nature. This postulate, called the parallel
postulate, states (in an equivalent formulation) that two parallel lines would
never intersect each other in any point. As simple and self-evident as it may
appear, this axiom is far more complicated than the other axioms of the theory. A
natural question was thus whether this axiom would be somehow a fact already
implied by the other axioms or not.

One of the most important meta-theorems in geometry is that the parallel postulate
is actually an independent axiom, i.e. it cannot be proved by the other axioms
and moreover, keeping the other axioms, adding the parallel postulate or adding
the negation of the parallel postulate (there are several ways to negate the 5-
th postulate) leads to alternative consistent theories of geometry. These new
geometries are the so-called Non-euclidean geometries.

The book [79] contains an excellent exposition on the distinction between theory
and meta-theory and it also surveys with elegant and easy to understand language
the example of Peano arithmetic we discussed previously.

The development of the Meta-theory of SOS Getting back to the subject of my
thesis, we recall that SOS is a theory of semantics. Given a semantics it can be used
to prove (within the theory) the transitions that programs can perform. Based on
the transition-system semantics, just as in the previously mentioned examples,
SOS can also be looked at from the outside and become the subject of analysis,

3 Other well-known axiomatizations of Euclidean geometry are those of Alfred Tarski, [134],
and of George Birkhoff, [41].

10 Meta-theory of SOS

which leads to the so-called Meta-theory of SOS. Investigating the meta-theory
of SOS has proven to be particularly fruitful and the reader may find in [18] and
[109] two broad, although a little dated, overviews of the subject.

The first step towards meta-reasoning about a theory is having a formalization
of it, i.e., a formal account which may be used as the subject of some kind of
mathematical investigation. In [68], Jan Friso Groote and Frits Willem Vaandrager
formalized SOS by means of the notion of Transition System Specification, TSS from
now onwards. TSSs turn out to be a powerful tool to be used and a flexible
formalism to analyze. Technical definitions are left to the chapters to follow, but
intuitively, a TSS describes a semantics for a language by means of a triple that
contains

• a signature, i.e. the set of operators of the language together with their arity,

• a set of labels of transitions, and

• a set of deduction rules.

For instance, in the TSS formalizing the language in Example 1.2.1, the signature
contains the constant 0 (with arity 0), the unary operator a, and the two binary
operators + and ‖, the set Act is the set of labels, and the reader can see the set of
rules defined within Example 1.2.1.

The most important meta-theorems of SOS concern syntactic restrictions of TSSs
that are able to ensure some semantic properties of the induced semantics or that
are suitable as the target of proof techniques for gaining relevant results. These
restrictions are called Rule Formats. A list of the main types of meta-results in SOS
is presented below.

• Congruence of behavioural equivalences. The literature offers rule formats
guaranteeing that some behavioural equivalence or preorder between terms
is a congruence. An equivalence relation R is a congruence with respect to
a function symbol f of arity n whenever, given two sequences of n closed
terms ~P and ~Q, if ~P R ~Q then f (~P) R f (~Q). The relation R is a congruence
when it is a congruence with respect to f , for any function symbol f in
the signature. Congruence is a very important property for an equivalence
relation, because it means that we can safely substitute equals for equals no
matter which context they appear in. Congruence formats w.r.t. bisimilarity
are GSOS [44], Tyft/Tyxt [68], NTyft/NTyxt [66], Path [31], Panth [150], and
the promoted Tyft [40], just to mention some. Bisimilarity is not the only

Matteo Cimini 11

equivalence relation taken into account, and also several preorders have
been addressed so far, the reader is invited to consult [109] for a survey on
these results.

• Algebraic properties. The literature offers rule formats addressing most of
the common algebraic properties of language constructs. For example, in
[110] the authors provide a rule format guaranteeing the commutativity of
certain operators (modulo bisimilarity). In [4] a rule format for the idem-
potence of operators is provided. Associativity of operators is addressed in
[49] and the existence of right and left unit elements for binary operators in
[22].

• Global properties of the computations of programs in a language. As ex-
amples, in [60] the authors provide a rule format guaranteeing the bounded
non-determinism of the induced semantics and in [4] the authors offer a rule
format ensuring the determinism of certain transition relations.

• Connections with denotational models of languages. The literature offers
methods capable to automatically generate denotational models starting
from an SOS specification. In order to be useful, such models are required to
be fully abstract, in the sense of [94, 118, 139], with respect to a behavioural
equivalence or preorder of interest. The mentioned methods are by and
large possible only when TSSs are restricted to fit particular rule formats.
Seminal contributions along this line are due to Bard Bloom [42] and also Jan
Rutten and Daniele Turi [126, 127]. Successive contributions are [19], [128],
to mention some. As an example in [19] the authors provide a method to
automatically generate CPO-based models for a particular subclass of GSOS
languages [44]. The domain of such models is Samson Abramsky’s domain
of synchronization trees [3] and models are proved to be fully abstract with
respect to the bisimulation preorder.

• Conservative extension. Given a programming language, it is often inter-
esting to add new operators to it. In the SOS world this means extending
the TSS for the original language with new function symbols together with
the rules describing their behaviour and/or with new rules for existing oper-
ations. A conservative extension of a TSS adds new operators and/or rules
without changing the behaviour of the terms of the old language. Checking
whether an extension is conservative is particularly desirable in order to
benefit from the results concerning the old language. The reader is invited
to consult [17] and [59] for excellent overviews of the subject.

12 Meta-theory of SOS

• Proof systems for Hennessy-Milner logic. Hennessy-Milner logic (HML)
[74] is a modal logic whose formulae are intended to specify computational
properties of the states in labeled transition systems. Repeating its syntax
and semantics is out of the scope of this brief description. Still, it is sufficient
for the reader to think that typical properties specified by HML are

– Is the current state capable of performing an a-action?

– Is it possible, from the current state, to perform a step and reach a state
that is capable of performing an a-action?

– Is every possible state I can reach by performing a step from the current
state capable of performing an a-action?

Since HML formulae state properties about the behaviour of programs,
proving whether a formula is valid is of particular interest. It is thus not
surprising that checking the validity of HML formulae has been addressed
extensively in literature. The subject is independent from the meta-theory
of SOS; nevertheless, Alex Simpson linked the two fields in [138], offering
an algorithm for generating a sound and complete proof systems for such a
logic in the context of languages whose semantics is specified in the GSOS
format.

• Equational theory axiomatizations. An equational theory aims to character-
ize a congruence relation by means of a set of axioms using the inference
rules of equational reasoning. An equational theory is sound with respect to
an equivalence relation ≈ whenever all the terms equated by the theory are
indeed equated by ≈, i.e. the equational theory cannot prove false/invalid
equations. Conversely, an equational theory is complete whenever all the
equivalences between terms that hold modulo ≈ can be proved equal by the
theory. Often ground-completeness is also addressed, which is complete-
ness restricted to closed terms. Given a fragment of a process calculus, it is
common practice to provide an axiomatization of some behavioural equiv-
alence of interest over it. The reader may think about the example of such
a practice provided by Hennessy and Milner in [74] for the language CCS
modulo bisimilarity, see also [96]. Since then, there have been a plethora of
results pertaining to the (non-)existence of finite equational axiomatizations
for behavioural equivalences. The positive results on the existence of "nicely
specified" ground complete axiomatizations often rely on normal forms for
terms that are syntactic representations of (finite) computation trees.

Matteo Cimini 13

A remarkable result from the meta-theory of SOS is offered by [5]. There
the authors provide an algorithm capable of extracting a sound and ground
complete set of axioms for bisimilarity from a TSS in the GSOS format.
The method of [5] has been later adapted in [32] in order to address GSOS
languages with an explicit notion of successful termination encoded as a
predicate symbol, and recently, in [6], to address GSOS languages where
predicates can be defined in a general fashion.

It is not possible to do justice to all the type of results that the literature provides
on the meta-theory of SOS and the list above must be understood as a personal
choice of the most relevant streams of research. The reader may also be interested
in considering ordered SOS [143, 106, 105], decompositon of modal logics [88, 58]
and time [82, 144], probability [35, 83] and security [104, 142, 141] related meta-
theorems, just to mention some. Excellent overviews of the results in this field,
although a little dated, are [18] and [109].

For the sake of concreteness, we limit ourselves to presenting two examples of
meta-results.

Example 1.3.1 (An example of congruence format) Consider the GSOS format of
Bloom, Istrail and Meyer [44], whose definition is given below.

Definition 1.3.2 (GSOS rule) Suppose Σ is a signature. A GSOS rule r over Σ is a rule
of the form:

⋃l
i=1

{
xi

ai j
→ yi j|1 ≤ j ≤ mi

}
∪

⋃l
i=1

{
xi

bik
9 |1 ≤ k ≤ ni

}
f (x1, . . . , xl)

c
→ t

where all the variables are distinct, mi,ni ≥ 0, ai j, bik, and c are actions from a finite set, f
is a function symbol from Σ with arity l, and t is a term that may only contain variables
in the set {x1, . . . , xl} ∪ {yi j | 1 ≤ i ≤ l, 1 ≤ j ≤ mi}.

Definition 1.3.3 A GSOS language is a triple G = (ΣG,L,RG), where ΣG is a finite
signature, L is a finite set of action labels and RG is a finite set of GSOS rules over ΣG.

Denoting with the symbol↔–– the bisimilarity, the following theorem is a classic result in
the meta-theory of SOS, [44].

Theorem 1.3.1 For every GSOS language↔–– is a congruence.

Proving bisimilarity to be a congruence may be sometimes a tricky task and this kind of
results is indeed a precious contribution since it also saves researchers some work. For

14 Meta-theory of SOS

example, the reader should notice that the semantics for the simple concurrent language
given in Example 1.2.1 fits the GSOS format. This is enough to conclude that bisimilarity
is a congruence for that language, without embarking on any specific proof.

Example 1.3.4 (A rule format for idempotence) The reader might also be pleased to
see an example of rule format that is capable of ensuring the validity of some algebraic
law. We now proceed to present a result extracted from [4] that guarantees that certain
binary operators are idempotent w.r.t to bisimilarity, i.e. provided f is a binary function
symbol, it holds that f (x, x)↔–– x.

Definition 1.3.5 A TSS is in the idempotence format with respect to an operator f
whenever each f -defining rule is of the form

{xi
l
→ t} ∪Φ

f (x0, x1) l
→ t

, i ∈ {0, 1}

where Φ is an arbitrary set of premises and it holds that there exists at least one rule for f
for which Φ is empty.

In [4] the authors consider other kinds of rules capable of ensuring the idempotence of
operators; since they are not strictly relevant in our context, they are omitted here for
the sake of simplicity. The interested reader is invited to read the original source for the
description of the general format. The following theorem is a simplified version of the
result in [4].

Theorem 1.3.2 The equation f (x, x)↔–– x holds in any complete TSS in the idempotence
format with respect to a binary operator f .

As a matter of fact, the TSS of the Example 1.2.1 is in the idempotence format with respect
to +. This is enough to conclude that + is idempotent, saving us from the annoying task
to provide an ad hoc proof of that fact.

Why the meta-theory of SOS is so appealing Results in the meta-theory of SOS
are usually very general and broadly applicable. It is hard to summarize all the
benefits ensuing from the results of the meta-theory of SOS developed so far. In
my opinion, the most important ones are as follows.

• These type of results are desirable because they do not apply only to one par-
ticular language, but they instead apply to many languages, namely every

Matteo Cimini 15

language whose semantic description can be defined within the restricted
format considered.

• Most of the results in the meta-theory of SOS allow the user to prove some
semantic property by performing a simple syntactic check based on the form
of the rules employed in writing the semantics of the language at hand.
Semantic properties like the congruence of some equivalence relation or the
validity of some algebraic law are two typical examples of properties that
a user may want to prove about a language. These properties may be long
and tedious to prove, may be just routine work, or sometimes even tricky.
Rule formats save the user from embarking on a proof which is ad-hoc for
the language at hand: it is sufficient to show that some syntactic restrictions
are met and the semantic property is then guaranteed to hold for free.

• Last but not least, studying meta-theory is a way to discover insights in
programming languages and their semantics, i.e. it is a way to understand,
at a syntactic level, why certain languages afford a property while others do
not.

Moreover, being the meta-theory of SOS a mature and successful field by now,
I personally believe that the wealth of useful existing contributions represents
further reason to use SOS in the first place, possibly increasing the already large
appeal of SOS when it comes to developing and analyzing new languages.

1.4 Contributions: A summary

During my Ph.D. thesis work, I offered with my colleagues a number of contribu-
tions to the meta-theory of SOS. The contributions presented in my dissertation
are not specific to a single subject. Rather, I worked on a few different streams of
research.

This section contains a brief survey of the results presented in the thesis and
indicate the papers on which they are based. It gives also an overview of the
structure of the thesis. All but one of the papers have been published in refereed
conference proceedings or journals.

• Proving equivalence of open terms. Chapter 2 is devoted to the study of
a bisimulation-based method for establishing the soundness of equations
between terms constructed using operations whose semantics is specified

16 Meta-theory of SOS

by rules in the GSOS format of Bloom, Istrail and Meyer, [44]. The method
is inspired by de Simone’s FH-bisimilarity, [52], and uses transition rules
as schematic transitions in a bisimulation-like relation between open terms.
The soundness of the method is proven and examples showing its appli-
cability are provided. The proposed bisimulation-based proof method is
incomplete, but the chapter offers some completeness results for restricted
classes of GSOS specifications. An extension of the proof method to the
setting of GSOS languages with predicates is also offered. The material con-
tained in this chapter is based on the content of the published papers [7] and
[8].

• Rule formats for zero and unit elements. Chapter 3 is devoted to the study
of rule formats for SOS guaranteeing that certain constants act as left or right
zero elements for a set of binary operators. Our design approach is also
applied to reformulate an earlier rule format for unit elements. Examples of
left and right zero, as well as unit, elements from the literature are shown
to be checkable using the provided formats. The material contained in this
chapter is based on the content of the published papers [11] and [9].

• Rule formats for distributivity. Chapter 4 is devoted to the presentation
of rule formats for SOS guaranteeing that certain binary operators are left
distributive with respect to a set of binary operators. Examples of left-
distributivity laws from the literature are shown to be instances of the pro-
vided formats. Some conditions ensuring the impossibility of the validity
of the left-distributivity law are also offered. The material contained in this
chapter is based on the content of the published paper [12] and the technical
report [10], a version of which has been submitted for journal publication.

• Structural operational semantics with binders. Chapter 5 is devoted to
the development of a new formal framework for accomodating binders and
names in SOS. The framework is based on the Nominal Logic of Gabbay and
Pitts and hence is called Nominal SOS. We formulate the lazy λ-calculus,
[2], and the early π-calculus, [132, 98], in our framework and we prove the
correctness of these calculi w.r.t. their original operational semantics. We
define a notion of nominal bisimilarity and show that for the earlyπ-calculus
this notion is fully abstract w.r.t. open bisimilarity.

The content of Chapter 5 is based on the early ideas by Murdoch James
Gabbay, MohammadReza Mousavi and Michel Reniers. Substantial further
developments have been carried out by me in a joint collaboration with them.

Matteo Cimini 17

This chapter presents the results from the unpublished material grown from
this collaboration.

Chapters 2-5 are devoted to different contributions and each of the chapters is self-
contained. The reader that is interested in reading one particular contribution can
skip directly to the corresponding chapter.

Chapter 6 concludes the thesis with a discussion of its main contributions and
points out some directions for future work.

1.4.1 Publications resulting from the thesis work

We list below the publications resulted from my 3-year long Ph.D. thesis work.

1. Luca Aceto, Matteo Cimini, and Anna Ingólfsdóttir. A bisimulation-based
method for proving the validity of equations in GSOS languages. In Pro-
ceedings of the 6th Workshop on Structural Operational Semantics 2009 (SOS
2009), August 31, 2009, Bologna (Italy), volume 18 of Electronic Proceedings in
Theoretical Computer Science, pages 1-16, 2010.

2. Luca Aceto, Matteo Cimini, and Anna Ingólfsdóttir. Proving the validity
of equations in GSOS languages using rule-matching bisimilarity, 2011. to
appear in Mathematical Structures in Computer Science.

3. Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, MohammadReza Mousavi,
and Michel A. Reniers. SOS rule formats for zero and unit elements. Theo-
retical Computer Science, 412(28):3045-3071, 2011.

4. Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, MohammadReza Mousavi,
and Michel A. Reniers. On rule formats for zero and unit elements. In Pro-
ceedings of the 26th Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXVI), Ottawa, Canada, volume 265 of Electronic Notes in
Theoretical Computer Science, pages 145-160. Elsevier B.V., The Netherlands,
2010.

5. Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Mohammadreza Mousavi,
and Michel A. Reniers. Rule formats for distributivity. In Proceedings of the
5th International Conference on Language and Automata Theory and Applications
(LATA 2011), volume 6638 of Lecture Notes in Computer Science, pages 79-90,
Springer-Verlag, 2011.

18 Meta-theory of SOS

6. Matteo Cimini, Claudio Sacerdoti Coen, and Davide Sangiorgi. Functions as
processes: Termination and the λ̄µµ̃-Calculus. In Proceedings of the 5th Sym-
posium on Trustworthy Global Computing (TGC 2010), volume 6084 of Lecture
Notes in Computer Science, pages 73-86, Springer-Verlag, 2010.

7. Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Arni Hermann Reynisson,
Steinar Hugi Sigurdarson, and Marjan Sirjani. Modelling and simulation of
asynchronous real-time systems using Timed Rebeca. In Proceedings of the
10th International Workshop on the Foundations of Coordination Languages and
Software Architectures (FOCLASA 2011), volume 58 of Electronic Proceedings in
Theoretical Computer Science, pages 1-19, 2011.

As remarked in the previous section, none of the papers above concerns the contri-
bution presented in Chapter 5. The content of Chapter 5 is based on unpublished
material reporting on joint work with Murdoch James Gabbay, MohammadReza
Mousavi and Michel Reniers that we plan to submit for publication soon.

Also, contributions 6 and 7 concern SOS in a more applicative fashion and they
do not explicitly deal with the meta-theory of SOS. The results from those papers
are therefore not part of the present thesis.

19

Chapter 2

Proving Equivalence of Open
Terms

All animals are equal, but some animals are more equal than others.
George Orwell, from the book Animal Farm.

2.1 Introduction

Equations play a fundamental role in the development of the theory and practice
of process calculi and programming languages since they offer a mathematically
appealing and concise way of stating the ‘laws of programming’ (to borrow the
title of a paper by Hoare et al. [78]) that apply to the language at hand. In the setting
of process calculi, the study of equational axiomatizations of behavioural relations
has been a classic area of investigation since, e.g., the early work of Hennessy and
Milner [74, 95], who offered complete axiom systems for bisimilarity [115] over
the finite and regular fragments of Milner’s CCS [96]. Such axiomatizations
capture the essence of bisimilarity over those fragments of CCS in a syntactic,
and often revealing, way and pave the way for the verification of equivalences
between processes by means of theorem proving techniques. Despite these early
achievements, the search for axiomatizations of process equivalences that are
powerful enough to establish all the valid equations between open process terms
(that is, terms possibly containing variables) has proven to be a very difficult
research problem; see [14] for a survey of results in this area. For instance, to
the best of our knowledge, there is no known axiomatization of bisimilarity over

20 Meta-theory of SOS

recursion-free CCS that is complete over open terms. Stepping stones towards
such a result are offered in, e.g., [15, 20].

The most basic property of any equation is that it be sound with respect to the
chosen notion of semantics. Soundness proofs are often lengthy, work-intensive
and need to be carried out for many equations and languages. It is therefore
not surprising that the development of general methods for proving equivalences
between open terms in expressive process calculi has received some attention
since the early developments of the algebraic theory of processes—see, e.g., the
references [47, 88, 125, 52, 149] for some of the work in this area over a period
of over 20 years. This article offers a contribution to this line of research by
developing a bisimulation-based method, which we call rule-matching bisimilarity,
for establishing the soundness of equations between terms constructed using
operations whose semantics is specified by rules in the GSOS format of Bloom,
Istrail and Meyer [44]. Rule-matching bisimilarity is inspired by de Simone’s FH-
bisimilarity [52] and uses transition rules as transition schemas in a bisimulation-
like relation between open terms. We prove that rule-matching bisimilarity is
a sound proof method for showing the validity of equations with respect to
bisimilarity and exhibit examples witnessing its incompleteness.

The incompleteness of rule-matching bisimilarity is not unexpected and raises
the question whether the method is powerful enough to prove the soundness
of ‘interesting’ equations. In order to offer a partial answer to this question, we
provide examples showing the applicability of our proof method. In particular,
our method does not only apply to a more expressive rule format than the one
proposed by de Simone in [52], but is also a sharpening of de Simone’s FH-
bisimilarity over de Simone languages. See Section 2.6, where we apply rule-
matching bisimilarity to prove the soundness of the equations in de Simone’s
‘clock example’. (This example was discussed by de Simone in [52] to highlight
the incompleteness of FH-bisimilarity.) On the theoretical side, we also offer some
completeness results for restricted classes of GSOS specifications.

We also extend our main results to the setting of GSOS language specifications
with predicates. This extension, albeit not theoretically deep, is significant from
the point of view of applications of rule-matching bisimilarity since the opera-
tional semantics of several operations commonly found in the literature on, e.g.,
process algebra is best specified using rules involving the use of predicates as
first-class notions.

Matteo Cimini 21

Overall, we believe that, while our conditions are neither necessary nor in general
can they be checked algorithmically, they frequently hold, and they are more
accessible to machine support than a direct proof of soundness.

The chapter is organized as follows. Sections 2.2 and 2.3 introduce the necessary
preliminaries on the GSOS rule format that are needed in the remainder of the
chapter. In particular, Section 2.3 recalls the notion of ruloid, which plays a
key role in the technical developments to follow. In Section 2.4, we introduce
a simple logic of transition formulae and establish a decidability result for the
validity of implications between formulae. Implication between certain kinds
of transition formulae that are naturally associated with the premises of (sets of)
ruloids is used in the definition of rule-matching bisimilarity in Section 2.5. In that
section, we prove that rule-matching bisimilarity is a sound method for showing
the validity of equations in GSOS languages modulo bisimilarity and exhibit
examples witnessing its incompleteness. We apply rule-matching bisimilarity to
show the validity of some sample equations from the literature on process algebra
in Section 2.6. We then offer some partial completeness results for rule-matching
bisimilarity (Section 2.7). Section 2.8 is devoted to the extension of our main results
to the setting of GSOS languages with predicates. The chapter concludes with a
discussion of related and future work (Section 2.9). For the sake of readability,
proofs of some technical results are collected in a series of sections that follow
Section 2.9.

2.2 Preliminaries

We assume familiarity with the basic notation of process algebra and structural
operational semantics; see e.g. [18, 24, 44, 68, 72, 77, 96, 109, 65] for more de-
tails.

Let Var be a countably infinite set of process variables with typical elements x, y. A
signature Σ consists of a set of operation symbols, disjoint from Var, together with
a function arity that assigns a natural number to each operation symbol. The set

(Σ) of terms built from the operations in Σ and the variables in Var is the least set
such that

• each x ∈ Var is a term;

• if f is an operation symbol of arity l, and P1, . . . ,Pl are terms, then f (P1, . . . ,Pl)
is a term.

22 Meta-theory of SOS

We use P,Q, . . . to range over terms and the symbol ≡ for the relation of syntactic
equality on terms. We denote by T(Σ) the set of closed terms over Σ, i.e., terms
that do not contain variables, and will use p, q, . . . to range over it. An operation
symbol f of arity 0 will be often called a constant symbol, and the term f () will be
abbreviated as f .

Besides terms we have actions, elements of some given nonempty, finite set Act,
which is ranged over by a, b, c, d. A positive transition formula is a triple of two
terms and an action, written P a

→ P′. A negative transition formula is a pair of a
term and an action, written P a

9.

A (closed) Σ-substitution is a function σ from variables to (closed) terms over the
signature Σ. For t a term or a transition formula, we write tσ for the result of
substituting σ(x) for each x occurring in t, and vars(t) for the set of variables
occurring in t. A Σ-context C[~x] is a term in which at most the variables ~x appear.
C[~P] is C[~x] with xi replaced by Pi wherever it occurs.

Definition 2.2.1 (GSOS rule) Suppose Σ is a signature. A GSOS rule ρ over Σ is a
rule of the form:

⋃l
i=1

{
xi

ai j
→ yi j | 1 ≤ j ≤ mi

}
∪

⋃l
i=1

{
xi

bik
9| 1 ≤ k ≤ ni

}
f (x1, . . . , xl)

c
→ C[~x, ~y]

(2.1)

where all the variables are distinct, mi,ni ≥ 0, ai j, bik, and c are actions, f is an operation
symbol from Σ with arity l, and C[~x, ~y] is a Σ-context.

It is useful to name components of rules. The operation symbol f is the principal
operation of the rule, and the term f (~x) is the source. C[~x, ~y] is the target; c is the
action; the formulae above the line are the antecedents (sometimes denoted by ante

(
ρ
)
);

and the formula below the line is the consequent (sometimes denoted by cons
(
ρ
)
).

For a GSOS rule ρ, we use SV(ρ) and TV(ρ) to denote the sets of source and target
variables of ρ, respectively; that is, SV(ρ) is the set of variables in the source of ρ, and
TV(ρ) is the set of y’s for antecedents x a

→ y.

Definition 2.2.2 A GSOS language is a pair G = (ΣG,RG) where ΣG is a finite signature
and RG is a finite set of GSOS rules over ΣG.

Informally, the intent of a GSOS rule is as follows. Suppose that we are wondering
whether f (~P) is capable of taking a c-step. We look at each rule with principal
operation f and action c in turn. We inspect each positive antecedent xi

ai j
→ yi j,

Matteo Cimini 23

checking if Pi is capable of taking an ai j-step for each j and if so calling the ai j-
children Qi j. We also check the negative antecedents; if Pi is incapable of taking
a bik-step for each k. If so, then the rule fires and f (~P) c

→ C[~P, ~Q]. This means that
the transition relation→G associated with a GSOS language G is the one defined
by the rules using structural induction over closed ΣG-terms.

For the sake of precision, we will now formally define the transition relation
induced by a GSOS language.

Definition 2.2.3 A transition relation over a signature Σ is a relation { ⊆ T(Σ) ×
Act × T(Σ). We write p a{ q as an abbreviation for (p, a, q) ∈{.

Definition 2.2.4 Suppose { is a transition relation and σ a closed substitution. For
each transition formula φ, the predicate {, σ |= φ is defined by

{, σ |= P a
→ Q ∆

= Pσ a{ Qσ

{, σ |= P a
9

∆
= 6 ∃Q : Pσ a{ Q

For H a set of transition formulae, we define

{, σ |= H ∆
= ∀φ ∈ H : {, σ |= φ

and for
H

φ
a GSOS rule,

{, σ |=
H

φ

∆
=

(
{, σ |= H =⇒ {, σ |= φ

)
.

For t a transition formula, a set of such formulae or a GSOS rule, we sometimes
abbreviate {, σ |= t to σ |= t when the transition relation is clear from the con-
text.

Definition 2.2.5 Suppose G is a GSOS language and{ is a transition relation over ΣG.
Then { is sound for G iff for every rule ρ ∈ RG and every closed ΣG-substitution σ, we

have {, σ |= ρ. A transition p a{ q is supported by some rule
H

φ
∈ RG iff there exists a

substitution σ such that {, σ |= H and φσ =
(
p a
→ q

)
. The relation { is supported by

G iff each transition in { is supported by a rule in RG.

24 Meta-theory of SOS

It is well known that the requirements of soundness and supportedness are suffi-
cient to associate a unique transition relation with each GSOS language.

Lemma 2.2.6 ([44]) For each GSOS language G there is a unique sound and supported
transition relation.

We write →G for the unique sound and supported transition relation for G. We
say that a rule ρ is junk in G if it does not support any transition of→G. For each
closed term p, we define init(p) = {a ∈ Act | ∃q : p a

→G q}. For a GSOS language G,
we let init(T(ΣG)) = {init(p) | p ∈ T(ΣG)}.

The basic notion of equivalence among terms of a GSOS language we will consider
in this work is bisimulation equivalence [96, 115].

Definition 2.2.7 Suppose G is a GSOS language. A binary relation∼ ⊆ T(ΣG)×T(ΣG)
over closed terms is a bisimulation if it is symmetric and p ∼ q implies, for all a ∈ Act,

If p a
→G p′ then, for some q′, q a

→G q′ and p′ ∼ q′.

We write p ↔––G q if there exists a bisimulation ∼ relating p and q. The subscript G is
omitted when it is clear from the context.

It is well known that↔––G is a congruence for all operation symbols f of G [44].

Let Bisim(G) denote the quotient algebra of closed ΣG-terms modulo bisimulation.
Then, for P,Q ∈ (ΣG),

Bisim(G) |= P = Q ⇔ (∀ closed ΣG-substitutions σ : Pσ↔––G Qσ).

In what follows, we shall sometimes consider equations that hold over all GSOS
languages that extend a GSOS language G with new operation symbols and rules
for the new operations. The following notions from [5] put these extensions on a
formal footing.

Definition 2.2.8 A GSOS language G′ is a disjoint extension of a GSOS language G
if the signature and rules of G′ include those of G, and G′ introduces no new rules for
operations of G.

If G′ disjointly extends G then G′ introduces no new outgoing transitions for
the closed terms of G. This means in particular that P ↔––G Q iff P ↔––G′ Q, for
P,Q ∈ T(ΣG). (More general conservative extension results are discussed in,
e.g., [59, 107].)

Matteo Cimini 25

For G a GSOS language, let BISIM(G) stand for the class of all algebras Bisim(G′),
for G′ a disjoint extension of G. Thus we have, for P,Q ∈ (ΣG),

BISIM(G) |= P = Q ⇔ (∀G′ : G′ a disjoint extension of G =⇒ Bisim(G′) |= P = Q).

Checking the validity of a statement of the form Bisim(G) |= P = Q or BISIM(G) |=
P = Q according to the above definition is at best very impractical, as it involves
establishing bisimilarity of all closed instantiations of the terms P and Q. It would
thus be helpful to have techniques that use only information obtainable from these
terms and that can be used to this end. The development of one such technique
will be the subject of the remainder of this chaprter.

2.2.1 Eliminating junk rules

Note that the definition of a GSOS language given above does not exclude junk
rules, i.e., rules that support no transition in→G. For example, the rule

x a
→ y, x a

9

f (x) a
→ f (y)

has contradictory antecedents and can never fire. Also it can be the case that a
(seemingly innocuous) rule like

x a
→ y

f (x) b
→ f (y)

does not support any transition if →G contains no a-transitions. The possible
presence of junk rules does not create any problems in the development of the
theory of GSOS languages as presented in [5, 44] and the authors of those papers
saw no reason to deal with these rules explicitly.

Our aim in this work is to develop a test for the validity of equalities between
open terms in GSOS languages. The test we shall present in later sections is based
upon the idea of using GSOS rules as ‘abstract transitions’ in a bisimulation-like
equivalence between open terms. In order to ease the applicability of this method,
it is thus desirable, albeit not strictly necessary (see Remark 2.5.2), to eliminate
junk rules from GSOS languages, as these rules would be interpreted as ‘potential
transitions’ from a term which, however, cannot be realized.

26 Meta-theory of SOS

Consider, for example, the trivial GSOS language TRIV with unary operations f
and g, and rule

f (x) a
→ f (x) .

It is immediate to see that Bisim(TRIV) |= f (x) = g(y) as the set of closed terms
in TRIV is empty. However, if we considered the rule for f as a transition from
f (x) in a simple-minded way, we would be led to distinguish f (x) and g(y) as the
former has a transition while the latter does not. Obviously, the rule for f given
above is junk.

Clearly junk rules can be removed from a GSOS language G without altering the
associated transition relation. Of course, in order to be able to remove junk rules
from a GSOS language, we need to be able to discover effectively what rules are
junk. This is indeed possible, as the following theorem, due to Aceto, Bloom and
Vaandrager [18, Theorem 5.22], shows. (Below we present a proof of this result
since we refer to it in the proofs of Theorems 2.4.1 and 2.8.7.)

Theorem 2.2.9 Let G = (ΣG,RG) be a GSOS language. Suppose that ρ ∈ RG. Then it is
decidable whether ρ is junk in G.

Proof. Let G = (ΣG,RG) be a GSOS language. First of all, note that it is easy to
determine which rules in RG are junk once we have computed the set

init(T(ΣG)) = {init(p) | p ∈ T(ΣG)}

where init(p) = {a ∈ Act | ∃q : p a
→ q}. In fact, it is immediate to see that the

hypotheses of a GSOS rule of the form (2.1) are satisfiable iff there exist processes
p1, . . . , pl ∈ T(ΣG) such that

{
ai j|1 ≤ j ≤ mi

}
⊆ init(pi) and

{
bik|1 ≤ k ≤ ni

}
∩ init(pi) = ∅

for all 1 ≤ i ≤ l.

So we are left to give an effective way of computing the set init(T(ΣG)) for any
GSOS language G. This we do as follows. First of all, note that each function
symbol f ∈ ΣG of arity l determines a computable function

f̂ : 2Act
× · · · × 2Act︸ ︷︷ ︸
l-times

→ 2Act

by f̂ (X1, . . . ,Xl) = Y, where for all c ∈ Act, c ∈ Y iff there exists a rule ρ for f of
the form (2.1) with action c such that, for all 1 ≤ i ≤ l,

{
ai j|1 ≤ j ≤ mi

}
⊆ Xi and{

bik|1 ≤ k ≤ ni
}
∩Xi = ∅. (If f is a constant, then we use f̂ to denote the subset Y of

Matteo Cimini 27

Act such that f ({•}) = Y.) Now, for each X ⊆ 2Act, let G(X) be given by

G(X) ∆
= {Y | ∃ f ∈ ΣG, X1, . . . ,Xl ∈ X : f̂ (X1, . . . ,Xl) = Y}.

Note that, for each X ⊆ 2Act, G(X) can be effectively computed and that X ⊆ Y
implies G(X) ⊆ G(Y).

Our strategy for computing init(T(ΣG)) is to divide the set of closed terms T(ΣG)
into sets Ti of terms with depth less than or equal to i, and to compute the
nondecreasing sequence

init(T1) ⊆ init(T2) ⊆ · · ·

until it stabilizes. Obviously, this sequence will stabilize in a finite number of
steps as Act is finite.

Now, set T1 contains all the constants in the language. Thus init(T1) can be com-
puted by inspection of the rules for the constants. (Note that, by the form of the
rules, these have no antecedents.) In fact, we have that init(T1) =

{
f̂ | f a constant symbol in ΣG

}
.

So suppose that we want to compute init(Ti+1) given that we already have init(Ti).
We claim that init(Ti+1) = G(init(Ti)). In fact, each term in Ti+1 is of the form
f (p1, . . . , pl), where the pi’s are all in Ti. Thus we know init(pi) for all 1 ≤ i ≤ l and
that is exactly what we need in order to determine which rules for f can fire from
that term. Hence we can compute init(T1), and each init(Ti+1) can be computed
from init(Ti) using the monotonic and effective operation G(·). This completes the
proof.

Note that a GSOS rule without antecedents, i.e. an axiom, is junk iff the set
of closed terms is empty. For example, as mentioned before, the rule for the
operation f in TRIV is junk.

As a further example, consider the GSOS language G with constant aω and unary
operation f with rules

aω a
→ aω f (x) a

→ f (x)

x b
→ y

f (x) b
→ f (y)

Using our decision procedure, it is immediate to check that init(T(ΣG)) = {{a}}.
Thus the rule

x b
→ y

f (x) b
→ f (y)

28 Meta-theory of SOS

is junk in G, as its antecedent cannot be satisfied.

As a consequence of the above theorem, all the junk rules in a GSOS language can
be effectively removed in a pre-processing step before applying the techniques
described in the subsequent sections. Thus we will henceforth restrict ourselves
to GSOS languages without junk rules.

2.3 Ruloids and the operational specification of con-

texts

As mentioned above, the essence of our method for checking the validity of equa-
tions in GSOS languages is to devise a variation on bisimulation equivalence
between contexts that considers GSOS rules as transitions. For primitive opera-
tions in a GSOS language G, the rules in RG will be viewed as abstract transitions
from terms of the form f (~x). However, in general, we will be dealing with com-
plex contexts in (ΣG). In order to apply our ideas to general open terms, we will
thus need to associate with arbitrary contexts a set of derived rules (referred to as
ruloids [44]) describing their behaviour.

A ruloid for a context D[~x], with ~x = (x1, . . . , xl), takes the form:

⋃l
i=1

{
xi

ai j
→ yi j | 1 ≤ j ≤ mi

}
∪

⋃l
i=1

{
xi

bik
9| 1 ≤ k ≤ ni

}
D[~x] c

→ C[~x, ~y]
(2.2)

where the variables are distinct, mi,ni ≥ 0, ai j, bik, and c are actions, and C[~x, ~y] is
a Σ-context.

A ruloidρwith the above form is sound for D[~x] iff for every closed ΣG-substitution
σ, we have→G, σ |= ρ. A set of such ruloids is sound for D[~x] if so is each of its
members.

Definition 2.3.1 A set of ruloids R is supporting1 for a context D[~x] and action c iff all
the consequents of ruloids in R are of the form D[~x] c

→ C[~x, ~y] and, whenever D[~P] c
→G p,

there are a ruloid ρ ∈ R and a closed substitution σ such that cons
(
ρ
)
σ = D[~P] c

→ p and
→G, σ |= ante

(
ρ
)
.

1 Our terminology departs slightly from that of [44]. Bloom, Istrail and Meyer use ‘specifically
witnessing’ in lieu of ‘supporting’.

Matteo Cimini 29

The following theorem is a slightly sharpened version of the Ruloid Theorem
(Theorem 7.4.3) in [44].

Theorem 2.3.2 (Ruloid theorem) Let G be a GSOS language and X ⊆ Var be a finite
set of variables. For each D[~x] ∈ (ΣG) and action c, there exists a finite set RD,c of ruloids
of the form (2.2) such that:

1. RD,c is sound and supporting for D[~x], and

2. TV(ρ) ∩ X = ∅, for every ρ ∈ RD,c.

Moreover, the set RD,c can be effectively constructed.

Proof. A straightforward adaptation of the proof of the corresponding result
in [44], where we take care in choosing the target variables in ruloids so that
condition 2 in the statement of the theorem is met.

Definition 2.3.3 Let G be a GSOS language. For each D[~x] ∈ (ΣG), the ruloid set of
D[~x], notation RG

(
D[~x]

)
, is the union of the sets RD,c (c ∈ Act) given by Theorem 2.3.2.

Remark 2.3.4 A set of ruloids that is supporting for a context D[~x] and action a may
have size that is exponential in the number of variables in ~x. By way of example, consider
the context D[x1, . . . , xn] = f (g(x1), . . . , g(xn)), where the rules for f and g are as follows.

{
xi

a
→ yi | 1 ≤ i ≤ n

}
f (x1, . . . , xn) a

→ f (x1, . . . , xn)

x a
→ y

g(x) a
→ y

x b
→ y

g(x) a
→ g(y)

It is easy to see that there are 2n ruloids for D[x1, . . . , xn] with action a.

The import of the Ruloid Theorem is that the operational semantics of an open
term P can be described by a finite set RG(P) of derived GSOS-like rules. Examples
of versions of the above result for more expressive formats of operational rules
may be found in, e.g., the references [43, 58].

Example 2.3.5 Consider a GSOS language G containing the sequencing operation ‘;’
specified by the following rules (one such pair of rules for each a ∈ Act).

x a
→ z

x; y a
→ z; y

x b
9 (∀b ∈ Act), y a

→ z
x; y a
→ z

(2.3)

Let R[x, y, z] = x; (y; z) and L[x, y, z] = (x; y); z. The ruloids for L and R are:

30 Meta-theory of SOS

x a
→ x′

L a
→ (x′; y); z

R a
→ x′; (y; z)

x9, y a
→ y′

L a
→ y′; z

R a
→ y′; z

x9, y9, z a
→ z′

L a
→ z′

R a
→ z′

(2.4)

where we write x9 in the antecedents of ruloids as a shorthand for x b
9 (∀b ∈ Act).

Remark 2.3.6 Note that the set RG

(
D[~x]

)
of ruloids for a context D[~x] in a GSOS

language G may be chosen to contain junk ruloids even when G has no junk rule. For
example, consider the GSOS language with constants a and 0, unary operation g and
binary operation f with the following rules.

a a
→ 0

x a
→ x′, y b

→ y′

f (x, y) a
→ 0

x a
9

g(x) b
→ 0

None of the above rules is junk. However, the only ruloid for the context f (x, g(x)) is

x a
→ x′, x a

9

f (x, g(x)) a
→ 0

,

which is junk. However, junk ruloids can be removed from the set of ruloids for a context
using Theorem 2.2.9. In what follows, we shall assume that the set of ruloids we consider
have no junk ruloids.

In the standard theory on GSOS, it was not necessary to pay much attention to the
variables in rules and ruloids, as one was only interested in the transition relation
they induced over closed terms. (In the terminology of [68], all the variables
occurring in a GSOS rule/ruloid are not free.) Here, however, we intend to use
ruloids as abstract transitions between open terms. In this framework it becomes
desirable to give a more reasoned account of the role played by variables in
ruloids, as the following example shows.

Example 2.3.7 Consider a GSOS language G containing the unary operations f and g
with the following rules.

x a
→ y

f (x) a
→ y

x a
→ z

g(x) a
→ z

It is easy to see that Bisim(G) |= f (x) = g(x), regardless of the precise description of G.
However, in order to prove this equality, any bisimulation-like equivalence relating open
terms in (ΣG) would have to relate the variables y and z in some way. Of course, this

Matteo Cimini 31

will have to be done carefully, as y and z are obviously not equivalent in any nontrivial
language.

As the above-given example shows, in order to be able to prove many simple
equalities between open terms, it is necessary to develop techniques which allow
us to deal with the target variables in ruloids in a reasonable way. In particular,
we should not give too much importance to the names of target variables in
ruloids.

Definition 2.3.8 (Valid ruloids) Let G be a GSOS language and P ∈ (ΣG). We say

that a ruloid ρ =
H

P a
→ P′

is valid for P iff there exist ρ′ ∈ RG(P) and an injective map

σ : TV(ρ′)→ (Var − SV(ρ)) such that ρ is identical to ρ′σ.

For example, it is immediate to notice that the rules

x a
→ z

f (x) a
→ z

x a
→ y

g(x) a
→ y

are valid for the contexts f (x) and g(x) in the above-given example.

As a further example, consider the unary operation h with rule

x a
→ y1, x a

→ y2

h(x) a
→ h(y1)

Applying the above definition, we immediately have that the rule

x a
→ y1, x a

→ y2

h(x) a
→ h(y2)

is valid for f . (Just consider a substitution which swaps y1 with y2 in the rule for
h.)

Note, moreover, that each ruloid in RG(P) is a valid ruloid for P.

The following lemma states that, if ρ′ is obtained from ρ as in Definition 2.3.8,
then ρ and ρ′ are, in a sense, semantically equivalent ruloids.

Lemma 2.3.9 Let G = (ΣG,RG) be a GSOS language and P ∈ (ΣG). Assume that ρ
is a valid ruloid for P because ρ = ρ′σ for some ρ′ ∈ RG(P) and injective σ : TV(ρ′) →
Var − SV(ρ). Then:

1. ρ is sound for→G;

32 Meta-theory of SOS

2. Supp(ρ) = Supp(ρ′), where, for a GSOS rule/ruloid ρ̂, Supp(ρ̂) denotes the set of
transitions supported by ρ̂.

The set of valid ruloids for a context P is infinite. However, by Theorem 2.3.2, we
can always select a finite set of valid ruloids for P which is sound and supporting
for it. We will often make use of this observation in what follows.

2.4 A logic of transition formulae

The set of ruloids associated with an open term P in a GSOS language characterizes
its behaviour in much the same way as GSOS rules give the behaviour of GSOS
operations. In fact, by Theorem 2.3.2, every transition from a closed term of the
form Pσ can be inferred from a ruloid in RG(P).

The antecedents of ruloids give the precise conditions under which ruloids fire.
When matching ruloids in the definition of the bisimulation-like relation between
open terms that we aim at defining, we will let a ruloid ρ be matched by a set of
ruloids J only if the antecedents of ρ are stronger than those of the ruloids in J, i.e.,
if whenever ρ can fire under a substitution σ, then at least one of the ruloids in J
can. In order to formalize this idea, we will make use of a simple propositional
logic of initial transition formulae.

We define the language of initial transition formulae to be propositional logic with
propositions of the form x a

→. Formally, the formulae of such a logic are given by
the following grammar:

F ::= True | x a
→ | ¬F | F ∧ F .

As usual, we write False for ¬True, and F ∨ F′ for ¬(¬F ∧ ¬F′).

Let G be a GSOS language. A G-model for initial transition formulae is a substi-
tution σ of processes (closed ΣG-terms) for variables. We write →G, σ |= F if the
closed substitution σ is a model of the initial transition formula F. The satisfaction
relation |= is defined by structural recursion on F in the obvious way.

→G, σ |= True always

→G, σ |= x a
→ ⇔ σ(x) a

→G p for some p

→G, σ |= ¬F ⇔ not →G, σ |= F

→G, σ |= F ∧ F′ ⇔ →G, σ |= F and →G, σ |= F′

Matteo Cimini 33

In what follows, we consider formulae up to commutativity and associativity of
∨ and ∧, and we remove True conjuncts from formulae.

The reader familiar with Hennessy-Milner logic [74] will have noticed that the
propositions of the form x a

→ correspond to Hennessy-Milner formulae of the
form 〈a〉True.

If H is a finite set of positive or negative transition formulae (e.g., the hypotheses
of a rule or ruloid), then hyps(H) is the conjunction of the corresponding initial
transition formulae. Formally,

hyps(∅) = True

hyps(
{
x a
9

}
∪H) = ¬(x a

→) ∧ hyps(H \
{
x a
9

}
)

hyps(
{
x a
→ x′

}
∪H) = (x a

→) ∧ hyps(H \
{
x a
→ x′

}
) .

For example, hyps(
{
x a
→ y, z b

9
}
) = (x a

→) ∧ ¬(z b
→). If J is a finite set of ruloids,

we overload hyps(·) and write:

hyps(J) ∆
=

∨
ρ′∈J

hyps(ante
(
ρ′

)
) . (2.5)

The semantic entailment preorder between initial transition formulae may be
now defined in the standard way; for formulae F,F′, we have |=G F⇒ F′ iff every
substitution that satisfies F must also satisfy F′. Note that a GSOS rule ρ is junk
iff hyps(ρ) is semantically equivalent to False.

In the remainder, we will use the semantic entailment preorder between transition
formulae in our test for equivalence of open terms to characterize the fact that if
one ruloid may fire, then some other may do so too. Of course, in order to do
so, we need to be able to check effectively when |=G F ⇒ F′ holds. Fortunately,
the semantic entailment preorder between formulae is decidable, as the following
theorem shows.

Theorem 2.4.1 Let G be a GSOS language. Then for all formulae F and F′, it is decidable
whether |=G F⇒ F′ holds.

Proof. (Sketch) Let F and F′ be formulae in the propositional language of initial
transition formulae. For each mapping η : vars(F) ∪ vars(F′) → 2Act and x ∈
vars(F) ∪ vars(F′), define

η |=′G (x a
→) ⇔ a ∈ η(x) .

34 Meta-theory of SOS

We can extend |=′G to arbitrary formulae with variables in vars(F) ∪ vars(F′) in the
obvious way.

It is easy to see that, for all σ : Var → T(ΣG) and formulae F′′ over vars(F) ∪
vars(F′),

→G, σ |=G F′′ iff ησ |=
′

G F′′,

where ησ(x) = init(σ(x)) for all x ∈ vars(F) ∪ vars(F′).

To see that our claim does hold, it is now sufficient to note that we can therefore
reduce the refinement problem to checking that for every mapping η : vars(F) ∪
vars(F′) → init(T(ΣG)), η |=′G F implies that η |=′G F′. This problem is obviously
decidable as there are only finitely many such mappings, and init(T(ΣG)) can be
computed following the strategy presented in the proof of Theorem 2.2.9.

Theorem 2.4.1 tells us that we can safely use semantic entailment between for-
mulae in our simple propositional language in the test for the validity of open
equations in GSOS languages, which we will present in what follows.

2.5 Rule-matching bisimulation

We will now give a method to check the validity of equations in the algebra
Bisim(G) based on a variation on the bisimulation technique. Our approach has
strong similarities with, and is a sharpening of, FH-bisimulation, as proposed by
de Simone in [51, 52]. (We remark, in passing, that FH-bisimilarity checking has
been implemented in the tool ECRINS [53, 89].)

Definition 2.5.1 (Rule-matching bisimulation) Let G be a GSOS language. A rela-
tion ≈ ⊆ (ΣG) × (ΣG) is a rule-matching bisimulation if it is symmetric and P ≈ Q
implies

for each ruloid
H

P a
→ P′

in the ruloid set of P, there exists a finite set J of valid ruloids for

Q such that:

1. For every ρ′ = H′

Q a′
→Q′
∈ J, we have:

(a) a′ = a.

(b) P′ ≈ Q′.

(c)
(
TV(ρ′) ∪ TV(ρ)

)
∩

(
SV(ρ) ∪ SV(ρ′)

)
= ∅.

Matteo Cimini 35

(d) If y ∈ TV(ρ) ∩ TV(ρ′), then x b
→ y ∈ H ∩ H′ for some source variable

x ∈ SV(ρ) ∩ SV(ρ′) and action b.

2. |=G hyps(ρ)⇒ hyps(J).

We write P ◦↔––G Q if there exists a rule-matching bisimulation ≈ relating P and Q. We
sometimes refer to the relation ◦↔––G as rule-matching bisimilarity.

Note that, as the source and target variables of GSOS rules and ruloids are distinct,
condition 1c is equivalent to TV(ρ)∩SV(ρ′) = ∅ and TV(ρ′)∩SV(ρ) = ∅. Moreover,
◦↔––G is just standard bisimilarity over closed terms.

Remark 2.5.2 Note that it is easy to handle junk ruloids when establishing a rule-
matching bisimilarity. Indeed, if ρ is a junk ruloid then hyps(ρ) is semantically equivalent
to False. Therefore, we can use an empty set J of ruloids to ‘match ρ’ and satisfy
requirement 2 in Definition 2.5.1.

Of course, the notion of rule-matching bisimulation is reasonable only if we can
prove that it is sound with respect to the standard extension of bisimulation
equivalence to open terms. This is the import of the following theorem, whose
proof is in Section 2.10.

Theorem 2.5.3 (Soundness) Let G be a GSOS language. Then, for all P,Q ∈ (ΣG),
P ◦↔––G Q implies Bisim(G) |= P = Q.

The import of the above theorem is that, when trying to establish the equiva-
lence of two contexts P and Q in a GSOS language G, it is sufficient to exhibit a
rule-matching bisimulation relating them. A natural question to ask is whether
the notion of rule-matching bisimulation is complete with respect to equality in
Bisim(G), i.e. whether Bisim(G) |= P = Q implies P ◦↔–– Q, for all P,Q ∈ (ΣG).
Below, we shall provide a counter-example to the above statement.

Example 2.5.4 Consider a GSOS language G consisting of a constant (a+b)ω with rules

(a + b)ω a
→ (a + b)ω (a + b)ω b

→ (a + b)ω

and unary function symbols f , g, h and i with rules

x a
→ y1, x

b
→ y2

h(x) a
→ f (x)

x a
→ y1, x

b
→ y2

i(x) a
→ g(x)

x a
→ y1, x

b
→ y2

f (x) a
→ f (x)

x a
→ y1

g(x) a
→ g(x)

36 Meta-theory of SOS

First of all, note that no rule in G is junk as the hypotheses of each of the above rules are
satisfiable.

We claim that Bisim(G) |= h(x) = i(x). To see this, it is sufficient to note that, for all
p ∈ T(ΣG),

h(p) c
→ r ⇔ p a

→, p b
→, c = a and r ≡ f (p)

i(p) c
→ r ⇔ p a

→, p b
→, c = a and r ≡ g(p)

Moreover, for a term p such that a, b ∈ init(p), it is immediate to see that f (p)↔–– g(p) as
both these terms can only perform action a indefinitely.

However, h(x) and i(x) are not rule-matching bisimilar. In fact, in order for h(x) ◦↔–– i(x)
to hold, it must be the case that f (x) ◦↔–– g(x). This does not hold as the unique rule for
g(x) cannot be matched by the rule for f (x) because 6|= (x a

→)⇒ (x a
→ ∧ x b

→). Take, e.g.,
a closed substitution σ such that σ(x) ≡ h((a + b)ω).

Intuitively, the failure of rule-matching bisimulation in the above example is due to the
fact that, in order for Bisim(G) |= h(x) = i(x) to hold, it is sufficient that f (p) and g(p)
be bisimilar for those terms p which enable transitions from h(p) and i(p), rather than for
arbitrary instantiations.

The above example used GSOS rules which contain multiple positive antecedents
for the same variable. We will now provide a counter-example to the complete-
ness of rule-matching bisimulation which uses only the format of rules due to
de Simone [51, 52]. The point of the example is to show that, in general, one
needs some kind of semantic information in establishing the equivalence of two
contexts.

Example 2.5.5 Consider a GSOS language G consisting of the constants a, b, 0 with
rules

a a
→ 0 b b

→ 0

and unary function symbols f , g, f ′ and g′ with rules

x a
→ y

f (x) a
→ f ′(y)

x a
→ y

g(x) a
→ g′(y)

Matteo Cimini 37

x b
→ y

f ′(x) b
→ 0 f ′(x) a

→ 0 g′(x) a
→ 0

First of all, note that no rule in G is junk as the hypotheses of each of the above rules are
satisfiable.

We claim that Bisim(G) |= f (x) = g(x). To see this, it is sufficient to note that, for all
p ∈ T(ΣG),

1. f (p) a
→ f ′(p′)⇔ p a

→ p′⇔ g(p) a
→ g′(p′),

2. p a
→ p′ implies p′ b

9, and

3. p b
9 implies f ′(p)↔–– a↔–– g′(p).

However, f (x) and g(x) are not rule-matching bisimilar. In fact, in order for f (x) ◦↔–– g(x)
to hold, it must be the case that f ′(y) ◦↔–– g′(y). This does not hold as the rule

y b
→ y′

f ′(y) b
→ 0

for f ′(y) cannot be matched by the single axiom for g′(y), as they have a different action.

As our readers can easily check, the above example gives an instance of an equa-
tion that holds in a language G, but not in all of its disjoint extensions. On the
other hand, note that the equation discussed in Example 2.5.4 is valid in each
disjoint extension of the GSOS language considered there.

In the following section we will provide examples that will, hopefully, convince
our readers that rule-matching bisimulation is a tool which, albeit not complete,
can be used to check the validity of many interesting equations.

It is natural to ask oneself at this point whether rule-matching bisimilarity is
preserved by taking disjoint extensions, i.e., whether an equation that has been
proven to hold in a language G using rule-matching bisimilarity remains sound
for each disjoint extension of G. The following example shows that this is not the
case.

Example 2.5.6 Consider a GSOS language G consisting of a constant aω with rule
aω a
→ aω and unary operations f and g with the following rules.

38 Meta-theory of SOS

x a
→ x′

f (x) a
→ f (x)

y a
→ y′

g(y) a
→ g(y)

First of all, note that no rule in G is junk as the hypotheses of each of the above rules are
satisfiable.

We claim that Bisim(G) |= f (x) = g(y). To see this, it is sufficient to note that each
closed term in the language is bisimilar to aω. Moreover, f (x) ◦↔––G g(y) holds because the
formulae x a

→ and y a
→ are logically equivalent in G. On the other hand, consider the

disjoint extension G′ of G obtained by adding the constant 0 with no rules to G. In this
disjoint extension, f (x) ◦↔––G′ g(y) does not hold because x a

→ does not entail y a
→.

However, rule-matching bisimilarity in language G is preserved by taking disjoint
extensions if the language G is sufficiently expressive in the sense formalized
by the following result. (Recall that BISIM(G) denotes the class of all algebras
Bisim(G′), for G′ a disjoint extension of G.)

Theorem 2.5.7 Let G be a GSOS language such that init(T(ΣG)) = 2Act. Then, for all
P,Q ∈ (ΣG), P ◦↔––G Q implies BISIM(G) |= P = Q.

Proof. The proof of Theorem 2.5.3 can be replayed, making use of the observation
that, for each disjoint extension G′ of G, the collection of ruloids in G′ for a ΣG-
term P coincides with the collection of ruloids for P in G. Moreover, in light of the
proviso of the theorem, |=G F⇒ F′ iff |=G′ F⇒ F′, for all formulae F and F′.

A conceptually interesting consequence of the above result is that, when applied
to a sufficiently expressive GSOS language G, rule-matching bisimilarity is a proof
method that is, in some sense, monotonic with respect to taking disjoint extensions of
the original language. This means that rule-matching bisimilarity can only prove
the validity of equations in G that remain true in all its disjoint extensions. A
similar limitation applies to the proof methods presented in, e.g., [52, 149].

The condition on the set init(T(ΣG)) in the statement of Theorem 2.5.7 above
ensures that each semantic entailment F ⇒ F′ that holds in the GSOS language
G holds also in all its disjoint extensions. Let us say that an entailment with the
above property is G-robust. A rule-matching bisimulation over G is G-robust if so
are all the entailments that need to be checked in item 2 in Definition 2.5.1. We
can now formulate the following sharpening of Theorem 2.5.7.

Theorem 2.5.8 Let G be a GSOS language.

Matteo Cimini 39

1. Assume that ≈ is a G-robust rule-matching bisimulation over G, and let G′ be a
disjoint extension of G. Then ≈ is a rule-matching bisimulation over G′.

2. Let P,Q ∈ (ΣG). Assume that P ◦↔––G Q can be shown by establishing a G-robust
rule-matching bisimulation over G. Then BISIM(G) |= P = Q.

Proof. The former claim can be shown mimicking the proof of Theorem 2.5.7. The
latter follows immediately from the former and Theorem 2.5.3.

As our reader will notice, all the examples of rule-matching bisimulations we
consider in the following section are robust. Indeed, their robustness can be
checked syntactically by using just the well known validity of the entailment
F∧F′ ⇒ F. Therefore, in light of Theorem 2.5.8, the equivalences we discuss hold
in all the disjoint extensions of the considered language fragments.

2.6 Examples

We shall now present some examples of applications of the ‘rule-matching bisim-
ulation technique’. In particular, we shall show how some well known equations
found in the literature on process algebra can be verified using it.

Commutativity of choice in BCCSP Let BCCSP [146, 96] be the GSOS language
containing the constant 0, unary prefixing operators a._ (a ∈ Act) and the binary
choice operator + with the following rules.

a.x a
→ x

x a
→ x′

x + y a
→ x′

y a
→ y′

x + y a
→ y′

(2.6)

It is well known that the equality x + y = y + x holds in each disjoint extension
of BCCSP. This can be easily shown using rule-matching bisimilarity. Indeed, the
ruloids for the contexts x + y and y + x are

x a
→ x′

x + y a
→ x′

y + x a
→ x′

y a
→ y′

x + y a
→ y′

y + x a
→ y′

40 Meta-theory of SOS

Therefore, as our reader can easily check, the relation

≈
∆
=

{
(x + y, y + x), (y + x, x + y)

}
∪ {(z, z) | z ∈ Var}

is a rule-matching bisimulation.

Associativity of sequencing Let G be any GSOS language containing the se-
quencing operation specified by rules (2.3) on page 29. Let R[x, y, z] = x; (y; z) and
L[x, y, z] = (x; y); z. The ruloids for these two contexts were given by rules by rules
(2.3.5) on page 30.

Consider the symmetric closure of the relation

≈
∆
=

{
(R[x, y, z],L[x, y, z]) | x, y, z ∈ Var

}
∪ I

where I denotes the identity relation over (ΣG). By Theorem 2.5.3, to show that
the contexts L and R are equivalent, it is sufficient to check that what we have
just defined is a rule-matching bisimulation. In particular, we need to check the
correspondence between the ruloids for these contexts (which is the one given in
(2.3.5)), and then check that the targets are related by ≈. The verification of these
facts is trivial. Thus we have shown that sequencing is associative in any GSOS
language that contains the sequencing operation.

The associativity proofs for the standard parallel composition operators found in
e.g. ACP, CCS, SCCS and Meije, and for the choice operators in those calculi, for
example the associativity of ‘+’ in BCCSP, follow similar lines.

Commutativity of interleaving parallel composition Many standard axioma-
tizations of behavioural equivalences in the literature, such as the ones offered
in [74], cannot be used to show by purely equational means that, e.g., parallel
composition is commutative and associative. We will now show how this can be
easily done using the rule-matching bisimulation technique. We will exemplify
the methods by showing that the interleaving parallel composition operation |‖
[77] is commutative.

We recall that the rules for |‖ are (one pair of rules for each a ∈ Act):

x a
→ x′

x |‖ y a
→ x′ |‖ y

y a
→ y′

x |‖ y a
→ x |‖ y′

(2.7)

Matteo Cimini 41

The ruloids for the contexts x |‖ y and y |‖ x given by Theorem 2.3.2 are (one pair of
ruloids for each a ∈ Act):

x a
→ x′

x |‖ y a
→ x′ |‖ y

y |‖ x a
→ y |‖ x′

y a
→ y′

x |‖ y a
→ x |‖ y′

y |‖ x a
→ y′ |‖ x

It is now immediate to see that the relation
{
(x |‖ y, y |‖ x) | x, y ∈ Var

}
is a rule-

matching bisimulation in any GSOS language that includes the interleaving op-
erator. In fact, the correspondence between the ruloids is trivial and the targets
are related by the above relation.

A distributivity law for sequencing We can use the ‘rule-matching bisimulation’
method to verify the validity of a distributivity axiom for sequencing which has
been presented in [30].

Let G be a GSOS language which extends FINTREE with the sequencing operation
defined by the rules in Example 2.3.5. The law whose validity we want to check
is the following

(a.x + b.y + y′); z = a.(x; z) + (b.y + y′); z (2.8)

Let L[x, y, y′, z] ≡ (a.x + b.y + y′); z and R[x, y, y′, z] ≡ a.(x; z) + (b.y + y′); z. First of
all, let us list the ruloids for the contexts L[x, y, y′, z] and R[x, y, y′, z]. The ruloids
for L and R are

L a
→ x; z

R a
→ x; z

L b
→ y; z

R b
→ y; z

y′ c
→ y′′

L c
→ y′′; z

R c
→ y′′; z

where c can be any action in Act. Matching the ruloids for the contexts L and R as
explicitly given above, it is easy to show that the relation {(L,R), (R,L)}∪I is a rule-
matching bisimulation in any GSOS language that includes the above-mentioned
operators.

De Simone’s clock example In his seminal paper [52], de Simone presents a
bisimulation based technique useful for proving open equations between contexts
specified using the so-called de Simone format of operational rules. On page 260 of

42 Meta-theory of SOS

that paper, de Simone discusses two examples showing that there are valid open
equalities between contexts that his technique cannot handle. Below, we shall
discuss a variation on one of his examples, the clock example, which maintains
all the characteristics of the original one in [52], showing how rule-matching
bisimulations can be used to check the relevant equalities.

In order to proceed with the example, we show the rules describing the SOS
semantics of the parallel composition operator with synchronization.

Fix a partial, commutative and associative function γ : Act × Act ⇀ Act, which
describes the synchronization between actions. The ‖ operation can be described
by the rules (for all a, b, c ∈ Act):

x a
→ x′

x‖y a
→ x′‖y

y a
→ y′

x‖y a
→ x‖y′

x a
→ x′, y b

→ y′

x‖y c
→ x′‖y′

γ(a, b) = c

Suppose now that we have a GSOS language G which includes parallel com-
position with synchronization, ‖, the interleaving operation, |‖, described by the
rules (2.7), and a constant ΩAct (the clock over the whole set of actions in de Simone’s
terminology) with rules

ΩAct
a
→ ΩAct (a ∈ Act) .

Consider the contexts C[x] ≡ x‖ΩAct and D[x] ≡ x |‖ ΩAct. We do have that,
regardless of the precise description of G, the terms C[x], D[x] and ΩAct are all
equal in Bisim(G). This can be easily shown by establishing that the symmetric
closures of the relations

{
(C[p],ΩAct) | p ∈ T(ΣG)

}
and

{
(D[p],ΩAct) | p ∈ T(ΣG)

}
are

bisimulations. However, as argued in [52], de Simone’s techniques based on FH-
bisimilarity cannot be used to establish these equalities. We can instead establish
their validity using our rule-matching bisimulation technique as follows.

First of all, we compute the ruloids for the contexts C[x] and D[x]. These are,
respectively,

C[x] a
→ C[x]

(a ∈ Act)
x a
→ x′

C[x] a
→ C[x′]

(a ∈ Act)
x a
→ x′

C[x] b
→ C[x′]

∃c ∈ Act : γ(a, c) = b

and

D[x] a
→ D[x]

(a ∈ Act)
x a
→ x′

D[x] a
→ D[x′]

(a ∈ Act) .

Matteo Cimini 43

Now, it can be easily checked that the symmetric closure of the relation

{(C[x],D[z]), (C[x],ΩAct), (D[x],ΩAct) | x, z ∈ Var}

is a rule-matching bisimulation. The point is that any ruloid for C[x] can be
matched by an axiom for D[z], and, vice versa, any ruloid for D[z] can be matched
by an axiom for C[x]. This is because it is always the case that |= (x a

→) ⇒ True
for x ∈ Var.

Some equations for while loops One of the features of GSOS rules is the fact that
they allow for copying of arguments, e.g., arguments that are tested positively in a
GSOS rule may appear in the target of a rule. We recall that copying of arguments
is not allowed in the format due to de Simone [51, 52]. An operation whose rules
use such a feature is a simple kind of while-loop for concurrent processes.

Pick two distinguished action t and f in Act. Then we can define a binary operation
while(_, _) which runs its second argument if the first can emit a t action. Formally,
the rules for while(_, _) are (one such rule for each a ∈ Act):

x t
→ x′, y a

→ y′

while(x, y) a
→ y′; while(x′, y)

where ‘;’ is the sequencing operation described previously.

Let us now define a few other operations. An unconditional looping construct
can be given by the following rules (one such rule for each a ∈ Act):

x a
→ x′

loop(x) a
→ x′; loop(x)

Note that also the rules for the loop(_) operation use copying of arguments.

Let tω denote a constant with behaviour given by the rule:

tω t
→ tω

Let G be any GSOS language which disjointly extends BCCSP with these opera-
tions. Then, using the rule-matching bisimulation technique, we can easily prove

44 Meta-theory of SOS

that the following identities hold in Bisim(G).

while(tω, y) = loop(y)

while(f .x, y) = 0

while(t.x, y) = y; while(x, y)

By way of example, consider the equation

while(tω, y) = loop(y) .

The ruloids for the contexts arising from while(tω, y) and loop(y) are listed below.
(There is one ruloid for each a ∈ Act.)

y a
→ y′

while(tω, y) a
→ y′; while(tω, y)

y′ a
→ y′′

y′; while(tω, y) a
→ y′′; while(tω, y)

y′ t
9, y a

→ y′′

y′; while(tω, y) a
→ y′′; while(tω, y)

y a
→ y′

loop(y) a
→ y′; loop(y)

y′ a
→ y′′

y′; loop(y) a
→ y′′; loop(y)

y′ t
9, y a

→ y′′

y′; loop(y) a
→ y′′; loop(y)

As our reader can easily check, the symmetric closure of the relation

{
(while(tω, y), loop(y))

}
∪

{
(z; while(tω, y), z; loop(y)) | z ∈ Var

}
is a rule-matching bisimulation. Indeed, the above-listed ruloid types with iden-
tical premises match one by one.

2.7 Partial completeness results

In previous sections, we showed that the rule-matching bisimulation technique,
albeit not complete in general, can be used to prove several important equations
found in the literature on process algebras. In particular, the soundness of all the
equations generated by the methods in [5] can be proven by exhibiting appropriate
rule-matching bisimulations. A natural question to ask is whether there are some

Matteo Cimini 45

classes of contexts for which rule-matching bisimulations give us a complete proof
technique for establishing equality between contexts. One such class of contexts
is, of course, that of closed terms, as rule-matching bisimilarity coincides with
bisimilarity over processes.

Below we will present another partial completeness result, this time with respect
to a class of contexts that we call ‘persistent’.

Definition 2.7.1 Let G be a GSOS language and P ∈ (ΣG). We say that P is persistent
iff each ruloid in RG(P) is of the form H

P a
→P

for some a ∈ Act.

Thus persistent contexts are terms that test their arguments, perform actions
according to the results of these tests, and then remain unchanged.

Theorem 2.7.2 (Completeness for persistent contexts) Let G be a GSOS language.
Then Bisim(G) |= P = Q iff P ◦↔–– Q, for all persistent P,Q ∈ (ΣG).

The proof of the above result may be found in Section 2.11.

We now proceed to introduce another class of operations for which rule-matching
bisimilarity yields a complete proof method.

Definition 2.7.3 (Non-inheriting rule) A GSOS rule of the form (2.1) on page 22 is
non-inheriting if none of the variables in ~x, namely the source variables in the rule, occurs
in the target of the conclusion of the rule C[~x, ~y]. A GSOS language is non-inheriting if
so is each of its rules. Non-inheriting de Simone rules and languages are defined similarly.

In particular a non-inheriting rule in de Simone format has the following form:{
xi

ai
→ yi | i ∈ I

}
f (x1, . . . , xn) c

→ t
,

where I ⊆ {1, . . . ,n}, all the variables xi and yi are distinct, ai and c are actions, f is an
operation symbol from Σ with arity n, and t is a term such that vars(t) ⊆

{
yi | i ∈ I

}
and each variable occurs in t at most once.

Theorem 2.7.4 Let G be a non-inheriting GSOS language that, for each P ∈ (ΣG) and
c ∈ Act, contains at most one ruloid for P having c ∈ Act as action. Let G′ be the disjoint
extension of G obtained by adding to G the operations and rules of the language BCCSP
with Act as set of actions. Let P and Q be terms over ΣG. Then Bisim(G′) |= P = Q
implies P ◦↔––G′ Q.

46 Meta-theory of SOS

A proof of the above theorem may be found in Section 2.12. A minor modification
of that argument yields a partial completeness result for a class of de Simone
systems.

Theorem 2.7.5 Let G be a non-inheriting de Simone language that, for each f ∈ ΣG and
c ∈ Act, contains at most one rule having f ∈ ΣG as principal operation and c ∈ Act as
action. Let G′ be the disjoint extension of G obtained by adding to G the constant 0 and
the Act-labelled prefixing operations from the language BCCSP. Let P and Q be terms
over ΣG. Then Bisim(G′) |= P = Q implies P ◦↔––G′ Q.

For instance, the above theorem yields that rule-matching bisimilarity can prove
all the sound equations between terms constructed using variables and the op-
erations of restriction and injective relabelling from CCS [96] and synchronous
parallel composition from CSP [77].

2.8 Extending rule-matching bisimilarity to GSOS with

predicates

In this section, we extend our main results to the setting of GSOS language specifi-
cations with predicates. This extension, albeit not particularly deep theoretically,
is significant from the point of view of applications of rule-matching bisimilarity
since the operational semantics of several operations commonly found in the lit-
erature on, e.g., process algebra is best specified using rules involving the use of
predicates as first-class notions.

2.8.1 GSOS with predicates

Given a signature Σ and a set P of predicate symbols, Pr t is a positive predicate
formula and ¬Pr t is a negative predicate formula, for each Pr ∈ P and t ∈ (Σ). The
shape of the deduction rules in Definition 2.2.1 is adapted in order to prove also
predicate formulae and to involve them in premises of rules.

Definition 2.8.1 (GSOS rule with predicates) Suppose Σ is a signature and P is a
set of predicate symbols. A GSOS rule with predicates over Σ and P is a rule of the
form:

Matteo Cimini 47

⋃l
i=1

{
xi

ai j
→ yi j | 1 ≤ j ≤ mi

}
∪

⋃l
i=1

{
xi

bik
9| 1 ≤ k ≤ ni

}
∪ PH

(f (x1, . . . , xl)
c
→ C[~x, ~y] or Pr f (x1, . . . , xl))

(2.9)

where PH =
⋃l

i=1
{
Prik xi or ¬Prik xi | 1 ≤ k ≤ oi

}
, all the variables are distinct, mi,ni, oi ≥

0, ai j, bik, and c are actions, f is an operation symbol from Σ with arity l, Pr and Prik are
predicate symbols and C[~x, ~y] is a Σ-context.

Definition 2.8.2 A GSOS language with predicates is a triple G = (ΣG,PG,RG),
where ΣG is a finite signature, PG is a finite set of predicate symbols and RG is a finite set
of GSOS rules over ΣG and PG.

The transition relation →G and the set PFG of provable predicate formulae of
the form Pr p, where p is a closed term, are the ones defined by the rules using
structural induction over closed ΣG-terms, as described in Section 2.2.

The definition of bisimulation is extended to a setting with predicates in the stan-
dard fashion. In particular, bisimilar terms must satisfy the same predicates.

Example 2.8.3 As a classic example of an operator whose operational specification in-
volves predicates, consider the standard formulation of the sequential composition operator
‘·’. The rules below make use of the predicate symbol ↓. (Intuitively, the formula x ↓
means that x successfully terminates.)

(seq1)
x a
→ x′

x · y a
→ x′ · y

(seq2)
x ↓ y a

→ y′

x · y a
→ y′

(seq3)
x ↓ y ↓

(x · y) ↓

Remark 2.8.4 The reader familiar with [32] may have noticed that the definition of ‘·’
fits the tagh format of Baeten and de Vink. In this format, GSOS languages are extended
to involve a single predicate, ↓, which encodes an explicit notion of successful termination
of terms. GSOS languages with predicates generalize this format by considering a finite
set of predicates. In contrast to the tagh format, rules may also contain negative predicate
formulae in premises and the rules with predicate formulae as conclusions may have
transition formulae in premises. Moreover, since the signature may have more than one
predicate symbol, in every rule a single argument can be tested more times in the context
of different predicates.

48 Meta-theory of SOS

2.8.2 A ruloid theorem for GSOS languages with predicates

A ruloid for a context D[~x], with ~x = (x1, . . . , xl), takes the form:

⋃l
i=1

{
xi

ai j
→ yi j | 1 ≤ j ≤ mi

}
∪

⋃l
i=1

{
xi

bik
9| 1 ≤ k ≤ ni

}
∪ PH

(D[~x] c
→ C[~x, ~y] or Pr D[~x])

(2.10)

where PH =
⋃l

i=1
{
Prik xi or ¬Prik xi | 1 ≤ k ≤ oi

}
, all the variables are distinct,

mi,ni, oi ≥ 0, ai j, bik, and c are actions, Pr and Prik are predicate symbols and
C[~x, ~y] and D[~x] are Σ-contexts.

The notion of supporting set of ruloids for a context D[~x] and action c, introduced
in Definition 2.3.1, is adapted to ruloids of the aforementioned form in the obvious
way. Moreover, in a setting with predicates, we need to consider ruloids that are
supporting for a context D[~x] and a predicate symbol Pr.

Definition 2.8.5 A set of ruloids R is supporting for a context D[~x] and a predicate
symbol Pr iff all the consequents of ruloids in R are of the form Pr D[~x] and, whenever
Pr D[~P] holds, there are a ruloid ρ ∈ R and a closed substitution σ such that cons

(
ρ
)
σ =

Pr D[~P] and σ |= ante
(
ρ
)
.

The following result can be shown by mimicking the proof of the Ruloid Theorem
(Theorem 7.4.3) in [44].

Theorem 2.8.6 (Ruloid theorem) Let G be a GSOS language with predicates. For each
D[~x] ∈ (ΣG) and action c, there exists a finite set RD,c of ruloids of the form (2.10) that
is sound and supporting for D[~x] and action c. Similarly, for each D[~x] ∈ (ΣG) and
predicate symbol Pr, there exists a finite set RD,Pr of ruloids of the form (2.10) that is sound
and supporting for D[~x] and Pr.

The notion of valid ruloid from Definition 2.3.8 and related results can be adapted
naturally to a setting with predicates.

2.8.3 The logic of initial transitions with predicates

In this section we extend the logic of initial transition with predicates. Formulae
are given by adding propositions of the form Pr x to the grammar from Section
2.4.

F ::= . . . | Pr x .

Matteo Cimini 49

The semantics of formulae is extended to consider the new kind of predicate
formulae and is presented below. We write (→G ∪ PFG), σ |= F if the closed
substitution σ is a model of the initial transition formula F, where PFG denotes the
set of provable predicate formulae in G.

(→G ∪ PFG), σ |= True always

(→G ∪ PFG), σ |= Pr x ⇔ Pr σ(x) ∈ PFG

(→G ∪ PFG), σ |= x a
→ ⇔ σ(x) a

→G

(→G ∪ PFG), σ |= ¬F ⇔ not (→G ∪ PFG), σ |= F

(→G ∪ PFG), σ |= F ∧ F′ ⇔ (→G ∪ PFG), σ |= F and (→G ∪ PFG), σ |= F′

If H is a set of transition or predicate formulae (e.g., the hypotheses of a rule
or ruloid with predicates), then hyps(H) is the conjunction of the corresponding
initial transition formulae. Formally, the definition on page 33 is extended with
the clauses

hyps({Pr x} ∪H) = (Pr x) ∧ hyps(H \ {Pr x}) and

hyps({¬Pr x} ∪H) = ¬(Pr x) ∧ hyps(H \ {¬Pr x}) .

The notion of entailment between formulae in the logic with predicate formulae
is defined as before.

Theorem 2.8.7 Let G be a GSOS language with predicates. Then, for all formulae F and
F′, it is decidable whether |=G F⇒ F′ holds.

Proof. (Sketch) Let F and F′ be formulae in the propositional language of initial
transition formulae with predicates. For each mapping η : vars(F) ∪ vars(F′) →
2Act∪P and x ∈ vars(F) ∪ vars(F′), define

η |=′G (x a
→) ⇔ a ∈ η(x)

η |=′G Pr x ⇔ Pr ∈ η(x) .

We extend |=′G to arbitrary formulae with variables in vars(F) ∪ vars(F′) in the
obvious way.

Now consider the set init+pred(p), with p ∈ T(ΣG), containing the labels of the
initial transitions of the closed term p together with the names of the predicate

50 Meta-theory of SOS

symbols that p satisfies. Formally, for each closed term p, we define init+pred(p) =

init(p) ∪ {Pr ∈ P | Pr p}.

It is easy to see that, for all σ : Var → T(ΣG) and formulae F′′ over vars(F) ∪
vars(F′),

(→G ∪ PFG), σ |=G F′′ iff ησ |=
′

G F′′,

where ησ(x) = init+pred(σ(x)) for all x ∈ vars(F) ∪ vars(F′).

To see that our claim does hold, it is now sufficient to note that we can therefore
reduce the refinement problem to checking that, for every mapping η : vars(F) ∪
vars(F′) → init+pred(T(ΣG)), if η |=′G F then η |=′G F′. This problem is obviously
decidable as there are only finitely many such mappings, and init+pred(T(ΣG))
can be effectively computed using an adaptation of the strategy presented in the
proof of Theorem 2.2.9.

2.8.4 Rule-matching bisimilarity

In this section we reformulate the notion of rule-matching bisimilarity for GSOS
languages with predicates. In the following definition, the reader may find it
helpful to bear in mind that, in this setting, differently from GSOS languages, the
ruloids for a context P may be of two types:

• ruloids of the form
H

P a
→ P′

and

• ruloids of the form
H

Pr P
.

In GSOS languages ruloids take only the first form. Another important difference
is that, in GSOS languages with predicates, the set of premises H can involve
predicates.

Definition 2.8.8 (Rule-matching bisimulation, reprise) Let G be a GSOS language
with predicates. A relation ≈ ⊆ (ΣG) × (ΣG) is a rule-matching bisimulation if it
is symmetric and P ≈ Q implies that, for each ruloid ρ in the ruloid set of P, the following
conditions are met.

1. If ρ is of the form
H

P a
→ P′

then there exists a finite set J of valid ruloids for Q such

that:

Matteo Cimini 51

• For every ρ′ = H′

Q a′
→Q′
∈ J, we have:

– a′ = a,

– P′ ≈ Q′,

–
(
TV(ρ′) ∪ TV(ρ)

)
∩

(
SV(ρ) ∪ SV(ρ′)

)
= ∅ and

– if y ∈ TV(ρ) ∩ TV(ρ′), then x b
→ y ∈ H ∩ H′ for some source variable

x ∈ SV(ρ) ∩ SV(ρ′) and action b.

• |=G hyps(ρ)⇒ hyps(J).

2. If ρ is of the form
H

Pr P
then there exists a finite set J of valid ruloids for Q with

conclusion Pr Q such that:

• For every ρ′ = H′
Pr Q ∈ J, we have:

–
(
TV(ρ′) ∪ TV(ρ)

)
∩

(
SV(ρ) ∪ SV(ρ′)

)
= ∅.

– If y ∈ TV(ρ) ∩ TV(ρ′), then x b
→ y ∈ H ∩ H′ for some source variable

x ∈ SV(ρ) ∩ SV(ρ′) and action b.

• |=G hyps(ρ)⇒ hyps(J).

We write P↔––
RMp
G Q if there exists a rule-matching bisimulation ≈ relating P and Q. As

before, we refer to the relation↔––
RMp
G as rule-matching bisimilarity.

Theorem 2.8.9 (Conservative extension) Let G be a GSOS language. Then, P ◦↔––G Q
iff P↔––

RMp
G Q, for all P,Q ∈ (ΣG).

Proof. Since G is a GSOS language, every ruloid for any term P has the form
H

P a
→ P′

, where the premises in H do not use predicates. So hyps(H) does not

involve predicate formulae either. We therefore fall under clause 1 of Definition
2.8.8, which matches exactly with Definition 2.5.1 of ◦↔––G.

It follows from Theorem 2.8.9 that rule-matching bisimilarity is incomplete over
GSOS languages with predicates, since it is not complete even within the frame-
work of standard GSOS. Examples 2.5.4 and 2.5.5 witness incompleteness for

↔––
RMp
G , too.

Theorem 2.8.10 (Soundness) Let G be a GSOS language with predicates. Then, for
all P,Q ∈ (ΣG), P↔––

RMp
G Q implies Bisim(G) |= P = Q.

52 Meta-theory of SOS

Proof. The proof follows the lines of the one for Theorem 2.5.3. To show that
P ↔––

RMp
G Q implies Bisim(G) |= P = Q, it is sufficient to prove that the relation ∼

given by

∼ = {(Pσ,Qσ) | P↔––
RMp
G Q, σ a closed substitution}

is a bisimulation. The addition of predicates adds no complications to the proof,
which is therefore omitted.

Following the lines of the proof of Theorem 2.5.8, one obtains the following result.
(The notion of disjoint extension used in the statement below is the obvious
modification of the one over GSOS languages—see Definition 2.2.8—to a setting
with predicates. In particular, if G′ disjointly extends G then G′ adds no new rules
for the predicate symbols in G.)

Theorem 2.8.11 Let G be a GSOS language with predicates.

1. Assume that ≈ is a G-robust rule-matching bisimulation over G, and let G′ be a
disjoint extension of G. Then ≈ is a rule-matching bisimulation over G′.

2. Let P,Q ∈ (ΣG). Assume that P↔––
RMp
G Q can be shown by establishing a G-robust

rule-matching bisimulation over G. Then BISIM(G) |= P = Q.

All the examples of rule-matching bisimulation in a setting with predicates we
have met so far in our analysis of sound equations from the literature on process
algebra are robust.

2.8.5 Examples

We now present some examples of application of rule-matching bisimilarity to a
setting with predicates.

Example 2.8.12 (Sequential composition: zero element) Consider the sequential com-
position operator from Example 2.8.3 on page 47. Recall that the constant aω is defined by
the single axiom aω a

→ aω. This constant simply displays a infinitely many times. aω is a
left-zero element for ‘·’, because its infinite behaviour is enough to preempt the execution
of the right-hand argument of ‘·’. Our order of business in this example is to check the law
aω · y ↔–– aω by means of rule-matching bisimilarity. To this end, it is sufficient to show
that the relation

{
(aω · y, aω), (aω, aω · y)

}
is a rule-matching bisimilarity.

Matteo Cimini 53

In constructing the set of ruloids for aω · y, rules (seq2) and (seq3) in Example 2.8.3 play
no role because the premise x ↓ is not satisfied when x is instantiated with the constant
aω. The only ruloid generated by the ruloid theorem comes from the instantiation of rule
(seq1) and it is the axiom aω · y a

→ aω · y. The set of ruloids for the constant aω consists of
the singleton set containing the axiom defining the constant. Since the two ruloids match,
meeting all the constraints of Definition 2.8.8, by the soundness theorem (Theorem 2.8.10)
we can conclude that aω is a left zero element for ·.

Example 2.8.13 (Sequential composition: associativity) In this example, our aim
is to prove the associativity of the sequential composition operator ‘·’ considered in the
previous example.

Let R[x, y, z] = x · (y · z) and L[x, y, z] = (x · y) · z, consider the symmetric closure of the
relation

≈
∆
=

{
(R[x, y, z],L[x, y, z]) | x, y, z ∈ Var

}
∪ I

where I denotes the identity relation over (ΣG).

As in the case of associativity of the sequencing operator considered in Section 2.6, for the
sake of clarity, we present the ruloids of R and L and their ‘matching’ in the following
suggestive way.

x a
→ x′

L a
→ (x′ · y) · z

R a
→ x′ · (y · z)

x ↓, y a
→ y′

L a
→ y′ · z

R a
→ y′ · z

x ↓, y ↓, z a
→ z′

L a
→ z′

R a
→ z′

x ↓, y ↓, z ↓
L ↓
R ↓

The reader can easily convince himself that any ruloid for R matches with its corresponding
one for L satisfying the conditions of Definition 2.8.8, and vice versa. The relation ≈ is
indeed a rule-matching bisimulation and, by the soundness theorem, the associativity of
this sequential composition operator follows.

Example 2.8.14 (Predictable failure constant of BPA0δ) In this example we focus on
BPA0δ of Baeten and Bergstra, [25]. The predictable f ailure 0 is a constant that absorbs
the computation no matter where it appears within the context of the (non standard)
sequential composition operator ‘�’, i.e. 0 is a zero element for the operator ‘�’. (Baeten
and Bergstra use · to denote the sequential composition operator in BPA0δ. We denote
that operator by � here in order to avoid any confusion with the standard sequential
composition operator considered in Example 2.8.3.) The laws x � 0 ↔–– 0 � x ↔–– 0 both

54 Meta-theory of SOS

hold and our order of business in this example is to check them by means of↔––
RMp. The

following SOS rules make use of the predicate, 0 that determines whether or not a process
can be proved equal to 0 and of predicates a

→ X that tell us when a process can terminate
by performing an a action.

x , 0 y , 0

(x � y) , 0

x a
→ x′ y , 0

x � y a
→ x′ � y

x a
→ X y , 0

x � y a
→ y

Consider the equation 0 � x ↔–– 0. Let L[x] = 0 � x and R = 0. The set of ruloids for
R is clearly empty, since 0 is defined by no rules. Also the set of ruloids for L is empty,
due to the fact that the premises x , 0, x a

→ x′ and x a
→ X are not satisfied when x is

instantiated with 0. The contexts L and R are thus trivially equated by↔––
RMp. The reader

can easily realize that the scenario is similar when it comes to checking the law x�0↔–– 0.
The ruloid set for x � 0 is again empty, due to the fact that the premise y , 0, contained
in all of the three rules above, is not satisfied when y is instantiated with 0. Thanks to
Theorem 2.8.10, this is sufficient to conclude that the constant 0 is both a left and a right
zero element for ‘�’.

In carrying out our study of the rule-matching bisimilarity we established some
criteria in order to preserve the soundness of certain equations in disjoint exten-
sions of a semantics specified in the GSOS rule format. The next paragraph is
devoted to the discussion of some work related to this specific subject.

A remark on the robustness of behavioural equivalences. In [103], Peter Mosses,
MohammadReza Mousavi and Michel Reniers address the topic of the robustness
of equations on open terms. Sound equations indeed may become unsound after
an operationally conservative extension, for examples see [107] , [103] and Ex-
ample 2.5.6 on page 37. It is thus desirable to provide criteria under which the
validity of equations is instead preserved. The main benefit is that it prevents the
user from repeating proofs in the context of the new extended semantics.

We provide some criteria along this line, with Theorems 2.5.8 and 2.8.11. In this
section we shall briefly discuss and compare them with the results in [103]. The
authors consider the extension of the bisimilarity to open terms (there called closed-
instance bisimilarity), the FH-bisimilarity of De Simone [52] and its mentioned
sharpening due to Rensink called hypothesis preserving bisimilarity, HP-bisimilarity,
[125] . Insofar the work presented in this chapter is concerned the results regarding
the FH- and HP-bisimilarity are relevant. In [103], two results are provided:

Matteo Cimini 55

• (1) For FH- and HP-bisimilarity, sound equations are preserved by all disjoint
extensions that do not add new labels.

• (2) If a FH- and HP-bisimilarity relation does not contain pairs (s, t) of terms
such that both s and t are not just variables or they are the same variable,
sound equations are preserved by any arbitrary disjoint extensions.

The reader may notice that both restrictions (1) and (2) are somewhat orthogonal
to the conditions proposed in Theorems 2.5.8 and 2.8.11. In particular, within the
latter theorems the considered language must be sufficiently expressive, thus the
restriction is on the semantics of the original language that later will be extended.
In (1) the restriction is instead on the extended semantics, i.e. the new language
must not add new labels. In (2) a restriction is applied instead to the form of the
equations.

Results in [103] are provided for the positive fragment of GSOS, i.e. contain-
ing only positive premises. Theorem 2.5.8 applies to the full GSOS format, i.e.,
involving negative premises, too, and Theorem 2.8.11 lifts the same result also
to the context of full GSOS languages extended with predicates. The results on
preserving the soundness of equations that are presented in this chapter are thus
to be considered an addendum to the ones in [103].

The interested reader is however invited to refer to [103] which contains a reasoned
account to the subject.

In [102], an extended version of [103], the same authors provide also some discus-
sion on the rule-matching bisimilarity, in particular, it is worth mentioning that
they point out that Example 2.5.6 shows that the rule matching bisimilarity does
not preserve soundness of equations for those disjoint extensions that even do not
introduce new labels, (restriction (1)). As pointed out in [102], the main problem of
the rule-matching bisimilarity when preserving the soundness of equations may
be found in the accuracy of the entailment relation employed. The logic is indeed
expressive enough to prove |= (x a

→) ⇒ (y a
→) in those languages where every

term is performing an a-transition. On the one hand, this is a good plus for the
method proposed, as though it succeeds in approximate the bisimilarity of open
terms the closest, but on the other hand it shows that its machinery is powerful
enough to detect delicate insights of the semantics at hand. These insights may
often change even when simple extensions are applied.

56 Meta-theory of SOS

2.9 Related and future work

The development of general methods for proving equivalences between open
terms in expressive process calculi is a challenging subject that has received some
attention since the early developments of the algebraic theory of processes—
see, e.g., the references [47, 88, 125, 52, 149] for some of the work in this area.
De Simone’s FH-bisimilarity [52] represents an early meaningful step towards a
general account of the problem, presenting for the first time a sound bisimulation
method in place of the usual definition which involves the closure under all
possible substitutions. Our method relies mainly on the concepts underlying FH-
bisimilarity and it is a refinement of that notion in the more expressive setting of
GSOS languages. (See de Simone’s ‘Clock Example’ discussed on page 41, where
FH-bisimilarity fails while ◦↔–– succeeds.)

Later Rensink addressed the problem of checking bisimilarity of open terms
in [125], where he presented a natural sharpening of de Simone’s FH-bisimilarity.
His extension of FH-bisimilarity is orthogonal to ours and provides another
method to check equivalences between open terms that is more powerful than
the original FH-bisimilarity. Rensink defined a new notion of bisimulation equiv-
alence, called hypothesis preserving bisimilarity, that adds to FH-bisimilarity the
capability to store some kind of information about the variable transitions during
the computation.

To explain the import of hypothesis preserving bisimilarity we can look at Exam-
ple 2.5.4. We note that ◦↔–– fails to establish the sound equation h(x) = i(x) because
at the second step of the computation some knowledge about the transitions of
the closed term p substituted for x is already established (indeed, at that point we
know that p performs a b-transition, since this has been tested at the first step).
Nevertheless, when comparing f (x) and g(x), rule-matching bisimulation behaves
in memoryless fashion and ignores this information. Rensink’s hypothesis pre-
serving bisimilarity takes into account the history and this is enough to overcome
the difficulties in that example and analogous scenarios. Adding this feature to ◦↔––
would lead to a more powerful rule-matching equivalence; we leave this further
sharpening for future work together with extensions of ◦↔–– to more expressive rule
formats.

Recently, van Weerdenburg addressed the automation of soundness proofs in [149].
His approach differs from the one in [125, 52] and ours since he translates the op-
erational semantics into a logical framework. In such a framework, rules are

Matteo Cimini 57

encoded as logical formulae and the overall semantics turns out to be a logical
theory, for which van Weerdenburg provides a sequent calculus style proof sys-
tem. In the aforementioned paper, he offers some examples of equivalences from
the literature that can be proved using his method in order to highlight its appli-
cability. However, even though the ultimate aim of the research described in [149]
is the automation of soundness proofs, van Weerdenburg’s system presents some
drawbacks. The main point is that the user is not only required to provide the
operational semantics and the equation to check (together with the standard en-
coding of bisimilarity), but he must also provide a candidate bisimulation relation
that can be used to show the validity of the equation under consideration together
with all the axioms that are needed to complete the proof. The user is supposed
thus to have a clear understanding of what the proof is going to look like. This
seems to be a general and inescapable drawback when approaching the problem
of checking equations through a translation into a logical system.

Despite the aforementioned slight drawback, the approach proposed by van
Weerdenburg is, however, very interesting and complements the proposals that
are based on the ideas underlying de Simone’s FH-bisimilarity, including ours.
We believe that an adequate solution to the problem of automating checks for
the validity of equations in process calculi will be based on a combination of
bisimulation-based and logical approaches.

A related line of work is the one pursued in, e.g., the papers [4, 22, 49, 110]. Those
papers present rule formats that guarantee the soundness of certain algebraic
laws over a process language ‘by design’, provided that the SOS rules giving
the semantics of certain operators fit that format. This is an orthogonal line of
investigation to the one reported in this article. As a test case for the applicability
of our rule-based bisimilarity, we have checked that the soundness of all the
equations guaranteed to hold by the commutativity format from [110] can be
shown using ◦↔––. We are carrying out similar investigations for the rule formats
proposed in [4, 49].

Another avenue for future research we are actively pursuing is the search for more,
and more general, examples of partial completeness results for rule-matching
bisimulation over GSOS and de Simone languages. Indeed, the partial complete-
ness results we present in Section 2.7 are just preliminary steps that leave substan-
tial room for improvement. Last, but not least, we are about to start working on
an implementation of a prototype checker for rule-matching bisimilarity.

58 Meta-theory of SOS

2.10 Proof of Theorem 2.5.3

Definition 2.10.1 Let f and g be functions, and S a subset of both their domains. Then
f = g on S means, ∀x ∈ S. f (x) = g(x).

The following basic lemma about |= will be useful in what follows.

Lemma 2.10.2 Let σ, σ′ be closed substitutions and S ⊆ Var. Assume that σ = σ′ on S.
Then, for all initial transition formulae F such that vars(F) ⊆ S,

→G, σ |= F⇔ →G, σ
′
|= F .

We are now ready to embark on the proof of Theorem 2.5.3. To show that P ◦↔––G Q
implies Bisim(G) |= P = Q, it is sufficient to prove that the relation∼ given by

∼ = {(Pσ,Qσ) | P ◦↔––G Q, σ a closed substitution}

is a bisimulation. First of all, note that ∼ is symmetric as ◦↔––G is.

Assume then that Pσ ∼ Qσ, and that Pσ a
→ p. We will show that Qσ a

→ q for
some q such that p ∼ q. By the ruloid theorem, Pσ a

→ p because there is some
ruloid ρ = H

P a
→P′
∈ RG(P) enabling this transition, and some substitution σ′ such

that:

1. σ′ |= H,

2. Pσ′ ≡ Pσ, and

3. P′σ′ ≡ p.

Note that, by 1, we have that σ′ |= hyps(ρ). Moreover, by 2, σ = σ′ on vars(P).
Thus, as the variables in hyps(ρ) are included in vars(P), Lemma 2.10.2 gives
σ |= hyps(ρ).

As P ◦↔–– Q, there exists a set J of valid ruloids for Q which satisfies the conditions
in Definition 2.5.1. In particular, by condition 1c, we have that no target variable
in a ruloid ρ′ ∈ J occurs as a source variable in ρ and, vice versa, no source variable
in a ruloid ρ′ ∈ J occurs as a target variable in ρ.

Our aim now is to find a move from Qσmatching the transition Pσ ≡ Pσ′ a
→ P′σ′ ≡

p. To this end, we will construct a substitution τ and find a ruloid ρ′ = H′

Q a
→Q′
∈ J

Matteo Cimini 59

such that

σ = τ on vars(P) ∪ vars(Q) (2.11)

τ |= H′ (2.12)

σ′ = τ on TV(ρ) (2.13)

Note that (2.11) implies that Pσ ≡ Pσ′ ≡ Pτ and Qσ ≡ Qτ. Moreover, (2.11) and
(2.13) imply σ′ = τ on vars(ρ), and thus that p ≡ P′σ′ ≡ P′τ. Condition (2.12) will
make sure that the selected ruloid fires under the substitution τ.

To this end, consider the substitution σ′′ given by

σ′′(x) =

 σ(x) x ∈ vars(P) ∪ vars(Q)
σ′(x) otherwise

Note that, as TV(ρ) ∩ vars(Q) = ∅, σ′′ = σ′ on vars(ρ). Thus σ′′ |= H and, a fortiori,
σ′′ |= hyps(ρ). So, by part 2 of the definition of rule-matching bisimulation, we
have σ′′ |= hyps(J).

As hyps(J) =
∨
ρ′∈J hyps(ρ′), we have σ′′ |= hyps(ρ′) for some ρ′ = H′

Q a
→Q′
∈ J. As

σ′′ |= hyps(ρ′), there is a substitution τ′ with τ′ = σ′′ on vars(Q) such that τ′ |= H′.
(Note that τ′ need not be consistent with σ′′ on TV(ρ).)

Let now

τ(x) =

 σ′′(x) x ∈ vars(ρ) ∪ vars(Q)
τ′(x) otherwise

(2.14)

Note that τ = σ = σ′′ = τ′ on vars(Q).

We claim that τ |= H′. To see that this is indeed the case, we consider each
hypothesis in H′ in turn:

x b
→ y, y ∈ TV(ρ): In this case, by part 1d of Definition 2.5.1, we have x b

→ y ∈
H ∩ H′; that is, the same transition formula is an antecedent of both rules.
As σ′′ |= H, we have σ′′(x) b

→ σ′′(y). By definition of τ, we have τ(x) = σ′′(x)
and τ(y) = σ′′(y); hence τ |= x b

→ y.

x b
→ y, y < TV(ρ): In this case, x ∈ SV(ρ′) = vars(Q), so τ(x) = τ′(x). As y <

vars(ρ)∪ vars(Q), we have that τ(y) = τ′(y). As, by construction, τ′ |= H′, we

have τ(x) ≡ τ′(x) b
→ τ′(y) ≡ τ(y), and hence

〈
τ |= x b

→ y
〉

as desired.

60 Meta-theory of SOS

x b
9: In this case, we have x ∈ SV(ρ′) = vars(Q), and so the substitutions τ and τ′

give the same value for x. As τ′ |= H′, τ′(x) b
9, whence τ(x) b

9 as desired.

Hence τ |= H′, and so ρ′ fires on τ. That is, we have Qσ ≡ Qτ a
→ Q′τ. We

claim that Q′τ is the closed term q we were looking for. In fact, P′σ′ ≡ P′τ, as
σ′ = σ′′ = τ on vars(ρ). This shows that ∼ is a bisimulation relation.

2.11 Proof of Theorem 2.7.2

The ‘if’ direction follows from Theorem 2.5.3. To prove that Bisim(G) |= P = Q
implies P ◦↔–– Q, it is sufficient to show that the relation

≈ = {(P,Q) | Bisim(G) |= P = Q, P,Q persistent}

is a rule-matching bisimulation. To this end, let P,Q be persistent contexts such
that Bisim(G) |= P = Q, and let ρ = H

P a
→P
∈ RG(P). By Theorem 2.3.2, we may safely

assume that ρ is such that TV(ρ) ∩ vars(Q) = ∅. We want to find a finite set Jρ of
valid ruloids for Q satisfying the conditions of the definition of ◦↔––. We will now
show how to construct such a Jρ.

Let σ be a closed substitution such that→G, σ |= H. Then, as ρ is sound, we have
that Pσ a

→ Pσ. As Bisim(G) |= P = Q, it follows that Pσ↔–– Qσ. Hence there exists
a process q such that Qσ a

→ q and Pσ↔–– q. By Theorem 2.3.2, this is because there
exist a ruloid ρ′σ = H′

Q a
→Q
∈ RG(Q) and a substitution τσ such that

• τσ |= H′, and

• Qσ ≡ Qτσ ≡ q.

Note that Qσ ≡ Qτσ implies that σ = τσ on vars(Q). By suitably renaming the
variables in TV(ρ′σ), it is now easy to construct a valid ruloid ρ̂σ = Ĥ′

Q a
→Q

for Q, and
a modified substitution τ̂σ such that

• TV(ρ̂σ) ∩ TV(ρ) = ∅ and TV(ρ̂σ) ∩ vars(P) = ∅,

• τ̂σ |= Ĥ′, and

• Qσ ≡ Qτσ = Qτ̂σ.

Thus, for each closed substitution σ such that→G, σ |= H, we can construct a valid
ruloid ρ̂σ and a closed substitution τ̂σ with the above properties.

Matteo Cimini 61

Take now Jρ = {ρ̂σ |→G, σ |= H}. Note that, by the ruloid theorem, we can assume,
without loss of generality, that Jρ is finite. We claim that Jρ is a set of ruloids
matching the conditions in Definition 2.5.1. In fact, each ρ̂σ has action a, P ≈ Q by
construction, and conditions 1c and 1d are trivially met by construction. More-
over, we have that |= hyps(ρ) ⇒ hyps(Jρ). Assume, in fact, that→G, σ |= hyps(ρ).
Then we know that, by construction, τ̂σ |= hyps(ρ̂σ), and that σ = τ̂σ on vars(Q).
As vars(hyps(ρ̂σ)) ⊆ vars(Q), Lemma 2.10.2 gives σ |= hyps(ρ̂σ). As ρ̂σ ∈ Jρ, we then
have that σ |= hyps(Jρ). Hence ≈ is indeed a rule-matching bisimulation.

2.12 Proof of Theorem 2.7.4

Let G be a non-inheriting GSOS language that, for each P ∈ (ΣG) and c ∈ Act,
contains at most one ruloid for P having c ∈ Act as action. Let G′ be the disjoint
extension of G obtained by adding to G the operations and rules of the language
BCCSP [146, 96] with Act as set of actions. Let P and Q be terms over ΣG, and
assume that Bisim(G′) |= P = Q. We aim at showing that P ◦↔––G′ Q. To prove our
claim, it suffices only to show that the relation

≈ = {(P,Q) | Bisim(G′) |= P = Q, P,Q ∈ (ΣG)}

is a rule-matching bisimulation. Note, first of all, that ≈ is symmetric because so
is↔––G′ .

Assume now that P ↔––G′ Q and P,Q ∈ (ΣG). We proceed to argue that the
conditions in Definition 2.5.1 are met by ≈. Using Theorem 2.3.2, we start by
constructing the set of ruloids for P and Q in such a way that

(
TV(ρ′) ∪ TV(ρ)

)
∩(

SV(ρ) ∪ SV(ρ′)
)

= ∅. This meets condition 1c in Definition 2.5.1.

Let ρ =
H

P a
→ P′

be a ruloid for P, which we may assume is not junk. We show that

there is a ruloid ρ′ =
H′

Q a
→ Q′

such that

1. P′ ≈ Q′,

2. if y ∈ TV(ρ) ∩ TV(ρ′), then x b
→ y ∈ H ∩ H′ for some source variable x ∈

SV(ρ) ∩ SV(ρ′) and action b, and

3. |=G′ hyps(ρ)⇒ hyps(ρ′).

62 Meta-theory of SOS

Note first of all that, by the proviso of the theorem, the set of ruloids for Q with
action a must be a singleton. Indeed, that set cannot be empty since ρ is a ruloid
for P whose premises can be satisfied by some closed substitution σ, as ρ is not
junk. This means that Pσ affords an a-labelled transition, but Qσ would not. This
contradicts our assumption that P↔––G′ Q.

Let ρ′ =
H′

Q a
→ Q′

be the only ruloid for Q with action a. We proceed to establish

the above three conditions in turn.

1. We show that P′ ≈ Q′. To this end, we begin by observing that P′,Q′ ∈ (ΣG)
because G′ is a disjoint extension of G and P,Q ∈ (ΣG). We are therefore left
to prove that P′ ↔––G′ Q′. Assume, towards a contradiction, that P′ =G′ Q′.
This means that there is a closed substitution σ′, mapping variables to terms
in T(ΣG′), such that P′σ′ =G′ Q′σ′. Our order of business will now be to use
σ′ to construct a closed substitution σ such that Pσ=G′ Qσ, whose existence
contradicts our assumption that Bisim(G′) |= P = Q.

Define σ thus:

σ(x) =

∑{

b.σ′(x′) | (x b
→ x′) ∈ H

}
if x ∈ vars(P),

σ′(x) otherwise.

Note that terms of the form
∑{

b.σ′(x′) | (x b
→ x′) ∈ H

}
are in T(ΣG′) since ΣG′

includes the signature of BCCSP. As usual, an empty sum stands for 0.

We claim that→G′ , σ |= H. Indeed, suppose that (x b
→ x′) ∈ H. Then, since

x < vars(P),
σ(x) b
→ σ′(x′) = σ(x′) .

Assume now x b
9∈ H. Since ρ is not junk, H contains no formula of the

form (x b
→ x′). Therefore, by definition, σ(x) b

9. It follows that ruloid ρ fires
under substitution σ and therefore

Pσ a
→ P′σ = P′σ′ .

(The equality P′σ = P′σ′ holds because G is non-inheriting and therefore no
variable occurring in P′ occurs also in P.) Since Pσ↔––G′ Qσ and ρ′ is the only
a-labelled ruloid for Q, there is a transition

Qσ a
→ Q′σ = Q′σ′ ↔––G′ P′σ′ .

Matteo Cimini 63

(Again, the equality Q′σ = Q′σ′ holds because G is non-inheriting and
no target variable occurring in ρ′ occurs also in Q.) This contradicts our
assumption that P′σ′ =G′ Q′σ′. We may therefore conclude that P′ ↔––G′ Q′,
as desired.

2. We show that if y ∈ TV(ρ) ∩ TV(ρ′), then x b
→ y ∈ H ∩ H′ for some source

variable x ∈ SV(ρ) ∩ SV(ρ′) and action b.

Assume that y ∈ TV(ρ) ∩ TV(ρ′). Let x b
→ y be the only premise in H with

target y and let z c
→ y be the only premise in H′ with target y. We shall now

show that b = c and x = z. Indeed, assume first, towards a contradiction,
that x , z. Using this assumption, we shall construct a closed substitution σ
such that Pσ=G′ Qσ, which contradicts Bisim(G′) |= P = Q.

Let X be the collection of target variables w′ in ρ and ρ′ that are different
from y and for which there is a premise of the form w c

→ w′ in H ∪ H′. For
each w ∈ vars(P) and action d, let the closed term pd

w be given by:

pd
w =

 d.d.0 ∃w′. (w d
→ w′) ∈ H,

0 otherwise.
(2.15)

Define σ thus:

σ(w) =

∑{
d.0 | ∃w′. (w d

→ w′) ∈ H
}

+ pc
w if w ∈ vars(P) − {z},∑{

d.0 | d , c ∧ ∃w′. (z d
→ w′) ∈ H

}
+ c.c.0 if w = z,

c.0 if w ∈ X, and
0 otherwise.

It is not hard to see that σ satisfies H, but not the formula z c
→ y. Therefore,

ruloid ρ fires under substitution σ, but ρ′ does not. Reasoning as above, this
yields that Pσ and Qσ are not bisimilar as desired.

So, x b
→ y ∈ H and x c

→ y ∈ H′. We shall now argue that b = c, completing the
proof for this case. Assume, towards a contradiction, that b , c. As above,
using this assumption, we shall construct a closed substitution σ such that
Pσ=G′ Qσ, which contradicts Bisim(G′) |= P = Q.

Let Y be the collection of target variables w′ in ρ for which there is a premise
of the form w b

→ w′ in H. In particular, y ∈ Y. Define σ thus, where the term

64 Meta-theory of SOS

pb
w is defined as in (2.15):

σ(w) =

∑{

d.0 | d , b ∧ ∃w′. (w d
→ w′) ∈ H

}
+ pb

w if w ∈ vars(P),

b.0 if w ∈ Y, and
0 otherwise.

It is not hard to see that σ satisfies H, but not the formula x c
→ y. Therefore,

ruloid ρ fires under substitution σ, but ρ′ does not. Reasoning as above, this
yields that Pσ and Qσ are not bisimilar as desired. We may finally conclude
that b = c and therefore that x b

→ y ∈ H ∩H′, which was to be shown.

3. We show that |=G′ hyps(ρ) ⇒ hyps(ρ′). To this end, assume, towards a
contradiction, that there is a closed substitution σ that satisfies hyps(ρ),
but not hyps(ρ′). We shall use σ to construct a substitution σ′ such that
Pσ′ =G′ Qσ′, contradicting our assumption that P↔––G′ Q.

Define σ′ thus:

σ′(x) =

∑{

b.0 | ∃p. σ(x) b
→ p

}
if x ∈ SV(ρ) ∪ SV(ρ′),

0 otherwise.

We claim that→G′ , σ |= H. Indeed, suppose that (x b
→ x′) ∈ H. Then, x b

→ is
a conjunct of hyps(ρ) and x ∈ SV(ρ). Since σ satisfies hyps(ρ), it follows that
σ(x) b

→ p for some closed term p. By the definition of σ′ and the fact that
x′ < SV(ρ) ∪ SV(ρ′),

σ′(x) b
→ 0 = σ′(x′) .

Assume now x b
9∈ H. Then, x b

9 is a conjunct of hyps(ρ) and x ∈ SV(ρ).
Since σ satisfies hyps(ρ), it follows that σ(x) b

9. By the definition of σ′,
we have σ′(x) b

9 and we are done. It follows that ruloid ρ fires under
substitution σ′ and therefore

Pσ′ a
→ P′σ′ .

We shall now argue that→G′ , σ′ 6|= H′. This means that Qσ′ does not afford
an a-labelled transition, and therefore Pσ′ =G′ Qσ′, as desired.

Since σ does not satisfy hyps(ρ′), there is a conjunct of that formula that is
not satisfied by σ. We proceed with the proof of our claim by considering
the two possible forms this conjunct may take.

Matteo Cimini 65

• Assume that σ does not satisfy a conjunct of the form x b
→ in hyps(ρ′).

This means that σ(x) b
9 and that (x b

→ x′) ∈ H′ for some x′. Note that
x ∈ SV(ρ′). Therefore σ′(x) b

9, by the definition of σ′, and→G′ , σ′ 6|= H′,
as claimed.

• Assume that σ does not satisfy a conjunct of the form x b
9 in hyps(ρ′).

This means that σ(x) b
→ p for some closed term p and that (x b

9) ∈ H′.
Note that x ∈ SV(ρ′). Therefore σ′(x) b

→ 0, by the definition of σ′, and
→G′ , σ′ 6|= H′, as claimed.

This completes the proof.

66

67

Chapter 3

Rule Formats for Zero and Unit
Elements

In a world of 1s and 0s... are you a zero, or The One?
From the movie Matrix.

3.1 Introduction

In the last three decades, Structural Operational Semantics (SOS), see, e.g., [18,
109, 119, 65], has been shown to be a powerful way to specify the semantics
of programming and specification languages. In this approach to semantics,
languages can be given a clear behaviour in terms of states and transitions, where
the collection of transitions is specified by means of a collection of syntax-driven
inference rules. Based on this semantics in terms of state transitions, we often want
to prove general algebraic laws about the languages, which describe semantic
properties of the various operators they involve modulo the notion of behavioural
equivalence or preorder of interest. For example, the reader may think about the
field of process algebra, where it is important to check whether certain operators
are, say, commutative and associative.

This chapter aims at contributing to an ongoing line of research whose goal is to
ensure the validity of algebraic properties by design, using the so called SOS rule
formats [21]. Results in this research area roughly state that if the specification of
(parts of) the operational semantics of a language has a certain form then some
semantic property is guaranteed to hold. The literature on SOS provides rule

68 Meta-theory of SOS

formats for basic algebraic properties of operators such as commutativity [110],
associativity [49] and idempotence [4]. The main advantage of this approach is
that one is able to verify the desired property by syntactic checks that can be mech-
anized. Moreover, it is interesting to use rule formats for establishing semantic
properties since results so obtained apply to a broad class of languages.

Recently, in [22] the authors provided a rule format guaranteeing another basic
algebraic property not addressed before: the existence of left and right unit ele-
ments for operators. In this chapter, we follow the work presented in [22] and
we develop some rule formats guaranteeing instead that certain constants act as
left or right zero elements for a set of binary operators. Namely, a function f
has a left (respectively, right) zero element c, modulo some notion of behavioural
equivalence, whenever the equation f (c, x) = c (respectively, f (x, c) = c) holds.
A constant c satisfying the above equation(s) is also said to be absorbing for the
operator f .

A classical example of a left zero element within the realm of process algebra
is provided by the constant δ, for deadlock, from BPA [37], which satisfies the
laws:

δ · x = δ and δ‖ x = δ ,

where ‘·’ and ‘‖ ’ stand for sequential composition and left merge, respectively.

The first format we provide follows the techniques developed in [22] and is of a
syntactic nature. However, even though we show how several classical examples
from the literature indeed fit the format, there are some basic, but somewhat more
exotic, zero elements that cannot be handled by the proposed format.

We show nevertheless that we can reformulate our zero-element format within
the GSOS languages of Bloom, Istrail and Meyer [44], by using a modest amount
of ‘semantic reasoning’. In particular, we benefit from the logic of transition
formulae developed by me, Luca Aceto and Anna Ingolfsdottir in [7], which is
tailored for reasoning about the satisfiability of premises of GSOS rules.

The final part of the chapter is devoted to applying the design ideas underlying
the GSOS-based format for left and right zero elements to reformulate the format
for left and right unit elements from [22]. The resulting format turns out to be
incomparable in power to the original one, but it is expressive enough to check
all the examples discussed in [22].

Matteo Cimini 69

Mechanizing the rule formats in a tool-set is a long-term goal of research on
SOS rule formats. We believe that the GSOS-based rule formats we present in this
chapter are strong candidates for mechanization insofar as zero and unit elements
are concerned.

Roadmap of the chapter Section 3.2 repeats some standard definitions from the
theory of SOS. Section 3.3 provides the first format for left and right zero elements
and Section 3.4 shows how several examples of left and right zero elements from
the literature fit the format. In Section 3.5 we point out the main drawbacks of
the format and in Section 3.6 we reformulate it within the GSOS format using
the aforementioned logic of transition formulae. In Section 3.7 we provide a rule
format for unit elements adapting the ideas from Section 3.6. We conclude the
chapter with an overview of its main contributions in Section 3.8. In order to
increase the readability of the main body of the chapter, the proofs of the main
technical results have been collected in sections that follow Section 3.8.

3.2 Preliminaries

In this section we recall some standard definitions from the theory of SOS. We
refer the readers to, e.g., [18] and [109] for more information.

3.2.1 Transition system specifications and bisimilarity

Definition 3.2.1 (Signatures, terms and substitutions) We let V denote an infinite
set of variables and use x, x′, xi, y, y′, yi, . . . to range over elements of V. A signature Σ

is a set of function symbols, each with a fixed arity. We call these symbols operators and
usually represent them by f , g, An operator with arity zero is called a constant. We
define the setT(Σ) of terms over Σ as the smallest set satisfying the following constraints.

• A variable x ∈ V is a term.

• If f ∈ Σ has arity n and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term.

We use s, t, possibly subscripted and/or superscripted, to range over terms. We write
t1 ≡ t2 if t1 and t2 are syntactically equal. The function vars : T(Σ) → 2V gives the
set of variables appearing in a term. The set C(Σ) ⊆ T(Σ) is the set of closed terms,
i.e., terms that contain no variables. We use p, q, p′, pi, . . . to range over closed terms. A

70 Meta-theory of SOS

substitution σ is a function of type V → T(Σ). We extend the domain of substitutions to
terms homomorphically and write σ(t) for the result of applying the substitution σ to the
term t. If the range of a substitution lies in C(Σ), we say that it is a closed substitution.

Definition 3.2.2 (Transition system specification) A transition system specifica-
tion (TSS) is a triple (Σ,L,D) where

• Σ is a signature.

• L is a set of labels (or actions) ranged over by a, b, l. If l ∈ L, and t, t′ ∈ T(Σ) we
say that t l

→ t′ is a positive transition formula and t l
9 is a negative transition

formula. A transition formula (or just formula), typically denoted by φ or ψ, is
either a negative transition formula or a positive one.

• D is a set of deduction rules, i.e., tuples of the form (Φ, φ) where Φ is a set of
formulae and φ is a positive formula. We call the formulae contained in Φ the
premises of the rule and φ the conclusion.

We write vars(r) to denote the set of variables appearing in a deduction rule r. We say
that a formula or a deduction rule is closed if all of its terms are closed. Substitutions
are also extended to formulae and sets of formulae in the natural way. For a rule r and a
substitution σ, the rule σ(r) is called a substitution instance of r. A set of positive closed
formulae is called a transition relation.

We often refer to a positive transition formula t l
→ t′ as a transition with t being its

source, l its label, and t′ its target. A deduction rule (Φ, φ) is typically written as Φ
φ .

An axiom is a deduction rule with an empty set of premises. We call a deduction
rule f -defining when the outermost function symbol appearing in the source of its
conclusion is f .

In this chapter, for each constant c, we assume that each c-defining deduction rule is an
axiom of the form c l

→ p for some label l and closed term p. This is not a real restriction
since all practical cases we know of do actually satisfy this property. For GSOS
languages, which are defined shortly and used in later sections of this chapter,
this restriction is automatically satisfied.

The meaning of a TSS is defined by the following notion of least three-valued
stable model. To define this notion, we need two auxiliary definitions, namely
provable transition rules and contradiction, which are given below.

Definition 3.2.3 (Provable transition rules) A closed deduction rule is called a tran-
sition rule when it is of the form N

φ with N a set of negative formulae. A TSST proves

Matteo Cimini 71

N
φ , denoted by T ` N

φ , when there is a well-founded upwardly branching tree with closed
formulae as nodes and of which

• the root is labelled by φ;

• if a node is labelled by ψ and the labels of the nodes directly above it form the set K
then:

– ψ is a negative formula and ψ ∈ N, or

– ψ is a positive formula and K
ψ is a substitution instance of a deduction rule in

T .

Definition 3.2.4 (Contradiction and entailment) The formula t l
→ t′ is said to con-

tradict t l
9 , and vice versa. For two sets Φ and Ψ of formulae, Φ contradicts Ψ when

there is a φ ∈ Φ that contradicts a ψ ∈ Ψ. We write Φ � Ψ when Φ does not contradict
Ψ.

A formula φ entails ψ when there is a substitution σ such that σ(φ) ≡ ψ. A set Φ entails
a set Ψ of formulae, when there exists a substitution σ such that, for each ψ ∈ Ψ, there
exists a φ ∈ Φ such that σ(φ) ≡ ψ. In other words, Φ entails Ψ if there is a substitution
σ such that Ψ ⊆ {σ(φ) | φ ∈ Φ}.

It immediately follows from the above definition that contradiction is a symmetric
relation on (sets of) formulae. We now have all the necessary ingredients to define
the semantics of TSSs in terms of three-valued stable models.

Definition 3.2.5 (Three-valued stable model) A pair (C,U) of disjoint sets of posi-
tive closed transition formulae is called a three-valued stable model for a TSS T when
the following conditions hold:

• for eachφ ∈ C, there is a set N of negative formulae such thatT ` N
φ and C∪U � N,

and

• for each φ ∈ U, there is a set N of negative formulae such that T ` N
φ and C � N.

C stands for Certainly and U for Unknown; the third value is determined by the
formulae not in C∪U. The least three-valued stable model is a three-valued stable model
that is the least one with respect to the ordering on pairs of sets of formulae defined as
(C,U) ≤ (C′,U′) iff C ⊆ C′ and U′ ⊆ U. We say that T is complete when for its least
three-valued stable model it holds that U = ∅. In a complete TSS, we say that a closed
substitution σ satisfies a set of formulae Φ if σ(φ) ∈ C, for each positive formula φ ∈ Φ,
and C � σ(φ), for each negative formula φ ∈ Φ. If a TSS is complete, we often also write
p l
→ p′ in lieu of (p l

→ p′) ∈ C.

72 Meta-theory of SOS

Definition 3.2.6 (Bisimulation and bisimilarity [96, 115]) LetT be a transition sys-
tem specification with signature Σ and label set L. A relation R ⊆ C(Σ) × C(Σ) is a
bisimulation relation if and only if R is symmetric and, for all p0, p1, p′0 ∈ C(Σ) and
l ∈ L,

(p0R p1 ∧ T ` p0
l
→ p′0)⇒ ∃p′1 ∈ C(Σ). (T ` p1

l
→ p′1 ∧ p′0R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔–– p1, when there exists a
bisimulation relation R such that p0R p1.

Bisimilarity is extended to open terms by requiring that s, t ∈ T(Σ) are bisimilar
when σ(s)↔–– σ(t) for each closed substitution σ : V → C(Σ).

In Sections 3.6–3.7 we focus on the GSOS format of Bloom, Istrail and Meyer [44],
whose definition is given below.

Definition 3.2.7 (GSOS rule) Suppose Σ is a signature. A GSOS rule r over Σ is a
rule of the form:

⋃l
i=1

{
xi

ai j
→ yi j|1 ≤ j ≤ mi

}
∪

⋃l
i=1

{
xi

bik
9 |1 ≤ k ≤ ni

}
f (x1, . . . , xl)

c
→ t

(3.1)

where all the variables are distinct, mi,ni ≥ 0, ai j, bik, and c are actions from a finite
set, f is a function symbol from Σ with arity l, and t is a term in T(Σ) such that
vars(t) ⊆ {x1, . . . , xl} ∪ {yi j | 1 ≤ i ≤ l, 1 ≤ j ≤ mi}.

Definition 3.2.8 A GSOS language is a triple G = (ΣG,L,RG), where ΣG is a finite
signature, L is a finite set of action labels and RG is a finite set of GSOS rules over ΣG.

3.2.2 Predicates

Several of the examples of (left and right) zero and unit elements we will discuss
in the remainder involve operators whose SOS semantics is best given using pred-
icates as well as transition relations. For the sake of completeness, we therefore
proceed to introduce the notion of TSS extended with predicates.

Definition 3.2.9 (Predicates) Given a set P of predicate symbols, P t is a positive
predicate formula and ¬P t is a negative predicate formula, for each P ∈ P and
t ∈ T(Σ). We call t the source of both predicate formulae. In the extended setting,
a (positive, negative) formula is either a (positive, negative) transition formula or a

Matteo Cimini 73

(positive, negative) predicate formula. The notions of deduction rule, TSS, provable
transition rules and three-valued stable models are then naturally extended by adopting
the more general notion of formulae. The label of a deduction rule is either the label of the
transition formula or the predicate symbol of the predicate formula in its conclusion.

The definition of bisimulation is extended to a setting with predicates in the stan-
dard fashion. In particular, bisimilar terms must satisfy the same predicates.

3.3 Rule format

In this section we provide a rule format guaranteeing that certain constants act as
left or right zero elements for a set of binary operators. To this end we employ
a variation on the technique developed by some of the authors in [22] for left or
right unit elements.

As in [22], we make use of an equivalence relation between terms called zero-
context equivalence, which is the counterpart of the unit-context equivalence from [22].
Intuitively if c is a left zero element for an operator f and c is also a right zero
element for g, then the terms f (c, t1) and g(t2, c) are both zero-context equivalent
to c and zero-context equivalent to each other.

In the following formal definition of zero-context equivalence, it is useful to
consider (f , c) ∈ L as stating that ‘c acts as a left zero element for the operator f ’
and analogously (f , c) ∈ R indicates that the constant c is a right zero element for
f .

Definition 3.3.1 (Zero-context equivalent terms) Given sets L,R ⊆ Σ×Σ of pairs of

binary function symbols and constants,
L,R
�0 is the smallest equivalence relation satisfying

the following constraints, for each s ∈ T(Σ):

1. ∀(f , c) ∈ L. c
L,R
�0 f (c, s), and

2. ∀(g, d) ∈ R. d
L,R
�0 g(s, d).

We say that two terms s, t ∈ T(Σ) are zero-context equivalent, if s
L,R
�0 t.

Since the sets L and R are always clear from the context, in the remainder we write

�0 in place of
L,R
�0.

74 Meta-theory of SOS

Theorem 3.3.1 (Decidability of zero-context equivalence) Let L,R ⊆ Σ × Σ be fi-
nite sets of pairs of binary function symbols and constants. Then, for all terms t,u ∈ T(Σ),

it is decidable whether t
L,R
�0 u holds.

Proof. Let L and R be given. Suppose the are given two terms t and u and we
want to check whether they are zero-context equivalent. From t and u, construct
the (undirected) graph G(t,u) as follows.

The nodes in G(t,u) are

• t and u,

• the constants mentioned in L and R,

• all terms of the form f (c, d) with (f , c) ∈ L and (f , d) ∈ R, and

The edges in G(t,u) are given by items 1 and 2 in Definition 3.3.1. This graph is
finite, since L and R are finite, and can be built effectively. Note that G(u, t) and
G(t,u) are identical.

We claim that t is zero-context equivalent to u iff t can be reached from u in
G(t,u).

The proof of this claim is as follows. The right-to-left implication is immediate
since each edge in G(t,u) corresponds to an application of item 1 or item 2 in
Definition 3.3.1. For the converse, we proceed by induction on the length of a

shortest proof of t
L,R
�0 u. If t

L,R
�0 u follows by reflexivity or by using item 1 or 2

in Definition 3.3.1 then t can be reached from u in G(t,u) in zero steps or in one

step, respectively. If t
L,R
�0 u is proven using symmetry then the claim follows by

the inductive hypothesis. Assume now that t
L,R
�0 u follows by transitivity. Then

there is some term s such that t
L,R
�0 s (in one step) and s

L,R
�0 u. By induction and the

symmetry of reachability, s is reachable from t in G(t, s) and s is reachable from u
in G(s,u). To see that u is reachable from t in G(t,u), we now observe that s can be
taken to be

• a constant mentioned in L or R, if t = f (c, t′) for some (f , c) ∈ L or t = f (t′, c)
for some (f , c) ∈ R, or

• if t is a constant c, a term of one of the following forms for some constant d:

– f (c, d), where (f , c) ∈ L and (f , d) ∈ R, or

– f (d, c), where (f , c) ∈ R and (f , d) ∈ L.

Matteo Cimini 75

Indeed, assume, by way of example, that t = c and s = f (c, t′), where (f , c) ∈ L

and t′ is not a constant d such that (f , d) ∈ R. Then the proof of s
L,R
�0 u could only

proceed in the next step by going back to t = c, contradicting our assumption that

it was a shortest proof of t
L,R
�0 u.

It follows that both G(t, s) and G(s,u) are subgraphs of G(t,u), and therefore t is
reachable from u in G(t,u), as claimed. �

We now proceed to define the rule format for left and right zero elements, which
is the first main contribution of this chapter. Before doing so, however, it may be
useful to discuss some examples, which highlight two of the key design criteria
in the definition to follow.

Example 3.3.2 Assume that a is the only action. Let 0 be a constant with deduction rule

0 7→ 0

Furthermore consider the binary operators _[n〉_, for n ≥ 0, with deduction rules

x 7→ x′

x[0〉y 7→ x′

x 7→ x′

x[n + 1〉y 7→ x′[n〉y

x a
→ x′

x[n〉y a
→ x′[n〉y

x 67→ x a
9

x[n〉y 7→ y

Assuming that the transition relation 7→ denotes unit time steps, p[n〉q denotes that q
will start only when p has finished in at most n time units. In order to prove that 0 is a
left zero element for the operator _[n〉_ one needs to show also that it is a left zero element
for all operators _[i〉_ with 0 ≤ i < n. It is not hard to see that the relation

Rn = {(0[i〉p, 0) | 0 ≤ i ≤ n, p ∈ C(Σ)} ∪ {(0, 0)}

is a bisimulation. Therefore, 0 is a left zero element for the operator [n〉. �

In the previous example, the zero element property for _[n〉_ depends on that
property for all _[i〉_ with 0 ≤ i < n. The next example illustrates that this
dependency can even be worse.

Example 3.3.3 Assume that a is the only action and consider the binary operators fi,
i ≥ 0, with rules

x0
a
→ y0

fi(x0, x1) a
→ fi+1(y0, x1)

.

76 Meta-theory of SOS

Let RUNa be a constant with rule RUNa
a
→RUNa. Then fi(RUNa, p)↔–– RUNa, for each

closed term p and i ≥ 0. Indeed, it is not hard to see that the relation

R = {(fi(RUNa, p),RUNa) | i ≥ 0, p ∈ C(Σ)}

is a bisimulation. Therefore, RUNa is a left zero element for each of the operators fi,
i ≥ 0. Note that, in order to show that RUNa is a left zero element for, say, f0, we need to
consider a set of operators, namely { fi | i ≥ 0}. Moreover, such a set cannot be inductively
defined since, in order to show that RUNa is a left zero element for fi, i ≥ 0, we need to
prove that RUNa is a left zero element for fi+1. Therefore the set of proof obligations is not
well-founded. �

Example 3.3.4 Consider the following TSS with constant RUNa and binary function
symbols f and g with rules

x0
a
→ y0

f (x0, x1) a
→ g(x1, y0)

x1
a
→ y1

g(x0, x1) a
→ f (y1, x0)

It is not hard to see that f (RUNa, p) ↔–– RUNa ↔–– g(p,RUNa), for each closed term p.
Therefore RUNa is a left zero element for f and a right zero element for g. In the light of
the mutual dependency between f and g, this example indicates that a widely applicable
rule format for left zero elements will need to be based at the same time on a rule format
for right zero elements, and vice versa. �

In order to remain in line with the terminology in [22], in the following definition
we talk about left- and right-aligned pairs.

Definition 3.3.5 (Left- and right-aligned pairs) Given a TSS with set of predicate
symbols P and set of labels L, the sets L and R of pairs of binary function symbols and
constants are the largest sets satisfying the following constraints.

1. For each (f , c) ∈ L, the following conditions hold.

(a) Whenever an axiom c a
→ t (or P c) does exist then there is a rule:

{x0
ai
→ ti | i ∈ I} ∪ {Pk x0 | k ∈ K} ∪ {x0

a j
9 or ¬P j x0 | j ∈ J}

f (x0, x1) a
→ t′ (or P f (x0, x1))

where

i. x1 < {x0} ∪
⋃

i∈I vars(ti),

Matteo Cimini 77

ii. for each j ∈ J, there is no c-defining axiom with a j or P j as label (depending
on whether the formula with index j is a transition or a predicate formula),

iii. there exists a collection {Pk c | k ∈ K} of c-defining axioms, and

iv. there exists some substitution σ such that σ(x0) = c, {c
ai
→ σ(ti) | i ∈ I} is

included in the collection of c-defining axioms, and if the conclusion is a
transition formula, σ(t′) �0 t.

(b) Each f -defining deduction rule has one of the following forms:

Φ

f (t0, t1) a
→ t′

or
Φ

P f (t0, t1)

where a ∈ L, P ∈ P and, for each closed substitution σ such that σ(t0) ≡ c,
one of the following cases holds:

i. there exists an axiom c a
→ t with σ(t′) �0 t (if the conclusion is a transition

formula), or an axiom P c (if the conclusion is a predicate formula), or

ii. there exists a premise φ ∈ Φ with t0 as its source such that

A. either φ is a positive formula and the collection of c-defining axioms
does not entail σ(φ), or

B. φ is a negative formula and the collection of c-defining axioms con-
tradicts σ(φ).

2. The definition of right-aligned pairs of operators and constant symbols—that is,
those such that (f , c) ∈ R—is symmetric and is not repeated here.

For a function symbol f and a constant c, we call (f , c) left aligned (respectively, right
aligned) if (f , c) ∈ L (respectively, (f , c) ∈ R).

The structure of the above definition is inherited directly from [22], but there are,
however, significant differences in the details. Intuitively, the aim of condition 1a
is to ensure that whenever the constant c performs, say, an a-transition then also
f (c, p) does so for each closed term p, and the two transitions lead to terms that are
zero-context equivalent. Conversely, condition 1b guarantees that each transition
that f (c, p) can perform actually simulates one of the steps of the constant c. The
clauses play the corresponding role also for predicates.

Note that, as in [22], the sets L and R are defined as the largest sets of pairs
satisfying the constraints from Definition 3.3.5. This means that, in order to check

78 Meta-theory of SOS

whether a constant c is, for example, a left zero element for an operator f , it is
sufficient that the pair (f , c) be contained in L for a pair of sets L and R that satisfy
the conditions above.

The following theorem states the correctness of the rule format in Definition 3.3.5.

Theorem 3.3.2 Let T be a complete TSS in which each rule is f -defining for some
function symbol f . Assume that L and R are the sets of left- and right-aligned function
symbols according to Definition 3.3.5. For each (f , c) ∈ L, it holds that f (c, x) ↔–– c.
Symmetrically, for each (f , c) ∈ R, it holds that f (x, c)↔–– c.

Proof. Section 3.9 contains the proof of Theorem 3.3.2. �

Example 3.3.6 Consider Example 3.3.3. We now show that RUNa is a left zero element
for each fi using Theorem 3.3.2. To this end, let L = {(fi,RUNa) | i ≥ 0} and take R = ∅.
Let us focus on a generic function symbol fi. We prove that conditions 1a and 1b are met.

• 1a: For the only axiom RUNa
a
→RUNa we can use the only fi-defining rule. Here

we can associate the axiom RUNa
a
→RUNa to the premise x0

a
→ y0 and consider

a substitution σ such that σ(x0) ≡ σ(y0) ≡ RUNa. Since σ(y0) ≡ RUNa and
(fi+1,RUNa) ∈ L, it follows that

σ(fi+1(y0, x1)) ≡ fi+1(RUNa, σ(x1)) �0 RUNa ,

and we are done.

• 1b: We can associate the only fi-defining rule to the axiom RUNa
a
→RUNa. Assume

that σ(x0) ≡ RUNa but σ(fi+1(y0, x1)) 6�0 RUNa, and therefore case 1(b)i does not
apply. This means that σ(y0) . RUNa and therefore the condition in case 1(b)iiA
is met. �

Example 3.3.7 Consider now Example 3.3.4. We show that RUNa is a left zero element
for f and a right zero element for g using Theorem 3.3.2. Let L = {(f ,RUNa)} and
R = {(g,RUNa)}. We limit ourselves to checking that conditions 1a and 1b are met by the
pair (f ,RUNa) contained in L.

• 1a: For the only axiom RUNa
a
→RUNa, we can use the only rule for f . Indeed,

the obvious substitution σ constructed as required in item 1(a)iv of Definition 3.3.5
satisfies that σ(g(x1, y0)) �0 RUNa because (g,RUNa) ∈ R.

• 1b: The only f -defining rule is the one on the left. For that we can consider the axiom
RUNa

a
→RUNa. If σ(y0) ≡ RUNa then case 1(b)i applies since (g,RUNa) ∈ R.

Otherwise, the condition in case 1(b)iiA is met.

Matteo Cimini 79

A similar reasoning can be applied to the pair (g,RUNa) in R. �

We conclude this section by discussing some of the constraints in Definition 3.3.5
in order to argue that they cannot be easily relaxed. In what follows, we focus on
the conditions that left-aligned pairs must meet. First of all, note that relaxing the
requirement that x0 . x1 in condition 1(a)i would jeopardize Theorem 3.3.2. To see
this, consider the TSS with constant RUNa and binary operator f with rule

x0
a
→ y0

f (x0, x0) a
→ y0

.

It is not hard to check that L = {(f ,RUNa)} and R = ∅ satisfy all the constraints in
Definition 3.3.5 apart from x0 . x1. For example, let us examine condition 1b. Let
σ be a closed substitution such that σ(x0) ≡ RUNa and assume that the axiom for
RUNa entails σ(x0) ≡ RUNa

a
→ σ(y0)—or else condition 1(b)iiA would be met. It

follows that σ(y0) ≡ RUNa and therefore condition 1(b)i is satisfied.

However, RUNa is not a left zero element for f . For example, the term f (RUNa, f (RUNa))
affords no transition and therefore cannot be bisimilar to RUNa.

The following example shows that relaxing the requirement that

x1 <
⋃
i∈I

vars(ti)

in condition 1(a)i would also invalidate Theorem 3.3.2. To see this, consider the
TSS with constant RUNa and binary operator f with rule

x0
a
→ x1

f (x0, x1) a
→ x1

.

Again, it is not hard to check that L = {(f ,RUNa)} and R = ∅ satisfy all the
constraints in Definition 3.3.5 apart from the requirement that x1 should not occur
in the target of a positive premise. However, f (RUNa, f (RUNa,RUNa)) affords no
transition and therefore cannot be bisimilar to RUNa. This means that RUNa is
not a left zero element for f .

The role played by requirements 1(a)ii and 1(a)iv in ensuring that, modulo bisim-
ilarity, f (c, p) affords ‘the same transitions as c’, for each p, is highlighted by the
following two examples.

80 Meta-theory of SOS

Example 3.3.8 Consider the TSS with constants 0 and a&b, and a binary operator f
with rules:

a&b a
→ 0 a&b b

→ 0

x0
b
9 x0

a
→ y0

f (x0, x1) a
→ y0

x0
a
9 x0

b
→ y0

f (x0, x1) b
→ y0

.

It is not hard to check that L = {(f , a&b)} and R = ∅ satisfy all the constraints in
Definition 3.3.5 apart from 1(a)ii. However, the term f (a&b, 0) affords no transition
unlike a&b. Therefore a&b is not a left zero element for f . �

Example 3.3.9 Consider the TSS over set of labels {a, b} with constant RUNa and a
binary operator f with rule:

x0
a
→ y0 x0

b
→ y1

f (x0, x1) a
→ x1

.

It is easy to check that L = {(f ,RUNa)} satisfies all the constraints in Definition 3.3.5 apart
from 1(a)iv. However, f (RUNa,RUNa) affords no transition unlike RUNa. Therefore
RUNa is not a left zero element for f . �

As witnessed, e.g., by Example 3.4.4 to follow, constraint 1(b)i enhances the gen-
erality of our format. Indeed, if we removed constraint 1(b)i and a left-aligned
pair (f , c) satisfied condition 1(b)ii, then no rule for f would be applicable to a
closed term of the form f (c, p). Therefore, no term of the form f (c, p) would afford
a transition. Since (f , c) satisfies condition 1 in Definition 3.3.5, the collection of
c-defining axioms must be empty. As a consequence, the resulting format would
be unable to handle left zero elements such as RUNa that afford some transition.
Examples of constants with deduction axioms in the literature are immediate
deadlock [29], which acts as a left zero element for sequential composition, paral-
lel composition, left merge and communication merge and as a right zero element
for parallel composition and communication merge, and delayable deadlock from
[24], which is a left zero element for sequential composition.

3.4 Examples

In this section we show that several examples of zero elements from the literature
indeed fit the format described in Section 3.3.

Example 3.4.1 (Synchronous parallel composition) Consider the synchronous par-
allel composition from CSP [77] over a set of actions L with rules:

Matteo Cimini 81

x a
→ x′ y a

→ y′

x ‖L y a
→ x′ ‖L y′

(a ∈ L) .

We know that the inaction constant 0, with no rules, is a left and right zero element for
‖L. Let L = R = {(‖L, 0)}. We claim that L and R meet the constraints in Definition 3.3.5.
First of all, 0 has no axioms so the clauses 1a and its symmetric counterpart 2a are
vacuously satisfied. To show that also the clause 1b is met, we consider the rule above
and note that, for every possible substitution σ such that σ(x) ≡ 0, the empty set of
deduction rules does not entail the premise σ(x) a

→ σ(x′). This meets constraint 1(b)iiA.
The symmetric counterpart of clause 1b is handled in similar fashion. The well-known
laws

0 ‖L y↔–– 0 and x ‖L 0↔–– 0

thus follow from Theorem 3.3.2. �

Example 3.4.2 (Left merge operator) Consider the left merge operator from [37].

x a
→ x′

x‖ y a
→ x′ ‖ y

Here ‖ stands for the merge operator from [37], whose SOS specification is immaterial for
this example; see Example 3.4.6 to follow. Let L = {(‖ , 0)} and R = ∅. We claim that L
meets the constraints in Definition 3.3.5. It is easy to check that the claim is true by the
same reasoning used in Example 3.4.1. This time it is sufficient to check conditions 1a
and 1b because 0 is just a left zero element for‖ . By Theorem 3.3.2 the validity of the law
(0‖ y)↔–– 0 follows. Note that the pair {(‖ , 0)} cannot be added to R because the symmetric
version of condition 1b would be violated. Indeed 0 is not a right zero element for‖ . �

Example 3.4.3 (Sequential Composition (1)) We now examine an example that in-
volves the use of predicates. Consider the standard sequential composition operator ·,
which makes use of the predicate symbol ↓. (The formula x ↓ means that x terminates
successfully.)

(seq1)
x a
→ x′

x · y a
→ x′ · y

(seq2)
x ↓ y a

→ y′

x · y a
→ y′

(seq3)
x ↓ y ↓

(x · y) ↓

Consider the deadlock constant δ, defined by no axioms. In particular, δ ↓ does not hold.

Let L = {(·, δ)} and R = ∅. We claim that L meets the constraints in Definition 3.3.5.
Here again condition 1a is vacuously true. In order to show that constraint 1b is also

82 Meta-theory of SOS

satisfied, consider a substitution σ that maps x to δ. It suffices only to observe that each
of the above rules has a positive premise φ such that σ(φ) is not entailed by the empty set
of rules. Therefore, once again, we fall under case 1(b)iiA. By Theorem 3.3.2, the validity
of the well-known law δ · y↔–– δ follows.

Note that the pair {(·, δ)} cannot be added to R because rule (seq1) would invalidate the
symmetric counterpart of condition 1b in Definition 3.3.5. Indeed δ is not a right zero
element for ·. �

Example 3.4.4 (Sequential Composition (2)) Focusing again on the sequential com-
position operator from the previous example, consider once more the constant RUNa from
Example 3.3.3 with axiom

RUNa
a
→RUNa

.

This constant simply displays a infinitely many times. This behaviour is enough to
preempt the execution of the right-hand argument of · and our order of business in this
example is indeed to check the validity of the laws RUNa · y↔–– RUNa with a ∈ L using
Theorem 3.3.2.

Let L = {(·,RUNa)} and R = ∅. We claim that L meets the constraints in Definition 3.3.5.
To prove this claim, we consider each constraint in turn.

• 1a: We need to match the above axiom for RUNa with a rule that defines ·. The
rule we pick is the instance of (seq1) for action a. The substitution σ constructed in
order to meet the requirements in condition 1(a)iv is such that σ(x) ≡ RUNa and
σ(x′) ≡ RUNa. Moreover, RUNa is zero-context equivalent to RUNa · y and we are
done.

• 1b: Since RUNa ↓ does not hold, with the rules (seq2) and (seq3) we fall in the
subcase 1(b)iiA. The rule (seq1) falls instead in the subcase 1(b)i for the same reason
of the case 1a examined above.

Note that, following the above reasoning, we can show the validity of laws of the form
c · y↔–– c, where c is any constant whose behaviour is defined by a collection of axioms of
the form {c

ai
→ c | i ∈ I}, where I is any index set. �

Example 3.4.5 (Predictable failure constant of BPA0δ) In this example we focus on
the language BPA0δ of Baeten and Bergstra—see [25]. The predictable failure 0 is a
non-standard constant that ‘absorbs the computation’ no matter where it appears within
the context of the sequential composition operator ·. Namely, the laws x · 0 ↔–– 0 and
0 · x ↔–– 0 both hold. The following SOS rules for the language BPA0δ make use of the

Matteo Cimini 83

predicate , 0 that determines whether or not a process can be proved equal to 0, and of
predicates a

→X that tell us when a process can terminate by performing an a action.

a , 0 δ , 0 a a
→X

x , 0

x + y , 0

y , 0

x + y , 0

x a
→ x′

x + y a
→ x′

x a
→X

x + y a
→X

y a
→ y′

x + y a
→ y′

y a
→X

x + y a
→X

x , 0 y , 0

x · y , 0

x a
→ x′ y , 0

x · y a
→ x′ · y

x a
→X y , 0

x · y a
→ y

Let L = R = {(·, 0)}. We claim that L and R meet the constraints in Definition 3.3.5.
Firstly, 0 has no axioms so the clause 1a and its symmetric counterpart are vacuously
satisfied. To show that clause 1b is satisfied, we must consider the three rules for · one by
one. Since 0 , 0 does not hold we fall into case 1(b)ii with the leftmost rule. Since 0 a

9

and 0 a
9X for any a, the remaining rules also fall into the case 1(b)iiA. The symmetric

counterpart of condition 1b is satisfied for each of the rules because 0 , 0 does not hold.
The laws

x · 0↔–– 0 and 0 · x↔–– 0

thus follow by Theorem 3.3.2. �

Example 3.4.6 (Merge operator) LetL be the set of actions. Consider the classic merge
operator ‖ with the following rules, where a ∈ L.

x a
→ x′

x ‖ y a
→ x′ ‖ y

y a
→ y′

x ‖ y a
→ x ‖ y′

Let RUNL be a constant defined by axioms RUNL
a
→RUNL for each action a ∈ L. We

claim that the constant RUNL is both a left and right zero element for ‖. This can be
checked using Theorem 3.3.2. Indeed, let L = R = {(‖,RUNL)}. It is easy to see that
condition 1a in Definition 3.3.5 is met for RUNL

a
→RUNL by taking the instance of the

left-hand rule for ‖ with action a. Moreover, such a rule also meets condition 1(b)i.

Consider now the right-hand rule for ‖with action a. That rule also meets condition 1(b)i.
Indeed, for each closed substitution σ such that σ(x) ≡ RUNL, we have that

σ(x ‖ y′) ≡ RUNL ‖ σ(y′) �0 RUNL

and RUNL
a
→RUNL is one of the axioms for the constant RUNL. �

84 Meta-theory of SOS

Example 3.4.7 (A right-choice operator) In this example we apply our format to a
non-standard operator. For the sake of simplicity we assume that a is the only action.
Consider a variant of the choice operator of Milner’s CCS [96], where the right-hand
argument has a higher priority than the left-hand argument, i.e., the scheduler executes
the left-hand argument only when the other one has no transitions. The rules for such an
operator are as follows:

x a
→ x′ y a

9

x←+ y a
→ x′

y a
→ y′

x←+ y a
→ y′

.

Let c be any constant whose behaviour is defined by a non-empty, finite collection of
axioms {c a

→ pi | i ∈ I}, where I is some index set. Reasoning as in the previous examples,
using Theorem 3.3.2, we are able to prove the validity of the law x ←+ c ↔–– c. We leave
the details to the reader. The operator studied in this example bears resemblance with the
preferential choice operator +→ from [39]. �

3.5 Discussion of the format

The format for left and right zero elements we presented in Definition 3.3.5 is
based on rather intuitive design decisions and, as witnessed by the examples
discussed in Section 3.4, it is applicable to several operators from the literature.
However, the format does have some, mostly theoretical, limitations and can be
modified in several ways in order to improve some of its features. After all, the
design of rule formats for SOS is always based on a trade-off between generality
and applicability, and is, to some extent, an ‘experimental science’.

Below we discuss two features of the rule format described in Definition 3.3.5.
This discussion will motivate the development of an alternative format for left
and right zero elements that we present in Section 3.6 to follow.

3.5.1 Premises of rules

One of the main potential limitations of the format for left zero elements is that
the form of the rules in condition 1a does not allow one to test the variable x1 in
the premises; that is, we are able to test only the variable that will be instantiated
with the left zero element c. The reason for this design choice is as follows. When
an axiom c a

→ t is present, we must ensure that, regardless of the second argument

Matteo Cimini 85

of f , at least one rule for f proving an a-labelled transition does fire (leading to a
term that is bisimilar to t). The way we guarantee this property stems from [22],
i.e., we judiciously manage the presence/absence of c-defining axioms in order to
satisfy the premises. Moreover, we require a strong syntactic connection between
the closed term that is the target of the axiom c a

→ t and the instantiated target of
the conclusion of the rule for f . The same reasoning underlies our design choices
for c-defining axioms of the form P c, where P is a predicate symbol.

In condition 1(b)ii, we must ensure that the rule under consideration either cannot
fire when the first argument of f is instantiated with c or otherwise it would lead
to a term that is bisimilar to a derivative of the left zero element.

In both of the aforementioned situations, it is important to reason about the sat-
isfiability of premises of rules. The conditions we give in 1a and 1(b)ii can be
indeed regarded as a basic, syntactic approximation of our attempt to ensure
firabily/unfirability of the rules in question, when the first argument of the oper-
ator f is the considered left zero element. Premises about the argument x1 are a
challenge, because, since x1 can be replaced by an arbitrary closed term, there is
no easy, purely syntactic way to ensure their satisfiability in the context of a left
zero element c. For this reason, testing x1 is forbidden by the format for left zero
elements in Definition 3.3.5. However, this choice does not allow us to handle left
zero elements such as the one in the following example.

Example 3.5.1 Consider a TSS with constants 0 and RUNa (from Example 3.3.3), and
a function symbol f defined as follows

(y)
x a
→ x′ y a

→ y′

f (x, y) a
→ x′

(not˘y)
x a
→ x′ y a

9

f (x, y) a
→ x′

.

The constant RUNa is a left zero element for f , but the pair (f ,RUNa) is not left aligned
because the test on the variable y is forbidden by condition 1a in Definition 3.3.5. �

This example is admittedly highly artificial. (Indeed, we are not aware of any
operator from the literature that is specified using rules akin to the ones given
above.) The following one is perhaps less so.

86 Meta-theory of SOS

Example 3.5.2 Assume that a is the only action. Consider the TSS with constant RUNa

from Example 3.3.3 and binary operator f with rule

x a
→ x′ y a

→ y′

f (x, y) a
→ f (x′, y′)

.

We claim that the constant RUNa is a left and a right zero element for f . Indeed, each
closed term in the TSS above is bisimilar to RUNa. On the other hand, the pair (f ,RUNa)
is neither left- nor right-aligned because of the premises involving y and x in the rule for
f , respectively. �

Admittedly, neither of the examples given above is to be found in the literature.
However, we feel that the study of versions of our rule format that allow one
to test both arguments of a binary operator is a natural question to address. In
Section 3.6.2, we propose a format, based on the GSOS format of Bloom, Istrail
and Meyer, that is able to handle the examples we mentioned above and that has
independent interest.

3.5.2 Checking the format, algorithmically

We are aware that checking the requirements in Definition 3.3.5 may involve hard
work. Namely, they require the user to provide proofs of zero-context equivalence
between terms and of entailment/contradiction between collections of transition
formulae. This is not an unexpected drawback because it is inherited from the
design of the format for left and right unit elements from [22].

Even though the requirements of the proposed format are frequently easy to check
in practice, as the examples in Section 3.4 clearly indicate, their verification may
be very lengthy in general and steps toward alternative mechanizable solutions
are desirable.

In the next section, our order of business is to provide an alternative rule format for
zero elements, which is a candidate for automated checking and retains enough
expressiveness to cover relevant examples from the literature, such as those we
presented in Section 3.4.

Matteo Cimini 87

3.6 A rule format for zero elements based on GSOS

In what follows, we adapt the format from Section 3.3 in the context of GSOS
languages. By employing the logic of initial transitions developed in [7], we are
able to reason easily about firability of rules, and the resulting rule format is a step
towards addressing both the issues discussed in Sections 3.5.1 and 3.5.2.

3.6.1 The logic of initial transitions

In this section, for the sake of completeness, we discuss the logic we employ in
the definition of our revised rule format for left and right zero elements based on
GSOS. The logic of initial transitions has been recently introduced in [7] in order
to reason about the satisfiability of the premises of GSOS rules. The set of initial
transitions formulae over a finite set of actions L is defined by the following
grammar, where a ∈ L:

F ::= True | x a
→ | ¬F | F ∧ F .

As usual, we write False for ¬True, and F ∨ F′ for ¬(¬F ∧ ¬F′).

The semantics of this logic is given by a satisfaction relation |= that is defined,
relative to a GSOS language G = (ΣG,L,RG), by structural recursion on F in
the following way, where σ is a closed substitution and →G is the collection of
transitions that can be proven using the rules in RG:

→G, σ |= True always

→G, σ |= x a
→ ⇔ σ(x) a

→G p, for some p

→G, σ |= ¬F ⇔ not →G, σ |= F

→G, σ |= F ∧ F′ ⇔ →G, σ |= F and →G, σ |= F′ .

The reader familiar with Hennessy-Milner logic [74] will have noticed that the
propositions of the form x a

→ correspond to Hennessy-Milner formulae of the
form 〈a〉True. In what follows, we consider formulae up to commutativity and
associativity of ∧.

We use the logic to turn the set of premises Φ of a GSOS rule into a formula
that describes the collection of closed substitutions that satisfy Φ.The conversion

88 Meta-theory of SOS

procedure hyps is borrowed from [7]. Formally,

hyps(∅) = True

hyps({x a
→ y} ∪Φ) = (x a

→) ∧ hyps(Φ \ {x a
→ y})

hyps({x a
9 } ∪Φ) = ¬(x a

→) ∧ hyps(Φ \ {x a
9 }) .

Intuitively, if Φ is the set of premises of a rule then hyps(Φ) is the conjunction of
the corresponding initial transition formulae. For example,

hyps({x a
→ y, z b

9}) = (x a
→) ∧ ¬(z b

→) .

If J is a finite set of GSOS rules, we overload hyps and write:

hyps(J) =
∨
r∈J

hyps(Φr) ,

where Φr is the set of premises of rule r.

Lemma 3.6.1 Assume that G is a GSOS language. Let Φ = Φ1 ∪ Φ2, where Φ1 and Φ2

are disjoint, be the set of premises of a rule in G of the form (3.1) on page 72. Let σ be a
closed substitution such that→G, σ |= hyps(Φ) and σ satisfies Φ1. Then there is a closed
substitution σ′ such that

• σ′(xi) = σ(xi) for each i ∈ {1, . . . , l},

• σ′(y) = σ(y) for each target variable y of a positive premise in Φ1 and

• σ′ satisfies Φ.

Proof. We construct a substitution σ′ meeting the requirements stated in the
lemma by induction on the cardinality of Φ2. If Φ2 is empty, then take σ′ to be σ.
Otherwise, pick an arbitrary transition formula in Φ2. If the transition formula is
of the form xi

b
9, for some i ∈ {1, . . . , l} and label b, then ¬(xi

b
→) is a conjunct of

hyps(Φ). As→G, σ |= hyps(Φ), we have that σ satisfies xi
b
9. Therefore σ satisfies

Φ1 ∪ {xi
b
9} and the existence of a substitution σ′ meeting the requirements stated

in the lemma follows by induction applied to Φ2 \ {xi
b
9}.

Consider now the case that xi
a
→ y ∈ Φ2 for some variable y and label a. As

→G, σ |= hyps(Φ) and xi
a
→ is a conjunct of hyps(Φ), we have that σ(xi)

a
→ p for

some closed term p. Let σ′′ be the closed substitution that maps the variable
y to p and agrees with σ on all the other variables. Since all the variables in
a GSOS rule are distinct, and Φ1 and Φ2 are disjoint, σ′′ satisfies Φ1 ∪ {xi

a
→ y}.

Matteo Cimini 89

Moreover, by construction, σ and σ′′ agree on the variables occurring in the source
of the conclusion of the rule and on each target variable y′ of a premise in Φ1.
The existence of a substitution σ′ meeting the requirements stated in the lemma
follows now by induction applied to Φ2 \ {xi

a
→ y}. � We write |=G F⇒ F′ iff every

substitution that satisfies F also satisfies F′. This semantic entailment preorder is
decidable, as shown in [7].

Theorem 3.6.1 (Decidability of entailment [7]) Let G be a GSOS language. Then,
for all formulae F and F′, it is decidable whether |=G F⇒ F′ holds.

As a matter of fact, when Φ is the set of the premises of a rule r, checking whether
|=G True ⇒ hyps(Φ) holds is equivalent to checking whether the rule r is always
firable. Conversely, checking whether |=G hyps(Φ) ⇒ False holds is equivalent
to checking whether the rule r never fires. These considerations will be useful in
the remainder of the chapter. Our definition of the alternative rule format for left
and right zero elements makes use of the logic and especially of these two kinds
of entailment. The semantic entailment is, moreover, used in a simplified fashion
where one does not need to check all the closed substitutions, but only those that
map one variable to the left or right zero element constant under consideration.
We now proceed to formalize this notion.

Definition 3.6.2 Let G = (ΣG,L,RG) be a GSOS language. For each formula F, constant
c ∈ ΣG and variable x, we define the formula F[x 7→ c] by structural recursion on F as
follows:

True[x 7→ c] = True

(x a
→)[x 7→ c] =

True if there is a c-defining axiom c a
→ p for some p

False otherwise

(y a
→)[x 7→ c] = y a

→ if x , y

(¬F)[x 7→ c] = ¬(F[x 7→ c])

(F1 ∧ F2)[x 7→ c] = (F1[x 7→ c]) ∧ (F2[x 7→ c]) .

The connection between F and F[x 7→ c] is provided by the following lemma.

Lemma 3.6.3 Let G = (ΣG,L,RG) be a GSOS language. Let F be a formula, c be a
constant in ΣG and x be a variable. Then, for each closed substitution σ,

90 Meta-theory of SOS

→G, σ |= F[x 7→ c] iff →G, σ[x 7→ c] |= F ,

where σ[x 7→ c] denotes the substitution that maps x to c and acts like σ on all the other
variables.

As a consequence of the above lemma, checking whether F holds for all substi-
tutions that map variable x to a constant c amounts to showing that the formula
F[x 7→ c] is satisfied by all substitutions—that is, showing that F[x 7→ c] is a
tautology over G.

3.6.2 An alternative rule format for zero elements

We now have all the ingredients to reformulate the format we presented in Section
3.3 within the GSOS format. This time the conditions of our format will not try
to ensure firability/unfirability of rules by purely syntactic means as in Definition
3.3.5, but they instead exploit the logic of initial transition formulae to incorporate
a modicum of semantic reasoning within the rule format.

In what follows the reader should bear in mind that, by the considerations in
Section 3.6.1 and by the disjunctive nature of hyps(J), with J set of rules, the
semantic entailment |=G True⇒ hyps(J) actually holds whenever, no matter what
closed substitution σ we pick, at least one of the rules in the set J does fire, when
it is instantiated with σ.

Definition 3.6.4 (Left- and right-aligned pairs, anew) Let G be a GSOS language.
The sets L and R of pairs of binary function symbols and constants are the largest sets
satisfying the following constraints.

1. For each (f , c) ∈ L, the following conditions hold.

(a) For each axiom c a
→ t, there exists a set J of rules of the form

Φ

f (x0, x1) a
→ t′

such that

i. |=G True⇒ hyps(J)[x0 7→ c], and

ii. for each rule in J, one of the following cases holds:

Matteo Cimini 91

A. there is some variable y ∈ vars(t′) such that x0
a
→ y ∈ Φ and σ(t′) �0

t, where σ is the substitution mapping x0 to c, y to t and is the identity
on all the other variables, or

B. σ(t′) �0 t, where σ is the substitution mapping x0 to c and is the
identity on all the other variables.

(b) For each f -defining deduction rule

Φ

f (x0, x1) a
→ t′

one of the following cases holds:

i. there exists an axiom c a
→ t such that

A. there is some variable y ∈ vars(t′) such that x0
a
→ y ∈ Φ and σ(t′) �0

t, where σ is the substitution mapping x0 to c, y to t and is the identity
on all the other variables, or

B. σ(t′) �0 t, where σ is the substitution mapping x0 to c and is the
identity on all the other variables.

ii. |=G hyps(Φ)[x0 7→ c]⇒ False.

2. The definition of right-aligned pairs of operators and constant symbols—that is,
those such that (f , c) ∈ R—is symmetric and is not repeated here.

For a function symbol f and a constant c, we call (f , c) left aligned (respectively, right
aligned) if (f , c) ∈ L (respectively, (f , c) ∈ R).

Remark 3.6.5 Let G be a GSOS language over a signature including at least one constant.
Since hyps(J) is a disjunctive formula, condition 1(a)i in the above definition implies that
the set J is non-empty. On the other hand, condition 1(b)ii says that the premises of
the rule under consideration cannot be satisfied by any closed substitution that maps the
variable x0 to the constant c.

In condition 1a and its symmetric counterpart, one must identify a set J of rules. To
understand why, the reader should consider Example 3.5.1, where the rules (y) and
(not–y) only together allow the operator f to simulate the behaviour of the constant
RUNa: no matter what closed term is substituted for the argument variable y, we are sure
that one of the two rules fires and that the transition leads to RUNa. In Definition 3.6.4,
these two properties are guaranteed, respectively, by conditions 1(a)i and 1(a)ii. �

92 Meta-theory of SOS

Theorem 3.6.2 Let G be a GSOS language. Assume that L and R are the sets of left- and
right-aligned function symbols according to Definition 3.6.4. For each (f , c) ∈ L, it holds
that f (c, x)↔–– c. Symmetrically, for each (f , c) ∈ R, it holds that f (x, c)↔–– c.

Section 3.10 contains the proof of Theorem 3.6.2.

The following result is a consequence of Theorems 3.3.1 and 3.6.1.

Theorem 3.6.3 For GSOS languages, the sets L and R can be effectively constructed.

Remark 3.6.6 (Handling predicates using the format of Definition 3.6.4) The for-
mats in Definition 3.3.5 and the one in Definition 3.6.4 are incomparable. Indeed the
former allows for complex terms in the source of the conclusions of rules and in premises
of rules. In addition, the format from Definition 3.3.5 does not require all variables in
the premises of rules to be distinct and permits the use of predicates. GSOS languages
forbid all of these features. On the other hand, it is easy to see that, using the format from
Definition 3.6.4, one can check Example 3.5.1, which cannot be dealt with by the format
from Definition 3.3.5.

It is important to note, however, that the GSOS-based format we presented in Defini-
tion 3.6.4 can indeed be used to reason about the examples from Section 3.4 that use
predicates. In fact, one can encode a finite collection of predicates specified using rules of
the form

{x0
ai
→ yi | i ∈ I} ∪ {Pk x0 | k ∈ K} ∪ {x0

a j
9 or ¬P j x0 | j ∈ J}

P f (x0, x1)
,

where

• the index sets I,K and J are finite and

• the variables x0, x1 and yi, i ∈ I, are pairwise different,

rather easily by means of transition relations specified by GSOS rules. One can find a
number of such encodings in the literature—see, for instance, [49, 151]. The key idea
in each of these encodings is that a predicate P is represented as a transition relation P

→

(assuming that P is a fresh action label) with some fixed fresh constant cP as target and a
fresh variable for the target of each of the premises.

For example, using this encoding strategy, the above rule becomes the standard GSOS
rule

{x0
ai
→ yi | i ∈ I} ∪ {x0

Pk
→ zk | k ∈ K} ∪ {x0

a j
9 or x0

P j
9 | j ∈ J}

f (x0, x1) P
→ cP

,

Matteo Cimini 93

where the variables zk are fresh and pairwise distinct.

With this encoding of predicates, which preserves finiteness of a language specification,
the format proposed in Definition 3.6.4 is immediately applicable to all the examples we
discussed in Section 3.4, as well as to those mentioned in, e.g., [32]. �

Example 3.6.7 Consider again the TSS discussed in Example 3.5.2. We will now argue
that the format proposed in Definition 3.6.4 is capable of proving the validity of the laws

f (x,RUNa)↔–– RUNa and f (RUNa, y)↔–– RUNa,

unlike the purely syntactic one we introduced in Section 3.3. To see this, take L = R =

{(f ,RUNa)}. We limit ourselves to checking that conditions 1a and 1b in Definition 3.6.4
are met.

1a : The only axiom for RUNa is RUNa
a
→RUNa. Take J as the set containing the

single rule for f . Then

(x a
→ ∧ y a

→)[x 7→ RUNa] = True ∧ y a
→ .

As we observed in Example 3.5.2, each closed term in the TSS under consideration
affords an a-labelled transition. Therefore, the formula True ∧ y a

→ is a tautology
and condition 1(a)i is met. Note, moreover, that x a

→ x′ is a premise of the only rule
for f , x ∈ vars(f (x′, y′)) and f (RUNa, y′) �0 RUNa. Therefore condition 1(a)ii is
also met.

1b : Reasoning as above, we can easily check that the only rule for f meets condi-
tion 1(b)iA. �

Example 3.6.8 Consider now the synchronous parallel composition of Example 3.4.1.
We claim that the format proposed in Definition 3.6.4 is capable of proving the validity of
the laws (0 ‖L y)↔–– 0 and (x ‖L 0)↔–– 0.

Let L = R = {(‖L, 0)}. Since the constant 0 has no axioms, condition 1a is vacuously
satisfied. In order to see that also condition 1b is satisfied, it is sufficient to notice that
the only rule for ‖L can never fire because 0 has no transitions. Indeed, the entailment
|=G (x a

→ ∧ y a
→)[x 7→ 0]⇒ False holds and condition 1(b)ii is met. �

Following the same line of the previous two examples, we are able to show that
the proposed format applies to all of the examples in Section 3.4.

Consider now Example 3.5.1. This example is interesting because, in order to
meet condition 1a for the only axiom RUNa

a
→RUNa, we must choose J to be the

set containing both of the rules (y) and (not-y). Choosing J to be a singleton set

94 Meta-theory of SOS

containing one of the rules is not enough, because neither

|=G True⇒ (x a
→ ∧ y a

→)[x 7→ RUNa]

nor
|=G True⇒ (x a

→ ∧ y a
9)[x 7→ RUNa]

hold. On the other hand, when J = {(y), (not − y)}, the entailment

|=G True⇒ ((x a
→ ∧ y a

→) ∨ (x a
→ ∧ y a

9))[x 7→ RUNa]

holds and, moreover, RUNa �0 RUNa, meeting condition 1(a)iiA. Therefore the
proposed format can check Example 3.5.1, which cannot be dealt with by the
format from Definition 3.3.5.

3.7 From zero to unit

In this section we reformulate the unit element format of [22] following the lines
of Definition 3.6.4.

For the sake of clarity and completeness we repeat here the definition of unit-
context equivalence from [22].

Definition 3.7.1 (Unit-context equivalence [22]) Given sets L,R ⊆ Σ×Σ of pairs of

binary function symbols and constants,
L,R
� is the smallest equivalence relation satisfying

the following constraints, for each s ∈ T(Σ):

1. ∀(f , c) ∈ L. s
L,R
� f (c, s), and

2. ∀(g, c) ∈ R. s
L,R
� g(s, c).

We say that two terms s, t ∈ T(Σ) are unit-context equivalent, if s
L,R
� t.

Since the sets L and R are always clear from the context, we write � in place of
L,R
� .

Theorem 3.7.1 (Decidability of unit-context equivalence) Let L,R ⊆ Σ × Σ be fi-
nite sets of pairs of binary function symbols and constants. Then, for all terms t,u ∈ T(Σ),

it is decidable whether t
L,R
� u holds.

Proof. Let L and R be given finite sets of pairs of binary operators and constants.
Suppose that we are given two terms t and u and we want to check whether they

Matteo Cimini 95

are unit-context equivalent. From t and u, construct the (undirected) graph G(t,u)
as follows.

The nodes in G(t,u) are

• t, u and all their subterms,

• all constants mentioned in L or R, and

• all terms of the form f (c, d) with (f , c) ∈ L and (f , d) ∈ R.

The edges in G(t,u) are given by items 1 and 2 in Definition 3.7.1. This graph is
finite, since L and R are finite, and can be built effectively. Note that G(u, t) and
G(t,u) are identical.

We claim that t is unit-context equivalent to u iff t can be reached from u in
G(t,u).

The proof of this claim is as follows. The right-to-left implication is immediate
since each edge in G(t,u) corresponds to an application of item 1 or item 2 in
Definition 3.7.1. For the converse, we proceed by induction on the length of a
shortest proof of t � u. If t � u follows by reflexivity or by using item 1 or 2 in
Definition 3.7.1 then t can be reached from u in G(t,u) in zero steps or in one step,
respectively. If t � u follows by symmetry then the claim follows by the inductive
hypothesis. Assume now that t � u follows by transitivity. Then there is some
term s such that t � s (in one step) and s � u. By induction and the symmetry
of reachability, s is reachable from t in G(t, s) and s is reachable from u in G(s,u).
To see that u is reachable from t in G(t,u), we now observe that s can be taken to
be

• a subterm of t, if t = f (c, s) for some (f , c) ∈ L or t = f (s, c) for some (f , c) ∈ R,
or

• if t is a constant c, a term of one of the following forms for some constant d:

– f (c, d), where (f , c) ∈ L and (f , d) ∈ R, or

– f (d, c), where (f , c) ∈ R and (f , d) ∈ L.

In the former case, G(t, s) and G(s,u) are subgraphs of G(t,u), and therefore t is
reachable from u in G(t,u) as claimed.

In the latter case, let, without loss of generality,

t = c � t1 = f (d, c) � t2 · · · tn−1 � tn = u (n ≥ 2)

96 Meta-theory of SOS

be a shortest proof of t � u, where (f , d) ∈ L and each of the intermediate equiv-
alences is an instance of items 1 and 2 in Definition 21 or of their symmetric
counterparts. Since the above is a shortest proof of t � u, we have that t2 can
be:

1. d, if (f , c) ∈ R,

2. g(f (d, c), e), for some (g, e) ∈ R, or

3. g(e, f (d, c)), for some (g, e) ∈ L.

If t2 = d and (f , c) ∈ R, then G(d,u) is a subgraph of G(t,u) and d is reachable from
c = t in G(t,u). In both the other cases, since the above is a shortest proof of t � u,
we have that t2 must be a subterm of u. Therefore, G(t2,u) is a subgraph of G(t,u).
Since t1 = f (d, c) and c = t are also subterms of u, in all cases we have that t is
reachable from u in G(t,u).

It follows that both G(t, s) and G(s,u) are subgraphs of G(t,u), and therefore t is
reachable from u in G(t,u), as claimed. �

Definition 3.7.2 (Left- and right-aligned pairs for unit elements) Given a GSOS
language G, the sets L and R of pairs of binary function symbols and constants are the
largest sets satisfying the following constraints.

1. For each (f , c) ∈ L, the following conditions hold:

(a) For each action a ∈ L, there exists at least one deduction rule of the form

Φ ∪ {x1
a
→ y1}

f (x0, x1) a
→ t′

,

where

i. |=G x1
a
→ ⇒ hyps(Φ)[x0 7→ c], and

ii. one of the following cases holds:

A. there are a premise x0
b
→ y ∈ Φ, for some b ∈ L and y ∈ vars(t′),

and an axiom c b
→ t such that σ(t′) � y1, where σ is the substitution

mapping x0 to c, y to t and is the identity on all the other variables, or

B. σ(t′) � y1, where σ is the substitution mapping x0 to c and is the
identity on all the other variables.

Matteo Cimini 97

(b) For each f -defining deduction rule

Φ

f (x0, x1) a
→ t′

one of the following cases holds:

i. x1
a
→ y1 ∈ Φ for some variable y1 and

A. either there is a premise x0
b
→ y ∈ Φ, for some b ∈ L and variable

y ∈ vars(t′), such that c has a single axiom with label b—say, c b
→ t—

and σ(t′) � y1, where σ is the substitution mapping x0 to c, y to t and
is the identity on all the other variables,

B. or σ(t′) � y1, where σ is the substitution mapping x0 to c and is the
identity on all the other variables.

ii. |=G hyps(Φ)[x0 7→ c]⇒ False.

2. The definition of right-aligned pairs of operators and constant symbols—that is,
those such that (f , c) ∈ R—is symmetric and is not repeated here.

For a function symbol f and a constant c, we call (f , c) left aligned (respectively, right
aligned) if (f , c) ∈ L (respectively, (f , c) ∈ R).

The following theorem states the correctness of the rule format defined above.

Theorem 3.7.2 Let G be a GSOS language. Assume that L and R are the sets of left- and
right-aligned function symbols according to Definition 3.7.2. For each (f , c) ∈ L, it holds
that f (c, x)↔–– x. Symmetrically, for each (f , c) ∈ R, it holds that f (x, c)↔–– x.

Section 3.11 contains the proof of Theorem 3.7.2.

Remark 3.7.3 The constraint that c b
→ t be the only c-defining axiom with label b in

condition 1(b)iA of Definition 3.7.2 is necessary for the validity of Theorem 3.7.2. To see
this, consider, for instance, the TSS over set of labels {a} with constants 0, RUNa (see
Example 3.3.3) and c, and the binary operator ‖L defined in Example 3.4.1. The rules for
the constant c are

c a
→ c c a

→ 0
.

Observe that the sets L = {‖L, c)} and R = ∅would satisfy the conditions in Definition 3.7.2
if the uniqueness requirement were dropped from condition 1(b)iA. On the other hand,

98 Meta-theory of SOS

c ‖L RUNa is not bisimilar to RUNa because

c ‖L RUNa
a
→ 0 ‖L RUNa

a
9 ,

while RUNa can only perform action a forever. Therefore c is not a left unit element for
‖L. �

The following result is a consequence of Theorems 3.6.1 and 3.7.1.

Theorem 3.7.3 For GSOS languages, the sets L and R can be effectively constructed.

The format for left and right unit elements proposed above is incomparable to the
one offered in [22]. Indeed, the latter allows for complex terms as source of the
conclusions and in the premises, which the GSOS format forbids. On the other
hand, in condition 1a above, the set of premises Φ may contain several tests on the
argument variable x1, which is forbidden by the purely syntactic format in [22]. A
concrete, albeit admittedly inexpressive, example of a TSS exploiting this feature
is discussed below.

Example 3.7.4 Consider a TSS, over the set of labels {a, b}, with constants RUNa and
RUNb, and a binary function symbol f defined by the rules below.

y a
→ y′ y b

9

f (x, y) a
→ y′

y b
→ y′ y a

9

f (x, y) b
→ y′

The constants RUNa and RUNb are both left unit elements for f . Indeed, every closed
term is a left unit element for f . This holds true because each closed term is bisimilar to
one of the constants RUNa and RUNb. Therefore, every process is either able to perform
initially an a-transition or is able to perform initially a b-transition, but never both.

It is not hard to check that the sets L = {(f ,RUNa), (f ,RUNb)} and R = ∅ satisfy the
conditions in Definition 3.7.2. On the other hand, the format from [22] fails on this basic
scenario since y is tested twice in the rules for f . �

All the examples from the literature mentioned in [22] can be handled by the
rule format presented in Definition 3.7.2. (Indeed, predicates can be dealt with
within the proposed format along the lines discussed in Remark 3.6.6.) By way of
illustration, we limit ourselves to discussing just a couple of examples addressed
in [22].

Matteo Cimini 99

Example 3.7.5 (Nondeterministic Choice) Consider the classic nondeterministic choice
operator from Milner’s CCS [96] specified by the rules below, where a ∈ L.

x a
→ x′

x + y a
→ x′

y a
→ y′

x + y a
→ y′

The sets R = L = {(+, 0)} meet the constraints in Definition 3.7.2. Let us discuss the
constraints relative to the set L. (The constraints for the set R can be checked using a
similar reasoning.)

• 1a: Consider the second rule above. Here Φ = ∅ and since (hyps(Φ))[x 7→ 0] =

True, the entailment

|=G y a
→ ⇒ (hyps(Φ))[x 7→ 0]

is trivially satisfied. Therefore condition 1(a)i is met. Note, moreover, that y′ � y′.
Therefore condition 1(a)ii is met too.

• 1b: Consider the first rule. Since 0 a
9 , the entailment |=G (x a

→)[x 7→ 0]⇒ False
holds and condition 1(b)ii is met. Moreover, reasoning as above, we can easily check
that the second rule above meets condition 1(b)i. �

Example 3.7.6 (Synchronous Parallel Composition) Assume that a is the only ac-
tion inL. Consider the constant RUNa and the synchronous parallel composition operator
‖L from Example 3.4.1. For ease of reference, we recall that ‖L is specified by the rule

x a
→ x′ y a

→ y′

x ‖L y a
→ x′ ‖L y′

.

Take L = R = {(‖L,RUNa)}. These sets L and R meet the constraints in Definition 3.7.2.
Let us discuss first the set L.

• 1a: Consider the rule above. Since (x a
→)[x 7→ RUNa] = True, the entailment

|=G y a
→ ⇒ (x a

→)[x 7→ RUNa]

is trivially satisfied. Therefore condition 1(a)i is met. Note, moreover, that x a
→ x′

is a premise of the rule above. Since we can pick the axiom

RUNa
a
→RUNa ,

100 Meta-theory of SOS

the substitution σ that maps x and x′ to RUNa and that is the identity function
on all the other variables is such that σ(x′ ‖L y′) ≡ RUNa ‖L y′ � y′. Therefore
condition 1(a)iiA is met.

• 1b: Reasoning as above, we can easily check that rule above meets condition 1(b)iA
in Definition 3.7.2.

A similar reasoning shows that (‖L,RUNa) is also right aligned. �

3.8 Conclusions

In this chapter we have provided two rule formats ensuring that certain constants
in a language act as left or right zero elements for a set of binary operators.
The format for left and right zero elements presented in Section 3.3 follows the
techniques developed by some of the authors in [22], where a format for left and
right unit elements was offered, but the actual details are rather different.

To overcome some drawbacks of that format, in Section 3.6.2 we reformulated it
within the GSOS format, making use of the logic of initial transitions proposed in
[7]. The new format is able to check relevant cases from the literature and some
instances of zero elements left out by the format in Section 3.3.

Following the design of the revised format for zero elements, we also provided
an alternative rule format for left and right unit elements. This format does not
include advanced features such as complex terms in the source of the conclusions
of rules, like the one in [22] instead does, but is still able to check relevant cases
and basic unit elements not addressed by the format from [22].

We believe that the formats we propose in this chapter for GSOS languages are
good candidates for mechanization in a tool-set for checking algebraic laws based
on rule formats.

3.9 Proof of Theorem 3.3.2

The proof will rely on the following lemma, which can be shown by a straightfor-
ward induction on the definition of �0.

Lemma 3.9.1 For all s, t ∈ T(Σ), if s �0 t then σ(s) �0 σ(t), for each substitution σ.

Matteo Cimini 101

From Lemma 3.9.1, it trivially follows that, when t is a closed term, s �0 t implies
σ(s) �0 t for each substitution σ. In the proof of Theorem 3.3.2 given below we
make use of this observation.

Proof. (of Theorem 3.3.2)

We prove that�0 is a bisimulation relation. The claim then follows since f (c, p) �0 p
and g(p, c′) �0 p for each closed term p, (f , c) ∈ L and (g, c′) ∈ R. In order to show
that �0 is a bisimulation it suffices to prove that whenever p �0 q then

• if p a
→ p′ then q a

→ q′ for some q′ such that p′ �0 q′,

• if P p then P q, for each predicate P,

• if q a
→ q′ then p a

→ p′ for some p′ such that p′ �0 q′, and

• if P q then P p, for each predicate P.

We prove these statements by an induction on the definition of �0. The cases
that p �0 q is due to reflexivity, symmetry and transitivity of �0 are trivial or
follow easily using the inductive hypothesis. So, two relevant cases remain to be
proved.

1. Suppose that p �0 q is due to p ≡ c and q ≡ f (c, p) for some (f , c) ∈ L.

(a) Assume that c a
→ p′, for some p′ ∈ C(Σ). This is because there exists

an axiom c a
→ p′. We shall show that there exists a p′′ ∈ C(Σ) such that

q ≡ f (c, p) a
→ p′′ and p′ �0 p′′.

By Definition 3.3.5, we have a deduction rule of the following form

{x0
ai
→ ti | i ∈ I} ∪ {Pk x0 | k ∈ K} ∪ {x0

a j
9 or ¬P j x0 | j ∈ J}

f (x0, x1) a
→ t′

where

i. x1 < {x0} ∪
⋃

i∈I vars(ti),

ii. for each j ∈ J, there is no c-defining deduction rule with a j or P j as
label (depending on whether the formula with index j is a transition
or a predicate formula),

iii. there exists a collection {Pk c | k ∈ K} of c-defining axioms, and

iv. there is a substitution σ such that σ(x0) = c, {c
ai
→ σ(ti) | i ∈ I} is

included in the collection of c-defining axioms, and σ(t′) �0 p′.

102 Meta-theory of SOS

Since x1 < {x0} ∪
⋃

i∈I vars(ti), we can extend σ to a closed substitution
σ′ mapping x1 to p and all the variables not contained in {x0, x1} ∪⋃

i∈I vars(ti) to c. It is easy to see that the substitution σ′ constructed
in that fashion satisfies all the premises of the above rule. Thus,
f (c, p) a

→ σ′(t′) is a provable transition. As σ(t′) �0 p′ by clause (iv)
above and σ′(σ(t′)) ≡ σ′(t′) by construction, Lemma 3.9.1 yields that
σ′(t′) �0 p′, and we are done.

(b) Assume that q ≡ f (c, p) a
→ q′ ∈ C, for some q′ ∈ C(Σ). We shall show

that there is some p′ ∈ C(Σ) such that c a
→ p′ and p′ �0 q′.

By the proviso of the theorem, the transition q ≡ f (c, p) a
→ q′ must be

proved using an f -defining rule. Therefore, it follows from constraint
1(b) in Definition 3.3.5 that the transition q ≡ f (c, p) a

→ q′ is due to a
deduction rule of the following form

Φ

f (x0, x1) a
→ t′

and a closed substitution σ such that σ(x0) ≡ c, σ(x1) ≡ p, σ(t′) ≡ q′ and
σ satisfies Φ.

Since σ satisfies Φ and σ(x0) ≡ c, then the condition 1(b)ii does not apply
and we fall in the case of constraint 1(b)i. Thus, by the proviso of the
clause, we can identify an axiom c a

→ p′ for some p′ such that p′ �0 σ(t′),
and we are done.

(c) The two cases involving predicates, namely when Pc holds and P f (c, p)
holds, follow the same lines.

2. Suppose that p �0 q is due to p ≡ c and q ≡ g(p, c) for some (g, c) ∈ R.

This case is similar to the previous one and we omit the details. �

3.10 Proof of Theorem 3.6.2

We prove that the relation �0 is a bisimulation. The claim then follows since
f (c, p) �0 c and g(p, c′) �0 c′ for each closed term p, (f , c) ∈ L and (g, c′) ∈ R. To this
end, we show that, when p �0 q, the transfer conditions of Definition 3.2.6 are met
by an induction on the definition of �0. The cases that p �0 q is due to reflexivity,

Matteo Cimini 103

symmetry and transitivity of �0 are trivial or follow easily by induction. So, two
relevant cases remain to be considered.

1. Suppose that p �0 q is due to p ≡ c and q ≡ f (c, q′) for some (f , c) ∈ L and
closed term q′.

(a) Assume that c a
→ p′ ∈ C, for some p′ ∈ C(Σ). This is because there exists

an axiom c a
→ p′. We shall show that there exists a p′′ ∈ C(Σ) such that

q ≡ f (c, q′) a
→ p′′ and p′ �0 p′′.

From constraint 1(a)ii in Definition 3.6.4, we have a non-empty set J of
deduction rules of the following form

Φ

f (x0, x1) a
→ t′

such that

i. |=G True⇒ hyps(J)[x0 7→ c], and

ii. for each rule in J, one of the following cases holds:

A. there is some variable y ∈ vars(t′) such that x0
a
→ y ∈ Φ and

σ(t′) �0 p′, where σ is the substitution mapping x0 to c, y to p′

and is the identity on all the other variables, or

B. σ(t′) �0 p′, where σ is the substitution mapping x0 to c and is
the identity on all the other variables.

Let σ′ be an arbitrary closed substitution mapping x0 to c and x1 to q′.
Since |=G True⇒ hyps(J)[x0 7→ c], we have that σ′ satisfies the formula
hyps(Φ)[x0 7→ c], where Φ is the set of premises of some rule r in the set J.
If, for this rule r, we are in case 1(a)iiA above, let σ′′ be the substitution
that maps y to p′ and acts like σ′ on all the other variables. (In this
case, the substitution σ′′ satisfies the premise x0

b
→ y ∈ Φ.) Otherwise,

let σ′′ = σ′. By Lemma 3.6.1, we can construct a substitution σ′′′ that

• ‘extends’ σ′′ defined above,

• maps x1 to q′ and

• satisfies Φ.

104 Meta-theory of SOS

Instantiating r with σ′′′ yields the transition q ≡ f (c, q′) a
→ σ′′′(t′). Since

σ(t′) �0 p′, the term p′ is a closed and σ′′′ ‘extends’ σ, Lemma 3.9.1 yields
that p′ �0 σ′′(t′), and we are done.

(b) Assume that q ≡ f (c, q′) a
→ p′′ ∈ C, for some p′′ ∈ C(Σ). We shall show

that c a
→ p′ ∈ C, for some p′ ∈ C(Σ) such that p′ �0 p′′.

It follows from constraint 1b in Definition 3.6.4 that the transition q ≡
f (c, q′) a

→ p′′ is due to a deduction rule of the following form

Φ

f (x0, x1) a
→ t′

and a closed substitution σ′ such that σ′(x0) ≡ c, σ′(x1) ≡ q′, σ′(t′) ≡ p′′

and σ′ satisfies Φ.

Since σ′ satisfies Φ and σ′(x0) ≡ c, condition 1(b)ii in Definition 3.6.4
cannot apply and we fall in the case of constraint 1(a)ii. Thus we can
find an axiom c a

→ p′ and show that σ′(t′) �0 p′ reasoning as in the case
above.

2. Suppose that p �0 q is due to q ≡ g(p, c) for some (g, c) ∈ R.

This proof is similar to the one for the previous case and we omit the details.
�

3.11 Proof of Theorem 3.7.2

The proof relies on the following lemma proved in [22].

Lemma 3.11.1 For all s, t ∈ T(Σ), if s � t then vars(s) = vars(t) and σ(s) � σ(t), for
each substitution σ.

The proof of Theorem 3.7.2 is given below.

Proof. (of Theorem 3.7.2) We prove that � is a bisimulation relation. The claim
then follows since f (c, p) � p and g(p, c′) � p for each closed term p, (f , c) ∈ L and
(g, c′) ∈ R. We prove that whenever p � q the transfer conditions of Definition
6 are met by an induction on the definition of �. The cases that p � q is due to
reflexivity, symmetry and transitivity of� are trivial or follow easily by induction.
So, two relevant cases remain to be proved.

Matteo Cimini 105

1. Suppose that p � q is due to q ≡ f (c, p) for some (f , c) ∈ L.

(a) Assume that p a
→ p′ ∈ C, for some p′ ∈ C(Σ). We shall show that there

exists a p′′ ∈ C(Σ) such that q ≡ f (c, p) a
→ p′′ and p′ � p′′.

From constraint 1a in Definition 3.7.2, we have that there exists a de-
duction rule of the following form

Φ ∪ {x1
a
→ y1}

f (x0, x1) a
→ t′

,

where

i. |=G x1
a
→ ⇒ hyps(Φ)[x0 7→ c], and

ii. one of the following cases holds:

A. there are a premise x0
b
→ y ∈ Φ, for some b ∈ L and y ∈ vars(t′),

and an axiom c b
→ t such that σ(t′) � y1, where σ is the substitu-

tion mapping x0 to c, y to t and is the identity on all the other
variables, or

B. σ(t′) � y1, where σ is the substitution mapping x0 to c and is the
identity on all the other variables.

We now show that there exists a closed substitution σ′ such that σ′

satisfies Φ, f (c, p) a
→ σ′(t′) is a provable transition and σ′(t′) � p′. Con-

sider an arbitrary closed substitution σ′′ mapping x0 to c, x1 to p and
y1 to p′ and not precisely specified elsewhere at the moment. Such a
substitution σ′′ satisfies the premise x1

a
→ y. If we are in case 1(a)iiA, let

σ′′(y) ≡ t, so that σ′′ also satisfies the premise x0
b
→ y ∈ Φ.

Asσ′′ satisfies the premise x1
a
→ y1, σ′′(x0) ≡ c and |=G x1

a
→ ⇒ hyps(Φ)[x0 7→

c], we have that →G, σ′′ |= hyps(Φ). Therefore Lemma 3.6.1 yields a
closed substitution σ′ such that

• σ′(xi) = σ′′(xi) for each i ∈ {0, 1},

• σ′(y1) = σ′′(y1) = p′,

• σ′(y) = σ′′(y) = t if we are in case 1(a)iiA and

• σ′ satisfies Φ.

106 Meta-theory of SOS

Instantiating the rule
Φ ∪ {x1

a
→ y1}

f (x0, x1) a
→ t′

,

with such a closed substitution σ′ yields the transition

σ′(f (x0, x1)) ≡ f (c, p) a
→ σ′(t′) .

Recall that σ(t′) � y1, where σ is either the substitution defined in
case 1(a)iiA or 1(a)iiB. In both cases, by Lemma 3.11.1, we have that

σ′(t′) = σ′(σ(t′)) � σ′(y1) = p′

and we are done.

(b) Assume that q ≡ f (c, p) a
→ q′ ∈ C, for some q′ ∈ C(Σ).

The transition q ≡ f (c, p) a
→ q′ ∈ C must be proved using an f -defining

rule of the form
Φ

f (x0, x1) a
→ t′

and a closed substitution σ′ such that σ′(x0) ≡ c, σ′(x1) ≡ p, σ′(t′) ≡ q′

and σ′ satisfies Φ. Since σ′ satisfies Φ and σ′(x0) ≡ c, condition 1(b)ii in
Definition 3.7.2 cannot apply and we fall in the case of constraint 1(b)i.
Thus x1

a
→ y1 ∈ Φ for some variable y1. As σ′ satisfies Φ, it follows that

σ′(x1) ≡ p a
→ σ′(y1). We claim that σ′(y1) � q′. To see that this claim does

hold true, recall that, since constraint 1(b)i in Definition 3.7.2 is met,

i. either there is a premise x0
b
→ y ∈ Φ, for some b ∈ L and variable

y ∈ vars(t′), such that c has a single axiom with label b—say, c b
→ t—

and σ(t′) � y1, where σ is the substitution mapping x0 to c, y to t
and is the identity on all the other variables,

ii. or σ(t′) � y1, where σ is the substitution mapping x0 to c and is the
identity on all the other variables.

In the former case, σ′ satisfies the premise x0
b
→ y ∈ Φ. Therefore,

σ′(x0) ≡ c b
→ t ≡ σ′(y), as c b

→ t is the only c-defining axiom with label b.
By Lemma 3.11.1, since σ(t′) � y1 holds, we have that

q′ = σ′(t′) = σ′(σ(t′)) � σ′(y1) = p′

Matteo Cimini 107

and we are done.

The latter case is handled similarly.

2. Suppose that p � q is due to q ≡ g(p, c) for some (g, c) ∈ R.

This case is similar to the previous case and we omit the details. �

108

109

Chapter 4

Rule Formats for Distributivity

The white man knows how to make everything, but he does not know how to
distribute it.
Sitting Bull.

4.1 Introduction

The syntax of a programming or specification language defines the collection of
syntactically correct expressions, and its core is typically described formally using
some variation on the notion of grammar. The semantics of a language associates
a ‘meaning’ to each syntactically correct expression.

Over the last three decades, Structural Operational Semantics (SOS), see, e.g., [18,
109, 119, 65], has proven to be a powerful way to specify the semantics of pro-
gramming and specification languages. In this approach to semantics, languages
can be given a clear behaviour in terms of states and transitions, where the collec-
tion of transitions is specified by means of a set of syntax-driven inference rules.
This behavioural description of the semantics of a language essentially tells one
how the expressions in the language under definition behave when run on an
idealized abstract machine.

Designers of languages often have expected algebraic properties of language
constructs in mind when defining a language. For example, one expects a se-
quential composition operator to be associative and, in the field of process alge-
bra [24, 38, 77, 96], operators such as nondeterministic and parallel composition are
often meant to be commutative and associative with respect to bisimilarity [115].

110 Meta-theory of SOS

Once the semantics of a language has been given in terms of state transitions,
a natural question to ask is whether the intended algebraic properties do hold
modulo the notion of behavioural equivalence or preorder of interest. The typical
approach to answer this question is to perform an a posteriori verification: based on
the semantics in terms of state transitions, one proves the validity of the desired
algebraic laws, which describe the semantic properties of the various operators
in the language. An alternative approach is to ensure the validity of algebraic
properties a priori, i.e., by design, using the so called SOS rule formats [21]. In this
approach, one gives syntactic templates for the inference rules used in defining
the operational semantics for certain operators that guarantee the validity of the
desired laws by design. Not surprisingly, the definition of rule formats is based
on finding a reasonably good trade-off between generality and ease of applica-
tion. On the one hand, one strives to define a rule format that can capture as
many examples from the literature as possible, including ones that may arise in
the future. On the other, the rule format should be as easy to apply as possible
and, preferably, the syntactic constraints of the format should be algorithmically
checkable.

The literature on SOS provides rule formats for basic algebraic properties of op-
erators such as commutativity [110], associativity [49], idempotence [4] and the
existence of unit and zero elements [11, 22]. The main advantage of this approach
is that one is able to verify the desired property by syntactic checks that can be
mechanized. Moreover, it is interesting to use rule formats for establishing se-
mantic properties since the results so obtained apply to a broad class of languages.
These formats provide one with an insight as to the semantic nature of algebraic
properties and its link to the syntax of SOS rules. Additionally, rule formats like
those presented in the above-mentioned references may serve as a guideline for
language designers who want to ensure, a priori, that the constructs under design
enjoy certain basic algebraic properties.

In this work, we develop two rule formats guaranteeing that certain binary op-
erators are left distributive with respect to others modulo bisimilarity. A binary
operator � is left distributive with respect to a binary operator �, modulo some
notion of behavioural equivalence, whenever the following equation holds

(x � y) � z = (x � z) � (y � z).

Matteo Cimini 111

A classic example of left-distributivity law within the realm of process algebra
is

(x + y)‖ z = (x‖ z) + (y‖ z),

where ‘+’ and ‘‖ ’ stand for nondeterministic choice and left merge, respectively,
from [24, 38, 96]. (The reader may find many other examples in the remainder of
this chapter.) Distributivity laws like the aforementioned one play a crucial role in
(ground-)complete axiomatizations of behavioural equivalences over fragments
of process algebras (see, e.g., the above-mentioned references and [5, 14, 15]), and
their lack of validity with respect to choice-like operators is often the key to the
nonexistence of finite (in)equational axiomatizations of behavioural semantics—
see, for instance, [13, 16, 100, 101].

The first rule format we present is the simplest of the two, but suffices to handle
many examples from the literature. The second rule format has more complex
syntactic conditions and can handle left-distributivity laws that are outside the
scope of the former format. In both rule formats, for the sake of simplicity, the �
operator ‘behaves like’ some form of nondeterministic choice operator. Both rule
formats are based on syntactic conditions that are decidable over finite language
specifications. Interestingly, the syntactic conditions of the second rule format are
based on a notion of distributivity compliance, which is itself built on rule formats
for other algebraic properties such as idempotence.

We provide a wealth of examples showing that the validity of several left-
distributivity laws from the literature on process algebras can be proved using the
two rule formats. Moreover, in Section 4.6 we argue that the two rule formats can
be applied just as well to show distributivity laws of the form f (x⊕ y) = f (x)⊕ f (y)
involving a unary operator f .

We also offer some impossibility results concerning the validity of the left-distributivity
law. Unlike previous results about rule formats for algebraic properties, these the-
orems allow one to recognize when the left-distributivity law is guaranteed not to
hold. When designing operational specifications for operators that are intended
to satisfy a left-distributivity law, a language designer might also benefit from
considering these kinds of negative results. To our knowledge this type of re-
sult does not have any precursor in the field of rule formats. Hitherto, all rule
formats aimed at providing sufficient conditions for establishing semantic prop-
erties, whereas the above-mentioned results are the first ones that offer necessary
syntactic conditions for some semantic property to hold.

112 Meta-theory of SOS

Roadmap of the chapter The chapter is organized as follows. Section 4.2 re-
views some standard definitions from the theory of SOS that will be used in the
remainder of this study. Section 4.3 presents our two rule formats guaranteeing
that a binary operator � is left distributive with respect to a binary operator �
modulo bisimilarity. The first rule format and some examples of its application
are presented in Section 4.3.2. In Section 4.3.3, we introduce the second rule for-
mat, which extends the first rule format and can treat more examples. In order to
ease its application, we simplify the checks in the second rule format in Section
4.4 and summarize the simplifications in a tabular form. Examples that can be
handled using the second rule format (even by using the simplified checks in
Section 4.4) are offered in Section 4.5. We apply the two rule formats to show
left-distributivity laws involving unary operators in Section 4.6. Some impossi-
bility results concerning the validity of the left-distributivity law are offered in
Section 4.7. We conclude the chapter with a discussion of its contributions and
of lines for future research in Section 4.8 . In order to increase the readability of
the main body of the chapter, the proofs of the main technical results have been
collected in sections that follow Section 4.8.

4.2 Preliminaries

In this section we recall some standard definitions from the theory of SOS. We
refer the readers to, e.g., [18] and [109] for more information.

4.2.1 Transition system specifications and bisimilarity

Definition 4.2.1 (Signatures, terms and substitutions) We let V denote an infinite
set of variables and use x, x′, xi, y, y′, yi, . . . to range over elements of V. A signature Σ

is a set of function symbols, each with a fixed arity. We call these symbols operators and
usually represent them by f , g, An operator with arity zero is called a constant. We
define the setT(Σ) of terms over Σ as the smallest set satisfying the following constraints.

• A variable x ∈ V is a term.

• If f ∈ Σ has arity n and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term.

We use s, t,u, possibly subscripted and/or superscripted, to range over terms. We write
t1 ≡ t2 if t1 and t2 are syntactically equal. The function vars : T(Σ)→ 2V gives the set of
variables appearing in a term. The set C(Σ) ⊆ T(Σ) is the set of closed terms, i.e., terms

Matteo Cimini 113

t such that vars(t) = ∅. We use p, q, p′, pi, . . . to range over closed terms. A substitution
σ is a function of type V → T(Σ). We extend the domain of substitutions to terms
homomorphically and write σ(t) for the result of applying the substitution σ to the term t.
If the range of a substitution is included in C(Σ), we say that it is a closed substitution.
For a substitution σ, a sequence x1, . . . , xn of distinct variables and a sequence t1, . . . , tn

of terms, we write
σ[x1 7→ t1, . . . , xn 7→ tn]

for the substitution that maps xi to ti, for each 1 ≤ i ≤ n, and each variable x < {x1, . . . , xn}

to σ(x). Similarly, we write [x1 7→ t1, . . . , xn 7→ tn] for a substitution that maps xi to ti,
for each 1 ≤ i ≤ n, and acts like the identity function on all the other variables.

Definition 4.2.2 (Transition system specification) A transition system specifica-
tion (TSS) T is a triple (Σ,L,D) where

• Σ is a signature.

• L is a set of labels (or actions) ranged over by a, b, l. If l ∈ L and t, t′ ∈
T(Σ), we say that t l

→ t′ is a positive transition formula and t l
9 is a negative

transition formula. Such formulae are called t-testing. A transition formula (or
just formula), typically denoted by φ or ψ, is either a negative transition formula
or a positive one.

• D is a set of deduction rules, i.e., tuples of the form (Φ, φ) where Φ is a set of
formulae and φ is a positive formula. We call the formulae contained in Φ the
premises of the rule and φ the conclusion.

We write vars(Φ) to denote the set of variables appearing in a set of formulae Φ, and vars(r)
to denote the set of variables appearing in a deduction rule r. We say that a formula or
a deduction rule is closed if all of its terms are closed. A deduction rule is t-testing, or
tests t, if one of its premises is t-testing. Substitutions are also extended to formulae and
sets of formulae in the natural way. For a rule r and a substitution σ, the rule σ(r) is
called a substitution instance of r. A set of positive closed formulae is called a transition
relation.

We often refer to a positive transition formula t l
→ t′ as a transition with t being its

source, l its label, and t′ its target. A deduction rule (Φ, φ) is typically written as
Φ
φ . For the sake of consistency with SOS specifications of specific operators in the

literature, in examples we use φ1...φn

φ in lieu of {φ1,...,φn}

φ .

114 Meta-theory of SOS

An axiom is a deduction rule with an empty set of premises. We write φ for an
axiom with φ as its conclusion, and often abbreviate this notation to φ when this
causes no confusion.

Definition 4.2.3 Given a rule d of the form

Φ

f (t1, . . . , tn) a
→ t

,

we say that

• d is f -defining, and write op(d) = f ,

• d is a-emitting,

• toc(d) = t, the target of the conclusion of d, and

• hyps(d) = Φ, the set of premises of d.

We also denote by D(f , a) the set of a-emitting and f -defining rules in a set of deduction
rules D.

Example 4.2.4 (Choice operators) The choice operator from [96] is defined by the fol-
lowing rules, where a ranges over the set of actions:

(chla)
x a
→ x′

x + y a
→ x′

(chra)
y a
→ y′

x + y a
→ y′

.

For each action a, the rules (chla) and (chra) are a-emitting and +-defining. For rule (chla),
we have that toc(chla) = x′ and hyps(chla) = {x a

→ x′}.

For illustrative purposes in the remainder of the chapter the following ‘choice’ operators
are introduced. The left choice operator +l is defined by the rules chla (there is one such
rule for each action a). Symmetrically, the right choice operator +r is defined by the rules
chra. (Again, there is one such rule for each action a.)

(chla)
x a
→ x′

x +l y a
→ x′

(chra)
y a
→ y′

x +r y a
→ y′

The meaning of a TSS is defined by the following notion of least three-valued
stable model. To define this notion, we need two auxiliary definitions, namely
provable transition rules and consistency, which are given below.

Matteo Cimini 115

Definition 4.2.5 (Provable transition rules) A closed deduction rule is called a tran-
sition rule when it is of the form N

φ , where N is a set of negative formulae. A TSS T
proves N

φ , denoted by T ` N
φ , when there is a well-founded upwardly branching tree with

closed formulae as nodes and of which

• the root is labelled by φ;

• if a node is labelled by ψ and the labels of the nodes directly above it form the set K
then:

– ψ is a negative formula and ψ ∈ N, or

– ψ is a positive formula and K
ψ is a substitution instance of a deduction rule in

T .

We often write T ` φ in lieu of T ` ∅φ .

Definition 4.2.6 (Contradiction and consistency) The formula t l
→ t′ is said to con-

tradict t l
9 , and vice versa. For two sets Φ and Ψ of formulae, Φ contradicts Ψ when

there is a φ ∈ Φ that contradicts a ψ ∈ Ψ. We write Φ � Ψ, read ‘Φ is consistent with
Ψ’, when Φ does not contradict Ψ.

It immediately follows from the above definition that contradiction and consis-
tency are symmetric relations on (sets of) formulae. We now have all the necessary
ingredients to define the semantics of TSSs in terms of three-valued stable mod-
els [123].

Definition 4.2.7 (Three-valued stable model) A pair (C,U) of disjoint sets of posi-
tive closed transition formulae is called a three-valued stable model for a TSS T when
the following conditions hold:

• for eachφ ∈ C, there is a set N of negative formulae such thatT ` N
φ and C∪U � N,

and

• for each φ ∈ C ∪ U, there is a set N of negative formulae such that T ` N
φ and

C � N.

C stands for Certainly and U for Unknown; the third value is determined by the formulae
not in C∪U. The least three-valued stable model is a three-valued stable model that is the
least one with respect to the (information-theoretic) ordering on pairs of sets of formulae
defined as (C,U) ≤ (C′,U′) iff C ⊆ C′ and U′ ⊆ U. We say that T is complete when for
its least three-valued stable model it holds that U = ∅. In a complete TSS, we say that a
closed substitution σ satisfies a set of formulae Φ if σ(φ) ∈ C, for each positive formula

116 Meta-theory of SOS

φ ∈ Φ, and C � {σ(φ)}, for each negative formula φ ∈ Φ. If a TSS is complete, we often
also write p l

→ p′ in lieu of (p l
→ p′) ∈ C, and p l

9 when there is no p′ such that p l
→ p′.

In what follows, we shall tacitly restrict ourselves to considering only complete
TSSs.

Definition 4.2.8 (Bisimulation and bisimilarity [96, 115]) LetT be a transition sys-
tem specification with signature Σ and label set L. A relation R ⊆ C(Σ) × C(Σ) is a
bisimulation relation if and only if R is symmetric and, for all p0, p1, p′0 ∈ C(Σ) and
l ∈ L,

(p0R p1 ∧ T ` p0
l
→ p′0)⇒ ∃p′1 ∈ C(Σ). (T ` p1

l
→ p′1 ∧ p′0R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔–– p1, when there exists a
bisimulation relation R such that p0R p1.

Bisimilarity is extended to open terms by requiring that s, t ∈ T(Σ) are bisimilar
when σ(s)↔–– σ(t) for each closed substitution σ : V → C(Σ).

4.3 The left-distributivity rule formats

In this section, we present two rule formats guaranteeing that a binary operator
� is left distributive with respect to a binary operator � modulo bisimilarity. The
first rule format is the simplest of the two, but nevertheless suffices to handle
many examples from the literature. The second rule format has more complex
conditions and can handle left-distributivity laws that are outside the scope of the
former format.

Definition 4.3.1 (Left-distributivity law) We say that a binary operator � is left
distributive with respect to a binary operator � (modulo bisimilarity) if the following
equality holds:

(x � y) � z↔–– (x � z) � (y � z). (4.1)

For all closed terms p, q, r, proving the algebraic law (4.1) involves two proof
obligations:

• Firability: ensuring that (p � q) � r a
→ if, and only if, (p � r) � (q � r) a

→ , for
each action a;

Matteo Cimini 117

• Matching conclusions: ensuring that, for each closed term p1, if (p � q) �
r a
→ p1, then there exists some closed term p2 such that (p � r) � (q � r) a

→ p2

and p1 ↔–– p2, and vice versa.

Logically, the ‘firability condition’ is implied by the ‘matching-conclusion condi-
tion’. However, since the two rule formats we shall present in what follows use
the same idea to guarantee the former condition, and differ in how they guarantee
the existence of matching conclusions up to bisimilarity, we prefer to consider the
two conditions separately. To our mind, this also leads to a clearer presentation
of the ideas underlying the rule formats. In what follows, we first explain how
we achieve the ‘firability condition’, and then we discuss how the two different
rule formats guarantee the ‘matching-conclusion condition’.

4.3.1 The firability condition

We begin by introducing the conditions on sets of rules for two binary operators
� and � that we shall use to guarantee the firability condition for them. First of
all, we present syntactic constraints on the rules for those operators that we shall
use throughout the remainder of the chapter.

Definition 4.3.2 We say that a deduction rule is of the form (R1) when it has the
structure

Φy

x � y a
→ t

or
{x a
→ x′} ∪ Φy

x � y a
→ t

.

where

• the variables x, x′, y are pairwise distinct, and

• Φy is a (possibly empty) set of (positive or negative) y-testing formulae such that
x, x′ < vars(Φy).

A deduction rule is of the form (R2) when it has the structure

{x a
→ x′}

x � y a
→ t

or
{y a
→ y′}

x � y a
→ t

or
{x a
→ x′, y a

→ y′}

x � y a
→ t

.

where the variables x, x′, y, y′ are pairwise distinct

118 Meta-theory of SOS

A rule of the form (R1) or (R2) is non-left-inheriting if x < vars(t), that is, if x does not
appear in the target of the conclusion of the rule. An operation f specified by rules of the
form (R1) or (R2) is non-left-inheriting if so are all of the f -defining rules.

Definition 4.3.3 (Firability constraint) Given a TSS T, let � and � be binary opera-
tors in the signature of T. For each action a, we write Fire(�,�, a) whenever the following
conditions are met:

• if D(�, a) , ∅ then D(�, a) , ∅,

• each d ∈ D(�, a) is of the form (R1), and

• each d ∈ D(�, a) is of the form (R2).

Remark 4.3.4 Note that the first constraint in the definition of Fire(�,�, a) is asym-
metric, as it only requires that if there is a �-defining a-emitting rule, then there should
also be some �-defining a-emitting rule. As will become clear from Examples 4.6.1–4.6.3,
amongst others, this leads to a widely applicable rule format for left distributivity.

Example 4.3.5 Recall the choice operators +, +l and +r presented in Example 4.2.4. As
our readers can easily check, Fire(f , g, a) holds for each action a and for all f , g ∈ {+,+l,+r}.

The firability constraint in Definition 4.3.3 is sufficient to guarantee the aforemen-
tioned firability condition.

Theorem 4.3.6 (Firability Theorem) Given a TSS T, let � and � be binary operators
from the signature of T. Suppose that Fire(�,�, a) holds for some action a. Then,

(p � q) � r a
→ if, and only if, (p � r) � (q � r) a

→ ,

for all closed terms p, q, r.

Proof. See Section 4.9.

The import of Theorem 4.3.6 is that, when proving the validity of (4.1), we can
guarantee the firability condition for action a just by showing that Fire(�,�, a)
holds. Theorem 4.3.6 underlies the soundness of both the rule formats we present
in what follows.

The reader will have already noticed that the rule form (R1) does not place any
restriction on tests for the variable y. This is possible because the second argument
of the terms (p � q) � r, p � r and q � r is always the same, i.e., the term r. This
means that, for each �-defining rule, the same tests performed on the second
argument on one side of (4.1) are performed on the other. Roughly speaking, one

Matteo Cimini 119

side of (4.1) may fire as much as the other does, insofar the second argument is
concerned.

4.3.2 The matching-conclusion condition

Theorem 4.3.6 tells us that any rule format, whose constraints imply condition
Fire(�,�, a) for each action a, guarantees the validity of (4.1) provided that the
matching-conclusion condition is met. Intuitively, in order to guarantee syntacti-
cally that the matching-conclusion condition is satisfied, the targets of the conclu-
sions of �-defining and �-defining rules should ‘match’ when those operators are
used in the specific contexts of the left- and the right-hand sides of (4.1). In what
follows, we shall examine two different ways of ensuring the above-mentioned
‘match’ of the targets of the conclusions of �-defining and �-defining rules. The
first relies on assuming that the targets of the conclusions of �-defining rules are
target variables of premises of rules of the form (R2). The resulting rule format,
which we present in this section, is based on easily checkable syntactic constraints
and covers a large number of left-distributivity laws from the literature. However,
there are some examples of left-distributivity axioms that cannot be shown valid
using that format. In order to be able to deal with more cases, including thise
that might be presented in the literature in the future, in Section 4.3.3 we propose
a more complex rule format in which the ‘match’ of the targets of the conclu-
sions of �-defining and �-defining rules is performed by means of a powerful
‘compliance relation’.

The first rule format

The first rule format that we present deals with examples of left distributivity
with respect to operators whose semantics is given by rules of the form (R2) that,
like those for the choice operators we mentioned in Example 4.2.4, have target
variables of premises as targets of their conclusions. The following definition
presents the syntactic constraints of the rule format.

Definition 4.3.7 (First rule format) Let T be a TSS, and let � and � be binary opera-
tors in the signature of T . We say that the rules for � and � are in the first rule format
for left distributivity if the following conditions are met:

1. Fire(�,�, a) holds for each action a,

120 Meta-theory of SOS

2. � is non-left-inheriting,

3. each �-defining rule has a target variable of one of its premises as target of its
conclusion and

4. for each action a, either there is no a-emitting and �-defining rule that tests both x
and y, or if some a-emitting and �-defining rule tests its left argument x then so do
all a-emitting and �-defining rules.

Theorem 4.3.8 (Left distributivity over choice-like operators) LetT be a TSS, and
let � and � be binary operators in the signature of T . Assume that the rules for � and
� are in the first rule format for left distributivity. Then

(x � y) � z↔–– (x � z) � (y � z).

Proof. We show the following two claims, where p, q, r, s are arbitrary closed terms
and a is any action:

1. If (p � q) � r a
→ s then (p � r) � (q � r) a

→ s.

2. If (p � r) � (q � r) a
→ s then (p � q) � r a

→ s.

In the proof of the former claim, we use the first condition in Definition 4.3.3. This
condition is not used in the proof of the latter claim. On the other hand, the proof
of the latter statement uses condition 4 in Definition 4.3.7, which is not used in
the proof of the former claim. The full proof may be found in Section 4.10.

Remark 4.3.9 Condition 4 in Definition 4.3.7 cannot be dropped without jeopardizing
the soundness of the rule format for left distributivity proved in the above theorem. To see
this, consider the operations � and � with rules

{x a
→ x′, y a

→ y′}

x � y a
→ x′

{x a
→ x′, y a

→ y′}

x � y a
→ x′ � y

{y a
→ y′}

x � y a
→ y′

.

The above rules satisfy all the conditions in Definition 4.3.7 apart from condition 4. Now,
let a be a constant with rule a a

→ 0, where 0 is a constant with no rules. As our readers
can easily check,

(a � a) � (0 � a)= (a � 0) � a.

Indeed, the term (a � a) � (0 � a) can perform a sequence of two a-labelled transitions,
whereas (a � 0) � a cannot because a � 0 affords no transitions.

Matteo Cimini 121

Examples of application of the first rule format

Theorem 4.3.8 provides us with a simple, yet rather powerful, syntactic condition
in order to infer left-distributivity laws for operators like + and +l. Many of the
common left-distributivity laws are automatically derived from Theorem 4.3.8, as
witnessed by the examples we now proceed to discuss.

Example 4.3.10 (Left merge and interleaving parallel composition) The operational
semantics of the classic left-merge and interleaving parallel composition operators [24, 37,
38, 96] is given by the rules below:

x a
→ x′

x‖ y a
→ x′ ‖ y

x a
→ x′

x ‖ y a
→ x′ ‖ y

y a
→ y′

x ‖ y a
→ x ‖ y′

.

Note that the rules for the left-merge operator ‖ and those for any of +, +l and +r satisfy
the constraints of the first rule format for left distributivity. Therefore, Theorem 4.3.8
yields the validity of the following laws.

(x + y)‖ z ↔–– (x‖ z) + (y‖ z)

(x +l y)‖ z ↔–– (x‖ z) +l (y‖ z)

(x +r y)‖ z ↔–– (x‖ z) +r (y‖ z)

Observe that the equalities

(x +l y) ‖ z ↔–– (x ‖ z) +l (y ‖ z) and

(x +r y) ‖ z ↔–– (x ‖ z) +r (y ‖ z)

are sound. However, their soundness cannot be shown using Theorem 4.3.8, since the
parallel composition operator ‖ does not satisfy condition 2 in Definition 4.3.7. Indeed, x
occurs in the target of the conclusion of the second rule for ‖.

Example 4.3.11 (Synchronous parallel composition) Consider the synchronous par-
allel composition from CSP [77, 76]1 specified by the rules below, where a ranges over the
set of actions:

x a
→ x′ y a

→ y′

x ‖L y a
→ x′ ‖L y′

.

1 In [77], Hoare uses the symbol ‖ to denote the synchronous parallel composition operator.
Here we use that symbol for interleaving parallel composition.

122 Meta-theory of SOS

Note that the rules for the synchronous parallel composition operator and those for any of
+, +l and +r satisfy the constraints of the first rule format for left distributivity. Therefore,
Theorem 4.3.8 yields the validity of the following laws.

(x + y) ‖L z ↔–– (x ‖L z) + (y ‖L z)

(x +l y) ‖L z ↔–– (x ‖L z) +l (y ‖L z)

(x +r y) ‖L z ↔–– (x ‖L z) +r (y ‖L z)

Example 4.3.12 (Join and ‘/’ operators) Consider the join operator Z from [28] and
the ‘hourglass’ operator / from [5] specified by the rules below, where a, b range over the
set of actions:

x a
→ x′ y a

→ y′

x Z y a
→ x′ ∓ y′

x a
→ x′ y b

→ y′

x/y a
→ x′/y′

,

where ∓ denotes the delayed choice operator from [28]. (The operational specification of
the delayed choice operator is immaterial for the analysis of this example.) The above rules
and those for any of +, +l and +r satisfy the constraints of the first rule format for left
distributivity. Therefore, Theorem 4.3.8 yields the validity of the following laws, where
� ∈ {Z, /}.

(x + y) � z ↔–– (x � z) + (y � z)

(x +l y) � z ↔–– (x � z) +l (y � z)

(x +r y) � z ↔–– (x � z) +r (y � z)

Example 4.3.13 (Disrupt) Consider the following disrupt operatorI [26, 46] with rules

x a
→ x′

x I y a
→ x′ I y

y a
→ y′

x I y a
→ y′

.

The above rules and those for any of +, +l and +r satisfy the constraints of the first rule
format for left distributivity. Therefore, Theorem 4.3.8 yields the validity of the following
laws.

(x + y) I z ↔–– (x I z) + (y I z)

(x +l y) I z ↔–– (x I z) +l (y I z)

(x +r y) I z ↔–– (x I z) +r (y I z)

Matteo Cimini 123

Example 4.3.14 (Unless operator) The unless operator / from [27] and the operator ∆

from [5, page 23] are specified by the rules

x a
→ x′ y b

9 for a < b

x / y a
→ x′

x a
→ x′ y b

9 for a < b

x ∆ y a
→θ(x′)

,

where < is an irreflexive partial order over the set of actions and θ denotes the priority
operator from [27]. (The operational specification of the priority operator is immaterial for
the analysis of this example.) The above rules and those for any of +, +l and +r satisfy the
constraints of the first rule format for left distributivity. Therefore, Theorem 4.3.8 yields
the validity of the following laws, where � ∈ {/,∆}.

(x + y) � z ↔–– (x � z) + (y � z)

(x +l y) � z ↔–– (x � z) +l (y � z)

(x +r y) � z ↔–– (x � z) +r (y � z)

Example 4.3.15 (Interplay between the choice operators) Consider the choice op-
erators +, +l and +r from Example 4.2.4. The rules for any of the nine combinations
of those operators satisfy the constraints of the first rule format for left distributivity.
Therefore, Theorem 4.3.8 yields the validity of the following law, where �,� ∈ {+,+l,+r}.

(x � y) � z ↔–– (x � z) � (y � z)

For example, as an instance of that family of equalities, we obtain the following ‘self
left-distributivity law’ for any � ∈ {+,+l,+r}:

(x � y) � z ↔–– (x � z) � (y � z).

As we show in Section 4.6, our first rule format for left distributivity can also be
used to derive distributivity laws involving unary � operators.

4.3.3 The second left-distributivity format

As witnessed by the above-mentioned examples, the rule format introduced in
Definition 4.3.7 can handle many of the common left-distributivity laws from the
literature. However, as we mentioned in Example 4.3.10, that rule format is not

124 Meta-theory of SOS

general enough to prove the validity of, e.g., the left-distributivity law

(x +l y) ‖ z↔–– (x ‖ z) +l (y ‖ z).

It is instructive to see why the equality

(p +l q) ‖ r↔–– (p ‖ r) +l (q ‖ r)

holds for all p, q, r. The terms that can be reached from (p +l q) ‖ r via an a-labelled
transition have one of the two following forms:

• p′ ‖ r, for some p′ such that p a
→ p′ or

• (p +l q) ‖ r′, for some r′ such that r a
→ r′.

On the other hand, the terms that can be reached from (p ‖ r) +l (q ‖ r) via an
a-labelled transition are of the form

• p′ ‖ r, for some p′ such that p a
→ p′ or

• p ‖ r′, for some r′ such that r a
→ r′.

The first of those possible forms is identical to the first form of a possible derivative
of (p +l q) ‖ r. However, the second form—viz. p ‖ r′, for some r′ such that r a

→ r′—
matches (p +l q) ‖ r′ only up to one application of the equation

x +l y = x,

which is sound modulo bisimilarity, from left to right. This rewriting can be
performed in the context of ‖ since the rules for the interleaving parallel com-
position operator given in Example 4.3.10 are in de Simone format [52], which
is one of the congruence formats for bisimilarity—see, for instance, the survey
articles [18, 109].

The above discussion motivates the development of a generalization of the rule
format we presented in Definition 4.3.7. The main idea behind this more powerful
rule format is to weaken the constraints for ensuring the ‘matching-conclusion
condition’, so that terms that are targets of transitions from (p � q) � r and (p �
r) � (q � r) need only be equal up to the application of some equation, whose
validity modulo bisimilarity can be justified ‘syntactically’, in a context consisting
of operations that preserve bisimilarity. Of course, the resulting definition of the
rule format depends on the set of equations that one is allowed to use. Indeed,
one can obtain more powerful rule formats by simply extending the collection of

Matteo Cimini 125

allowed equations. Therefore, what we now present can be seen as a template
for rule formats guaranteeing the validity of left-distributivity equations of the
form (4.1). Our definition of the second rule format is based on a rewriting
relation over terms that is sufficient to handle the examples from the literature
we have met so far. The rewriting relation we present below can, however, be
easily strengthened by adding more rewriting rules, provided their soundness
with respect to bisimilarity can be ‘justified syntactically’. (See the paragraphs
after Definition 4.3.16 and Remark 4.3.23 for a brief discussion of extensions of
the proposed rule format.)

Definition 4.3.16 (The rewriting relation) Let T = (Σ,L,D) be a TSS.

1. The relation is the least binary relation over T(Σ) that satisfies the following
clauses, where we use t! t′ as a short-hand for t t′ and t′ t:

• t t,

• f (t, t)! t, if T is in idempotence format with respect to f from [4],

• C[t] C[t′], if t t′ and T is in a congruence format for↔––,

• t1 +l t2 t1, if +l ∈ Σ, and

• t1 +r t2 t2, if +r ∈ Σ.

2. Let � and � be two binary operations in Σ. We write t ↓�,� u if, and only, if there
are some t′ and u′ such that t t′, u u′, and t′ = u′ can be proved by possibly
using one application of axiom

(x � y) � z = (x � z) � (y � z)

at the top level—that is, either t′ ≡ u′, t′ ≡ (t1 �t2)�t3 and u′ = (t1 �t3)�(t2 �t3),
or t′ ≡ (t1 � t3) � (t2 � t3) and u′ ≡ (t1 � t2) � t3, for some t1, t2, t3.

Lemma 4.3.17 Let T = (Σ,L,D) be a TSS. If t t′ then t↔–– t′, for all t, t′ ∈ T(Σ).

Proof. By induction on the definition of . The soundness of the rewrite
rules

• f (t, t)! t, if T is in idempotence format with respect to f from [4], and

• C[t] C[t′], if t t′ and T is in a congruence format for↔––,

is guaranteed by results in [4] and in the classic theory of structural operational
semantics.

126 Meta-theory of SOS

In order to check whether a rewriting rule preserves bisimilarity, in all cases apart
from the first, the above definition relies on existing rule formats guaranteeing
the validity of algebraic laws modulo bisimilarity, see [21], or on equations whose
soundness with respect to bisimilarity is easy to check, such as

x +l y = x and x +r y = y.

This choice allows us to achieve an expressive and extensible rule format while
retaining its syntactic nature. For instance, one may easily extend the rewriting
relation with the following two clauses:

• f (t1, t2)! f (t2, t1), if T is in the commutativity rule format with respect to
f from [110], and

• f (t, f (t′, t′′)) ! f (f (t, t′), t′′), if T is in the associativity rule format with
respect to f from [49].

While proving the soundness of a left-distributivity law of the form

(x � y) � z↔–– (x � z) � (y � z),

the validity of equivalences of the form

(t � t′) � t′′ = (t � t′′) � (t′ � t′′)

will be guaranteed by coinduction.

In Definition 4.3.18 to follow, which is the key ingredient in the definition of our
second rule format for left distributivity, we shall use the relation ↓�,� to describe
when a �-defining rule d1 is ‘distributivity compliant’ to a �-defining rule d2.
The intuitive idea is that this will hold when those two rules can be combined
to derive transitions from terms of the form (p � q) � r and (p � r) � (q � r) that
‘match’ up to bisimilarity. Since the definition of distributivity compliance is
quite technical, we find it useful to explain, by means of examples, the intuition
behind it. For the sake of consistency and clarity, in the examples to follow, we
shall use the same naming convention for substitutions that will be employed in
Definition 4.3.18.

Matteo Cimini 127

Suppose that the transition (p � q) � r a
→ s is proved using rules d1 and d2, given

below. Assume, furthermore, that

(d1)
{x a
→ x′, y a

→ y1, y
b
→ y2}

x � y a
→ t

and that d2 tests only one of its arguments, say

(d2)
{x a
→ x′}

x � y a
→ t′

.

Then s = σ1(t), where

σ1 = [x 7→ p � q, y 7→ r, x′ 7→ σ′2(t′), y1 7→ r1, y2 7→ r2]

σ′2 = [x 7→ p, y 7→ q, x′ 7→ p′]

and p a
→ p′, r a

→ r1 and r b
→ r2.

As highlighted by the proof of Theorem 4.3.6, rules d2 and d1 can be used to derive
a transition (p � r) � (q � r) a

→ σ2(t′), where

σ2 = [x 7→ p � r, y 7→ q � r, x′ 7→ σ1x(t)]

σ1x = [x 7→ p, y 7→ r, x′ 7→ p′, y1 7→ r1, y2 7→ r2].

The transition (p�r)�(q�r) a
→ σ2(t′) will be deemed to ‘match’ (p�q)�r a

→ s = σ1(t)
provided that

σ1(t) ↓�,� σ2(t′).

This will give a syntactically checkable guarantee that σ1(t)↔–– σ2(t′) holds.

Assume now that d2 tests both its arguments, say

(d2)
{x a
→ x′, y a

→ y′}

x � y a
→ t′

,

and that the transition (p � q) � r a
→ s is proved using rule d1 and rule d2. Then

s = σ1(t), where

σ1 = [x 7→ p � q, y 7→ r, x′ 7→ σ′2(t′), y1 7→ r1, y2 7→ r2]

σ′2 = [x 7→ p, y 7→ q, x′ 7→ p′, y′ 7→ q′]

128 Meta-theory of SOS

and p a
→ p′, q a

→ q′, r a
→ r1 and r b

→ r2.

Let

(d3)
{x a
→ x′, y a

9 , y c
→ y′}

x � y a
→ t′′

.

Again, as highlighted by the proof of Theorem 4.3.6, rules d2, d1 and d3 can be
used to derive a transition (p � r) � (q � r) a

→ σ2x(t′), where

σ2x = [x 7→ p � r, y 7→ q � r, x′ 7→ σ1x(t), y′ 7→ σ′1y(t′′)]

σ′1y = [x 7→ q, y 7→ r, x′ 7→ q′, y′ 7→ r′],

and p � r a
→ σ1x(t), q � r a

→ σ′1y(t′′), q a
→ q′ and r c

→ r′.

The transition (p�r)�(q�r) a
→ σ2x(t′) will be deemed to ‘match’ (p�q)�r a

→ s = σ1(t)
provided that

σ1(t) ↓�,� σ2x(t′).

Again, this will give a syntactically checkable guarantee that σ1(t)↔–– σ2x(t′) holds.
Note that, in this case, we also need to check this matching condition when the
roles of rules d1 and d3 are swapped, since rule d3 might be used to satisfy the
x-testing premise of d2 and rule d1 might be used to satisfy the y-testing premise
of that rule. In that case, our proof obligation is to show that

σ1(t) ↓�,� σ2y(t′),

where

σ2y = [x 7→ p � r, y 7→ q � r, x′ 7→ σ′1x(t′′), y′ 7→ σ1y(t)]

σ′1x = [x 7→ p, y 7→ r, x′ 7→ p′, y′ 7→ r′]

σ1y = [x 7→ q, y 7→ r, x′ 7→ q′, y1 7→ r1, y2 7→ r2].

Definition 4.3.18 (Distributivity compliance up to) Let T be a TSS, and let �
and � be binary operators in the signature of T . Let d1 be a �-defining rule in T and d2

be a �-defining rule in T . We say that d1 is distributivity compliant to d2 up to ,
and we write it d1

∼ d2, whenever

1. rule d1 is of the form (R1) and rule d2 is of the form (R2),

2. the collection of positive y-testing premises in d1 is of the form {y
ai
→ yi | i ∈ I}, for

some index set I, where all the variables are pairwise distinct, and

Matteo Cimini 129

3. one of the following two cases applies:

(a) d2 has premises {x a
→ x′} or {y a

→ y′}, and

σ1(toc(d1)) ↓�,� σ2(toc(d2)),

or

(b) d2 has premises {x a
→ x′, y a

→ y′} and, for each rule d3 ∈ D(�, a),

• the collection of positive y-testing premises in d3 is of the form {y
a j
→ y j |

j ∈ J}, for some index set J, where all the variables are pairwise distinct,

• σ1(toc(d1)) ↓�,� σ2x(toc(d2)) and

• σ1(toc(d1)) ↓�,� σ2y(toc(d2)),

where the substitutions σ1, σ1x, σ1y, σ2, σ2x and σ2y are defined as follows, with p, q,
p′, q′, r, r′, and all the variables in {ri | i ∈ I} ∪ {r j | j ∈ J} being fresh and pairwise
distinct variables.

• σ1 = [x 7→ p � q, y 7→ r, x′ 7→ σ′2(toc(d2)), yi 7→ ri (i ∈ I)].

• σ2 = [x 7→ p � r, y 7→ q � r, x′ 7→ σ1x(toc(d1)), y′ 7→ σ1y(toc(d1))].

• σ′2 = [x 7→ p, y 7→ q, x′ 7→ p′, y′ 7→ q′].

• σ1x = [x 7→ p, y 7→ r, x′ 7→ p′, yi 7→ ri (i ∈ I)].

• σ′1x = [x 7→ p, y 7→ r, x′ 7→ p′, y j 7→ r j (j ∈ J)].

• σ1y = [x 7→ q, y 7→ r, x′ 7→ q′, yi 7→ ri (i ∈ I)].

• σ′1y = [x 7→ q, y 7→ r, x′ 7→ q′, y j 7→ r j (j ∈ J)].

• σ2x = [x 7→ p � r, y 7→ q � r, x′ 7→ σ1x(toc(d1)), y′ 7→ σ′1y(toc(d3))].

• σ2y = [x 7→ p � r, y 7→ q � r, x′ 7→ σ′1x(toc(d3)), y′ 7→ σ1y(toc(d1))].

The reader should notice that, in order not to complicate the definition further by a
more refined case distinction, in condition 3a of Definition 4.3.18, the substitution
σ2 is defined for both x′ and y′, even if in that case only one of them appears in
rule d2.

The following result is straightforward.

Theorem 4.3.19 (Decidability of ∼) Let T be a TSS, and let � and � be binary
operators in the signature of T . Assume that the set of premises of each �-defining rule

130 Meta-theory of SOS

is finite. Let d1 be a �-defining rule in T and d2 be a �-defining rule in T . The problem
of determining whether d1

∼ d2 holds is decidable.

Remark 4.3.20 Note that ∼ performs only one rewriting step on both the terms. Clearly,
extending Definition 4.3.18 in order to consider any finite amount of rewriting steps
would not jeopardize Theorem 4.3.19.

We now have all the necessary ingredients to define our second rule format for
left distributivity.

Definition 4.3.21 (Second left-distributivity format) A TSS T is in the second
left-distributivity format for a binary operator � with respect to a binary operator �
whenever, for each action a,

1. Fire(�,�, a), and

2. if D(�, a) , ∅ then d1

∼ d2, for each d1 ∈ D(�, a) and for each d2 ∈ D(�, a).

We are now ready to formulate the two main theorems of this work.

Theorem 4.3.22 (Soundness of the second left-distributivity format) Let T be a
TSS. If T is in the second left-distributivity format for � with respect to � then

(x � y) � z↔–– (x � z) � (y � z).

Proof. A proof of this result may be found in Section 4.11.

Remark 4.3.23 The above theorem holds true for any notion of distributivity compliance
up to rewriting that is based on a rewriting relation over terms that has the following
properties:

• ⊆↔–– and

• is decidable.

The latter requirement is not necessary for the soundness of the format. However, it is
highly desirable from the point of view of applications. Indeed, in order to obtain a bona
fide rule format, the relation should be defined by using rules whose applicability can
be checked syntactically, for instance using extant rule format for operational semantics.
The proposal we presented in Definition 4.3.16 fits this requirement.

The following result is straightforward, but important from the point of view of
applications. In its statement, we use Range(f) to stand for the set of actions a for
which there exists an a-emitting f -defining rule.

Matteo Cimini 131

Theorem 4.3.24 (Decidability of the second rule format) Let T be a TSS, and let
� and � be two binary operators from the signature ofT . Assume that Range(�) is finite,
that each �-defining rule has a finite set of premises, and that D(�, a) ∪D(�, a) is finite
for each a ∈ Range(�). Then it is decidable whether T is in the second left-distributivity
format for � with respect to �.

The import of Theorems 4.3.22 and 4.3.24 is that, when establishing that an op-
erator � is left distributive with respect to an operator �, it is sufficient to check
whether the SOS specification for those operators meets the conditions of the for-
mat of Definition 4.3.21, which can be done effectively when the TSS under study
is finitary.

4.4 Analyzing the distributivity compliance

In this section, we reduce the analysis of the distributivity-compliance relation

∼ to a syntactic check on the targets of the conclusions of the �- and �-defining
rules. By analyzing different possible syntactic shapes for terms, we check which
pairs of shapes can be related using the distributivity-compliance relation. This
analysis is useful in order to avoid many of the substitutions involved in Definition
4.3.18, and, as witnessed by some of the examples in Section 4.5, to avoid all of
them in many cases.

Table 4.1 summarizes our results. Even though the offered list is not exhaustive,
which, at first sight, seems a challenging task to achieve, we believe Table 4.1
offers enough cases to avoid substitutions completely in most cases.

Table 4.1: Analysis of the distributivity-compliance pairs

toc(d1) toc(d2) result further requirements
1 x′ � y x p � r
2 x′ � y y q � r
3 x x′ � y′ p � q D(�, a) = {d1}

4 x′ x′ � y′ p′ � q′ D(�, a) = {d1}

5 x � t x′ � y′ (p � q) � σ(t) D(�, a) = {d1}, x, x′ < vars(t)
6 x′ � t x′ � y′ (p′ � q′) � σ(t) D(�, a) = {d1}, x, x′ < vars(t)
7 t x′ � y′ σ(t) � idempotent, D(�, a) = {d1}, x, x′ < vars(t)
8 t x′ σ′(t) Condition 4 of Definition 4.3.7, x < vars(t)
9 t y′ σ′(t) Condition 4 of Definition 4.3.7, x < vars(t)

with σ = [y 7→ r, yi 7→ ri (i ∈ I)] and σ′ = [y 7→ r, x′ 7→ p′, yi 7→ ri (i ∈ I)]

132 Meta-theory of SOS

In Table 4.1, x and y are considered as the variables for the first and second
argument, respectively, for both �- and �-defining rules. When the variable x′

is mentioned, implicitly the considered rule has a premise x a
→ x′ (for a-emitting

rules). Similarly, when the variable y′ is mentioned, implicitly the rule considered
has a premise y a

→ y′. The term t stands for a generic open term from the signature,
and, following Definition 4.3.18, p, q and r are hypothetical closed terms applied
to the distributivity equation in this way: (p � q) � r ↔–– (p � r) � (q � r). The
symbols p′, q′, and ri, are considered as targets of possible transitions from p, q
and r.

Table 4.1 is to be read as follows. First of all, d1 ∈ D(�, a) and d2 ∈ D(�, a), for some
action a. In each row, the first column (column toc(d1)) specifies the form of the
target of the conclusion of the �-defining rule d1 (e.g., x in case of row 3), and the
second column (column toc(d2)) specifies the form of the target of the conclusion
of the �-defining rule d2 (e.g., x′ � y′ in case of row 3). If the conditions in the
column further requirements are satisfied (e.g., in row 3, d1 is the only �-defining
and a-emitting rule), then the result of the transition of terms (p � q) � r and
(p � r) � (q � r) is specified by the term given in column result (e.g., p � q in row
3). In rows 5–6, the stated result is up to one application of the left-distributivity
equation (1). The requirement � idempotent means that the operator � can be
proved idempotent, e.g., by means of the rule format offered in [4].

The reader may want to notice that the first rule format of Section 4.3.2 is partly
based on the analysis which leads to rows 8 and 9 in Table 4.1.

Theorem 4.4.1 (Soundness of Table 4.1) Let T be a TSS. Let � and � be binary
operations in the signature of T satisfying

1. Fire(�,�, a), and

2. if D(�, a) , ∅ then for each d1 ∈ D(�, a) and for each d2 ∈ D(�, a), the rules d1

and d2 match a row in Table 4.1.

It holds that:
(x � y) � z↔–– (x � z) � (y � z).

Proof. The proof of the theorem goes by a straightforward check of the conditions
of Definition 4.3.18 on the combination specified in each row. For example, we
discuss the case of row 7 in some detail below.

Applying the substitutions, we can see that on the left side of the distributivity
equation (p � q) � r↔–– (p � r) � (q � r), we can prove the transition (p � q) � r a

→ v,

Matteo Cimini 133

with v = t[x 7→ p � q, y 7→ r, x′ 7→ (x′ � y′)[x 7→ p, y 7→ q, x′ 7→ p′, y′ 7→ q′],
yi 7→ ri (i ∈ I)], and thus

v = t[x 7→ p � q, y 7→ r, x′ 7→ p′ � q′, yi 7→ ri (i ∈ I)].

On the right side of the distributivity equation, we can prove the transition (p �
r) � (q � r) a

→ v′, with v′ = (x′ � y′)[x 7→ p � r, y 7→ q � r, x′ 7→ t[x 7→ p, y 7→ r,
x′ 7→ p′, yi 7→ ri (i ∈ I)]), y′ 7→ t[x 7→ q, y 7→ r, x′ 7→ q′, yi 7→ ri (i ∈ I)], and thus
v′ = v′1 � v′2, where

v′1 = t[x 7→ p, y 7→ r, x′ 7→ p′, yi 7→ ri (i ∈ I)] and

v′2 = t[x 7→ q, y 7→ r, x′ 7→ q′, yi 7→ ri (i ∈ I)].

From the column further requirements of row 7, we know that the variables x and
x′ do not appear in t, leading the two terms to be v = t[y 7→ r, yi 7→ ri (i ∈ I)] and
v′ = v � v. Since, as a further requirement, the operator � is idempotent with
respect to bisimilarity, i.e., x � x↔–– x, we can conclude that

v′ ↓�,� v = t[y 7→ r, yi 7→ ri (i ∈ I)],

where t[y 7→ r, yi 7→ ri (i ∈ I)] is the term stated in the column result of row 7.

4.5 Examples

In what follows, we apply the rule format provided in Section 4.3.3 in order to
check some examples of left-distributivity laws whose validity cannot be inferred
using Theorem 4.3.8.

Example 4.5.1 (Interleaving parallel composition and left choice) As we remarked
in Example 4.3.10, the equality

(x +l y) ‖ z ↔–– (x ‖ z) +l (y ‖ z)

is sound. However, its soundness cannot be shown using Theorem 4.3.8, since the parallel
composition operator ‖ does not satisfy condition 2 in Definition 4.3.7. Indeed, x occurs
in the target of the conclusion of the second rule for ‖.

On the other hand, the validity of the above law can be shown by applying the rule format
from Definition 4.3.21. Indeed, we observe that

134 Meta-theory of SOS

• the targets of the conclusions of the pair of rules

(par0)
x a
→ x′

x ‖ y a
→ x′ ‖ y

(lc0)
x a
→ x′

x +l y a
→ x′

,

when instantiated as required in Definition 4.3.18, both become p′ ‖ r, and

• the targets of the conclusions of the pair of rules

(par1)
y a
→ y′

x ‖ y a
→ x ‖ y′

(lc1)
x a
→ x′

x +l y a
→ x′

,

when instantiated as required in Definition 4.3.18, become (p +l q) ‖ r′ and p ‖ r′,
with (p +l q) ‖ r′ p ‖ r′.

Example 4.5.2 (Unit-delay operator and the choice operator from ATP) Consider
any TSS T containing the unit-delay operator b c and the choice operator +∗ from
ATP [112]2 and for which the transition relation

χ
→ is deterministic. (The distinguished

symbol χ denotes the passage of one unit of time.) The semantics of those operators is
defined by the following rules, where a , χ.

(uda)
x a
→ x′

bxc(y) a
→ x′

(udχ)
bxc(y)

χ
→ y

(extChla)
x a
→ x′

x +∗ y a
→ x′

(extChra)
y a
→ y′

x +∗ y a
→ y′

(extTime)
x

χ
→ x′ y

χ
→ y′

x +∗ y
χ
→ x′ +∗ y′

We claim that T is in the second left-distributivity format for b c with respect to +∗.
Indeed, we observe that

• the targets of the conclusions of the pair of rules (uda, extChla) when instantiated as
required in Definition 4.3.18, both become p′,

• the targets of the conclusions of the pair of rules (uda, extChra) when instantiated
as required in Definition 4.3.18, both become q′, and

2 In [112], the symbol of this operator is �, whose use we prefer to avoid in this chapter for the
sake of clarity.

Matteo Cimini 135

• the targets of the conclusions of the pair of rules (udχ, extTime) when instantiated
as required in Definition 4.3.18, become r and r +∗ r, with r +∗ r r because T is
in idempotence format with respect to +∗, as argued in [4, Example 9].

The well-known law
bx +∗ yc(z)↔–– bxc(z) +∗ byc(z)

thus follows from Theorem 4.3.22.

Table 4.1 can be used to match the targets of the conclusions as follows: the combination
of uda and extChla follows from row 8, the combination of uda and extChra follows from
row 9, and finally the combination of udχ and extTime follows from row 7.

Example 4.5.3 (Timed left merge and the choice operator from ATP) Consider the
TSS for ATP with the timed extension of the left-merge operator from Example 4.3.10
specified by the following rules, where a , χ:

(mergea)
x a
→ x′

x‖ y a
→ x′ ‖ y

(mergeχ)
x

χ
→ x′ y

χ
→ y′

x‖ y
χ
→ x′ ‖ y′

.

We claim that this TSS is in the second left-distributivity format for‖ with respect to +∗.
We limit ourselves to checking that the targets of the conclusions of the second rule for ‖
and rule extTime match when instantiated as required in Definition 4.3.18. This follows
because, in all cases, the resulting terms yield an instance of the equality

(p′ +∗ q′)‖ r′ = (p′ ‖ r′) +∗ (q′ ‖ r′).

The law
(x +∗ y)‖ z = (x‖ z) +∗ (y‖ z)

thus follows from Theorem 4.3.22.

Checking the conditions of the second rule format can be simplified by using the syntactic
checks of Table 4.1, as follows: the combination mergea, extChla follows from row 8, the
combination mergea, extChra follows from row 9 and the combination mergeχ, extTime
follows from row 6.

136 Meta-theory of SOS

4.6 Examples of left-distributivity laws involving unary

operators

In this section we apply the rule formats from Section 4.3 in order to prove left-
distributivity laws involving unary operators from the literature. In order to do
so, we turn unary operators into binary operators that simply ignore their right
argument.

We begin with three examples that can be dealt with using Theorem 4.3.8.

Example 4.6.1 (Encapsulation and choice) Consider the classic unary encapsulation
operators ∂H from ACP [24], where H ⊆ L, with rules

x a
→ x′

∂H(x) a
→ ∂H(x′)

a < H.

It is well known that
∂H(x + y)↔–– ∂H(x) + ∂H(y), (4.2)

where + is the choice operator from Example 4.2.4.

We shall now argue that the validity of this equation can be shown using Theorem 4.3.8.
To this end, we turn the encapsulation operators into binary operators that ignore their
second argument. The above rules therefore become

x a
→ x′

∂H(x, y) a
→ ∂H(x′, y)

a < H.

Note that the rules for ∂H and + are in the first rule format for left distributivity from
Definition 4.3.7. In particular, Fire(∂H,+, a) holds for each action a, because if there is an
a-emitting rule for ∂H then there is also an a-emitting rule for +. (Note that the converse
only holds if H = ∅. This explains the asymmetric nature of the constraint Fire(�,�, a).)
Therefore Theorem 4.3.8 yields the validity of the left-distributivity law

∂H(x + y, z)↔–– ∂H(x, z) + ∂H(y, z),

from which the soundness of (4.2) follows immediately.

Matteo Cimini 137

Example 4.6.2 (Match operator and choice) Consider the unary match operators [a =

b] from the π-calculus [132]3, where a, b ∈ L, with rules

x c
→ x′

[a = b](x) c
→ x′

if a = b,

where c ∈ L.

It is well known that

[a = b](x + y)↔–– [a = b](x) + [a = b](y), (4.3)

where + is the choice operator from Example 4.2.4.

We shall now argue that the validity of this equation can be shown using Theorem 4.3.8.
To this end, as above, we turn the match operators into binary operators that ignore their
second argument. The above rules therefore become

x c
→ x′

[a = b](x, y) c
→ x′

if a = b.

Note that the rules for [a = b] and + are in the first rule format for left distributivity from
Definition 4.3.7. Therefore Theorem 4.3.8 yields the validity of the left-distributivity law

[a = b](x + y, z)↔–– [a = b](x, z) + [a = b](y, z),

from which the soundness of (4.3) follows immediately.

Example 4.6.3 (Projection operator and choice) Consider the unary projection oper-
ators πn from ACP [24, 37], where n ≥ 0, with rules

x a
→ x′

πn+1(x) a
→πn(x′)

a ∈ L.

It is well known that
πn(x + y)↔–– πn(x) + πn(y), (4.4)

where + is the choice operator from Example 4.2.4.

We shall now argue that the validity of this equation can be shown using Theorem 4.3.8.
Again, we turn the projection operators into binary operators that ignore their second

3 Note that in the π-calculus a and b in the formula [a = b]p are names and not labels.

138 Meta-theory of SOS

argument. The above rules therefore become

x a
→ x′

πn+1(x, y) a
→πn(x′, y)

a ∈ L.

Note that the rules for πn and + are in the first rule format for left distributivity from
Definition 4.3.7. Therefore Theorem 4.3.8 yields the validity of the left-distributivity law

πn(x + y, z)↔–– πn(x, z) + πn(y, z),

from which the soundness of (4.4) follows immediately.

Example 4.6.4 (Prefix operator and synchronous parallel operator) Consider any
TSS T containing the synchronous parallel operator ‖L from Example 4.3.11 and con-
taining the following binary version of the prefix operator from CCS [96], where a ranges
over a set of actions L:

(pre fa) =
a.(x, y) a

→ x
.

We claim that T is in the second left-distributivity format for the prefix operator with
respect to ‖L. Let us pick an action a. Then the targets of the conclusions of pre fa and of

x a
→ x′ y a

→ y′

x ‖L y a
→ x′ ‖L y′

,

which is the only a-emitting rule for ‖L, both yield the term p ‖L q when instantiated as
required in Definition 4.3.18. Therefore, Theorem 4.3.22 yields the validity of the law

a.(x ‖L y, z)↔–– a.(x, z) ‖L a.(y, z).

Turning the prefix operator back to its unary version, we obtain the soundness of the
following equality:

a.(x ‖L y)↔–– a.x ‖L a.y.

Row 3 in Table 4.1 can be used to match the targets of the conclusions of the synchronous
parallel composition and the prefix operators.

Matteo Cimini 139

Example 4.6.5 (Unit-delay operator and choice operator) Consider any TSST that
includes the choice operator +∗ from Example 4.5.2 and the following binary versions of
the unit-delay operator:

(delay1) =
(1)(x, y)

χ
→ x

.

We claim that T is in the second left-distributivity format for (1) with respect to +∗. To
see this, it suffices to observe that the targets of the conclusions of the χ-emitting rules
for those two operators, when instantiated as required in Definition 4.3.18, both yield the
term p +∗ q. Therefore, Theorem 4.3.22 yields the validity of the law

(1)(x +∗ y, z)↔–– (1)(x, z) +∗ (1)(y, z).

Turning the unit-delay operator back to its unary version, we obtain the well-known law

(1)(x +∗ y)↔–– (1)(x) +∗ (1)(y).

Row 3 in Table 4.1 can be used to match the targets of the conclusions of the delay rules
for the unit-delay and choice operators.

4.7 Impossibility results

In this section we provide some impossibility results concerning the validity of
the left-distributivity law. Unlike previous results about rule formats for algebraic
properties, such as those surveyed in [21], we offer theorems to recognize when
the left-distributivity law is guaranteed not to hold. When designing operational
specifications for operators that are intended to satisfy a left-distributivity law,
a language designer might also benefit from considering these kinds of negative
results.

4.7.1 Left-inheriting operators

Our first negative result will concern a kind of left-inheriting operator, which we
call strong left-inheriting and we now proceed to define.

140 Meta-theory of SOS

Definition 4.7.1 (Forwarder operators) Let
−→
k = (k1, k2, . . . , k`), where 1 ≤ ` ≤ n and

1 ≤ k1 < k2 < . . . < k` ≤ n. An operator f of arity n is a
−→
k -forwarder if the following

conditions hold for each action a and for all closed terms p1, . . . , pn:

• if f (p1 . . . , pk1 , . . . , pk2 , . . . , pk` , . . . , pn) a
→ then there is some 1 ≤ i ≤ ` such that

pki

a
→ and

• for each 1 ≤ i ≤ `, if pki

a
→ then f (p1 . . . , pk1 , . . . , pk2 , . . . , pk` , . . . , pn) a

→ .

Syntactic conditions to guarantee that an operator is a
−→
k -forwarder can be given.

However, this is beyond the scope of the present work.

Example 4.7.2 As the reader can easily check, the left-merge operator ‖ from Exam-
ple 4.3.10 and the replication operator ! given by the rule below

x a
→ x′

!x a
→ x′ ‖!x

(a ∈ L),

where ‖ is the interleaving parallel composition operator from Example 4.3.10, are (1)-
forwarders. On the other hand, the interleaving parallel composition operator and the
choice operator + from Example 4.2.4 are (1, 2)-forwarders.

Definition 4.7.3 (Forwarder contexts) The grammar for forwarder contexts for a
variable x is

F[x] ::= x | f (x1, . . . , xi−1,F[x], xi+1, . . . , xn),

where f is an n-ary operator, x1, . . . , xi−1, xi+1, . . . , xn are variables, F[x] appears as the ith
argument of f , and f is

−→
k -forwarder with i appearing in

−→
k .

Lemma 4.7.4 Assume that F[x] is a forwarder context for a variable x. Then, for each
closed substitution σ and for each action a, the following statements hold:

1. if σ(x) a
→ then σ(F[x]) a

→ ;

2. if σ(F[x]) a
→ then there is some y ∈ vars(F[x]) such that σ(y) a

→ .

Proof. Both claims can be shown by structural induction on F[x].

Definition 4.7.5 (Strong left-inheriting operators) Given a TSST , let � be a binary
operator from the signature of T . We say that � is strong left-inheriting with respect
to an action a whenever each a-emitting �-defining rule d has the form

Φx ∪Φy

x � y a
→F[x]

,

Matteo Cimini 141

where

• Φx and Φy are sets of x-testing and y-testing formulae, respectively, whose subsets
of positive premises are finite,

• no two formulae in Φx ∪Φy contradict each other,

• each positive formula in Φx ∪Φy has the form z b
→ z′ for some action b and variable

z′,

• the variables x, y and the targets of the positive formulae in Φx∪Φy are all distinct,
and

• F[x] is a forwarder context for x with vars(F[x]) ⊆ vars(Φx ∪Φy) ∪ {x}.

Intuitively, not only does a strong left-inheriting operator inherit its left argument;
it also makes sure that the inherited term may affect the next step of computa-
tion.

Theorem 4.7.6 (Impossibility Theorem: strong left-inheriting operators) Given a
TSS T , let � be a binary operator in the signature of T . Assume that

• the set of actions is infinite,

• the signature of T contains the inaction constant from Remark 4.3.9, the prefix
operators from CCS (see Example 4.6.4) and the choice operator from Example 4.2.4,

• � is a strong left-inheriting operator with respect to some action a ∈ L, and

• there is some a-emitting and �-defining rule.

Then
(x + y) � z= (x � z) + (y � z).

The proof of Theorem 4.7.6, which may be found in Section 4.12, relies on the fact
that, when (p + q) � r a

→ s1 for some action a and closed terms p, q, r and s1, the
term s1 has both the initial capabilities of p and q because s1 has some occurrence
of the term p + q in a forwarder context, and + is itself a (1, 2)-forwarder. On the
other hand, if (p � r) + (q � r) a

→ s2, for some s2, then s2 is never able to have both of
the initial capabilities of p and q simultaneously, since + performs a choice.

Using Theorem 4.7.6, we obtain, for instance, that:

• (x + y) ‖ z= (x ‖ z) + (y ‖ z)

• a.(x + y)= (a.x) + (a.y)

142 Meta-theory of SOS

• !(x + y)= (!x) + (!y)

For the last two cases, in order to apply the above-mentioned theorem, one needs
to consider the binary version of the action prefixing operator from Example 4.6.4
and the binary version of the replication operator, which ignores its second ar-
gument and can be defined along the lines we followed in the examples in Sec-
tion 4.6.

4.7.2 The use of negative premises

We now present two results that rely on the use of negative premises in rules.

Definition 4.7.7 (Always Moving Operators) Given a TSS T , we say that an oper-
ator f from the signature of T with arity n is always moving for action a whenever
f (−→p) a

→ , for each n-tuple of closed terms −→p .

For example, an n-ary operator f , with n ≥ 1, is always moving for action a when
the set of rules D(f , a) contains

• either some rule d with hyps(d) = ∅,

• or rules d1, d2 with hyps(d1) = {x1
a
→ x′1} and hyps(d2) = {x1

a
9 }.

An example of operator that is always moving for action a is the prefixing operator
a._.

Remark 4.7.8 It is possible to find syntactic conditions on the set of rules for some
operator f guaranteeing that f is always moving. For instance, the decidable logic of
initial transition formulae offered in [7], which is able to reason about firability of GSOS
rules, can be used in order to check whether operators are always moving. The development
of rule formats for always-moving operators is, however, orthogonal to the gist of this work
and therefore we do not address it here.

Theorem 4.7.9 Given a TSS T , let � and � be binary operators in the signature of T .
Assume that

1. the signature of T contains at least one constant,

2. a ∈ L,

3. � is always moving for action a, and

4. the set of premises of each a-emitting and �-defining rule contains either x a
9 or

y a
9 .

Matteo Cimini 143

Then
(x � y) � z= (x � z) � (y � z),

and any triple of closed terms witnesses the above inequivalence.

Proof. Let T be a TSS, and let � and � be binary operators of the signature of
T . Let p, q and r be arbitrary closed terms, which exist since the signature of T
contains at least one constant.

Since � is always moving for action a, we have that (p � q) � r a
→ , (p � r) a

→ and
(q � r) a

→ . As each a-emitting and �-defining rule d is, by assumption, such that
x a
9 ∈ hyps(d) or y a

9 ∈ hyps(d), none of those rules can be used to prove an
a-labelled transition for (p � r) � (q � r). It follows that

(p � q) � r= (p � r) � (q � r),

as required.

In what follows we offer a result that ensures the invalidity of the distributivity
law when negative premises appear in �-defining rules.

Theorem 4.7.10 Let T be a TSS whose signature contains a binary operator �, the
inaction constant 0, the prefix operators from CCS and the choice operator. Assume that
there is some action a such that the only a-emitting �-defining rule in T has the form

(d)
Φx ∪Φy

x � y a
→ t

,

where

• Φx and Φy are sets of x-testing and y-testing formulae, respectively, whose subsets
of positive premises are finite,

• no two formulae in Φx ∪Φy contradict each other,

• each positive formula in Φx ∪Φy has the form z b
→ z′ for some action b and variable

z′,

• the variables x, y and the targets of the positive formulae in Φx∪Φy are all distinct,
and

• {x b
9 | b ∈ L} ⊆ Φx, for some non-empty set of actions L.

Then
(x + y) � z= (x � z) + (y � z).

144 Meta-theory of SOS

Proof. Let {x
ai
→ xi | i ∈ I} and {y

b j
→ y j | j ∈ J}, where I and J are finite index sets, be

the collections of positive premises in Φx and Φy, respectively. Define

p =
∑
i∈I

ai.0 and

r =
∑
j∈J

b j.0.

By the assumption of the theorem, the closed substitution σ mapping x to p, y to
r and all the other variables to 0 satisfies the premises of d. Therefore, we have
that

p � r a
→ σ(t).

Let q = b.0 for some b ∈ L. Then,

(p � r) + (q � r) a
→ σ(t).

On the other hand, the term (p + q) � r does not afford an a-labelled transition
because p + q b

→ 0 and therefore no closed substitution mapping x to p + q can
satisfy the premises of d, which is the only a-emitting �-defining rule in T . This
means that

(p + q) � r= (p � r) + (q � r),

and the claim follows.

Example 4.7.11 Let > be an irreflexive partial order over L. The priority operator Θ

from [27] is specified by the following rules:

x a
→ x′, x b

9 (∀b > a)

Θ(x) a
→Θ(x′)

(a ∈ L).

The binary version of that operator can be defined following the lines presented in the
examples in Section 4.6. Theorem 4.7.10, when applied to the binary version of Θ, yields
the well-known fact that, when > is a non-trivial partial order,

Θ(x + y)= Θ(x) + Θ(y).

Indeed, if > is non-trivial, then there are actions a and b with a < b. The single a-emitting
rule for the binary version of Θ has a negative premise of the form x b

9 , and therefore
Theorem 4.7.10 is applicable to derive the above inequivalence.

Matteo Cimini 145

4.8 Conclusions

In this work we have provided two rule formats guaranteeing that certain binary
operators are left distributive with respect to choice-like operators. As witnessed
by the wealth of examples we discussed in the main body of this study, the rule
formats are general enough to cover relevant examples from the literature. In
particular, they can also be applied to establish the validity of left-distributivity
laws involving unary operators. This can be achieved by simply considering
unary operators as binary operators that ignore their second argument.

We have also offered conditions that allow one to recognize the invalidity of the
left-distributivity law in the context of left-inheriting operators and in the presence
of negative premises. Such conditions can be applied to well-known examples of
invalid left-distributivity laws.

By a straightforward adaptation of our formats, one can obtain syntactic condi-
tions on SOS rules guaranteeing right distributivity.

The research presented in this article opens several interesting lines for future
investigation. First of all, our rule formats can be easily adapted to obtain rule
formats guaranteeing the validity of right-distributivity laws of the form

x � (y � z) = (x � y) � (x � z).

The rule formats we have presented should also be extended in order to handle
examples of distributivity laws where � is not ‘choice-like’. It would also be
interesting to see whether one can relax the syntactic constraints of the rule formats
presented in this chapter substantially, while preserving their soundness and ease
of application.

Last, but not least, we intend to find further ‘impossibility theorems’ along the
lines of those we presented in Section 4.7.

This future work will lead to a better understanding of the semantic nature of
distributivity properties and of its links to the syntax of SOS rules.

146 Meta-theory of SOS

4.9 Proof of Theorem 4.3.6

Instead of proving Theorem 4.3.6 we prove a stronger theorem. In what follows,
when we say (p � q) � r a

→ using rules d1 and d2, the considered transition is
provable by the �-defining rule d1, possibly using the �-defining rule d2 to prove
a transition (p� q) a

→ p′ satisfying the set Φx(d1) of x-testing premises in d1. We say
(p � r) � (q � r) a

→ using rules d2, d1 and d3, with the straightforward analogous
meaning, using d1 to prove a transition from (p � r) satisfying Φx(d2) and d3 to
prove a transition from (q � r) satisfying Φy(d2).

Theorem 4.9.1 Let T be a TSS, and let � and � be binary operators in the signature of
T. Suppose that Fire(�,�, a), for some actions a. Then, for all closed terms p, q, and r,

• if (p � q) � r a
→ using rules d1 and d2 then (p � r) � (q � r) a

→ using rules d2, d1

and d1.

• (p � r) � (q � r) a
→ using rules d2, d1 and d3 then (p � q) � r a

→ using rules d1 or
d3, and d2.

It is easy to see that Theorem 4.9.1 implies Theorem 4.3.6.

Theorem 4.9.1 can be proved along the lines of Theorem 4.3.8 and we therefore
omit the details.

4.10 Proof of Theorem 4.3.8

Let T be a TSS, and let � and � be binary operators in the signature of T. Assume
that the rules for � and � are in the first rule format for left distributivity. We
show the following two claims, where p, q, r, s are arbitrary closed terms and a is
any action:

1. If (p � q) � r a
→ s then (p � r) � (q � r) a

→ s.

2. If (p � r) � (q � r) a
→ s then (p � q) � r a

→ s.

We consider each of the above claims in turn.

1. Assume that (p � q) � r a
→ s. We shall prove that (p � r) � (q � r) a

→ s.

Matteo Cimini 147

Since (p � q) � r a
→ s and Fire(�,�, a) holds, there are a rule d1 of the form

(∅ or {x a
→ x′}) ∪ Φy

x � y a
→ t

and a closed substitution σ such that

• σ(x) = p � q,

• σ(y) = r,

• σ(t) = s and

• σ satisfies the premises of d1.

We shall argue that (p � r) � (q � r) a
→ s by considering two cases, depending

on whether d1 has a premise of the form x a
→ x′.

(a) Case: d1 has no x-testing premise. In this case, rule d1 can be used
to infer that p � r a

→ s and q � r a
→ s both hold. Indeed, recall that

x < vars(Φy) by the constraints of the rule form (R1) and x < vars(t)
by constraint 2 in Definition 4.3.7. Therefore, the closed substitution
σ[x 7→ p] satisfies the premises of d1 and is such that

σ[x 7→ p](x � y a
→ t) = p � r a

→ s.

A similar reasoning using the closed substitution σ[x 7→ q] shows that
q � r a

→ s is also provable using d1 as claimed. The first and third
condition in Definition 4.3.3 yield the existence of some rule d2 ∈ D(�, a)
of the form

({x a
→ x′} or {y a

→ y′} or {x a
→ x′, y a

→ y′})

x � y a
→ t

.

By constraint 3 of Definition 4.3.7, d2 has a target variable of one of its
premises as target of its conclusion. Therefore, regardless of the set of
premises of d2, we can instantiate that rule using any closed substitution
mapping x to p � r, y to q � r and both x′ and y′ to s to infer that

(p � r) � (q � r) a
→ s,

as required.

148 Meta-theory of SOS

(b) Case: d1 has a premise of the form x a
→ x′. In this case, as σ satisfies the

premises of d1, we have that

σ(x) = p � q a
→ σ(x′).

The above transition can be proved using a rule d2 ∈ D(�, a) of the form

({x a
→ x′} or {y a

→ y′} or {x a
→ x′, y a

→ y′})

x � y a
→ t′

,

where, by constraint 3, t′ = x′ or t′ = y′. Assume, without loss of
generality, that t′ = y′. Then y a

→ y′ is a premise of rule d2 and

q a
→ σ(x′).

So, instantiating rule d1 above using σ[x 7→ q], we have that

σ[x 7→ q](x � y) = q � r a
→ σ[x 7→ q](t) = σ(t) = s.

(Recall that x < vars(t) by constraint 2 in Definition 4.3.7.) If d2 does
not have any x-testing premise then the above transition can be used
to satisfy its premise and we can infer

(p � r) � (q � r) a
→ s,

as required. Assume now that d2 has x a
→ x′ as a premise, and therefore

has the form
{x a
→ x′, y a

→ y′}

x � y a
→ y′

.

Since the transition p � q a
→ σ(x′) is proved using d2, there is some p′

such that p a
→ p′. Recall that, by the assumptions for this case of the

proof,

d1 =
{x a
→ x′} ∪ Φy

x � y a
→ t

.

Then the substitution σ[x 7→ p, x′ 7→ p′] satisfies the premises of d1, and
we can deduce that

σ[x 7→ p, x′ 7→ p′](x � y) = p � r a
→ σ[x 7→ p, x′ 7→ p′](t) = σ[x′ 7→ p′](t).

Matteo Cimini 149

Using rule d2 and any substitution that maps x to p�r, x′ to σ[x′ 7→ p′](t),
y to q � r and y′ to s, we may conclude that

(p � r) � (q � r) a
→ s,

as required.

2. Assume that (p � r) � (q � r) a
→ s. We shall prove that (p � q) � r a

→ s.

Since (p � r) � (q � r) a
→ s and Fire(�,�, a) holds, there are a rule d2 of the

form
({x a
→ x′} or {y a

→ y′} or {x a
→ x′, y a

→ y′})

x � y a
→ t

,

where, by constraint 3, t = x′ or t = y′, and a closed substitution σ such that

• σ(x) = p � r,

• σ(y) = q � r,

• σ(t) = s and

• σ satisfies the premises of d2.

Assume, without loss of generality, that t = x′. Therefore x a
→ x′ is a premise

of d2 and
σ(x) = p � r a

→ s = σ(x′).

Since p � r a
→ s, there are some rule

d1 =
(∅ or {x a

→ x′}) ∪ Φy

x � y a
→ t′

and a closed substitution σ′ such that

• σ′(x) = p,

• σ′(y) = r,

• σ′(t′) = s and

• σ′ satisfies the premises of d1.

We shall argue that (p � q) � r a
→ s by considering two cases, depending on

whether d1 has a premise of the form x a
→ x′.

(a) Case: d1 has no x-testing premise.

150 Meta-theory of SOS

Consider the substitution σ′[x 7→ p � q]. Since x < vars(Φy) and σ′

satisfies the premises of d1, it follows that σ′[x 7→ p � q] also satisfies
Φy. Therefore, we can instantiate rule d1 with σ′[x 7→ p � q] to infer that

σ′[x 7→ p � q](x � y) = (p � q) � r a
→ σ′[x 7→ p � q](t′) = σ′(t′) = s,

as required. (Recall that � is non-left-inheriting by condition 2 in
Definition 4.3.7.)

(b) Case: d1 has a premise of the form x a
→ x′. Then,

d1 =
{x a
→ x′} ∪ Φy

x � y a
→ t′

.

As σ′ satisfies the premises of d1, we have that

σ′(x) = p a
→ σ′(x′).

If x a
→ x′ is the only premise of rule d2, then we can use that rule and

the above transition to infer that

p � q a
→ σ′(x′).

Consider now the closed substitution σ′[x 7→ p � q]. This substitution
satisfies the premises of rule d1, because so does σ′ and x < vars(Φy).
Therefore, instantiating rule d1 with σ′[x 7→ p � q], we may derive the
transition

(p � q) � r a
→ σ′[x 7→ p � q](t′) = σ′(t′) = s,

as required.

Assume now that x a
→ x′ is not the only premise of rule d2. Then, because

of the assumptions of this case,

d2 =
{x a
→ x′, y a

→ y′}

x � y a
→ x′

.

Recall that we used the above rule and the closed substitution σ to
prove the transition

(p � r) � (q � r) a
→ s.

Matteo Cimini 151

Therefore we have that

σ(y) = q � r a
→ σ(y′).

Using condition 4 in Definition 4.3.7 and the form of the rules d1 and
d2, this means that there are a rule

d3 =
{x a
→ x′} ∪ Φ′y

x � y a
→ t′′

and a closed substitution σ̂ such that

• σ̂(x) = q a
→ σ̂(x′),

• σ̂(y) = r,

• σ̂(t′′) = σ(y′) and

• σ̂ satisfies Φ′y.

Using rule d2 with premises p a
→ σ′(x′) and q a

→ σ̂(x′), we obtain that

p � q a
→ σ′(x′).

Finally, instantiating rule d1 with the closed substitution σ′[x 7→ p � q],
we infer the transition

σ′[x 7→ p � q](x � y) = (p � q) � r a
→ σ′[x 7→ p � q](t′) = σ′(t′) = s,

as required.

This completes the proof.

4.11 Proof of Theorem 4.3.22

Let T = (Σ,L,D) be a TSS. Assume that T is in the second left-distributivity format
for � with respect to �. We shall prove that

(x � y) � z↔–– (x � z) � (y � z).

152 Meta-theory of SOS

To this end, it suffices to show that the relation

R = {((p � q) � r, (p � r) � (q � r)) | p, q, r ∈ C(Σ)}∪ ↔––

is a bisimulation.

Let us pick an action a and closed terms p, q and r. We now prove the following
two claims:

1. If (p � q) � r a
→ v1 then (p � r) � (q � r) a

→ v2, for some v2 such that v1 R v2.

2. If (p � r) � (q � r) a
→ v2 then (p � q) � r a

→ v1, for some v1 such that v1 R v2.

We consider these two claims separately.

1. Assume that (p � q) � r a
→ v1 for some closed term v1. This means that

(p � q) � r a
→ v1 using rules d1 and d2, for some �-defining rule d1 and some

�-defining rule d2.

By Theorem 4.9.1, (p � r) � (q � r) a
→ v2, for some closed term v2, using rules

d2, d1 and d1. We shall now show that v1 R v2.

As T is in the second left-distributivity format for � with respect to �, we
have that d1

∼ d2. We distinguish two cases depending on whether the set

of premises of d2 is a singleton.

• Case: hyps(d2) = {x a
→ x′} or hyps(d2) = {y a

→ y′}. In both of the cases,
the term v1 is formed by exactly the substitutions of condition 3a in
Definition 4.3.18, when the variable p′ is used as a term such that
p a
→ p′, similarly q′ for q, and each ri for yi, i ∈ I. Thus, v1 = σ1(toc(d1))

and, for the same reasons, v2 = σ2(toc(d2)). Now, by the definition of ∼,
we have that v1 { v′1 and v2 { v′2, for some v′1 and v′2 with v′1 = v′2, by
possibly using one application of axiom

(x � y) � z = (x � z) � (y � z)

at the top level. Since v1 ↔–– v′1 and v2 ↔–– v′2 hold by Lemma 4.3.17,
by possibly using the transitivity of bisimilarity, we may conclude that
v1 R v2, as required.

• Case: hyps(d2) = {x a
→ x′, y a

→ y′}. In this case, by condition 3b in Defi-
nition 4.3.18, the bisimilarity proven in the previous case is guaranteed

Matteo Cimini 153

for all the possible pairs of �-defining rules, and this also includes the
case when the two premises of rule d2 are both satisfied using rule d1.

2. Assume that (p � r) � (q � r) a
→ v2 for some closed term v2. This transition

can be proved using rules d2, d1, d3, for some �-defining rule d2 and some
�-defining rules d1 and d3.

By Theorem 4.9.1, (p � q) � r a
→ v1, for some closed term v1, using rules d1 or

d3 and d2. We now argue that v1 R v2. By condition 3b in Definition 4.3.18,
reasoning as above, v1 R v2 is guaranteed for all the possible pairs of �-
defining rules, including the case when the transition (p � q) � r a

→ v1 is
proved using d1 and d2 or using d3 and d2.

This completes the proof.

4.12 Proof of Theorem 4.7.6

Let T be a TSS and let � be a binary operator of the signature of T. Assume the
hypotheses of Theorem 4.7.6.

Let us pick an a-emitting and �-defining rule d. By the hypotheses of the theorem,
d has the form

Φx ∪Φy

x � y a
→F[x]

,

where

• Φx and Φy are sets of x-testing and y-testing formulae, respectively, whose
subsets of positive premises are finite,

• no two formulae in Φx ∪Φy contradict each other,

• each positive formula in Φx ∪ Φy has the form z b
→ z′ for some action b and

variable z′,

• the variables x, y and the targets of the positive formulae in Φx ∪ Φy are all
distinct, and

• F[x] a forwarder context for x with vars(F[x]) ⊆ vars(Φx ∪Φy) ∪ {x}.

Since the signature of T contains the inaction, the prefix operators and the choice
operator, and no two formulae in Φx ∪ Φy contradict each other, it is easy to
construct three terms p, q, and r such that

154 Meta-theory of SOS

1. p ‘satisfies’ Φx,

2. if x b
9 ∈ Φx, then q b

9 ,

3. r ‘satisfies’ Φy,

4. p b
→ , q b

9 and r b
9 , for some action b,

5. q c
→ , p c

9 and r c
9 , for some action c, and

6. the depth of p and r is one—that is, for all action b and c, and closed terms
p′ and r′, if p b

→ p′ then p′ c
9 , and if r b

→ r′ then r′ c
9 .

Conditions 4 and 5 can be met because, by assumption, the set of actions is
infinite.

We claim that
(p + q) � r= (p � r) + (q � r).

To see this, observe that, since + is a (1, 2)-forwarder operator, due to conditions 1
and 2, p + q ‘satisfies’ Φx. By condition 3, the rule d fires with some closed
substitution σ mapping x to p + q and y to r. Thus (p + q) � r a

→ σ(F[x]). By
conditions 4–5 and Lemma 4.7.4, we have that σ(F[x]) b

→ and σ(F[x]) c
→ .

Assume now that (p�r)+(q�r) a
→ s, for some s. We will now argue thatσ(F[x])= v,

proving our claim that

(p + q) � r= (p � r) + (q � r).

Indeed, suppose that p � r a
→ s. Since � is strong left-inheriting with respect to an

action a, we have that there are an a-emitting �-defining rule of the form

Φ′x ∪Φ′y

x � y a
→F′[x]

,

satisfying the requirements in Definition 4.7.5 and a closed substitution σ′ such
that s = σ′(F′[x]). By conditions 5 and 6, using Lemma 4.7.4 we have that s c

9 .
Therefore σ(F[x])= s.

If q � r a
→ s then, reasoning in similar fashion using conditions 4 and 6 as well as

Lemma 4.7.4, we infer that s b
9 . Therefore σ(F[x])= s, and we are done.

155

Chapter 5

Structural Operational Semantics
with Binders

When evil men burn and bomb, good men must build and bind.
Martin Luther King, Jr.

5.1 Introduction

The development of a formal semantics for programming and specification lan-
guages is a necessary first step towards rigorous reasoning about them. For
instance, a formal semantics allows one to prove the correctness of language
implementations, and is a prerequisite for proving the validity of program opti-
mizations. Operational semantics is a widely-used methodology to define formal
semantics for computer languages, which represents the execution of programs
as step-by-step development of an abstract machine. Structural Operational Se-
mantics (SOS) was introduced by Gordon Plotkin in [119], reprinted in [65], as
a logical and structural approach to defining operational semantics. The logical
structure of SOS specifications supports a variety of reasoning principles that
can be used to prove properties of programs whose semantics is given using
SOS. Moreover, SOS language specifications can be used for rapid prototyping
of language designs and to provide experimental implementations of computer
languages.

Thanks to its intuitive appeal and flexibility, SOS has become the de facto standard
for defining operational semantics, and a wealth of programming and executable

156 Meta-theory of SOS

specification languages have been given formal semantics using it. In recent
years much work on the underlying theory as well as on the practice of SOS has
been carried out—see, e.g., [18, 109] and [45, 71, 108], respectively. However, a
substantial amount of work remains to be done in this rapidly-evolving area of
research. This chapter will focus on one of the crucial aspects in the definition
of semantic models for programming and specification languages that has so far
received relatively little attention in the literature of the meta-theory of SOS, i.e.,
the treatment of concepts such as variables, names and binders.

Many programming and specification languages make use of the concepts of
names and binders. For example, in the π-calculus [97, 98, 132], names are first-
class objects and the whole language is built on the idea that concurrent agents
communicate by exchanging names. Binders are syntactic constructs that are used
to scope the use of names in expressions. Examples of binders are input-prefixing
operators, recursion combinators, restriction operators, infinite-sum operators
and the time-integration operator [29, 96, 67, 132].

In this chapter we propose a formal framework for the handling of names in SOS,
called Nominal SOS, which is based on the nominal techniques of Gabbay, Pitts,
and Urban [61, 145].

In the semantics of most nominal calculi some basic notions such as α-conversion
and substitution are used. We show that these notions can be naturally captured
in the Nominal SOS framework. Moreover, we specify two of the most prominent
examples of nominal calculi, namely the lazy λ-calculus and the early π-calculus,
in Nominal SOS and show that our specifications coincide operationally with
the original definitions of [2] and [132], respectively. Finally, we define a notion
of nominal bisimilarity naturally arising from our framework. We show that
in the case of the π-calculus our notion coincides with the well-known open
bisimilarity, [132, 131]. On the other hand, we prove that nominal bisimilarity is
not a satisfactory notion of equivalence over the lazy λ-calculus. However, one
of the most interesting notions of bisimilarity in the context of the λ-calculus is
the applicative bisimilarity due to Samson Abramsky, [2]. We define this notion of
equivalence in the framework of Nominal SOS and prove that coincides with its
original counter-part.

The reader must bear in mind that this chapter should be considered as containing
the basic developments of the framework of Nominal SOS, accompanied by some
examples of its application. Refinements and extensions of the framework are
possible and left as future work. The investigation of the theory of Nominal SOS

Matteo Cimini 157

is also part of our future research plans. The reader may find in Section 5.9 an
outline of our plans for future research. The overarching aim is to develop the
framework of Nominal SOS in a way that is comparable to that of the standard
theory of SOS, as surveyed in, e.g., [18, 109], and to hopefully establish Nominal
SOS as a framework of reference for the study and the development of the theory
of languages with first-class notions of names and binders.

Nominal SOS is not the only approach studied so far in the literature that aims
at a uniform treatment of binders and names in the operational semantics of
programming and specification languages. We are aware of a number of existing
approaches that accommodate variables and binders inside variations on the SOS
framework, and we discuss the most relevant approaches in Section 5.8.

Structure of the chapter. The rest of this chapter is organized as follows. In
Section 5.2 we define nominal terms as used in the rest of the chapter. In Section 5.3
we define Nominal SOS, an SOS framework extended with names and binders.
We show in Section 5.4 how α-conversion and different types of substitutions
can be accommodated in the Nominal SOS framework. In Section 5.5, we give
the definitions of the λ- and the π-calculus in our framework and show their
correspondence with the original presentations. In Section 5.6, we define the
notion of nominal bisimilarity and show that coincides with open bisimilarity
over the early π-calculus. In Section 5.7, we formulate the notion of applicative
bisimilarity in the framework of Nominal SOS and show that it coincides with
the original notion of Abramsky. Section 5.8 discusses related works in some
detail and Section 5.9 concludes the chapter by pointing out some directions for
future work. For the sake of readability, proofs of some results and some technical
definitions are collected in a series of sections that follow Section 5.9.

5.2 Nominal terms

The following definitions of sorts and nominal signature are familiar from [145].

Definition 5.2.1 (Sorts) Sorts are defined inductively by the following grammar:

σ ::= 1 | δ | A | [A]σ | σ × σ,

where 1 is the unit sort, δ is a base sort,A is an atom sort, and × denotes pairing.

158 Meta-theory of SOS

In the above-given grammar [A]σ denotes an abstraction sort. Intuitively, [A]σ
is a sort whose elements are functions from objects of sort A to objects of sort σ.
As is standard, pair sorts will associate to the left, so that σ1 × σ2 × σ3 stands for
(σ1 × σ2) × σ3.

Definition 5.2.2 (Nominal Signature) A nominal signature Σ is a triple (∆,A,F),
where

1. ∆ is a set of base sorts ranged over by δ,

2. A is a set of atom sorts ranged over byA, and

3. F is a set of operators f(σ1×...×σn)→δ, denoting a function symbol f with arity
(σ1 × . . . × σn)→ δ, where n ≥ 0.

A function symbol of arity (σ1 × σ2 × σ3)→ δ can be applied to three arguments of
sorts σ1, σ2 and σ3, respectively, and the term resulting from this application is of
sort δ.

For each atom sort A, we fix a countably infinite set of atoms aA, bA, cA, dA, nA,
mA and, for each sort σ, we assume a countably infinite set Vσ of variable symbols
xσ, yσ, zσ.

We sometimes write just f , a, b, c, d,n,m, and x, y, z, leaving arities and sorts im-
plicit (but still present). We assume that all these sets of symbols are pairwise
disjoint.

Definition 5.2.3 (Nominal Terms) Given a signature Σ = (∆,A,F), the set of nomi-
nal terms over the signature Σ is denoted by T(Σ) and it is defined as follows, where we
write tσ for a term t of sort σ:

t ::= xσ | aA | ([aA]tσ)[A]σ | (f(σ1×...×σn)→δ(tσ1 , . . . , tσn))δ

whereA ∈ A, aA ∈ A, xσ ∈ Vσ and f is a function symbol in F with arity (σ1 × . . . × σn)→ δ.

When Σ is understood or irrelevant, we may write just T in lieu of T(Σ). The
subscripts of nominal terms control sorting and we tend to omit them when they
are clear from the context or immaterial. We call [a]t an abstraction (‘of a in t’).

We wish to clarify the role of atoms and variables in Nominal SOS. As in the
ordinary theory of SOS, we treat variables x, y, z, . . ., as meta-variables, see [18]
and [109], that range over the terms of the language, according to their sort.

Matteo Cimini 159

On the other hand, atoms are named elements that a user can employ in programs.
We call them atoms for historical reasons and, as stated in [145] with efficacy,

[...] partly to indicate that the internal structure of such names is
irrelevant to us: all we care about is their identity (i.e. whether or
not one atom is the same as another) and that the supply of atoms is
inexhaustible.

These named elements may serve various purposes. The most typical and also
prominent example of usage of atoms is that, like formal parameters in procedures
or function definitions, they represent placeholders for terms yet to come, in a
parameter passing fashion. This is the case, for instance, of the λ-calculus, [33].
For the sake of concreteness, we give below a possible nominal signature for
λ-terms.

The nominal syntax of theλ-calculus is constructed using a base sort L forλ-terms,
an atom sort A and the following function symbols.

1. λ(_) : [A]L→ L: A unary function symbol for embedding abstractions inside
terms;

2. _ _ : (L × L)→ L: A binary function symbol for application.

The correspondence between nominal λ-terms and those of the λ-calculus is
straightforward, and will be formalized later in the chapter. For example, the
nominal term (λ([a](a a)) λ([a](a a))) represents the λ-term (λa.(a a) λa.(a a)).
In this case, atoms are employed in order to model the variables of the object
language that is being formalized.

The reader will see in the next section that the user can define how programs
deal with occurrences of atoms by means of deduction rules similar to those of
ordinary SOS.

Variables x, y, z, . . . act instead on a meta-level with respect to the object language.
The reader that is familiar with ordinary SOS will notice that in the following
deduction rule

λ([a]x)→λ([a]x)

the variable x ranges over all the terms over the signature described above. For in-
stance, the rule above can be applied in order to prove transitionsλ([a]a)→λ([a]a),

160 Meta-theory of SOS

when x is mapped to a, and λ([a]λ([b]b))→λ([a]λ([b]b)), when x is mapped to
λ([b]b).

For a nominal term t, the following definitions will be useful in the remainder of
the chapter.

• vars(t) denotes the set of variables that occur in t.

• A(t) stands for the set of atoms that occur in t. For example,A(λ([a](a b))) =

{a, b}.

• ba(t) is the set of atoms a for which there exists a subterm [a]t′ in t, i.e., the
set of abstracted atoms in t. For example, ba(λ([a](a b))) = {a}.

• f a(t) is the set of atoms a inA(t) that have an occurrence in t that is not within
the scope of an abstraction [a]t′, for some term t′. We call f a(t) the set of free
atoms of t. For example, f a(λ([a](a b))) = {b} and also f a(λ([a]a) a) = {a}.

• We say that an atom a is fresh in t whenever a < f a(t). We also say that a term
t is binding-closed1 if f a(t) = ∅, i.e., the term t does not contain free atoms.

These sets will play a role in some proofs to follow. Their formal definitions are
thus provided in Section 5.10.

We say that a nominal term is closed if it contains no variables. It is called open
otherwise. For example, a and [a] f (b) are closed terms, but x and [a]y are open
terms. Note that neither a nor [a] f (b) is binding-closed. The set of closed terms
in T(Σ) is denoted by C(Σ) and, again, where Σ is understood or irrelevant, we
may write just C. The sets of binding-closed terms in T(Σ) and those in C(Σ) are
denoted by T(Σ)0 and C(Σ)0, respectively2. A substitution ρ over the signature Σ

is a function of type V → T(Σ)3. We assume that substitutions are sort-respecting,
i.e. that ρ(x) and x have the same sort for each x ∈ V. We extend the domain of
substitutions to terms homomorphically and write tρ for the result of applying the
substitution ρ to the term t. If the range of a substitution lies in C(Σ), we say that
it is a closed substitution. That the substitutions must respect the sort of variables is

1 Binding-closed terms corresponds to those that in literature are usually said closed. For
instance, in the context of the λ-calculus the λ-term λa.λb.(a b) is closed, as it does not contain
free variables, see [2, 33]. We adopt a different nomenclature in order to avoid confusion with the
standard concept of closed term of SOS, i.e., a term that contains no variables.

2 The notation adopted for the set of binding-closed terms follows a standard notation. For
instance the set of λ-terms is typically denoted by Λ and the set of closed λ-terms is typically
denoted by Λ0, see [2, 33].

3 We use the symbol ρ for substitutions in place of the standard symbol σ in order to avoid the
confusion that would otherwise arise with sorts.

Matteo Cimini 161

a necessary requirement in the framework of Nominal SOS. Consider for instance
the atom sort A, a base sort L and a binary function symbol f of arity (A×A)→ L,
i.e. the operator f accepts two atoms as arguments. A sort-respecting substitution
ρ guarantees that in the term f (x, y)ρ, the variables x and y are mapped to atoms
in A as expected, and not to some other type of terms.

5.3 Nominal SOS

Suppose a is an atom and t is a term of some sort. We call a formula a#t a freshness
assertion. In what follows we give a derivation system in order to derive freshness
assertions. Before embarking on the formal definition, we want to clarify the
notion of freshness by means of the following examples, which use the nominal
syntax for λ-terms defined in the previous section. The reader can consider the
λ-terms defined in the previous section and notice the following facts.

• The atom a is fresh in λ([b]c), as it does not appear in it. Thus the assertion
a#λ([b]c) should be derivable.

• The atom a is not fresh in λ([b]a), as it appears free in that term. Thus, the
assertion a#λ([b]a) should not be derivable.

• The atom a is fresh in λ([b]λ([a]c)). In fact, the actual bound name in the
abstraction [a]c is considered immaterial and so it is hidden to an external
observer. Thus, the assertion a#λ([b]λ([a]c)) should be derivable, and so
should b#λ([b]λ([a]c)).

We now proceed to formalize the derivation of freshness assertions.

Definition 5.3.1 (Freshness derivation rules) Let Σ be a nominal signature, and let
the atom a and the term t be over the signature Σ. We write ` a#t when a#t may be derived
using the following rules, where a and b are distinct atoms.

a#b

a#t1, . . . , a#tn

a# f (t1, . . . , tn) a#[a]t
a#t

a#[b]t

These derivation rules are familiar from existing work [145, 54]. As a matter of
notation, we often simply write a#t for ` a#t. The following theorem states the

162 Meta-theory of SOS

correctness of the proof system for freshness assertions given above with respect
to the freshness definition of the previous section.

Theorem 5.3.2 (Correctness of Freshness Derivations) Let Σ be a nominal signa-
ture and let the atom a and the term t be over the signature Σ. It holds that a is fresh in t
if and only if a#t.

A routine induction proves Theorem 5.3.2.

We are now ready to define the notion of nominal transition system specification
whose rules employ the freshness assertions defined above.

Definition 5.3.3 (Nominal Transition System Specification) A nominal transition
system specification (NTSS) is a triple (Σ,R,D) consisting of:

1. A nominal signature Σ;

2. A set of (transition) relation symbols R. To each r ∈ R we associate a (transition
relation) arity which is a sort of the form σ × σl × σ′. We may call: σ the ‘sort of
the source of the transition’, σ′ the ‘sort of the target of the transition’, and σl the
‘sort of the label of the transition’.

3. A set of derivation rules D (see below).

Given an NTSS T, we denote withA(T) the set of atoms of the signature of T. For
a relation r ∈ R with arity σ×σl ×σ′, if σl is the unit sort 1 then we say that r has no
label. If σ′ is also the unit sort, then r is a predicate symbol. We may silently drop
σl (and σ′) if they are the unit sort.

For a relation r ∈ R with arity σ × σl × σ′, a positive transition formula is written
t l
→r t′, where t is a possibly open term of sort σ (we call it the source term), l is a

possibly open term of sort σl (we call it the label), and t′ is a possibly open term of
sort σ′ (we call it the target term).

For the same relation r, we write t l
9r for a negative transition formula, where t is

of sort σ and l is of sort σl. A transition formula is a positive or negative transition
formula.

A derivation rule is of the form

{ti
li
→ri t′i | i ∈ I} {t j

l j
9r j | j ∈ J} {ak#tk | k ∈ K}

t l
→r t′

where

Matteo Cimini 163

• I, J and K are indexing sets,

• {ti
li
→ri t′i | i ∈ I} is a set of positive transition formulae, called the positive

premises of the rule,

• {t j
l j
9r j | j ∈ J} is a set of negative transition formulae, called the negative

premises of the rule,

• {ak#tk | k ∈ K} is a set of freshness assertions, called the freshness premises of
the rule, and

• t l
→r t′ is a positive transition formula, which we call the conclusion of the

rule.

We call t, l, and t′ the source, the label and the target of the rule, respectively.

Substitutions are also extended to formulae, sets of formulae and rules in the
natural way. For a derivation rule d and a substitution ρ, the rule dρ is called a
substitution instance of d.

We call a derivation rule an axiom if I, J and K are empty. A derivation rule is
positive when the index set J is empty. An NTSS is positive when all its deduction
rules are positive.

Positive NTSS’s are much easier to deal with than general ones and come with a
natural notion of semantics, i.e., the set of provable transitions.

Given closed terms t and t′, and a label l, the intended reading of t l
→r t′ is: t can

make an r-transition with label l to t′. We write t l
9r to mean that there is no term

t′ such that t l
→r t′. A positive NTSS gives these intuitions formal meaning using

a notion of ‘derivable transition’, which we now define.

Definition 5.3.4 Let T be an NTSS. The derivable transitions of T are inductively
defined as follows. Suppose that

{ti
li
→ri t′i | i ∈ I} {ak#tk | k ∈ K}

t l
→r t′

is a rule in T, and suppose ρ is a closed substitution over the signature of T. If

• tiρ
liρ
→ri t′iρ is derivable, for every i ∈ I, and

• ak#tkρ is derivable (using the rules in Definition 5.3.1), for every k ∈ K,

then tρ
lρ
→r t′ρ is derivable.

164 Meta-theory of SOS

This means that the set of derivable transitions is the least collection of transitions
that is ’closed under the application of the rules.’

5.3.1 Semantics of NTSS’s

All the NTSSs we consider in this chapter are positive, and Definition 5.3.4 suffices
to give their semantics.

To give a semantics to NTSS’s in general, one has to define a meaning for negative
transitions, i.e., when a negative transition is ’provable’. This has been a source of
complications in the theory of SOS and several proposals for such a notion exist
[147]. The most widely accepted notion of semantics for TSS’s involving negative
transitions is that of least three-valued stable model. To define this concept, we
need two auxiliary definitions, namely provable transition rules and consistency,
which are given below.

Definition 5.3.5 (Provable transition rules) A closed deduction rule is called a tran-
sition rule when it is of the form N

φ with N a set of negative formulae. An NTSS T
proves N

φ , denoted by T ` N
φ , when there is a well-founded upwardly branching tree with

closed formulae as nodes and of which

• the root is labelled by φ;

• if a node is labelled by ψ and the labels of the nodes directly above it form the set K
then:

– ψ is a negative formula and ψ ∈ N, or

– ψ is a positive formula and K
ψ is a substitution instance of a deduction rule in

T.

Definition 5.3.6 (Contradiction and consistency) The formula t l
→r t′ is said to con-

tradict t l
9r , and vice versa. For two sets Φ and Ψ of formulae, Φ contradicts Ψ when

there is a φ ∈ Φ that contradicts a ψ ∈ Ψ. We write Φ � Ψ, and say that Φ is consistent
with Ψ, when Φ does not contradict Ψ.

It immediately follows from the above definition that contradiction and consis-
tency are symmetric relations on (sets of) formulae. We now have all the necessary
ingredients to define the semantics of NTSSs in terms of three-valued stable mod-
els.

Matteo Cimini 165

Definition 5.3.7 (Three-valued stable model) A pair (C,U) of disjoint sets of posi-
tive closed transition formulae is called a three-valued stable model for an TSS T when
the following conditions hold:

• for each φ ∈ C, there is a set N of negative formulae such that T ` N
φ and C∪U � N,

and

• for each φ ∈ U, there is a set N of negative formulae such that T ` N
φ and C � N.

C stands for Certainly and U for Unknown; the third value is determined by the
formulae not in C∪U. The least three-valued stable model is a three-valued stable model
that is the least one with respect to the ordering on pairs of sets of formulae defined as
(C,U) ≤ (C′,U′) iff C ⊆ C′ and U′ ⊆ U.

In the literature [124, 147] (in the setting without names and binders), it has been
shown that every TSS admits a least three-valued stable model with respect to the
information theoretic ordering (i.e., (C,U) ≤ (C′,U′) when C ⊆ C′ and U′ ⊆ U).
This result easily extends also to our setting for NTSSs.

We say that an NTSS is complete when for its least three-valued stable model it
holds that U = ∅. If an NTSS is complete, we write p l

→r p′ in lieu of (p l
→r p′) ∈ C.

All the NTSSs considered in this chapter are complete.

5.4 Substitution and α-conversion

Substitution and α-equivalence play a key role in the definition of the semantics of
calculi with binders. We will now show how those notions can be accommodated
within the framework of Nominal SOS.

Atoms inequality First of all, notice that it is possible to employ freshness
premises in order to check inequality between two atoms. As a matter of fact,
the premise a#b holds when a and b are different atoms. In the remainder of this
chapter, some rules need to check inequality of atoms. In order to increase the
readability of rules, and let the reader understand clearly the meaning behind
some premises, we shall write sometimes a premise a , t to mean a#t, with t an
atom or a variable of atom sort. The checking of atoms equality is never employed
in the remainder of this chapter. As future extensions of the framework of Nominal
SOS, we are planning to allow also for negative freshness premises and this type

166 Meta-theory of SOS

of premises can be used to express equality of atoms, as an atom a is not fresh in
an atom b only when a and b are the same atom.

5.4.1 Substitution transitions

Substitution is a natural notion required in the semantics of most nominal calculi.
The well-known notion of substitution for these calculi is subtly different from the
naive syntactic notion in that it should avoid “capture”. For example, replacing
b with a in [a]b, if done naively, results in [a]a, which captures the free name a by
the abstraction surrounding it. Hence, a substitution is allowed only as long as
the variable that is abstracted by the binder is fresh in the substituting term.

In Nominal SOS, we can model this freshness requirement within our framework
(instead of in the meta-language as in most other approaches, such as [40]) by
means of freshness premises, which are native to the nominal framework.

For a given nominal signature, the deduction rules for substitution transitions can
be generated automatically. In what follows, we give the procedure to generate
the deduction rules for the term-for-atom and atom-for-atom substitutions.

Term-for-atom substitutions are typically employed by higher-order calculi,
such as the λ-calculus, CHOCS [140] and the Higher-Order π-calculus [129], just
to mention a few. Given a nominal signature, we proceed to generate the following

types of deduction rules with the goal of proving transitions of the form t1
a T
7→t2
−→ t3

for some atom a and terms t1, t2 and t3. This type of transition should be read as
the term t2 replaces the atom a in the term t1 leading to the term t3. More specifically,
as in the framework of Nominal SOS labels are terms, given A and L as the
sorts for atoms and terms of a signature, respectively, T

7→ is a function symbol of
arity (A × L) → L, i.e., an operator that accepts an atom and a term as argument
and returns a term. The capitalized superscript T in the label of this transition is
present to recall that this type of transition is the term-for-atom substitution. In the
next paragraph, we model the atom-for-atom substitution and its corresponding
label will have A in place of T.

In reading the following rules, the reader should remember that a premise a , x,
where x is a variable ranging over the sort of atoms, means a#x. For all atoms a
and function symbols f , we have the following rules.

Matteo Cimini 167

a a T
7→z
−→ z (a1Ts)

a , x

a x T
7→z
−→ a

(a2Ts)
x

y T
7→z
−→ x′ a#z a , y

[a]x
y T
7→z
−→ [a]x′

(abs1Ts)

[a]x a T
7→z
−→ [a]x (abs2Ts)

xi
y T
7→z
−→ x′i | 0 < i ≤ n

f (x1, x2, . . . , xn)

y T
7→z
−→ f (x′1, x

′

2, . . . , x
′

n)
(fTs)

The reader can infer the sort of the variables used in the rules by their usage.
For instance, the variable x that occurs in rule (a2Ts) is of atom sort, since it is
employed as the first argument of the substitution transition label. In the same
rule, the variable z is of the sort of the terms.

Inequality of atoms is employed in rule (a2Ts) in order to model the fact that a
substitution that aims at replacing the atom b with a term t is ineffective when

applied to atoms that are different from b, i.e., a b T
7→t
−→ a for all terms t and distinct

atoms a and b. Inequality is also used in rule (abs1Ts) in order to model the fact
that the substitution within an abstraction is effective only when it does not try to
substitute the abstracted atom.

Term-for-atom substitution transitions are deterministic.

Lemma 5.4.1 (Determinism of substitution transitions.) Let T be an NTSS con-
taining the rules for term-for-atom substitution as defined above. For all closed terms t,

t′, t′′ and w, and for each atom a, it holds that if t a T
7→w
−→ t′ and t a T

7→w
−→ t′′ then t′ = t′′.

A simple structural induction proves Lemma 5.4.1. To see this, it suffices only
to notice that rules (a1Ts) and (a2Ts) cannot be applied simultaneously, and also
(abs1Ts) and (abs2Ts) cannot be applied simultaneously.

The reader may be more familiar with the syntactic substitution operation, defined
below, where M and N are closed terms and a and b are distinct atoms.

a[N/a] = N
a[N/b] = a

([a]M)[N/a] = [a]M
([a]M)[N/b] = [a](M[N/b]) if a is fresh in N

f (M1,M2, . . . ,Mn)[N/a] = f (M1[N/a],M2[N/a], . . . ,Mn[N/a])

168 Meta-theory of SOS

The following theorem states that the two notions (substitution transitions and
syntactic substitutions) correspond.

Theorem 5.4.2 (Correctness of Substitution Transitions) Let T be an NTSS. Let M

and N be closed terms, and a be an atom. Then, it holds that M a T
7→N
−→ M′ if and only if M′ =

M[N/a].

The reader can find the proof of Theorem 5.4.2 in Section 5.13.

Atom-for-atom substitution is used in calculi such as the π-calculus [132, 98]
and its variants. The same set of rules provided for the term-for-atom substitution
are able to model the atom-for-atom substitution. The rules are applied in order

to generate transitions of the form t1
a A
7→b
−→ t2 for some atoms a and b and terms

t1 and t2. More specifically, given A and L as the sorts for atoms and terms of
a signature, respectively, A

7→ is a function symbol of arity (A × A) → L, i.e., an
operator that accepts two atoms as argument and returns a term. Since atom-
for-atom substitution transitions will play a crucial role in the modelling of α-
conversion presented later, we prefer to make these rules explicit and we show
them below. In reading the following rules, the reader should remember that a
premise a , x, where x is a variable ranging over the sort of atoms, means a#x. In
what follows, the variables y and z are of atom sort and a ranges over atoms.

a a A
7→z
−→ z (a1As)

a , x

a x A
7→z
−→ a

(a2As)
x

y A
7→z
−→ x′ a , z a , y

[a]x
y A
7→z
−→ [a]x′

(abs1As)

[a]x a A
7→z
−→ [a]x (abs2As)

xi
y A
7→z
−→ x′i | 0 < i ≤ n

f (x1, x2, . . . , xn)

y A
7→z
−→ f (x′1, x

′

2, . . . , x
′

n)
(fAs)

As in the previous example, the reader can infer the sort of the variables used
in the rules by their usage. For instance, differently from the previous case, the
variable z that occur in the rule (a2As) is of atom sort.

It is important not to confuse the semantic substitutions ρ defined in Section
5.2 and the ones defined in this section. The former is on the meta-level of the
semantics of Nominal SOS and acts on variables. It is a semantic meta-operation
that is used in order to instanciate the rules of Nominal SOS and prove transitions.
This notion, also, allows for capture of atoms. For instance, we can apply the

Matteo Cimini 169

axiom (abs2As) with a substitution ρ which maps x to a and z to b for some atoms

a and b, in order to prove the transition [a]a a A
7→b
−→ [a]a.

The substitutions defined in this section are instead user-defined and their purpose
is replacing atoms by terms, modelling thus the fact that atoms are variables of
the object language and represent placeholders for other terms.

Recall also that the semantic substitutions ρ that are employed in the definition
of the semantics of an NTSS must respect the sort of variables. This means that
the rules above cannot be applied to prove term-for-atom substitution transitions.

For example, given a complex (non-atom) term t, the transition a a A
7→t
−→ t is not

provable by the rule (a1As).

As in the case for term-for-atom substitution, atom-for-atom substitution transi-
tions are deterministic.

A syntactic atom-for-atom substitution over nominal terms, together with its cor-
responding correctness theorem, can be provided. It turns out to be just a straight-
forward adaptation of Theorem 5.4.2 and it is therefore omitted here4.

5.4.2 α-conversion Transitions

The notion of α-conversion is a natural equivalence guaranteeing that the exact
name chosen in binders is not important and can be indeed replaced by any
other name (while avoiding capture). Unfortunately, not all names can be picked
when performing this change. To exemplify this fact, we can consider again the
λ-calculus. The term λa.(a b) is α-equivalent to λc.(c b) (provided that a , b and
b , c). The atom c is indeed a suitable atom for ’α-conversion’. However, the
atom b is not suitable, because one does not want to α-convert the term λa.(a b)
into λb.(b b) as this leads to the capture of a free atom. Again, thanks to freshness
assertions, we can accommodate α-conversion in our framework as an ordinary
transition relation. Given a nominal signature, the following deduction rules
define→α . For all atoms a and b and function symbols f , we have the following

4 The corresponding correctness theorem is however stated explicitly in Section 5.14, as it is
employed in the proof of Theorem 5.4.4 to follow. However, the proof for this theorem is omitted
for it is a slight variant on the proof of Theorem 5.4.2.

170 Meta-theory of SOS

rules.

x→α x (idα)
x a A
7→b
−→ y b#x
[a]x→α [b]y

(abs1α)
x→α y

[a]x→α [a]y
(abs2α)

{
xi →α x′i | 0 < i ≤ n

}
f (x1, x2, . . . , xn)→α f (x′1, x

′

2, . . . , x
′

n)
(fα)

x→α y y→α z
x→α z

(α · upToα)

The reader will notice that α-conversion transitions rely on those for the atom-for-
atom substitution (rule (abs1α)). Throughout the chapter, whenever we say that
the rules above for α-conversion transitions are present in an NTSS, it implies that
also the rules for atom-for-atom substitutions are present.

The reader is perhaps familiar with the syntactic version of α-conversion, defined
below.

Definition 5.4.3 (α-conversion over nominal terms) Let T be an NTSS. The relation
=α is the least congruence on nominal terms over the signature of T, such that, for all
closed term M and an atom b, if b is fresh in M then [a]M =α [b]M[b/a].

The set of rules for α-conversion transitions generated above actually behaves
according to the syntactic α-conversion, as stated in the following theorem.

Theorem 5.4.4 (Correctness of α-conversion transitions) Let T be an NTSS. For all
closed terms M and N over the signature of T, it holds that M→α N if and only if M =α

N.

The reader can find the proof of Theorem 5.4.4 in Section 5.14.

Calculi with binders usually consider a term as a representative of the equivalence
class of all the terms that are α-convertible to it. In Nominal SOS, it is possible to
achieve this by augmenting the NTSS with a deduction rule, given below.

Definition 5.4.5 (Transitions up to α-equivalence) Let T be an NTSS and l be a label
of the signature of T. The transition relation l

→ is up to α-equivalence whenever the
deduction rules of T contain the rules for α-conversion transitions, as defined above,
the rules for atom-for-atom substitution transitions, as defined in Section 5.4.1, and the
deduction rule:

x→α y y l
→ z

x l
→ z

(l · upToα).

Matteo Cimini 171

Depending on the peculiarities of the calculus at hand, the modeller might want to
consider defining some of the transition relations to be up to α-equivalence.

5.5 Examples

In this section we try to convince the reader of the expressiveness, and perhaps
naturalness, of Nominal SOS by formulating in our framework two classical
calculi, namely the lazy λ-calculus, [2], and the early π-calculus, [132, 98].

5.5.1 The lazy λ-Calculus

For ease of reference, we repeat here the signature given in Section 5.3 for λ-
terms. The signature Σλ of our lazy λ-calculus is constructed using a base sort L
for λ-terms and an atom sort A and the following function symbols.

1. λ(_) : [A]L→ L: A unary function symbol for embedding abstractions inside
terms;

2. _ _ : (L × L)→ L: A binary function symbol for application.

The semantics includes a reduction transition → , here displayed with no label to
remain in line with the standard notation from [2], and the rules for term-for-atom
substitution transitions as generated in Section 5.4.1.

The set of rules of the signature Σλ contains the following two derivation rules,
which define the operational semantics of our version of the lazy λ-calculus, for
all atoms a.

λ([a]x)→λ([a]x)
(abs)

x0→λ([a]y0) y0
a T
7→x1
−→ y1 y1→ y2

(x0 x1)→ y2

(app)

Moreover, the transition → and the term-for-atom substitution transitions are up
toα-equivalence. The reader may want to notice that by Definition 5.4.5 this means
that the set of rules of Σλ contains also the rules for α-conversion transitions and
the rules for atom-for-atom substitution transitions. The rules for atom-for-atom
substitution transitions are also set to be up to α-equivalence.

172 Meta-theory of SOS

Some definition will be useful in the next sections. In particular, we say that a
term M ∈ T(Σλ) has a normal form whenever it holds that M→M′ for some M′. In
that case, M′ is a normal form for M. For instance, every abstraction has a normal
form while the term (λ([a](a a)) λ([a](a a))) has no normal form.

We denote by Λ be the set of λ-terms of [2, 33]. The encoding ~·�λ is a map from
Λ into terms of our nominal λ-calculus and it is defined as follows.

~a�λ = a
~λa.M�λ = λ([a]~M�λ)
~(M N)�λ = (~M�λ ~N�λ)

We also present the rules for the semantics of the original lazy λ-calculus, as
recalled from [2]5.

λa.x→λa.x
(absO)

x0→λa.y0 y0[x1/a]→ y1

(x0 x1)→ y1

(appO)

The reader should not confuse the substitution operation over λ-terms employed
in the rule (appO) with the syntactic substitution over nominal terms defined in
Section 5.4.1. Also, λ-terms are considered up to α-equivalence. The substitution
and α-equivalence of λ-calculus are standard and not provided in the main body
of the chapter. However, for completeness, they are repeated in Section 5.11
together with some other useful definitions.

We now have all the ingredients to state a correspondence between the two calculi.
The following theorem establishes the operational correctness of our formulation
of the lazy λ-calculus with respect to its original formulation.

Theorem 5.5.1 (Operational Correspondence: lazy λ-calculus) For all M,N ∈ Λ,
M→N⇔ ~M�λ→ ~N�λ.

The proof of Theorem 5.5.1 is contained in Section 5.15.

5.5.2 The early π-calculus

The signature Σπ of ourπ-calculus is modelled by a base sort P and atom sort C (for
processes and channels, respectively) and the following function symbols.

1. 0 :→ P for inaction (deadlock),

5 In [2], Abramsky uses the symbol ⇓ in lieu of → .

Matteo Cimini 173

2. τ._ : P→ P for τ-prefix,

3. out(_, _, _) : (C × C × P)→ P for output prefix,

4. in(_, _) : (C × [C]P)→ P for input prefix,

5. ν(_) : [C]P→ P for restriction,

6. _ | _ : (P × P)→ P for parallel composition,

7. _ + _ : (P × P)→ P for nondeterministic choice,

8. !_ : P→ P for parallel replication.

The reader should notice that since our aim in this section is to provide an example
of usage of Nominal SOS to the user, we prefer to stick with the exact definitions
of the framework, and the syntax employed for input and output prefix differs
slightly from the standard notation used in the π-calculus. In particular, our
term out(a, b,P) corresponds to the process ab.P of the π-calculus, and in(a, [b].P)
corresponds to a(b).P. The same choice is adopted for the labels.

Below, we specify the semantics of the early π-calculus in Nominal SOS. Since
in our framework labels are open terms, we display an input transition label as
in(a, b), assuming a different operator in accepting two atoms as arguments. For
presentational purposes, we use the same names to stipulate the meaning of the
transitions. For the same reasons, we model an output transition label as out(a, b)
and a bound output transition label as bout(a, [b]0), abbreviated as bout(a, [b])
throughout the text. The constant τ is also used in τ-transitions. The set of rules
of the signature Σπ contains the following rules, we use α to range over labels and
a, b and c to range over atoms.

174 Meta-theory of SOS

(τ)
τ.x τ
→ x

(out)
out(a, b, x)

out(a,b)
→ x

x b A
7→c
−→ y

(in)
in(a, [b]x)

in(a,c)
→ y

x1
α
→ y1

(sum1)
x1 + x2

α
→ y1

α < {bout(a, [b]) | a, b ∈ C}
x1

α
→ y1

(par1)
x1 ‖ x2

α
→ y1 ‖ x2

x1
bout(a,[b])
→ y1 b#x2

(parRes1)
x1 ‖ x2

bout(a,[b])
→ y1 ‖ x2

x1
out(a,b)
→ y1 x2

in(a,b)
→ y2

(com1)
x1 ‖ x2

τ
→ y1 ‖ y2

x1
bout(a,[b])
→ y1 x2

in(a,b)
→ y2 b#x2

(close1)
x1 ‖ x2

τ
→ ν([b](y1 ‖ y2))

x α
→ y

(repl)
!x α
→ y ‖!x

x
out(z,a)
→ y a , z

(open)
ν([a]x)

bout(z,[a])
→ y

c < ba(α)
x α
→ y c#α

(res)
ν([c]x) α

→ ν([c]y)

For the sake of brevity, we omit the symmetric versions of rules (sum1), (par1),
(parRes1), (com1) and (close1). These are referred to as (sum2), (par2), (parRes2),
(com2) and (close2). Moreover, for each label l, l

→ is up to α-equivalence. As in
the previous case, by Definition 5.4.5 this means that the set of rules of Σλ contains
the rules for α-conversion transitions and the rules for atom-for-atom substitution
transitions. The latter are needed both in the context of α-conversion and in the
rules which specifically define our formulation of π-calculus, see rule (in). We set
the atom-for-atom transition relations to be up to α-equivalence, too.

The reader must notice that the complicated side-conditions of the ordinary for-
mulation of π-calculus are here replaced by rather simpler freshness conditions,
see rules (parRes1) and (close1). By way of example, we consider for instance
the rule of the original π-calculus that describes the interleaving semantics of the
parallel composition operator. The complete set of rules is, however, given later
on in this section.

bn(α) ∩ f n(x2) = ∅
x1

α
→ y1

(parO1)
x1 ‖ x2

α
→ y1 ‖ x2

Matteo Cimini 175

where bn(α) denotes the set of bound names that occur in the label α and f n(P)
denotes the set of names that have a free occurrence in P, see [132]. (They are
however repeated in Section 5.12.)

The side-condition for this rule is "external" to the semantic specification. In
implementations, checking whether this side-condition holds is handled only by a
run-time check, after a substitution is applied in order to use the rule (parO1) with
concrete terms. On the theoretical side another approach is to populate the SOS
semantics with copies of the same rule for each combination of label, substituted
to α, and closed term, substituted for x2, that satisfies the side-condition. This
approach does not simplify the theory. As a result, proofs in the context of the
π-calculus are usually non-uniform in their development, having the necessity to
switch, from time to time, from technicalities within the semantics of the calculus
to technicalities concerning the external level of the side-conditions.

In our formulation of π-calculus, the behaviour of the rule (parO1) is modelled
by considering two cases. In the first case we define the interleaving semantics of
the parallel composition for all the labels that do not need the considered special
checking. These are all the labels with the exception of the labels regarding bound
outputs. Rule (par1) is devoted to this aim. In the second case, we manage the
labels that require the extra checking, namely the bound outputs. Thanks to the
freshness premises, we are able to model this checking within the framework, see
rule (parRes1).

The convenient use of freshness premises in the rules for π-calculus shows, in
some sense, that the novelty of having freshness tests in rules is not only useful
in modelling in a direct way meta-level operations such as substitutions and α-
conversion, see Section 5.4, but it is also useful in the modelling of specific features
of languages.

We denote by Π be the set of π-terms of [132]. The encoding ~·�π is a map from Π

into terms of our nominal π-calculus and it is defined as follows.

~0�π = 0
~τ.P�π = τ.~P�π

~ab.P�π = out(a, b, ~P�π)
~a(b).P�π = in(a, [b]~P�π)
~νa.P�π = ν([a]~P�π)

~P + Q�π = ~P�π + ~Q�π

~P ‖ Q�π = ~P�π ‖ ~Q�π

~!P�π = !~P�π

176 Meta-theory of SOS

Since we use a different notation for actions, the encoding is extended to labels as
follows.

~τ�π = τ

~ab�π = in(a, b)
~ab�π = out(a, b)
~a(b)�π = bout(a, [b])

For ease of reference, we repeat below the rules of the semantics of the original
early π-calculus of [132]6. In the rules that follow, names(α) denotes the set of
names that occur in the label α, bn(α) denotes the set of bound names that occur
in the label α and f n(P) denotes the set of names that have a free occurrence in P,
see [132]. These definitions are repeated in Section 5.12 together with some other
useful definitions from the standard theory of π-calculus.

(τO)
τ.x τ
→ x

(outO)
ab.x ab
→ x

(inO)
a(b).x ac

→ x[c/b]

x1
α
→ y1

(sumO1)
x1 + x2

α
→ y1

bn(α) ∩ f n(x2) = ∅
x1

α
→ y1

(parO1)
x1 ‖ x2

α
→ y1 ‖ x2

x1
ab
→ y1 x2

ab
→ y2

(comO1)
x1 ‖ x2

τ
→ y1 ‖ y2

b < f n(x2)
x1

a(b)
→ y1 x2

ab
→ y2

(closeO1)
x1 ‖ x2

τ
→ νb.(y1 ‖ y2)

x α
→ y

(replO)
!x α
→ y ‖!x

a , z
x za
→ y

(openO)
νa.x

z(a)
→ y

c < names(α)
x α
→ y

(resO)
νc.x α
→ νc.x

For the sake of brevity, we omit the symmetric versions of rules (sumO1), (parO1),
(parResO1), (comO1) and (closeO1). In what follows, these are referred to as
(sumO2), (parO2), (parResO2), (comO2) and (closeO2).

The reader should not confuse the opertation of substitution over π-terms em-
ployed in the rule (inO) with the syntactic substitution over nominal terms defined
in Section 5.4.1. Also, π-terms are considered up to α-equivalence. The defini-

6 [132] presents more rules for the replication operator for technical reasons we are not con-
cerned with here, see pages 42 and 43 in that reference for more information.

Matteo Cimini 177

tions of substitution and α-equivalence of the π-calculus are standard and not
provided in the main body of the chapter. (They are however repeated in Section
5.12.)

We now have all the ingredients to state a correspondence between the two calculi.
The following theorem establishes that our formulation of the early π-calculus is
operationally correct with respect to its original formulation.

Theorem 5.5.2 (Operational Correspondence: early π-calculus) For all P,Q ∈ Π,
P α
→Q ⇔ ~P�π

~α�π
→ ~Q�π, where α ranges over the labels of the form τ, ab, ab and a(b)

from the original early pi-calculus.

The proof of Theorem 5.5.2 is contained in Section 5.16.

5.5.3 A remark on the Barendregt Convention

Typically, in calculi with binders, terms are assumed to make use of some disci-
pline on the choice of the names for the variables used in programs. This discipline
is the so called Barendregt Convention and roughly states that, within a term, the
names of bound variables must be chosen to be all different and also different
from every free variable. For instance, in the context of the λ-calculus, the term
(λx.(x y) x) is not considered part of the λ-calculus by the Barendregt Convention.
This term is considered only in one of its α-equivalent forms that does respect the
convention, for instance the term (λz.(z y) x).

This discipline on the names for variables is very useful in the development of
the theory of calculi with binders. In particular it prevents the user from dealing
with technicalities due to name clashes and allows one to focus directly on the
computational aspects of a calculus. Of course, when implementing a calculus,
the Barendregt Convention must, however, be addressed with a pre-processing
step.

Our formulations of the lazy λ-calculus and of the early π-calculus do not make
use of this convention; in fact, we do not make use of any convention regarding
the name of atoms used in the terms.

Considering, for instance, our formulation of the lazy λ-calculus, the user can
write the term (λ([a].(λ([b].a b))) b). This term obviously does not adhere to
the Barendregt Convention, as the atom b is used both as bound and free.
The reader may notice however that this is not a problem in our formula-

178 Meta-theory of SOS

tion of the λ-calculus. Indeed, the term is automatically converted to an α-
equivalent good one at the moment of performing a computational step. A transi-
tion (λ([a].(λ([b].a b))) b)→λ([c].b c) is indeed provable by rule (app), for all atoms
c that are fresh in the subterm (a b) of λ([b].a b)). In more detail, what happens

in this situation is that the premise y0
a T
7→x1
−→ y1 of the rule (app) cannot be satisfied

in general when y0 is instanciated for the term (λ([b].a b))) b). Indeed, without

α-conversion, the term (λ([b].a b))) b) does not perform a transition a T
7→b
−→ since the

bound atom b is not fresh in the argument term b, and the premise a#z of (abs1Ts),
instanciated in that context as b#b, would not be satisfied. Fortunately, we set the
term-for-atom substitution transitions to be up to α-equivalence, so one instance
of the rule

x→α y y a T
7→b
−→ z

x a T
7→b
−→ z

(a T
7→ b · upToα).

is actually employed. The term (λ([b].a b))) b) is thus α-converted to another term,
which actually allows the premise a#z of (abs1Ts) to be satisfied.

The nominal machinery employed here plays a crucial role in this scenario, allow-
ing for an implicit search for a suitable fresh atom, which is clearly guaranteed to
exist.

In some sense, Nominal SOS naturally implements a sort of lazy Barendregt
Convention, i.e. the change of atom names into suitable ones is performed during
the computational steps, on demand, and only when facing the name clashes. All
of this is possible thanks to the adoption of the nominal approach.

In implementations, these nominal calculi formalized using Nominal SOS do not
require any pre-processing step in order to change the name of atoms in programs.
This is particularly desirable in distributed contexts, where different pieces of code
may come from different locations, written by different programmers who have
no idea about the names for bound atoms used by others, and still their programs
must be combined together.

For the sake of clarity, we point out that, by not assuming the Barengret Conven-
tion, the user can also write terms such as (λ([a].(λ([a].a) a) b). In this case the
computational step behaves as expected. In particular we can prove the transi-

Matteo Cimini 179

tion (λ([a].(λ([a].a) a) b)→ (λ([a].a) b), where the term λ([a].a) remains unchanged

because of the transition λ([a].a) a T
7→b
−→ λ([a].a) proved using rule (abs2Ts).

5.6 Nominal bisimilarity

Very often, in the theory of calculi with binders, the ordinary bisimilarity is not
a satisfactory equivalence. This is typical in calculi that allow terms to perform
transitions whose labels mention fresh or bound variables. As a prominent ex-
ample, we show the following example taken from [132] in the context of the
π-calculus. We first recall the definition of bisimilarity over π-calculus processes,
for which we overload the symbol↔––.

Definition 5.6.1 (Bisimilarity) Bisimilarity ↔–– is the largest symmetric binary rela-
tion ∼ on Π such that whenever P ∼ Q, for all labels l it holds that if P l

→P′ then there
exists Q′, such that Q l

→Q′ and P′ ∼ Q′.

With respect to bisimilarity, the processes

P = νz.xz.
Q = νz.(xz. || νw.wy.)

are distinguished7. Indeed, since processes in the π-calculus are considered up to

α-equivalence, we have that P
x(y)
→ . On the other hand Q can not turn its binder x(z)

into x(y) by α-conversion, because y is one of its free variables. Therefore Q
x(y)
9 .

Of course, P and Q should not be distinguished, and what actually happens in the

theory of the π-calculus is that the transitions of the form
x(z)
→ from P and Q are

matched only for those variables z that are free in both P and Q. The bisimulation
game is thus modified, and not all of the transitions from P and Q are considered
in the matching process8.

In what follows, we define this modified type of bisimilarity, here called nominal
bisimilarity. In doing so, the reader should bear in mind that Nominal SOS models
labels as open terms. In our framework, we therefore require that the bisimilarity
would match labels containing abstractions only when the bound atoms are fresh
in both of the considered terms. For instance, the bisimilarity in our formulation

7 The process νw.wy. performs an output on a channel which is not known by the external
environment, therefore this process is bisimilar to 0.

8 This point is explained carefully on pages 64-65 of [132].

180 Meta-theory of SOS

of the π-calculus will try to match bound output transitions of P and Q only for
labels of the form bout(a, [b]0) where the atom b is fresh in both P and Q.

Definition 5.6.2 (Nominal bisimilarity) Let T be an NTSS. Nominal bisimilarity

↔––T is the largest symmetric binary relation ∼ over closed terms of T such that whenever
P ∼ Q, for all labels l such that for all a ∈ ba(l), a#P, a#Q, it holds that if P l

→P′ then
there exists Q′, such that Q l

→Q′ and P′ ∼ Q′.

In what follows we will always omit the subscript in↔––T, and write↔–– for nominal
bisimilarity, as T will be always clear from the context.

We prove that what the nominal bisimilarity does in the ordinary π-calculus is
exactly what bisimilarity does in our formulation of the π-calculus when ignoring
the matching of substitution transitions in the bisimulation game. We denote this
equivalence with↔−. In what follows the encoding ~·�π is the mapping defined
in Section 5.5.2.

Theorem 5.6.3 (Nominal bisimilarity is bisimilarity, when ignoring substitutions)
For all P,Q ∈ Π, P↔–– Q if, and only if, ~P�π↔− ~Q�π.

The proof of Theorem 5.6.3 can be found in Section 5.21.

The reader may wonder what is the equivalence over π-calculus terms that cor-
responds to nominal bisimilarity, including substitution transitions. The next
theorem provides us with an answer: nominal bisimilarity in our formulation of
the early π-calculus coincides with Sangiorgi’s open bisimilarity, see [132, Section
4.2] and [131]. The open bisimilarity involves substitutions, which are defined as
follows, as recalled from [132] (Definition 1.1.3 on page 14).

Definition 5.6.4 (Substitutions involved in the open bisimilarity) A substitution
σ is a function on names that is the identity except on a finite set.

In this section we use the symbol σ for substitutions, as it is standard in the
literature on the π-calculus. The reader should not however confuse substitutions
with the sorts of Definition 5.2.1.

We now recall the definition of open bisimilarity from [132, 131].

Definition 5.6.5 (Open Bisimilarity) Open bisimilarity ◦↔–– is the largest symmetric
relation ∼ on Π such that whenever P ∼ Q, and σ is a substitution (of Definition 5.6.4),
if Pσ α

→P′, then there exists Q′, such that Qσ α
→Q′ and P′ ∼ Q′.

The reader should notice that this definition is the very basic formulation of open
bisimilarity, which does not involve distinctions, see [132] and [131]. In Definition

Matteo Cimini 181

5.6.5, it is important to note that the ranging over all the substitutions is performed
at each step of the bisimulation game.

Note furthermore that the substitutions involved in the open bisimilarity are
capture avoiding. This is a necessary constraint, for open bisimilarity would not
be a satisfactory equivalence otherwise. The reader can indeed consider the two
terms

P = νa.bb.
Q = νc.bb.

and the substitution σ that maps the name b to a and is the identity over all the
other names. If we allowed the application of substitutions to capture free names,
by applying σ to the two terms above we have that Pσ = νa.aa., which is nominal
bisimilar to 0, and Qσ = νc.aa., which can perform an output on the channel a. In
this scenario, the terms P and Q would be thus distinguished, even though they
are α-equivalent.

Theorem 5.6.6 (Open bisimilarity and Bisimilarity coincide) For all P,Q ∈ Π,
P ◦↔–– Q if, and only if, ~P�π ↔–– ~Q�π.

The proof of Theorem 5.6.6 can be found in Section 5.22.

In passing, we briefly discuss the version of open bisimilarity that involves dis-
tinctions. Indeed, the open bisimilarity as in Definition 5.6.5 is not a satisfactory
equivalence for the π-calculus, as it does not take into account the fact that two
atoms that are bound by a restriction ν can never be identified. This point is made
clear on page 167 of [132] by means of an example which we shall now show. Let
us consider the two processes P and Q defined as follows9:

P = νz.νw.xz.xw. (z ‖ w)
Q = νz.νw.xz.xw. (z.w + w.z).

We have that P and Q are not open bisimilar. To see this, it suffices to note that
the subterm (z ‖ w) of P and the subterm (z.w + w.z) of Q are not open bisimilar.
Indeed, if we fix a substitution σ that maps w to z and is the identity over all the
other channel names, we have that (z ‖ w)σ τ

→ and (z.w + w.z)σ τ
9 .

However, both the channel names z and w occur underneath a ν restriction and
they are thus forced to be distinct. Therefore, no substitution can make the two
channels suddenly able to communicate with each other.

9 In order to present our point more clearly, the two processes (z ‖ w) and (z.w + w.z) employ a
CCS-style syntax.

182 Meta-theory of SOS

The processes P and Q should indeed be considered equivalent. Sangiorgi equips
the open bisimilarity with distinctions in [131], see also [132], that keep track
of the names that cannot be identified during the bisimulation game. The open
bisimilarity with distinctions is a satisfactory equivalence for the π-calculus, as
argued in [132].

However, the scenario discussed above is too dependent on the intrinsic meaning
of binders to be captured by a general theory like the one we put forward in this
chapter. For instance, in the π-calculus there are two binders νa.P and a(b).P, but
only the former populates distinctions. The latter binder has a different meaning.
Since this work addresses only a basic and uniform account of binders, providing
an adaptation of the nominal bisimilarity of Definition 5.6.2 in order to tackle
distinctions, although possible, is not considered in this first development and is
part of our future work.

5.7 Applicative Bisimilarity

In the context of the lazy λ-calculus, one of the most interesting notions of bisim-
ilarity is the applicative bisimilarity due to Samson Abramsky, [2]. Below we recall
the definition of this equivalence. We also recall that aλ-term is closed if it contains
no free variables, and that we denote the set of closed λ-terms by Λ0.

Definition 5.7.1 (Applicative Bisimilarity in the λ-calculus) The applicative bisim-
ilarity is the largest symmetric relation' on Λ0 such that whenever M ' N, if M→λa.M′

for some variable a and M′
∈ Λ, then there exist some variable b and N′ ∈ Λ such that

• N→λb.N′, and

• M′[P/a] ' N′[P/b], for all P ∈ Λ0.

It is important to remark that the applicative bisimilarity of the λ-calculus is
defined over closed λ-terms. Indeed, this equivalence is strongly unsatisfactory
over terms that contain free variables. For instance, for any variables a, b and c, it
holds that a ' b and λa.b ' λa.c.

The notion of applicative bisimilarity can be accommodated within the context of
Nominal SOS in the obvious way.

Definition 5.7.2 (Applicative Bisimilarity over C(Σλ)) The applicative bisimilar-
ity is the largest symmetric relation ' on C(Σλ)0 such that whenever M ' N, if

Matteo Cimini 183

M→λ([a].M′) for some atom a and M′
∈ C(Σλ), then there exist some atom b and

N′ ∈ C(Σλ) such that

• N→λ([b].N′), and

• M′[P/a] ' N′[P/b], for all P ∈ C(Σλ)0.

The following theorem states that the applicative bisimilarity of our formulation
of the lazy λ-calculus and that of its original formulation coincide.

Theorem 5.7.3 (Applicative Bisimilarity in Λ and in Σλ coincide) For all M,N ∈
Λ0, M ' N if, and only if, ~M�λ ' ~N�λ.

The proof of Theorem 5.7.3 follows easily from Theorem 5.5.1, which states the
operational correctness of our lazy λ-calculus with respect to the original calcu-
lus.

It is now natural to wonder what are the relationships between the applicative
and the nominal bisimilarity in our formulation of the lazy λ-calculus. Unfortu-
nately, nominal bisimilarity is a very unsatisfactory equivalence over C(Σλ)0. In
particular, all the terms in C(Σλ)0 that have a normal form are equated.

Theorem 5.7.4 (Nominal Bisimilarity equates all ’terminating’ terms) For all M,N ∈
C(Σ)0, if M and N have a normal form then M↔–– N.

The proof of Theorem 5.7.4 can be found in Section 5.24.

Notice moreover, that both nominal and applicative bisimilarity equate all the
terms that do not have a normal form. The implications of Definitions 5.6.2 and
5.7.2 are indeed vacuously true. From this fact and from Theorem 5.7.4, the
following theorem easily follows.

Theorem 5.7.5 (Applicative is included in the nominal bisimilarity) It holds that
'⊂↔––.

However, the applicative bisimilarity is not included in the nominal bisimilarity.
This is stated in the following theorem.

Theorem 5.7.6 (Nominal is not included in the applicative bisimilarity) It holds
that↔––1'.

Theorem 5.7.6 follows easily from the fact that applicative bisimilarity distin-
guishes some binding-closed terms that have a normal form. Any two such terms
are counter-example witnesses for Theorem 5.7.6. By way of example, let us con-
sider the two terms M = λ([a].a) and N = λ([a].(a a)). Notice first that M and

184 Meta-theory of SOS

N are binding-closed and they have a normal form. By Theorem 5.7.4 we have
therefore that M ↔–– N. However, it holds that M ; N. To see this, the reader
should notice that after the ’parameter passing’ of the term N, the two terms are
distinguished. Namely, at the second step of the applicative bisimilarity we are
required to check, among other checks, whether the two terms a[N/a] = λ([a].(a a))
and (a a)[N/a] = (λ([a].(a a)) λ([a].(a a))) are applicative bisimilar. This is not the
case, as the former has a normal form while the latter does not have a normal form.
We have that λ([a].(a a)) ; (λ([a].(a a)) λ([a].(a a))) and consequently M ; N.

From the fact that the applicative bisimilarity of our lazyλ-calculus coincides with
that of its original formulation (Theorem 5.7.3), the following theorem follows as
a straightforward consequence of Theorems 5.7.5 and 5.7.6.

Theorem 5.7.7 (Nominal and Applicative Bisimilarity relation through the encoding)
For all M,N ∈ Λ0,

• M ' N implies ~M�λ ↔–– ~N�λ, and

• ~M�λ ↔–– ~N�λ does not imply M ' N.

5.8 Related Work

Nominal SOS is not the only approach studied so far in the literature that aims
at a uniform treatment of binders and names in the operational semantics of
programming and specification languages. We are aware of a number of existing
approaches that accommodate variables and binders inside the SOS framework,
namely those by Fokkink and Verhoef in [59], by Middelburg in [90, 91], by Miller
and Tiu in [93] and by Fiore and Staton in [56] (originally, by Fiore and Turi [57]).
Moreover, Gacek, Miller and Nadathur, in [64], Lakin and Pitts in [85] (MLSOS)
and also in [86, 87, 84] (αML), and Sewell at al. in [135] have also proposed
formalization of binders within SOS-like frameworks. In the following sections
we discuss in some detail the approaches that are more related to our work.

5.8.1 MLSOS and αML

In [85], Lakin and Pitts provide the meta-language MLSOS in which the various
transition relations of SOS can be specified in a functional style language. In
this section we do not repeat the definitions of the system from [85]. However,

Matteo Cimini 185

a reader who is familiar with functional programming will have no difficulty in
understanding the code fragments we present.

In [85], the authors provide a formulation of the λ-calculus that employs the par-
allel reduction strategy, i.e. the reduction is performed in any context. Below we
show a formulation of the simpler call-by-name λ-calculus, see [33]. Intuitively,
in the call-by-name λ-calculus the reduction is inductively shared only to the first
argument of an application. Namely, if M→M′, then (M N)→ (M′ N). The π-
calculus is not formalized in [85] and therefore we do not provide code for it. The
example for the λ-calculus suffices to show to the reader how MLSOS provides a
language for the specification of the SOS semantics of calculi with binders.

1 : nametype var ; ;
2 : datatype lam =

3 : Var of var
4 : Lam of <<var>> lam
5 : App of lam ∗ lam ; ;
6 :
7 : l e t rec sub x t t ’ = narrow t ’ as
8 : Var y : ((x=:=y) ; t or ((x=/=y : var) ; t ’)
9 : Lam <<a>>t ’ ’ : Lam <<a>>sub x t t ’ ’ :
1 0 : App (t_1 t_2) : App ((sub x t t_1) (sub x t t_2)) ; ;
1 1 :
1 2 : l e t rec beta (t_1 t_2) = narrow (t_1 t_2) as
1 3 : (t t) : yes
1 4 : (App (t_1 t_2) , t_3) : beta (t_1 t_2)
1 5 : (App ((Lam <<a>>t_1) , t_2) , t ’) :
1 6 : some t_1 ’ , t_2 ’ : lam in
1 7 : sub (a , t_2 ’ , t_1 ’) =:= t ’ ; ;

Lines 1-5 define the grammar for λ-terms, lines 7-10 define the substitution pro-
cedure and lines 12-17 defines the reduction relation. The reader can see how the
way of defining the terms of a calculus recalls the way of defining inductive types
in a functional language. Also, the definition of the various transition relations
are encoded as some sort of function definitions of functional languages.

It is important however to notice that, in MLSOS, the only operations allowed
on atoms are equality tests and the generation of fresh atoms. In MLSOS, in a
λ-term

λ〈〈a〉〉(Var a)

186 Meta-theory of SOS

the variable a actually ranges over the infinite set of atoms, and will be instanciated
to a fresh atom on demand. The user cannot name atoms directly.

This approach stems directly from Nominal Logic [117]. In particular, the nominal
N-quantifier is employed in this case, see also [61] where it was introduced. This

solution to the modeling of languages was adopted already in FreshML, [137, 136].
FreshML adds to ML the capability to generate fresh new names with the keyword
fresh. For instance, in the term let x = fresh in Lam〈x〉(Var x), the occurrences
of the keywork fresh are evaluated by generating a name never seen before and
placed in the body of the abstraction. The management of this, and the actual
atom names employed in the execution of a program, are hidden to the user.

A different choice is instead made in the meta-language αML, [86, 87], which, in a
sense, is what MLSOS evolved into. The syntax of αML shares many similarities
with the one of MLSOS, in particular, it stems from its functional language style
syntax. However, some peculiarities of αML also come from the world of the
constraint logic programming, [81]. The management of variables of αML follows
a different philosophy. As argued in Lakin’s Thesis [84], where an excellent and
complete overview of the language αML can be found, in the term

Lam〈〈x〉〉(Lam〈〈y〉〉(Var x))

the variables x and y are not assumed to be distinct just for having a distinct name.
This term can denote both the λ-terms λa.λb.a and λa.λa.a, as y is not required to
denote a name that is different to the one denoted by x.

One can however state explicitly some conditions on name. In particular, the user
can disseminate the program with constraints of name equality and freshness. If
we wish the variables x and y to denote different names in the term above, we can
rewrite it in αML as

∃x : var.∃y : var.(x#y & Lam〈〈x〉〉(Lam〈〈y〉〉(Var x))).

The management of constraints is delegated to constraint solving facilities of
constraint logic programming. The interested reader is invited to refer to Lakin’s
Thesis [84].

The reader must notice that the handling of variables in all of the mentioned
approaches (MLSOS, FreshML and αML) is different from how Nominal SOS
handles name. In particular, in those approaches the user does not have access

Matteo Cimini 187

to concrete atoms/variables directly. This goes along with what in the nominal
context is called the equivariance property, see [61] and especially [117]. This prop-
erty roughly states that the meaning of programs should not depend upon the
concrete atom name which is chosen in the implementation of abstractions. On
the other hand, within Nominal SOS one can write programs whose behaviour
is strongly associated to a particular bound name. For instance, let us consider
augmenting the rules of our formulation of the lazy λ-calculus with the following
rule, where N is a given closed term and a is a fixed atom. (The following rule is
therefore not replicated for all atoms and closed terms.)

x a 7→N
−→ x′

λ([a]x)→ x′

In this case, the calculus acts non-deterministically for λ-abstraction terms that
use the atom a as bound. Namely, given a closed term M, the term λ([a]M) can
perform two transitions. We can apply the rule (abs) of Section 5.5.1 in order
to prove the standard transition λ([a]M)→λ([a]M). On the other hand, we can
apply the rule above. Applying this rule, the abstraction λ([a]M) pretends that
the parameter passing of a term N took place. Since the rule above is defined only
for the atom a, the rule above cannot be applied for a term λ([b]M), with a and b
distinct atoms.

Defining the behaviour of programs in a way that it depends on specific bound
names should be considered bad language design. In Nominal SOS, however, a
language specifier is free to explore also this possibility.

Another difference between Nominal SOS and the approaches of MLSOS and
αML is that the latter ones provide for a primitive built-in support for managing
the abstract syntax trees of terms which are identified up to α-equivalence. The
motivation for such a choice is that this support for α-equivalence is required in
any calculus that contains binders. If α-equivalence is not built-in, this support
needs to be coded up by hand. In our context, the code for this management does
not represent much of a problem; indeed it can be automatically generated, as
shown in Section 5.4. Secondly, as our design choice, we prefer α-equivalence to
be a transition in the semantics just like any other, so that it can be the subject
of meta-theorems based on the shape of rules that may be developed in the
future.

188 Meta-theory of SOS

5.8.2 FOλ∆∇

In [93], Miller and Tiu make use of a logic that is already equipped with λ-terms;
this approach is called the λ-tree approach to encoding syntax. The particular logic
they employ is called FOλ∆∇ (fold-nabla). The main peculiarity of this logic is
that, besides containing the connectives and quantifiers of ordinary logic, terms
can be of the form λy.P, meaning that the variable y is bound in the body P.
Also the notion of application as higher-order term passing is already embedded
in the logic. The logic is equipped with a sequent calculus that takes care of
this λ-calculus style features and also deals with the technicalities that arise with
dealing with binders. Another distinctive feature of the logic FOλ∆∇ is the use of
the new quantifier ∇. Basically the meaning of a formula ∇x.Φ is that x is a fresh
new name within the scope of the quantifier ∇, i.e. within the formula Φ.

A user can use the logic in order to specify the semantics of calculi with binders.
In [93], the authors formulate the late and earlyπ-calculus. The semantics of these
calculi are presented conveniently by a set of rules. For instance, the rule

P α
→R

P + Q α
→R

is expressed by the FOλ∆∇ formula (P α
→R) ⊃ P + Q α

→R. This formula formalizes
a part of the behaviour of the choice operator in much the same way as the rule
(sum1) does in our formulation of Section 5.5.2. The symbol ⊃ stands for the
standard implication, P,Q and R are variables ranging over terms, α

→ is a binary
relation symbol10 in the signature of the logic and + is a binary function symbol in
the signature of the logic. The whole set of rules that define the late and the early
π-calculus can be found in [93]. Here we discuss only a few rules that highlight
the characteristic features of the approach. Consider for instance the following
rule

∇x.(Px A
→Qx)

(parRes1)
νx.(Px) A

→ νx.(Qx)

Thanks to the quantifier ∇, the premise of the rule is satisfied when the process
that instanciates the variable P performs a transition when the name x in its body
is chosen fresh. If this happens then the term νx.P can progress accordingly. The
quantifier ∇ is thus very expressive, and offers the possibility to treat names as

10 In [93], relations also are labeled with a type. In order to ease the presentation we here omit
type information.

Matteo Cimini 189

fresh new ones when needed. This feature turns out to be frequently useful,
especially in the context of the π-calculus and similar calculi.

The reader may want to consider also the rule for the input prefix

(in)
in(λy.M)

↓XU
→ (MU)

In this rule X and U represent variables for channel names. The computational
step for input prefix processes is formalized by means of the λ-calculus style
parameter passing embedded in the logic.

The sequent calculus for FOλ∆∇ takes care of deriving the expected formulae,
dealing with the binders with its λ-calculus style features and with special man-
agement for the quantifier ∇. The sequent calculus is not showed here, the
interested reader can consult [93] and [92] for it.

The main difference between Nominal SOS and the approach in [93] is that in
Nominal SOS no technicality concerning the use of binders is hidden and given as
built-in. Moreover, Nominal SOS does not rely on existing notions for parameter
passing. The language specifier needs to define nearly everything. This may give
the user also the possibility to explore, for instance, other types of substitution or
equivalence of terms.

5.8.3 SOS in Abella

In [64], Gacek, Miller and Nadathur describe a method to specify calculi with
binders. They make use of the λ-tree syntax approach, discussed in the previous
section about the approach with FOλ∆∇. The aim of the authors is to use the proof
assistant Abella, [62], in order to reason about calculi with binders. Abella is a
proof assistant for the specification logic G, [63], which we do not discuss here.
In the approach of [64], the authors do not make use of the logic G directly; they
instead provide a second specification logic that is more suited for their purposes.
This latter logic is the theory of the intuitionistic second-order hereditary Harrop
formulae, there called hH2. The logic hH2 turns out to be a convenient vehicle in
order to formulate rule-based definitions such as the ones encountered in SOS. It
also turns out that, since hH2 is a subset of λProlog, [111], specifications in hH2 can
be computed and executed effectively.

190 Meta-theory of SOS

The authors provide an encoding from formulae of hH2 into the logic G, making
the use of the Abella proof assistant possible.

In [64], the authors formalize the simply typed call-by-value λ-calculus, see [34].
Roughly speaking, in the call-by-value strategy, the λ-calculus parameter passing
involved in the application (λx.M) N is performed only when the term N is a
value, i.e. when N is an abstraction. The term N is thus first evaluated until
it becomes a value. For the sake of the presentation, we show the code for the
call-by-value λ-calculus in its untyped version.

∀ a,r [value(abs a r)]

∀m,n,m’ [step m m’ ⊃ step(app m n) step(app m’ n)]

∀m,n,n’ [value m ∧ step n n’ ⊃ step(app m n) step(app m n’)]

∀ a, r, m [value m ⊃ step(app(abs a r) m) (r m)]

The predicate ’value’ recognizes values, i.e. abstractions. The term (app m n) corre-
sponds to the application (M N). In the formulation of [64], the term (abs a (λx.r x))
represents an abstraction in the programming language in which the bound vari-
able x has type a. The predicate ’step’ is defined by the last three implications in
the expected way.

Since the theory proposed in [64] follows the λ-tree approach, its differences with
Nominal SOS are by and large the same stated in the previous section, concerning
the approach with FOλ∆∇. As another difference, we can see that the logic hH2

lacks an explicit and clear mechanism for stating freshness conditions. Note,
however, that the specification logic G of Abella is in general more powerful and,
in particular, it is capable of expressing freshness conditions. When necessary, the
language specifier can modify the code produced by the encoding from hH2 into
the logic G in order to state freshness conditions.

5.8.4 SOS with Ott

In [135], Sewell et al. describe Ott, a tool support for the specification of calculi
with binders in SOS. The general idea behind Ott is similar to the one for the
approach described in the previous section for SOS specifications in Abella. The
authors provide a meta language for formulating the semantics of calculi with
binders and the purpose of the Ott tool support is to generate from the specification
the code for some popular proof assistants. In this approach, the proposed meta-

Matteo Cimini 191

language is not a logic as in the case of the previous section; it is instead a simple
and intuitive language for which we shall give an example below.

Again, we do not describe the entire system, but the reader can obtain an idea of
how this system works by means of an example. In [135], the authors formalize
the call-by-value λ-calculus. As the language tends to be particularly verbose,
below we present our formulation of the simpler call-by-name λ-calculus. The
code below has been also stripped of some decorating syntax and those parts that
are not relevant to understand Ott at this stage. The interested reader is invited
to read [135] for a full description of the system and the syntax employed.

grammar
term t : : ’ t_ ’ : : =

x : : var
\ x . t : : lam (+ bind x in t +)
t t ’ : : app

termina ls : : ’ terminals_ ’ : : =
\ : : lambda { { tex \ lambda } }

(1) −−> : : red { { tex \ longrightarrow } }

defn
t_1 −−> t_2 : : reduce : : { { com [[t_1]] reduces to [[t_2]] } }

−−−−−−−−−−−−−−−−−−−−−−−−−− : : ax
\ x . t_1 t_2 −−> { t_2 / x } t_1

t_1 −−> t_1 ’
−−−−−−−−−−−−−−−−−−−−−−−−−− : : ru le1
t_1 t −−> t_1 ’ t

The first part of the code is devoted to the formalization of the terms of the
calculus. It is important to note that the language provided by Ott requires the
user to use the special decoration (+ bind x in t +) in order to specify binding
information. The rest is quite simple to understand. In particular, the language
provided by Ott allows the user to specify the SOS semantic rules for the calculus
at hand as she/he would draw them from the paper to the text editor.

192 Meta-theory of SOS

The tool support Ott takes the specification and returns code for the most popular
interactive theorem provers, such as Coq [23], HOL [122] and Isabelle/HOL [114].
Nicely, Ott also returns code for a LaTeX presentation of the calculus. The reader
can see that the listing above is indeed disseminated every now and then with
presentational information. For instance, with the line that we labelled (1), the
latex code generated will be such that the transition relation denoted −− > in the
text editor will be represent by the symbol −→.

Nominal SOS and the approaches discussed in the previous sections employ a
single binding. Roughly speaking, they are abstractions in the style of λ-calculus
where in the term λx.M only one variable can be bound. Ott allows for more
complex binding structures, for instance structured patterns, multiple mutually
recursive let definitions, and dependent record patterns, see [135] and [69].

However, the single binding employed by Nominal SOS and by the other frame-
works has proved to be expressive enough for most of the cases.

5.8.5 General Remarks

As a general remark on the related work, the mentioned systems attack the prob-
lem of defining the operational semantics of nominal calculi using an approach
that is different from the one proposed in this chapter. Our long-term goal is to
develop systematically a meta-theory of SOS for calculi with binders and, follow-
ing the lead of the meta-theory of ordinary SOS, to investigate at a syntactic level
those semantic phenomena that are specifically concerned with binding.

From this point of view, the previous approaches do not seem close enough to the
standard framework of ordinary SOS, while Nominal SOS, being a slight variation
of it with specific primitive notions for dealing with binders, is fairly close. We
believe that the close relationship between Nominal SOS and ordinary SOS will
have the following benefits.

1. We will be able to lift/adapt already existing meta-theory to the context of
binders with relative little effort. Transporting the body of meta-theoretic
results to the contexts of the other approaches seems to be a more difficult
task.

2. The content of the meta-theorems and the line of investigation will resemble
closely those achieved so far for ordinary SOS, and with which SOS users
are familiar.

Matteo Cimini 193

3. Moreover, thanks to the nominal approach, we hopefully have an intuitive
and familiar language with which we could explain why certain calculi
afford a property while others do not, for instance by means of presence/ab-
sence of freshness premises, or of a syntactic discipline in the use of them or
of other related nominal concepts.

Carrying out a study of the meta-theory of languages with binders based on the
other approaches is still possible, but it is not part of our immediate future research
goals.

5.9 Conclusions and Future works

In this chapter, we have introduced a framework, called Nominal SOS, for
modelling the operational semantics of nominal calculi. The framework comes
equipped with the basic features used in defining such calculi, namely, substi-
tution and α-conversion. Since these notions are generated from the nominal
signature they can be replaced by, and the user can experiment with, for instance,
other notions of substitution. Our syntax has two levels of variables like the one
in [145], but we do not take permutations as primitive—because there is no need
to do so; we obtain α-conversion ‘for free’ based on atom-for-atom substitutions
as a nominal SOS theory. This suffices for our examples of interest, e.g. the λ- and
π-calculi.

We used the framework to specify the semantics of the lazy λ-calculus and early
π-calculus and showed that our formulations of the semantics coincide with
the original ones. A notion of nominal bisimilarity arises naturally from our
framework. Moreover, we showed that the notion of nominal bisimilarity in our
semantics of the early π-calculus coincides with open bisimilarity in the original
semantics.

Nominal SOS provides a framework to extend the meta-theory of SOS to the
nominal setting. This chapter contains only the basic developments of the frame-
work, accompanied by some examples. The framework seems close enough to
the formalization of the standard theory of SOS in such a way that the mode of
operation for carrying out meta-theory over Nominal SOS and the content of the
corresponding meta-theorems would resemble very closely those presented for
instance in [18, 109]. Hence, lifting previous results from the meta-theory of stan-
dard SOS to the new context seems also feasible. Our main aim is to develop the

194 Meta-theory of SOS

theory and applications of Nominal SOS so that it reaches a level of maturity that
is comparable to that of the theory of classic SOS, as surveyed in, e.g., [18, 109].
More specifically, the main goals of our future work are as follows.

• We intend to provide further evidence that Nominal SOS is expressive
enough to capture the original semantics of nominal calculi, such as variants
of the π-calculus and its higher-order version [130], the psi-calculi [36] and
the object calculi [1], and to prove formally the correspondence between
the presentation in terms of Nominal SOS and the original ones. Also, we
plan to address different notions of equivalence betweens terms. Just to
name a few examples, it would be worth defining within Nominal SOS a
notion that is the analogous of the applicative bisimilarity in the context
of the λ-calculus, [2], and investigating the relation between the notion of
nominal bisimilarity and the applicative bisimilarity. Also, an adaptation
of the nominal bisimilarity that coincides with the open bisimilarity with
distinctions, [132, 131], when applied to π-calculus terms.

• We plan to develop the meta-theory of Nominal SOS, for example by provid-
ing congruence formats ifor behavioural semantics n the context of calculi
with binders, possibly generalizing those proposed in [153] and [56], for
instance. Also, confluence is an important property that has not been tackled
yet by the theory of SOS in the context of rule formats. Many important
confluence results stem from the realm of calculi equipped with binders;
the reader may indeed think of the λ-calculus and its variants. It would be
thus desirable to provide rule formats guaranteeing the confluence property
within the framework of Nominal SOS. Meta-theory over Nominal SOS can
be carried out also for all those phenomena that are specifically related to
binders. For instance it would be worth providing rule formats guaranteeing
that the late and early bisimilarity, see [132], coincide.

• We expect to extend a wealth of classic SOS meta-results and techniques to
the framework of Nominal SOS.

• We plan on providing tool support for Nominal SOS.

Matteo Cimini 195

5.9.1 Extensions of the framework

In a sense, in this chapter we have formulated Nominal SOS in its most basic
form. We are aware of a few possible extensions of the framework, which would
be worth adding.

Negative freshness premises. A possible extension of the framework would be
to add the possibility to have premises of rules of the form ¬(a#t), with t a term.
Intuitively, this premise is satisfied when the atom a is not fresh in the term t.
Negative freshness tests as premises do not seem to be employed in general in
the definition of nominal calculi, and thus they are left out in our formulation of
Section 5.3.

Variables in bound terms. It would be worth extending the syntax of nominal
terms of Section 5.2 by augmenting the grammar with the following form of
terms

t ::= . . . | ([xA]tσ)[A]σ

Intuitively, x is a variable of atom sort. The reader may recall that the terms
defined in Section 5.2 are such that abstractions are only of form [a].t with a
concrete atom a. It is important to notice that, given a term t, the term [x].t is an
open term while the term [a].t is closed. This addition should be accompanied by
an extension of the set of possible premises in rules so that also premises of the
form x#t, with x a variable of atom sort are allowed. By way of example, these
two extensions would allow Nominal SOS to formulate the semantics of the lazy
λ-calculus with the following two rules.

λ([z]x)→λ([z]x)

x0→λ([z]y0) y0
z T
7→x1
−→ y1 y1→ y2

x0 x1→ y2

The rules above use the variable z in order to range over the set of atoms. These
two rules alone can replace the rules (abs) and (app) of Section 5.5.1, which use
concrete atoms and they are thus replicated for every atom. The semantics of the
λ-calculus would be thus finitely formalized.

196 Meta-theory of SOS

Specific syntax to state the meaning of binders. Another possible extension of
the Nominal SOS framework is to augment the signature of an NTSS with infor-
mation that concerns the meaning of the binders in the language. The meaning of
binders used in nominal calculi can indeed be of various nature. For instance, the
binder λ in the formulation of the λ-calculus binds its argument atom in a way
that supports a substitution for it in a parameter passing fashion. On the other
hand, the meaning of the binder ν in the formulation of the π-calculus binds its
argument atom to indicate that its name must be considered private.

It would be worth investigating a suitable language that allows the user to express
how binders are intended to be used in the calculus. Insofar this subject is
concerned, we have no preliminary developments so far.

5.10 Useful definitions for nominal terms.

We recall the syntax for nominal terms given in Definition 5.2.2.

t ::= xσ | aA | ([aA]tσ)[A]σ | (f(σ1,...,σn)→δ(tσ1 , . . . , tσn))δ

We define vars(t), the set of variables that occur in the term t, by induction on the
structure of t.

vars(x) = {x}
vars(a) = ∅

vars([a]t) = vars(t)
vars(f (t1, . . . , tn)) = vars(t1) ∪ . . . ∪ vars(tn)

We define A(t), the set of atoms that occur in the term t, by induction on the
structure of t.

A(x) = ∅

A(a) = {a}
A([a]t) = {a} ∪ A(t)

A(f (t1, . . . , tn)) = A(t1) ∪ . . . ∪A(tn)

We define ba(t), the set of bound atoms that occur in the term t, by induction on
the structure of t.

Matteo Cimini 197

ba(x) = ∅

ba(a) = ∅

ba([a]t) = {a} ∪ ba(t)
ba(f (t1, . . . , tn)) = ba(t1) ∪ . . . ∪ ba(tn)

We define f a(t), the set of atoms a inA(t) that have an occurrence in t that is not
within the scope of an abstraction [a]._, by induction on the structure of t.

f a(x) = ∅

f a(a) = {a}
f a([a]t) = f a(t) − {a}

f a(f (t1, . . . , tn)) = f a(t1) ∪ . . . ∪ f a(tn)

5.11 Useful definitions for λ-terms.

We define FV(M), the set of free variables that occur in a λ-term M, by induction
on the structure of M.

FV(a) = a
FV(λa.M) = FV(M) − {a}

FV((M N)) = FV(M) ∪ FV(N)

We say that a λ-term M is closed if FV(M) = ∅, i.e., if M does not contain free
variables.

Given a variable a and two λ-terms M and N, we define the substitution operation
M[N/a] defined inductively on the structure of M. In what follows a and b are
considered different variables.

a[N/a] = N
b[N/a] = b

(λa.M)[N/a] = λa.M
(λb.M)[N/a] = λa.(M[N/a]), i f b < FV(N)

(M1 M2)[N/a] = (M1[N/a] M2[N/a])

We also recall that α-equivalence in λ-calculus is defined as the least congruence ≡
on λ-terms such that if y < FV(M) then λx.M ≡ λy.(M[y/x]).

5.12 Useful definitions for π-terms.

We here recall that a label α can be of the following form

198 Meta-theory of SOS

α ::= τ | ab | ab | a(b)

where a and b are two channel names.

We define names(α), the set of names that occur in the label α, as follows.

names(ab) = {a, b}
names(ab) = {a, b}

names(a(b)) = {a, b}

We define bn(α), the set of names in the label α that are bound, as follows.

bn(ab) = ∅

bn(ab) = ∅

bn(a(b)) = {b}

We define f n(P), the set of names that occur free in the process P, as follows.

f n(0) = ∅

f n(τ.P) = f n(P)
f n(ab.P) = {a, b} ∪ f n(P)

f n(a(b).P) = {a} ∪ f n(P) − {b}
f n(νa.P) = f n(P) − {a}

f n(P + Q) = f n(P) ∪ f n(Q)
f n(P ‖ Q) = f n(P) ∪ f n(Q)

f n(!P) = f n(P)

Given a π-term P and distinct names a and b, we define the substitution operation
P[b/a] inductively on the structure of P. In what follows a, b, c and d ranges
over names. The substitution of names acts in the expected way. In particular
a[b/a] = b and c[b/a] = c when c , a.

0[b/a] = 0
(τ.P)[b/a] = τ.(P[b/a])

(cd.P)[b/a] = (c[b/a]d[b/a].P[b/a])
(c(d).P)[b/a] = c[b/a](d).(P[b/a])) with d , a
(b(a).P)[b/a] = b(a).P

(νc.P)[b/a] = νc.(P[b/a]) with c , a
(νa.P)[b/a] = νa.P

(P + Q)[b/a] = P[b/a] + Q[b/a]
(P ‖ Q)[b/a] = P[b/a] ‖ Q[b/a]

(!P)[b/a] = !(P[b/a])

Matteo Cimini 199

We also recall that α-equivalence in π-calculus is defined as the least congruence ≡
on π-terms such that

• if c < f n(a(b).P) then a(b).P ≡ a(c).(P[c/b]).

• if b < f n(P) then νa.P ≡ νb.(P[b/a]).

5.13 Correctness of Substitution Transitions w.r.t. Syn-

tactic Substitution: Proof of Theorem 5.4.2

We prove the two implications in the statement of Theorem 5.4.2 separately.

• ⇒: M a T
7→N
−→ M[N/a]

• ⇐: if M′ = M[N/a] then M a T
7→N
−→ M′

⇒

Let T be a NTSS and let us pick up closed terms M and N from the signature of T

and an atom a. Suppose that M a T
7→N
−→ M′. We prove that M′ = M[N/a].

The proof is by induction on the structure of the term M.

• Case M = a: There is only one possible substitution transition, a a T
7→N
−→ N by

rule (a1Ts). Indeed, a[N/a] = N.

• b, with b , a: There is only one possible substitution transition, b a T
7→N
−→ b, by

rule (a2Ts): Indeed, when b is different from a, we have that b[N/a] = b.

• Case M = [a]M1: There is only one possible substitution transition, [a]M1
a T
7→N
−→

[a]M1 by rule (abs2Ts). Indeed ([a]M1)[N/a] = [a]M1.

• Case M = [b]M1, with b , a: There is only one possible substitution transi-

tion, [b]M1
a T
7→N
−→ [b]M′ by rule (abs1Ts): Since this transition is provable, we

have that b#N and M1
a T
7→N
−→ M′. By the inductive hypothesis, which applies

to M1, we have that M1
a T
7→N
−→ M1[N/a]. Having b fresh in N and b , a we have

indeed ([b]M1)[N/a] = [b](M1[N/a]).

• Case M = f (M1,M2, . . . ,Mn): The only possible transitions are with rule

(fTs). Assume f (M1,M2, . . . ,Mn) a T
7→N
−→ f (M′

1,M
′

2, . . . ,M
′

n). Since this transition

200 Meta-theory of SOS

is provable, we have that M1
a T
7→N
−→ M′

1, M2
a T
7→N
−→ M′

2, . . . , Mn
a T
7→N
−→ M′

n. By the
inductive hypothesis, which applies to M1, M2, . . . and Mn, we know that
M′

i = Mi[N/a] for each i ∈ {1, . . . ,n}.

So f (M1,M2, . . . ,Mn) a T
7→N
−→ f (M1[N/a],M2[N/a], . . . ,Mn[N/a]).

Indeed f (M1,M2, . . . ,Mn)[N/a] = f (M1[N/a],M2[N/a], . . . ,Mn[N/a]).

⇐

Suppose that M′ = M[N/a]. We wish to prove that M a T
7→N
−→ M′ is a provable

transition. This can be proved by induction on the structure of M, following the
lines of the proof above.

5.14 Correctness ofα-Conversion Transitions w.r.t. Syn-

tactic α-Conversion: Proof of Theorem 5.4.4

The proof of Theorem 5.4.4 relies on the correctness of atom-for-atom substitution
transitions with respect to the syntactic substitution. We shall state this correctness
theorem explicit.

Theorem 5.14.1 (Correctness of atom-for-atom Substitution Transitions) Let T be
an NTSS and let M be a closed terms from the signature of T. Then, for all atoms a and

b, and for each term M′ it holds that M a A
7→b
−→ M′ if and only if M′ = M[b/a].

The proof of Theorem 5.14.1 follows exactly the same line as in the proof of
Theorem 5.4.2 (correctness of term-for-atom substitutions) in Section 5.13, and it
is omitted.

The following lemmas will be necessary to complete the proof. Their proofs are
straightforward and thus omitted.

Lemma 5.14.2 (Freshness after substitution.) Let T be an NTSS and let M be a closed
term from the signature of T. Then, for all atoms a and b it holds that a#M[b/a].

Lemma 5.14.3 (Substitution is involutive.) Let T be an NTSS and let M be a closed
term from the signature of T. Then, for all atoms a and b it holds that if b#M then
M = (M[b/a])[a/b].

Matteo Cimini 201

Lemma 5.14.4 (Existence of a substitution.) Let T be an NTSS and let M be a closed
term from the signature of T. Then, for all atoms b it holds that if b#M then the transition

M a A
7→b
−→ M′ is provable, for some M′.

We prove the two implications in the statement of Theorem 5.4.4 separately.

• ⇒: if M→α N then M =α N.

• ⇐: if M =α N then M→α N.

⇒

Let T be an NTSS and assume that M→α N. We prove that M =α N. The proof is
by induction on the length of the proof of the transition M→α N.

• Proofs of length 1: The only provable transition with length 1 is by rule (idα),
M→α M. In this case, by reflexivity of =α , we have that M =α M.

• Proofs of length n > 1: We proceed by a case analysis on the last rule used
in the proof of the transition M→α N.

– Suppose that M = [a]M1 →α [b]M′ = N using rule (abs1α), with b#M1

and M1
a A
7→b
−→ M′. By Theorem 5.14.1, which states the correctness of the

substitution transitions, we know that M′ = M1[b/a]. The transition
actually proved is thus [a]M1 →α [b](M1[b/a]). Since b is fresh in M1,
we have indeed that [a]M1 =α [b](M1[b/a]).

– Suppose that M = [a]M1 →α [a]M′ = N using rule (abs2α), with M1 →α

M′. Since the proof length for proving the transition M1 →α M′ is
strictly less than n, by the inductive hypothesis we can conclude that
M1 =α M′. Since =α is a congruence, we can place M1 and M′ in a same
context, thus [a]M1 =α [a]M′ = N.

– Suppose that M = f (M1,M2, . . . ,Mn) →α f (M′

1,M
′

2, . . . ,M
′

n) = N using
rule (fα), with M1 →α M′

1, M2 →α M′

2, . . . , Mn →α M′

n. Since the proof
length for proving all the mentioned transitions is strictly less than n,
by the inductive hypothesis we can conclude that M1 =α M′

1, M2 =α M′

2,
. . . , Mn =α M′

n. As in the previous case, since =α is a congruence,
f (M1,M2, . . . ,Mn) =α f (M′

1,M
′

2, . . . ,M
′

n) = N.

– Suppose that M = M1 →α M3 = N using rule α ·upToα, with M1 →α M2

and M2 →α M3, for some closed term M2. Since the proof length for

202 Meta-theory of SOS

proving the transitions M1 →α M2 and M2 →α M3 are both strictly less
than n, by the inductive hypothesis we can conclude that M1 =α M2

and M2 =α M3. Since =α is a congruence, it is a transitive relation, thus
M1 =α M3 = N.

⇐

Assuming the hypothesis, let T be a NTSS. The proof is by induction on the lenght
of the proof of M =α N. We proceed by a case analysis on the last rule used in the
proof.

• Length 1: There are two types of trees with length 1.

– Suppose that M =α M by reflexivity. We can use the rule (idα) in order
to prove M→α M.

– Suppose that [a]M =α [b](M[b/a]), with b fresh in M. This is the base
case of the syntactic α-conversion. By Theorem 5.14.1, which states the
correctness of the substitution transitions, we know that M a7→b

−→ M[b/a].
We can use the rule (abs1α) instanciated in the following way.

M a 7→b
−→ M[b/a] b#M

[a]M→α [b]M[b/a]

Since b is fresh in M, the freshness premise b#M is satisfied and we can
prove [a]M→α [b](M[b/a]).

• Length n > 1: There are three types of trees with length n, which are the
inductive cases.

– Suppose that M =α N by symmetry, with N =α M by a shorter proof.
Since the length of the tree for deriving the equation N =α M is strictly
less than n, by the inductive hypothesis we can conclude that N→α M.
Now we have to prove that also the transition M →α N is provable.
A case analysis on the last rule used in order to prove the transition
N →α M shows that we can use the same rule to prove M →α N. The
only non-symmetric rule is (abs1α), and we will therefore show only
this case in detail.

Consider N = [a]M1 and M = [b]M′

1, the provable transition is thus

[a]M1 →α [b]M′

1 using rule (abs1α), with b#M1 and M1
a 7→b
−→ M′

1. By

Matteo Cimini 203

Theorem 5.14.1, which states the correctness of the substitutions, we
know that M′

1 = M1[b/a]. The transition actually proved is thus
[a]M1 →α [b]M1[b/a]. We thus can instanciate the rule (abs1α) as fol-
lows.

M1[b/a] b7→a
−→ (M1[b/a])[a/b] a#M1[b/a]

[b](M1[b/a])→α [a](M1[b/a][a/b])

By Lemma 5.14.2 we have that a#M1[b/a]. The freshness premise
a#M1[b/a] is thus satisfied. Since a#M1[b/a], by Lemma 5.14.4 we can
conclude that the transition M1[b/a] b7→a

−→ M′ is provable, for some M′.
Moreover, Theorem 5.14.1, which states the correctness of the substitu-
tions, guarantees that this particular M′ = M1[b/a][a/b] (the theorem is
applied to the term M1[b/a]).

Since b#M1, by Lemma 5.14.3 we have that M1[b/a][a/b] = M1, and we
thus are able to prove the transition [b]M1[b/a]→α [a]M1, i.e. M→α N.

– Suppose that M1 =α M3 by transitivity, with M1 =α M2 and M2 =α M3.
Since the length of the trees for deriving the equations M1 =α M2 and
M2 =α M3 are both strictly less than n, by inductive hypothesis we can
conclude that M1 →α M2 and M2 →α M3. We can thus use the rule
(α · upToα) as follows

M1 →α M2 M2 →α M3

M1 →α M3

in order to prove M1 →α M3.

– Suppose that M =α N by congruence. The reader should see that the
rules for generating α-conversion transitions→α are designed to share
→α in all the contexts. For the sake of example, we here show in detail
only the case of function symbols.

Let us consider the equation f (M1,M2, . . . ,Mn) =α f (M′

1,M
′

2, . . . ,M
′

n),
with M1 =α M′

1, M2 =α M′

2, . . . , Mn =α M′

n. Since the length of the proofs
for the equations Mi =α M′

i (i ∈ {1, . . . ,n}) is strictly less than n, by the
inductive hypothesis we can conclude that M1 →α M′

1, M2 →α M′

2, . . . ,
Mn →α M′

n. We can thus instanciate the rule (fα) in the following way

204 Meta-theory of SOS

M1 →α M′

1 M2 →α M′

2 · · · Mn →α M′

n

f (M1,M2, . . . ,Mn)→α f (M′

1,M
′

2, . . . ,M
′

n)

in order to prove f (M1,M2, . . . ,Mn)→α f (M′

1,M
′

2, . . . ,M
′

n).

5.15 Correctness of λ: Proof of Theorem 5.5.1

The encoding ~·�λ is the map from Λ into terms of the nominal λ-calculus defined
in Section 5.5.1, here repeated.

~a�λ = a
~λa.M�λ = λ([a]~M�λ)
~(M N)�λ = (~M�λ ~N�λ)

Our proof of Theorem 5.5.1 relies on the following lemmas, stating the correctness
of substitution and α-conversion transitions.

Lemma 5.15.1 (Correctness of substitution transitions)

~M�λ
a 7→~N�λ
−→ M′ if and only if M′ = ~M[N/a]�λ.

We use≡ to denote syntactic equality up toα-equivalence of the lazyλ-calculus.

Lemma 5.15.2 (Correctness of α-conversion transitions)

~M�λ →α N′ if and only if M ≡ N ∧ ~N�λ = N′.

The proofs of Lemma 5.15.1 and 5.15.2 are lengthy even though they follow
standard reasoning by induction. They can be found in Section 5.17 and Section
5.19, repectively.

Here we recall the rules that define the lazy λ-calculus from [2].

λa.x→λa.x
(absO)

x0→λa.y0 y0[x1/a]→ y1

(x0 x1)→ y1

(appO)

Also, λ-terms are considered up to α-equivalence. The substitution and α-
equivalence of λ-calculus are standard and not provided here. However, for
completeness of reference, they are repeated in Section 5.11.

Matteo Cimini 205

We prove the two implications in the statement of Theorem 5.5.1 separately.

• ⇒: if M→N then ~M�λ→ ~N�λ.

• ⇐: if ~M�λ→N then M→N′ and ~N′�λ = N, for some term N′.

⇒

Notice that rule (appO) and consequently rule (app) of Section 5.5.1 uses a form of
what in the terminology of SOS is called a look-ahead. The ordinary induction on
the structure of terms thus fails and we below employ an induction on the length
of the proofs of provable transitions in the original λ-calculus.

• Proofs of length 1: The only proofs of length 1 are with rule (absO). Given
a term M, we can prove the transition λa.M→λa.M. Now, ~λa.M�λ =

λ([a]~M�λ). By means of rule (abs) we can prove indeed the transition
λ([a]~M�λ)→λ([a]~M�λ), and we are done.

• Proofs of length n > 1: The only proofs of length n are with rule (appO)
instanciated in the following way by closed terms M1, M2, M3 and N.

M1→λa.M2 M2[N/a]→M3

(M1 N)→M3

Our aim is to make use of the rule (app) in order to prove a transition
~(M1 N)�λ→ ~M3�λ.

Now, ~(M1 N)�λ = (~M1�λ ~N�λ). Since the proof length for proving the
transition M1→λa.M2 is strictly less than n, by the inductive hypothesis we
can conclude that ~M1�λ→ ~λa.M2�λ, with the target term beingλ([a]~M2�λ).
The first premise of (app) is thus satisfied. By Lemma 5.15.1, which states the

correctness of substitution transitions, we know that ~M2�λ
a 7→~N�λ
−→ ~M2[N/a]�λ,

the second premise of (app) is thus satisfied. Now, once again, the proof
length for proving the transition M2[N/a]→M3 is strictly less than n. By
inductive hypothesis we can then conclude that ~M2[N/a]�λ→ ~M3�λ.

Rule (app) can thus be instanciated as follows

~M1�λ→ ~λa.M2�λ ~M2�λ
a7→~N�λ
−→ ~M2[N/a]�λ ~M2[N/a]�λ→ ~M3�λ

~M1�λ ~N�λ→ ~M3�λ

206 Meta-theory of SOS

Proving thus the transition ~M1 N�λ→ ~M3�λ.

⇐

The proof is by induction on the length of the proofs for provable transitions in
our formulation of the λ-calculus.

• Proofs of length 1: The only proofs of length 1 are with rule (abs). Given
a term M, we can prove the transition λ([a]~M�λ)→λ([a]~M�λ). Since
~λ([a]M)�λ = λ([a].~M�λ) and λa.M→λa.M, we are done.

• Proofs of length n > 1: There are two type of proofs of length n.

– transitions proved with (app): Given a term M this rule is instanciated
in the following way

~M1�λ→λ([a]M′

2) M′

2
a 7→~N�λ
−→ M′

3 M′

3→M′

4

~M1�λ ~N�λ→M′

4

Our aim is to make use of the rule (appO) in order to prove a transition
M1 N→M4 with ~M4�λ = M′

4. First of all, consider the first premise
of rule (app), satisfied by the transition ~M1�λ→λ([a]M′

2). Since the
length of the proof of such a transition is strictly less than n, we know
that M1→M′

1 for some M′

1 such that ~M′

1�
λ = λ([a].M′

2). It follows that
M′

1 = λa.M2 for some M2 such that ~M2�λ = M′

2. Now, by Lemma 5.15.1,
which states the correctness of substitution transitions, we know that

~M2�λ
a 7→~N�λ
−→ ~M2[N/a]�λ, i.e. M′

3 = ~M2[N/a]�λ and since the provable
transition ~M2[N/a]�λ→M′

4 has proof length strictly less than n, we can
conclude that M2[N/a]→M4, with ~M4�λ = M′

4.

Rule (appO) can thus be instanciated as follows

M1→λa.M2 M2[N/a]→M4

M1 N→M4

proving thus the transition M1 N→M4 with ~M4�λ = M′

4.

– transitions proved with (l · upToα): Given a term M this rule is instan-
ciated in the following way

Matteo Cimini 207

~M1�λ →α M′

2 M′

2→M′

3

~M1�λ→M′

3

By Lemma 5.15.2, which states the correctness of α-conversion tran-
sitions, the fact that the transition ~M1�λ →α M′

2 is provable, means
that M1 ≡ M2 with ~M2�λ = M′

2. Now, since the provable transition

~M2�λ
l
→M′

3 has proof length strictly less than n, we can conclude that

M2
l
→M3 and so M1

l
→M3 with ~M3�λ = M′

3.

5.16 Correctness of earlyπ: Proof of Theorem 5.5.2

The encoding ~·�π is a map from Π into terms of the nominal early π-calculus
defined in Section 5.5.2.

~0�π = 0
~τ.P�π = τ.~P�π

~ab.P�π = out(a, b, ~P�π)
~a(b).P�π = in(a, [b]~P�π)
~νa.P�π = ν([a]~P�π)

~P + Q�π = ~P�π + ~Q�π

~P ‖ Q�π = ~P�π ‖ ~Q�π

~!P�π = !~P�π

Since we use a different notation for actions, the encoding is extended to labels as
follows.

~τ�π = τ

~ab�π = in(a, b)
~ab�π = out(a, b)
~a(b)�π = bout(a, [b])

Our proof of Theorem 5.5.2 relies on the following lemmas, stating the correctness
of substitution and α-conversion transitions.

Lemma 5.16.1 (Correctness of substitution transitions)

~P�π a 7→b
−→ P′ if and only if P′ = ~P[b/a]�π.

We use≡ to denote syntactic equality up toα-equivalence of the earlyπ-calculus.

208 Meta-theory of SOS

Lemma 5.16.2 (Correctness of α-conversion transitions)

~P�π →α Q′ if and only if P ≡ Q ∧ ~Q�π = Q′.

The proofs of Lemmas 5.16.1 and 5.16.2 are lengthy even though they follow
standard reasoning by induction. They can be found in Section 5.18 and Section
5.20, respectively.

For ease of reference, we repeat below the rules for the early π-calculus given in
[132]11. In the rules that follow, names(α) denotes the set of names that occur in
the label α, bn(α) denotes the set of bound names that occur in the label α and
f n(P) denotes the set of names of the process P that are not bound, see [132]. For
completeness of reference, the definition of these sets are repeated in Section 5.12.
Although these notions are standard, Section 5.12 also repeats the definitions of
substitution and α-equivalence of π-calculus.

(τO)
τ.x τ
→ x

(outO)
ab.x ab
→ x

(inO)
a(b).x ac

→ y[c/b]

x1
α
→ y1

(sumO1)
x1 + x2

α
→ y1

bn(α) ∩ f n(x2) = ∅
x1

α
→ y1

(parO1)
x1 ‖ x2

α
→ y1 ‖ x2

x1
ab
→ y1 x2

ab
→ y2

(comO1)
x1 ‖ x2

τ
→ y1 ‖ y2

b < f n(x2)
x1

a(b)
→ y1 x2

ab
→ y2

(closeO1)
x1 ‖ x2

τ
→ νb.(y1 ‖ y2)

x α
→ y

(replO)
!x α
→ y ‖!x

a , z
x za
→ y

(openO)
νa.x

z(a)
→ y

c < names(α)
x α
→ y

(resO)
νc.x α
→ νc.x

For the sake of brevity, we omit the symmetric versions of rules (sumO1), (parO1),
(parResO1), (comO1) and (closeO1). In what follows, these are referred to as
(sumO2), (parO2), (parResO2), (comO2) and (closeO2).

The proof of Theorem 5.5.2 is divided into two cases

11 [132] presents more rules for the replication operator for technical reasons we are not con-
cerned with, see pages 42 and 43 in that reference.

Matteo Cimini 209

• ⇒: if P α
→Q then ~P�π

~α�π
→ ~Q�π

• ⇐: if ~P�π α
→Q then P α′

→Q′ for some α′ and Q′ such that ~α′�π = α and
~Q′�π = Q

We recall that in the statement for⇐ the label α does not range over substitution
and α-conversion transition labels.

The following lemmas will be necessary to complete the proof. Their proofs are
straightforward and thus omitted.

Lemma 5.16.3 (Interplay between the set of names and freshness (1).) Given a chan-
nel name a and a π-calculus label α, it holds that if a < names(α) then a < bn(~α�π) and
the freshness assertion a#~α�π is derivable.

Lemma 5.16.4 (Interplay between the set of names and freshness (2).) Given a chan-
nel name a and a π-calculus label α. Let α′ be a label such that α′ = ~α�π. It holds that if
a < bn(~α�π) and a#~α�π, then a < names(α).

Lemma 5.16.5 (Freshness in terms and their encodings.) Given a channel name a
and a π-calculus process P. If a is fresh in ~P�π if and only if a < f n(P).

⇒

The proof is by induction on the derivation of the π-calculus transition. We
proceed by a case analysis on the last rule used in the derivation.

• τ.P: The only possible transition is τ.P τ
→P. Now ~τ.P�π = τ.~P�π, and by

rule (τ) we can prove the transition τ.~P�π τ
→ ~P�π.

• ab.P: The only possible transition is ab.P ab
→P. Now, ~ab.P�π = out(a, b, ~P�π),

and by rule (out), we can prove the transition out(a, b, ~P�π)
out(a,b)
→ ~P�π.

• a(b).P: The possible transitions are with labels ac for all atoms c. Let us
pick an atom c and consider a transition a(b).P ac

→P[c/b]. Now, ~a(b).P�π =

in(a, [b]~P�π). By Lemma 5.16.1, which states the correctness of substitution
transitions, we know that ~P�π a 7→c

−→ ~P[c/a]�π, thus we can use rule (in) to
prove the transition in(a, [b]~P�π)

in(a,c)
→ ~P[c/a]�π.

• νb.P: Let us recall the fact that ~νb.P�π = ν([b]~P�π). There are two possible
transitions.

210 Meta-theory of SOS

– νb.P
a(b)
→ P′ by rule (openO), with P ab

→P′ and b , a. By the inductive

hypothesis ~P�π
out(a,b)
→ ~P′�π, thus the premise in rule (open) is satisfied,

and we can use this rule to prove a transition ν([b]~P�π)
bout(a,[b])
→ ~P′�π.

– νb.P α
→ νb.P′ by rule (resO), with P α

→P′ and for a generic α such that
b < names(α). By inductive hypothesis ~P�π α

→ ~P′�π. By Lemma 5.16.3,
since b < names(α) we have that b < bn(~α�π) and b#~α�π, thus the
premises in rule (res) are satisfied, and we can instanciate this rule in
the following way

b < bn(α)
~P�π α

→ ~P′�π b#α
(res)

ν([b]~P�π) α
→ ν([b]~P′�π)

to prove a transition ν([b]~P�π) α
→ ν([b]~P′�π), whose target is exactly

~νb.P′�π.

• P + Q: Consider a generic transition α. There are two possible transitions,
(1) P + Q α

→P′, with P α
→P′ and (2) P + Q α

→Q′, with Q α
→Q′. We here con-

sider only (1). Now, ~P + Q�π = ~P�π + ~Q�π. Since P α
→P′, by inductive

hypothesis ~P�π α
→ ~P′�π, thus the premise in rule (sum1) is satisfied, and

we can use this rule to prove a transition ~P�π + ~Q�π α
→ ~P′�π. Case (2) can

be proven analogously.

• P ‖ Q: Then ~P ‖ Q�π = ~P�π ‖ ~Q�π. We distinguish four cases.

– α < {bout(a, [b]) | a, b ∈ C}: There are two possible transitions, (1)
P ‖ Q α

→P′ ‖ Q, with P α
→P′ and (2) P ‖ Q α

→P ‖ Q′, with Q α
→Q′. (We

treat below separately the case forα = τwith a top level communication
taking place). We here consider only (1). Now, ~P ‖ Q�π = ~P�π ‖ ~Q�π.
Since P α

→P′, by inductive hypothesis ~P�π α
→ ~P′�π, thus the premise

in rule (par1) is satisfied, and we can use this rule to prove a transition
~P�π ‖ ~Q�π α

→ ~P′�π ‖ ~Q�π, whose target is exactly ~P′ ‖ Q�π. Case (2)
can be proven analogously.

– α ∈ {bout(a, [b]) | a, b ∈ C}: The only possible transition is, by rule

(parO1), P ‖ Q
bout(a,[b])
→ P′ ‖ Q, with P

bout(a,[b])
→ P′ and b < f n(Q). Since

P α
→P′, by inductive hypothesis ~P�π

bout(a,[b])
→ ~P′�π. Moreover, since

b < f n(Q), by Lemma 5.16.5 we have that b#~Q�π. The two premises
of rules (par1) are therefore satisfied, and we can use this rule to prove

Matteo Cimini 211

a transition~P�π ‖ ~Q�π
bout(a,[b])
→ ~P′�π ‖ ~Q�π, whose target is exactly

~P′ ‖ Q�π.

– Assume that P ‖ Q τ
→P′ ‖ Q′ by rule (comO1), with P ab

→P′ and Q ab
→Q′

for some atoms a and b. Since P ab
→P′ and Q ab

→Q′, by the inductive

hypothesis ~P�π
out(a,b)
→ ~P′�π and ~Q�π

in(a,b)
→ ~Q′�π, thus the premises in

rule (com1) are satisfied, and we can use this rule to prove a transition
~P�π ‖ ~Q�π τ

→ ~P′�π ‖ ~Q′�π, whose target is exactly ~P′ ‖ Q′�π.

– Assume that P ‖ Q τ
→ νb.(P′ ‖ Q′) by rule (closeO1), with P

a(b)
→ P′

and Q ab
→Q′ for some atoms a and b, with b < f n(Q). Now, since

P
a(b)
→ P′ and Q ab

→Q′, by the inductive hypothesis ~P�π
bout(a,[b])
→ ~P′�π and

~Q�π
in(a)(b)
→ ~Q′�π. The premises of rule (close1) are all satisfied and

we can use this rule to prove a transition ~P�π ‖ ~Q�π τ
→ ν([b](~P′�π ‖

~Q′�π)), whose target is exactly ~νb.(P′ ‖ Q′)�π.

• !P: Assume that !P α
→P′ ‖!P, with P α

→P′. Now, ~!P�π =!~P�π. Since P α
→P′,

by the inductive hypothesis ~P�π α
→ ~P′�π. Thus the premise in rule (repl) is

satisfied, and we can use this rule to prove a transition !~P�π α
→ ~P′�π ‖!~P�π,

whose target is exactly ~P′ ‖!P�π.

⇐

The proof is by induction on the structure of the π-term P and then by cases on
the last rule used in the derivation of the transition ~P�π α

→Q.

• 0: ~0�π = 0. Since α does not range over substitution and α-conversion
labels, this case is vacuous.

• τ.P: ~τ.P�π = τ.~P�π. The only transition is τ.~P�π τ
→ ~P�π by rule (τ). In this

case, τ.P τ
→P with ~τ�π = τ, and we are done.

• ab.P: ~ab.P�π = out(a, b, ~P�π). The only transition is out(a, b, ~P�π)
out(a,b)
→ ~P�π,

by rule (out). In this case, ab.P ab
→P with ~ab�π = out(a, b) and we are done.

• a(b).P: ~a(b).P�π = in(a, [b]~P�π). The only possible transitions have labels

of the form in(a, c). Let us pick an action in(a, c). Then in(a, [b]~P�π)
in(a,c)
→ P′,

by rule (in), with ~P�π a 7→c
−→ P′. By Lemma 5.16.1, which states the correct-

ness of substitution transitions, P′ = ~P[c/a]�π. Since ~ac�π = in(a, c) and
ab.P ac
→P[c/a] we are done.

• νb.P: ~νa.P�π = ν([a]~P�π). There are two possible transitions.

212 Meta-theory of SOS

– ν([b]~P�π)
bout(a,[b])
→ P′ by rule (open), with ~P�π

out(a,b)
→ P′ and a , b. By

the inductive hypothesis ~P′�π = P′′ and P ab
→P′′ for some P′′. We can

now use the rule (open) in order to prove a transition νb.P
a(b)
→ P′′ with

~a(b)�π = bout(a, [b]) and we are done.

– ν([b]~P�π) α
→ ν([b]P′)by rule (res), with ~P�π α

→P′ and b < bn(α) and b#α.
By inductive hypothesis P α′

→P′′ for some P′′ such that P′ = ~P′′�π and
α = ~α′�π. By Lemma 5.16.4, since b < bn(α) and b#α then we have
that b < names(α′). We can thus use the rule (resO) in order to prove a
transition νb.P α′

→ νb.P′′ with α = ~α′�π and we are done.

• P + Q: ~P + Q�π = ~P�π + ~Q�π. There are two possible transitions, (1)
~P�π + ~Q�π α

→P′, by rule (sum1), with ~P�π α
→P′, or (2) ~P�π + ~Q�π α

→Q′,
by rule (sum2), with ~Q�π α

→Q′. Here we consider only transition (1). By
inductive hypothesis P α′

→P′′ for some P′′ such that P′ = ~P′′�π andα = ~α′�π.
We can thus prove a transition P + Q α′

→P′′, with P′ = ~P′′�π and α = ~α′�π.
Case (2) can be proven analogously.

• P ‖ Q: ~P ‖ Q�π = ~P�π ‖ ~Q�π. We distinguishes four cases:

– α < {a(b) | a, b ∈ C}: There are two possible transitions, (1) ~P�π ‖
~Q�π α

→P′ ‖ Q, by rule (par1), with ~P�π α
→P′, or (2) ~P�π ‖ ~Q�π α

→P ‖
Q′, by rule (par2), with ~Q�π α

→Q′. (We treat below separately the
case for α = τ with a top level communication taking place). Here we
consider only transition (1). By inductive hypothesis P α′

→P′′ for some
P′′ such that P′ = ~P′′�π and α = ~α′�π. We can thus prove a transition
P ‖ Q α′

→P′′ ‖ Q, whose target is exactly ~P′ ‖ Q�π and with α = ~α′�π.
Case (2) can be proven analogously.

– α = a(b): There are two possible transitions: (1) ~P�π ‖ ~Q�π α
→P′ ‖

Q, by rule (parRes1), with ~P�π
bout(a,[b])
→ P′ and b fresh in ~Q�π, or (2)

~P�π ‖ ~Q�π
bout(a,[b])
→ P ‖ Q′, by rule (parRes2), with ~Q�π

bout(a,[b])
→ Q′ and

b fresh in ~P�π, Here we consider only transition (1). By the inductive

hypothesis, P′ = ~P′′�π and P
a(b)
→ P′′ for some P′′. By Lemma 5.16.5,

since b is fresh in ~Q�π we have that b < f n(Q). We can thus prove a

transition P ‖ Q
a(b)
→ P′′ ‖ Q, whose target is exactly ~P′ ‖ Q�π, and with

~a(b)�π = bout(a, [b]).

– α = τ using (com1): ~P�π ‖ ~Q�π τ
→P′ ‖ Q′, with ~P�π

out(a,b)
→ P′ and

~Q�π
in(a,b)
→ Q′. By the inductive hypothesis, P′ = ~P′′�πand P ab

→P′′ for

Matteo Cimini 213

some P′′, and also ~Q′�π = Q′′ and Q ab
→Q′′ for some Q′′. We can thus

use the rule (comO1) in order to prove a transition P ‖ Q τ
→P′′ ‖ Q′′,

whose target is exactly ~P′ ‖ Q′�π, and with ~τ�π = τ. When using the
rule (com2) the same reasoning applies.

– α = τ using (close1): ~P�π ‖ ~Q�π τ
→ ν([b](P′ ‖ Q′)), with ~P�π

bout(a,[b])
→ P′,

~Q�π
in(a,b)
→ Q′ and b fresh in both ~P�π and ~Q�π. By the inductive

hypothesis, P′ = ~P′′�π and P
a(b)
→ P′′ for some P′′, and also ~Q′�π = Q′′

and Q ab
→Q′′ for some Q′′. By Lemma 5.16.5, since b is fresh in ~Q�π

we have that b < f n(Q). We can thus use the rule (closeO1) in order
to prove a transition P ‖ Q τ

→ νb.(P′′ ‖ Q′′), whose target is exactly
~ν([b](P′ ‖ Q′))�π, and with ~τ�π = τ. When using the rule (close2) the
same reasoning applies.

• !P: ~!P�π =!~P�π. The only transition is !~P�π α
→P′ ‖!~P�π, by rule (repl), with

~P�π α
→P′. By inductive hypothesis P α′

→P′′ for some P′′ such that P′ = ~P′′�π

and α = ~α′�π. We can thus prove a transition !P α′
→P′′ ‖!P, whose target is

exactly ~P′ ‖!P�π, and with α = ~α′�π.

5.17 Correctness of substitutions forλ: Proof of Lemma

5.15.1

We prove the two implications in the statement of Lemma 5.15.1 separately.

• ⇒: ~M�λ
a7→~N�λ
−→ ~M[N/a]�λ

• ⇐: if M[N/a] = M′ then ~M�λ
a7→~N�λ
−→ ~M′�λ

⇒

Let us pick closed λ-terms M and N and an atom a. The proof is by induction on
the structure of the λ-term M.

• a: We have that ~a�λ = a. In this case a[N/a] = N. We can use rule (a1Ts) to

prove a
a 7→~N�λ
−→ ~N�λ.

• b, with b , a: In this case b[N/a] = b. We can use rule (a1Ts) to prove

b
a 7→~N�λ
−→ b.

214 Meta-theory of SOS

• λa.M: We have that ~λa.M�λ = λ([a]~M�λ). In this case (λa.M)[N/a] = λa.M.

We can use rule (abs2Ts) to prove λ([a]~M�λ)
a 7→~N�λ
−→ λ([a]~M�λ), whose target

is exactly ~λa.M�λ.

• λb.M, with b , a and b is not fresh in N: In this case the substitution
(λb.M)[N/a] is not possible in order to avoid capture. In our formulation

of the λ-calculus a transition λ([a]~M�λ)
b7→~N�λ
−→ M′ is not provable, for any

closed term M′. Indeed, the rules (abs1s) can not be applied because of the
freshness test and rules (abs2s) apply only when b = a, that is not the case.
This case is therefore vacuous.

• λb.M, with b , a and b fresh in N: In this case (λb.M)[N/a] = λb.(M[N/a]).
Now, by the inductive hypothesis, which applies to M, we know that

~M�λ
a 7→~N�λ
−→ ~M[N/a]�λ. We thus can use the rule (abs1Ts) to proveλ([b]~M�λ)

b7→~N�λ
−→

λ([b]~M[N/a]�λ), whose target is exactly ~λb.M[N/a]�λ.

• (M1 M2): We have that ~(M1 M2)�λ = (~M1�λ ~M2�λ) and (M1 M2)[N/a] =

(M1[N/a] M2[N/a]). Now, by the inductive hypothesis which applies to

M1 and M2, we know that ~M1�λ
a7→~N�λ
−→ ~M1[N/a]�λ and ~M2�λ

a 7→~N�λ
−→

~M2[N/a]�λ. We thus can use the rule (apps) to prove the transition

(~M1�λ ~M2�λ)
a7→~N�λ
−→ ~M1[N/a]�λ ~M2[N/a]�λ,

whose target is exactly ~(M1[N/a] M2[N/a])�λ.

⇐

The case⇐ can be proved following the lines of the proof above.

5.18 Correctness of substitutions forπ: Proof of Lemma

5.16.1

The proof of Lemma 5.16.1 is divided into two cases.

• ⇒: ~P�π a 7→b
−→ ~P[b/a]�π

• ⇐: if P[b/a] = P′ then ~P�π a 7→b
−→ ~P′�π

Matteo Cimini 215

⇒

Let us pick a closed π-terms P and atoms a and b. The proof is by induction on
the structure of the π-term P.

• 0: We have that ~0�π = 0 and 0[b/a] = 0. The reader should bear in mind
that, concerning 0, since it is a function symbol with arity 0, the instanciation
of the rule scheme (fs) of Section 5.4.1 for 0 is a set of rules with no premises,
i.e. an axiom 0 a 7→b

−→ 0 for all atoms a and b. We can thus prove the transition
0 a7→b
−→ 0, which is exactly ~0�π.

• τ.P: We have that ~τ.P�π = τ.~P�π and (τ.P)[b/a] = τ.P[b/a]. By inductive
hypothesis, which applies to P, we know that ~P�π a7→b

−→ ~P[b/a]�π. We can
thus use the rule (τs) in order to prove the transition τ.~P�π a 7→b

−→ τ.~P[b/a]�π,
which is exactly ~τ.P[b/a]�π .

• cd.P, with a, b, c, d not necessarily pairwise distinct atoms: We have that
~cd.P�π = out(c, d, ~P�π) and (cd.P)[b/a] = c[b/a]d[b/a].P[b/a]. By induc-
tive hypothesis, which applies to P, and to the atoms c and d, we know
that ~P�π a 7→b

−→ ~P[b/a]�π, c a 7→b
−→ ~c[b/a]�π and d a7→b

−→ ~d[b/a]�π. We can
thus use the rule (outs) in order to prove the transition out(c, d, ~P�π) a 7→b

−→

out(~c[b/a]�π, ~d[b/a]�π, ~P[b/a]�π), which is exactly ~c[b/a]d[b/a].P[b/a]�π.

• c(d).P, with a, b , d: We have that ~cd.P�π = out(c, d, ~P�π) and c(d).P[b/a] =

c[b/a](d).P[b/a]. By inductive hypothesis, which applies to P, and to the
atom c, we know that ~P�π a 7→b

−→ ~P[b/a]�π and c a 7→b
−→ ~c[b/a]�π. We can

thus use the rule (abs1Ts) to prove the transition [d]~P�π a7→b
−→ [d]~P[b/a]�π.

Being this transition provable, we can use the rule (ins) in order to prove
the transitions in(c, [d]~P�π) a 7→b

−→ in(~c[b/a]�π, [d]~P[b/a]�π), which is exactly
~c[b/a](d).P[b/a]�π.

• c(a).P, with with b , d: We have that ~ca.P�π = out(c, a, ~P�π) and c(a).P[b/a]
is not possible in order to avoid capture. In our formulation of π a transition
in(c, [a]~P�π) a 7→b

−→ P′, is not provable, for any closed term P′. Indeed, the rules
(abs1s) generated in Section 5.4.1 specifically apply only for atoms different
from a, and rules (abs2s) only when b = a, that is not the case. This case is
therefore vacuous.

• c(b).P: We have that ~cb.P�π = out(c, b, ~P�π) and c(b).P[b/a] = c[b/a](b).P. We
can use the rule (abs2Ts) in order to prove the transition [d]~P�π a 7→b

−→ [b]~P�π.
Being this transition provable, and knowing that by inductive hypothesis

216 Meta-theory of SOS

c a7→b
−→ ~c[b/a]�π, we can use the rule (ins) in order to prove the transition

in(c, [b]~P�π) a7→b
−→ in(~c[b/a]�π, [b]~P�π), which is exactly ~c(b).P[b/a]�π.

• νa.P: We have that ~νa.P�π = ν([a]~P�π) and (νa.P)[b/a] = νa.P. We can
use the rule (abs2Ts) in order to prove the transition [a]~P�π a 7→b

−→ [a]~P�π.
Being this transition provable, we can use the rule (ins) in order to prove the
transition ν([a]~P�π) a7→b

−→ ν([a]~P�π), which is exactly ~νa.P�π.

• νb.P, with b , a. In this case the substitution (νb.P)[b/a] is not possible in
order to avoid capture. In our formulation of the π-calculus a transition
[b]~P�π a 7→b

−→ P′ is not provable, for any closed term P′. Indeed, the rules
(abs1s) can not be applied because of the freshness test and rules (abs2s)
apply only when b = a, that is not the case. This case is therefore vacuous.

• νc.P, with c , a and c , b: We have that ~νc.P�π = ν([c]~P�π) and (νc.P)[b/a] =

νc.P[b/a]. By inductive hypothesis, which applies to P, we know that
~P�π a 7→b

−→ ~P[b/a]�π. We use the rule (abs1Ts) to prove the transition [c]~P�π a 7→b
−→

[c]~P[b/a]�π. Using this transition, we use the rule (νs) to prove the transition
ν([c]~P�π) a 7→b

−→ ν([c]~P[b/a]�π), which is exactly ~νc.P[b/a]�π.

• P + Q: We have that ~P + Q�π = ~P�π + ~Q�π and P + Q[b/a] = P[b/a] +

Q[b/a]. By inductive hypothesis, which applies to P and Q, we know that
~P�π a7→b

−→ ~P[b/a]�π and ~Q�π a7→b
−→ ~Q[b/a]�π. We can thus use the rule (+s) to

prove the transition ~P�π + ~Q�π a 7→b
−→ ~P[b/a]�π + ~Q[b/a]�π, which is exactly

~P[b/a] + Q[b/a]�π.

• P ‖ Q: We have that ~P ‖ Q�π = ~P�π ‖ ~Q�π and P ‖ Q[b/a] = P[b/a] ‖
Q[b/a]. By inductive hypothesis, we know that ~P�π a7→b

−→ ~P[b/a]�π and
~Q�π a7→b

−→ ~Q[b/a]�π. We use the rule (‖s) to prove the transition ~P�π ‖
~Q�π a 7→b

−→ ~P[b/a]�π ‖ ~Q[b/a]�π, which is exactly ~P[b/a] ‖ Q[b/a]�π.

• !P: We have that ~!P�π =!~P�π and (!P)[b/a] =!(P[b/a]). By inductive hypoth-
esis, which applies to P, we know that ~P�π a 7→b

−→ ~P[b/a]�π. We can thus
use the rule (!s) to prove the transition !~P�π a 7→b

−→!~P[b/a]�π, which is exactly
~!(P[b/a])�π.

⇐

The case⇐ can be proved following the lines of the proof above.

Matteo Cimini 217

5.19 Correctness ofα-conversions forλ: Proof of Lemma

5.15.2

The proof of Lemma 5.15.2 is divided into two cases.

• ⇒: if ~M�λ →α N′ then M ≡ N ∧ ~N�λ = N′.

• ⇐: if M ≡ N then ~M�λ →α ~N�λ.

Where ≡ is the syntactic equality up to α-equivalence of the lazy λ-calculus.

⇒

Assuming the hypothesis, let T be a NTSS. The proof is by induction on the length
of the proofs for α-conversion transitions.

• Proofs of length 1: The only provable transition with length 1 is by rule (idα),
~M�λ →α ~M�λ. Indeed, by reflexivity of ≡, we have that M ≡M.

• Proofs of length n:

– ~λa.M�λ: There are two possible provable α-conversion transitions for
~λa.M�λ.

∗ ~λa.M�λ →α λ([b]M′), with b fresh in ~M�λ: Here we first prove
[a]~M�λ →α [b]M′ using rule (abs1α) and then λ([a]~M�λ) →α

λ([b]M′) using the rule (λα). Rule (abs1α) can be instanciated in
the following way

~M�λ
a7→b
−→ M′ b#~M�λ

[a]~M�λ →α [b]M′

By Theorem 5.17, which states the correctness of substitution tran-
sitions, we know that M′ = ~M[b/a]�λ. The transition actually
proved by the rule above is thus [a]~M�λ →α [b]~M[b/a]�λ. Now,
we can instanciate the rule (λα) as follows

[a]~M�λ →α [b]~M[b/a]�λ

λ([a]~M�λ)→α λ([b]~M[b/a]�λ)

218 Meta-theory of SOS

in order to prove λ([a]~M�λ)→α λ([b]~M[b/a]�λ). The statement of
the theorem holds, indeed λa.M ≡ λb.M[b/a].

∗ ~λa.M�λ →α λ([a]M′): Here we first prove [a]~M�λ →α [a]M′ using
rule (abs2α) and then λ([a]~M�λ) →α λ([a]M′) using the rule λα.
Rule (abs2α) can be instanciated in the following way

~M�λ →α M′

[a]~M�λ →α [a]M′

Since the proof length for proving this transition is strictly less than
n, also the proof length for proving ~M�λ →α M′ is strictly less than
n. By inductive hypothesis we can conclude that M ≡ M′′, with
~M′′�λ = M′. Now, we can instanciate the rule λα as follows

[a]~M�λ →α [a]~M′′�λ

λ([a]~M�λ)→α λ([a]~M′′�λ)

in order to prove λ([a]~M�λ)→α λ([a]~M′′�λ). The statement of the
theorem holds in this case. Indeed, since ≡ is a congruence, we can
place equated terms in the same context, and since M ≡ M′′ we
have that λa.M ≡ λa.M′′.

– (~M1�λ ~M2�λ) →α (M′

1 M′

2) using rule (appα), with ~M1�λ →α M′

1 and
~M2�λ →α M′

2: Since the proof length for proving these two mentioned
transitions is strictly less than n, by inductive hypothesis we can con-
clude that M1 ≡M′′

1 and M2 ≡M′′

2 , with ~M′′

1 �
λ = M′

1 and ~M′′

2 �
λ = M′

2.
As in the previous case, since ≡ is a congruence, (M1 M2) ≡ (M′′

1 M′′

2),
with exactly ~(M′′

1 M′′

2)�λ = (M′

1 M′

2).

– ~M1�λ →α M′

3 using rule α · upToα, with ~M1�λ →α M′

2 and M′

2 →α M′

3:
Since the proof length for proving the transition ~M1�λ →α M′

2 is strictly
less than n, by inductive hypothesis we can conclude that M1 ≡ M2,
with ~M2�λ = M′

2. Again, the proof length for proving the transition
M′

2 →α M′

3, which is actually ~M2�λ →α M′

3, is strictly less than n, and by
inductive hypothesis we can conclude that M2 ≡M3, with ~M3�λ = M′

3.
Now, having M1 ≡ M2 and M2 ≡ M3, since ≡ is a congruence, it is a
transitive relation, and thus we can conclude M1 ≡M3.

Matteo Cimini 219

⇐

The case ⇐ is proved along the line of the case ⇐ in proof of Theorem 5.4.4.
Basically, the change of the bound variable in binders is simulated by rule (abs1α),
the reflexivity is given by rule (idα), the symmetry is inferred, and the transitivity
is given by the rule α ·upToα. Moreover, the reader can see that the rules are such
to share α-conversion transitions in any context, which simulates the requirement
for ≡ to be a congruence and not just an equivalence relation.

5.20 Correctness ofα-conversions forπ: Proof of Lemma

5.16.2

The proof of Lemma 5.16.2 is divided into two cases.

• ⇒: if ~P�π →α Q′ then P ≡ Q ∧ ~Q�π = Q′.

• ⇐: if P ≡ Q then ~P�π →α ~Q�π.

Where≡ is the syntactic equality up to α-equivalence of the earlyπ-calculus.

⇒

Assuming the hypothesis, let T be a NTSS. The proof is by induction on the length
of the proofs for α-conversion transitions.

• Proofs of length 1: The only provable transition with length 1 is by rule (idα),
~P�π →α ~P�π. Indeed, by reflexivity of ≡, we have that P ≡ P.

• Proofs of length n: The rest of the proof proceed in as much the same way as
in Lemma 5.15.2. In what follows we thus show the proof only for one binder
of the ordinary π, namely the restriction νa.P, and one ordinary operator,
namely the parallel operator ‖. The proofs regarding the other binder a(b).P,
the other operators and the transitivity case are easy to carry out following
the same line employed in detail in the proof of Lemma 5.15.2.

– ~νa.P�π: There are two possible provable α-conversion transitions for
~νa.P�π.

∗ ~νa.P�π →α ν([b]P′), with b fresh in ~P�π: Here we first prove
[a]~P�π →α [b]P′ using rule (abs1α) and then ν([a]~P�π)→α ν([b]P′)

220 Meta-theory of SOS

using the rule (να). Rule (abs1α) can be instanciated in the following
way

~P�π a 7→b
−→ P′ b#~P�π

[a]~P�π →α [b]P′

By Theorem 5.18, which states the correctness of substitution transi-
tions, we know that P′ = ~P[b/a]�π. The transition actually proved
by the rule above is thus [a]~P�π →α [b]~P[b/a]�π. Now, we can
instanciate the rule (να) as follows

[a]~P�π →α [b]~P[b/a]�π

ν([a]~P�π)→α ν([b]~P[b/a]�π)

in order to prove ν([a]~P�π) →α ν([b]~P[b/a]�π). The statement of
the theorem holds in this case. Indeed, νa.P ≡ νb.P[b/a].

∗ ~νa.P�π →α ν([a]P′): Here we address the case where we first prove
[a]~P�π →α [a]P′ using rule (abs2α) and then ν([a]~P�π)→α ν([a]P′)
using the rule (να). Rule (abs2α) can be instanciated in the following
way

~P�π →α P′

[a]~P�π →α [a]P′

Since the proof length for proving this transition is strictly less then
n, also the proof length for proving ~P�π →α P′ is strictly less then
n. By inductive hypothesis we can conclude that P ≡ P′′, with
~P′′�π = P′. Now, we can instanciate the rule (να) as follows

[a]~P�π →α [a]~P′′�π

ν([a]~P�π)→α ν([a]~P′′�π

in order to prove ν([a]~P�π) →α ν([a]~P′′�π. The statement of the
theorem holds in this case. Indeed, since ≡ is a congruence, we can
place equated terms in the same context, and since P ≡ P′′ we have
that νa.P ≡ νa.P′′.

Matteo Cimini 221

– ~P1�π ‖ ~P2�π →α P′1 ‖ P′2 using rule (‖α), with ~P1�π →α P′1 and
~P2�π →α P′2: Since the proof length for proving these two mentioned
transitions is strictly less than n, by inductive hypothesis we can con-
clude that P1 ≡ P′′1 and P2 ≡ P′′2 , with ~P′′1 �

π = P′1 and ~P′′2 �
π = P′2. As

in the previous case, since ≡ is a congruence, P1 ‖ P2 ≡ P′′1 ‖ P′′2 , with
exactly ~P′′1 ‖ P′′2 �

π = P′1 ‖ P′2.

⇐

The case ⇐ is proved along the line of the case ⇐ in proof of Theorem 5.4.4.
Basically, the change of the bound variable in binders is simulated by rule (abs1α),
the reflexivity is given by rule (idα), the symmetry is inferred, and the transitivity
is given by the rule α ·upToα. Moreover, the reader can see that the rules are such
to share α-conversion transitions in any context, which simulates the requirement
for ≡ to be a congruence and not just an equivalence relation.

5.21 Bisimilarity when ignoring substitution transi-

tions: Proof of Theorem 5.6.3

The proof is divided into two cases, given P and Q ∈ Π:

1. Soundness: if P↔–– Q then ~P�π↔− ~Q�π.

2. Completeness: if ~P�π↔− ~Q�π then P↔–– Q.

Soundness: It suffices to show that the relation

R = {(~P�π, ~Q�π) | P↔–– Q}

satisfies the requirement for ↔−, i.e., the ones in the definition of the nomi-
nal bisimilarity (Definition 5.6.2) when we omit to consider substitution transi-
tions.

To this end, notice first of all that R is symmetric. Assume now that ~P�πR~Q�π

and ~P�π α
→P′. In our formulation of the early π-calculus, the action α′ may be

either (1) an ordinary action, (2) a substitution transition, or (3) an α-conversion

222 Meta-theory of SOS

transition. Since ↔− omits to match substitution transitions, we only need to
tackle transitions of form (1) and (3).

Let us consider now the case (1). By Theorem 5.5.2, which states the operational
correctness of our formulation of π-calculus with respect to the original one,
we know that P α′

→P′′ for some P′′ and α such that ~P′′�π = P′ and ~α′�π = α.
Since P ↔–– Q, we have that Q α′

→Q′′, with P′′ ↔–– Q′′. By, again, Theorem 5.5.2,

we have that ~Q�π
~α′�π
→ ~Q′′�π, i.e. ~Q�π α′

→ ~Q′′�π. We have now to prove that
~P′′�πR~Q′′�π. This follows easily from the fact that P′′ ↔–– Q′′.

Let us now consider the case (3), namely the transition is an α-conversion tran-
sition. Since ~P�π →α P′, by Lemma 5.16.2, which states the correctness of α-
conversion transitions, we know that P ≡ P′′ and ~P′′�π = P′. We now have to
show that ~Q�π →α Q′ for some Q′ such that P′RQ′. Since ≡⊂↔––, we have that
there exists a Q′′ such that Q ≡ Q′′ and it holds that P′′ ↔–– Q′′. Since Q ≡ Q′′, by
Lemma 5.16.2 we have that ~Q�π →α Q′, with ~Q′′�π = Q′. We have now to prove
that ~P′′�πR~Q′′�π. This follows easily from the fact that P′′ ↔–– Q′′.

Completeness: It suffices to show that the relation

R = {(P,Q) | ~P�π↔− ~Q�π}

is a bisimulation.

To this end, notice first of all that R is symmetric. Assume now that PRQ and
P α
→P′. By Theorem 5.5.2, which states the operational correctness of our formu-

lation of π-calculus with respect to the original one, we know that ~P�π
~α�π
→ ~P′�π.

Since ~P�π ↔− ~Q�π, we also have that ~Q�π
~α�π
→ Q′′, for some Q′′ such that

~P′�π ↔− Q′′, and by Theorem 5.5.2 we know that Q′′ is such that Q α
→Q′ with

~Q′�π = Q′′. We have now to prove that P′RQ′. This follows easily from the fact
that ~P′�π↔− ~Q′�π.

Matteo Cimini 223

5.22 Open bisimilarity and Bisimilarity coincide: Proof

of Theorem 5.6.6

In this section we prove that what open bisimilarity does in the ordinary early
π-calculus is exactly what nominal bisimilarity does in our formulation of the
early π-calculus in the nominal SOS framework.

In order to prove this, we first define an equivalence relation over terms of the
ordinary π-calculus, we call it One-Step Open Bisimilarity. This equivalence re-
quires the ordinary bisimilarity, as recalled in Definition 5.6.1, to match also all
the "single substitutions" performed from the processes to be equated. We prove
that the nominal bisimilarity in our formulation of π-calculus coincides with the
One-Step Open Bisimilarity. We then prove that the One-Step Open Bisimilarity is
another way to formulate the open bisimilarity of Definition 5.6.5. The statement
of Theorem 5.6.6 then easily follows.

Definition 5.22.1 (One-Step Open Bisimilarity) One-Step open bisimilarity↔1sO

is the largest symmetric relation ∼ between π-calculus processes such that whenever
P ∼ Q,

1. for all actionsα, if P α
→P′, then there exists some Q′, such that Q α

→Q′ and P′ ∼ Q′;

2. for all channel names a and b, P[b/a] ∼ Q[b/a].

Theorem 5.22.2 (One-Step Open bisimilarity and Bisimilarity coincide) For all
P,Q ∈ Π, P↔1sO Q if, and only if, ~P�π ↔–– ~Q�π.

The proof of this theorem is divided into two cases:

1. Soundness: if P↔1sO Q then ~P�π ↔–– ~Q�π.

2. Completeness: if ~P�π ↔–– ~Q�π then P↔1sO Q.

Soundness: It suffices to show that the relation

R = {(~P�π, ~Q�π) | P↔1sO Q}

is a nominal bisimulation.

To this end, notice first of all thatR is symmetric. Assume now that ~P�πR~Q�π and
~P�π α

→P′. In our formulation, the label α can perform be (1) an ordinary action,

224 Meta-theory of SOS

(2) a substitution transition, or (3) an α-conversion transition. For cases (1) and
(3) the exact reasoning employed for them in the proof of Theorem 5.6.3 applies.
It thus suffices considering the case (2), which is about substitution transitions.
In order to prove this, we rely on Lemma 5.16.1 which states the correctness of
substitution transitions, and prove that for all names a and b, ~P�π a7→b

−→ ~P[b/a]�π

and ~Q�π a7→b
−→ ~Q[b/a]�π, with ~P[b/a]�π ↔–– ~Q[b/a]�π. The reader can easily notice

that this follows immediately. Given atoms a and b, by Clause 2 of Definition 5.22.1
we know that P[b/a]↔1sO Q[b/a], thus ~P[b/a]�πR~Q[b/a]�π.

Completeness: It suffices to show that the relation

R = {(P,Q) | ~P�π↔− ~Q�π}

is a one-step open bisimulation.

To this end, notice first of all that R is symmetric. Assume now that PRQ.

Clause 1 of Definition 5.22.1 requires that P and Q would match transitions. For
this case the exact reasoning employed in the proof of Theorem 5.6.3 applies.

Clause 2 of Definition 5.22.1 concerns substitutions. We have to prove that
for all channel names a and b P[b/a]RQ[b/a]. Let us pick two names a and
b, by Lemma 5.16.1 which states the correctness of substitution transitions, we
know that ~P�π a7→b

−→ ~P[b/a]�π and ~Q�π a7→b
−→ ~Q[b/a]�π. Since ~P�π ↔–– ~Q�π

we moreover know that ~P[b/a]�π ↔–– ~Q[b/a]�π. Thus, we can conclude that
P[b/a]RQ[b/a].

Theorem 5.22.3 (Open and One-Step Open bisimilarity coincide) For all P,Q ∈
Π, P ◦↔–– Q if, and only if, P↔1sO Q.

Before embarking ourselves in the proof of Theorem 5.22.3, some preliminary
considerations are in order. The completeness part of the proof of Theorem 5.22.3
relies on the fact that we can faithfully simulate the substitutions involved in the
open bisimilarity, see Definition 5.6.4, by means of a sequence of substitutions that
replace only one name with another. However, it is to be noticed that the substi-
tutions of Definition 5.6.4 defines a mapping that replaces the names of a process
simultaneously. For this reason, these substitutions will be called from now on-
wards simultaneous substitutions. The substitutions that replace only one atom
with another within a process will be referred to as one-step substitutions.

Matteo Cimini 225

The reader must see that an encoding from simultaneous to one-step substitutions
cannot be provided naively. Consider for instance the term a.b.c12 and a substitu-
tion σ which maps the name a to b13, b to c, c to a and is the identity over all other
atoms. The scenario we have is the following

(a.b.c)σ = b.c.a a.b.c[b/a][c/b][a/c] = a.a.a

The substitution σ indeed replaces names in the processes simultaneously. This
fact cannot be simulated naively by one-step substitutions because of clashes of
names in the terms. The unfolded procedure of the example above is a.b.c[b/a] =

b.b.c, b.b.c[c/b] = c.c.c, c.c.c[a/c] = a.a.a. In the encoding of simultaneous substitu-
tions that we present, we are able to simulate substitutions relying, not surpris-
ingly, on freshness of atoms, which once again plays a crucial role.

In order to ease the proof and its presentation, we adopt a convenient represen-
tation of simultaneous substitutions. By Definition 5.6.4, we have that this type
of substitutions act only on a finite set of names, we can thus represent map-
pings as finite lists of substitutions {a/b}, with a and b names. For instance, the
substitution mapping a to b, c to d, e to f and that is the identity over all other
names, is represented as {a/b} · {c/d} · {e/ f } · ε. Such a representation gives a clearer
and more immediate presentation. The symbol ε denotes the empty substitution
for both the types of substitution. The operation · denotes the composition for
simultaneous substitutions. For one-step substitution we write instead t[a/b][c/d]
as before. In what follows, we sometimes omit writing the substitution ε at the
end of a composition of simultaneous substitutions.

Despite the representation, the reader must keep in mind that a substitution
acts as a mapping and it performs simultaneous substitutions, as in the example
above.

In what follows, we say that a name a is fresh in a simultaneous substitution σ if a
does not appear in σ.

Since the correctness of the following encoding is built upon freshness of names of
the term the substitution is applied to, the encoding is parametrized by a process
P. Moreover, the encoding is parametrized also by an enumeration Φ of names of
π-calculus. Note that this is possible because the set of names is countably infinite.
The role of Φ will be make clear after the presentation of the encoding.

12 In order to make the example clear we consider the term a.b.c rather than a π-calculus process.
13 When we say that σ maps a to b we mean σ(a) = b, i.e., the name a will be replaced by b.

226 Meta-theory of SOS

Definition 5.22.4 (Encoding of simultaneous substitutions)

~ε�(P,Φ) = ε

~{b/a} · σ�(P,Φ) = [a f/a]~σ�P[a f /a][b/a f]

Where the name a f is such that Φ(n) = a f for some n that is the least natural number m
such that Φ(m) = a f and a f is fresh in P and in {b/a} · σ.

In the encoding above P[a f/a] is performed by the one-step substitution.

Remark on the enumeration. The encoding could simply pick a name a f that
is fresh in P and in {b/a} · σ. However, this choice makes the encoding able to
produce different outputs depending on the choice of fresh names made at any
step, i.e., the encoding would not be a function. It is however convenient to avoid
the technicalities that arise with dealing with multiple encodings. To this aim, we
fix an enumeration of names and pick always the least suitable fresh name (with
the property stated in Definition 5.22.4). It is not hard to see that such a suitable
name always exists. The encoding ~·�(P,Φ) is thus a function.

From now onwards, the choice of the enumeration Φ will always be irrelevant,
and we will just write ~σ�P mentioning only the parameter P.

For the sake of example, the encoding for the simultaneous substituton of the
previous example is ~{b/a} · {c/b} · {a/c}�(a.b.c) = [a f/a][b f/b][c f/c][a/c f][c/b f][b/a f].
The reader may want to see these six one-step substitutions applied to the term
a.b.c:

(1) a.b.c[a f/a] = a f .b.c (2) a f .b.c[b f/b] = a f .b f .c (3) a f .b f .c[c f/c] = a f .b f .c f

(4) a f .b f .c f [a/c f] = a f .b f .a (5) a f .b f .a[c/b f] = a f .c.a (6) a f .c.a[b/a f] = b.c.a.

The series of one-step substitutions ends up in the term b.c.a, as we expected. This
is not by chance, the following theorem proves that, thanks to the encoding ~·�,
one-step substitutions are able to simulate simultaneous substitutions.

Multiple representations for simultaneous substitutions Before stating the
theorem, the reader must know that the mappings of Definition 5.6.4 allow for
multiple representations of simultaneous substitutions. For instance, the two
substitutions {a/b} · {c/d} · {e/ f } and {a/b} · {e/ f } · {c/d} represent the same mapping.
We equate all of these representations, and when refering to a simultaneous sub-
stitution σ, we actually refer to a representative representation of the class of all

Matteo Cimini 227

the simultaneous substitutions which differs only by permutation of their single
substitutions. It is not hard to see that all of these equated representations lead to
the same term when applied to a process P.

Theorem 5.22.5 (Correctness of the encoding of simultaneous substitutions) For
all processes P in Π, for all simultaneous substitutions σ, Pσ = P~σ�P.

The proof of Theorem 5.22.5 can be found in Section 5.23. Relying on Theorem
5.22.5, we proceed to prove Theorem 5.22.3. Before embarking on the proof, we
state a useful lemma.

The following lemma, whose proof is straightforward, ensures that simultane-
ous substitutions and one-step substitutions coincide when substituting only one
name.

Lemma 5.22.6 For all P ∈ Π, for all names a and b it holds that P{a/b} = P[a/b].

The proof is divided into two cases, given P and Q ∈ Π:

1. Soundness: if P ◦↔–– Q then P↔1sO Q.

2. Completeness: if P↔1sO Q then P ◦↔–– Q.

Soundness: It suffices to show that the relation

R = {(P,Q) | P ◦↔–– Q}

is a one-step open bisimulation.

To this end, notice first of all that R is symmetric. Assume now that P ◦↔–– Q. Con-
sider first Clause 1 of Definition 5.22.1 and assume P α

→P′. Since ◦↔–– ranges over
all the simulation substitutions, it ranges also over the simultaneous substitution
ι which is the identity over all the names, i.e., such that Pι = P for all P ∈ Π. We
have thus that Pι α

→P′. Since P ◦↔–– Q, we have that there exists a process Q′ such
that Qι α

→Q′, which simply means Q α
→Q′, and P′ ◦↔–– Q′. We now have to prove

that P′RQ′. This follows from the fact that P′ ◦↔–– Q′.

Consider now Clause 2 of Definition 5.22.1, which is about one-step substitutions.
It is easy to see that since ◦↔–– ranges over all the simultaneous substitutions, it also
ranges over all the simultaneous substitutions that replace only one name with
another. By Lemma 5.22.6, these substitutions coincide to their corresponding
one-step substitutions.

228 Meta-theory of SOS

Completeness: It suffices to show that the relation

assume Pσ α
→P′. L

R = {(P,Q) | P↔1sO Q}

is an open bisimulation.

To this end, notice first of all that R is symmetric. Assume now that P↔1sO Q. Let
us pick a simultaneous substitutions σ and let us consider its encoding as a series
of -one-step substitutions σ∗ = ~σ�(P‖Q) (We use P ‖ Q as parameter in order to
make sure that the encoding will pick names that are fresh in both P and Q). Note
that if a name is fresh in both P and Q, it is fresh in P and Theorem 5.22.5 applies.
The same holds for Q. Let σ∗ be [a1/a2][a3/a4] · [an−1, /an] · ε. The first one-step
substitution [a1/a2] is considered by↔1sO, and we have that P[a1/a2]↔1sO Q[a1/a2].
Now, since P[a1/a2]↔1sO Q[a1/a2], we have that, again by Clause 2 of Definition
5.22.1, the substitution [a3, a4] is considered by↔1sO from the terms P[a1/a2] and
Q[a1/a2], and P[a1/a2][a3/a4]↔1sO Q[a1/a2][a3, a4]. By iterating the application of
Clause 2 of Definition 5.22.1, we can apply to P and Q the complete sequence
of one-step substitutions σ∗, ending up with Pσ∗ ↔1sO Qσ∗. Now, thanks to the
Clause 1 of Definition 5.22.1, since Pσ∗ ↔1sO Qσ∗, if Pσ∗ α

→P′ then Qσ∗ α
→Q′ and

P′↔1sO Q′. By Theorem 5.22.5, Pσ∗ = Pσ, so also Pσ is such that Pσ α
→P′. For the

same reasons, we have that also Qσ is such that Qσ α
→Q′. Now, since P′↔1sO Q′

we have that P′RQ′.

This concludes the proof of Theorem 5.22.3. The statement of Theorem 5.6.6 easily
follows from Theorem 5.22.2 and Theorem 5.22.3.

5.23 Simulation of Substitutions by One-Step Substi-

tutions: Proof of Theorem 5.22.5

The proof of Theorem 5.22.5 relies on two lemmas, whose proofs are omitted.

Lemma 5.23.1 For all P ∈ Π, for each simultaneous substitution σ and names a and
b, if σ does not map a, b is fresh in P and b does not appear in σ, then it holds that
(P{b/a})σ = P{b/a} · σ.

The reader must notice that differently from what happens in (P{b/a})σ, in the
term P{b/a} · σ the substitution {b/a} is performed simultaneously with the others
of σ. The proof of Lemma 5.23.1 is straightforward and omitted.

Matteo Cimini 229

The following lemma says, instead, that in order to change an atom a into b in a
term while performing other substitutions, we can first change the atom a into a
fresh new atom a f and apply simultaneously the further substitutions, and after
that, replace the atom a f with b. We can do this as long as the further substitutions
do not change a f or introduce other occurrences of a f .

Lemma 5.23.2 For all P ∈ Π, for each simultaneous substitution σ and names a, b and
a f , if σ does not map a and a f is fresh in P and a f does not appear in σ, then it holds that
P{b/a} · σ = (P({a f/a} · σ)){b/a f }.

Let P be a process of the π-calculus and σ be a simultaneous substitution. The
proof proceeds by induction on the "length" of σ, i.e., the cardinality of the set of
atoms over which σ does not act as the identity. Note that by Definition 5.6.4 this
set is finite. For what follows, we invite the reader to pay attention to the fact that
the two expressions (P{a f/a})σ and P({a f/a} · σ) mean different things. The former
denotes the substitution σ applied to the term P{a f/a}, while the latter denotes the
substitution {a f/a} · σ applied to the term P.

• Length 0, i.e., σ = ε: It is easy to see that Pε = P~ε�P = ε.

• Length n > 0, i.e., σ = {b/a} · σ′: Then, ~σ�P = [a f/a]~σ′�P[a f /a][b/a f], with
a f fresh in P. Now, let us consider the term P{a f/a}. By inductive hypoth-
esis, which apply to σ′, (P{a f/a})~σ′�P{a f /a} = (P{a f/a})σ′. By Lemma 5.22.6,
we know that P{a f/a} = P[a f/a], so we have (P[a f/a])~σ′�P[a f /a] = (P{a f/a})σ′.
Again, by Lemma 5.22.6, we can add one single additional substitution with-
out affecting the equation, so we have ((P[a f/a])~σ′�P[a f /a])[b/a f] = ((P{a f/a})σ′){b/a f }.
Since σ is a mapping, clearly σ′ does not map a. We know also that a f does
not appear in σ′ and that a f is fresh in P. We can thus apply Lemma
5.23.1 and have that (P{a f/a})σ′ = P{a f/a} · σ′. The equation thus rewrites
as P[a f/a]~σ′�P[a f /a][b/a f] = (P{a f/a} · σ′){b/a f }. Again, since σ′ does not map
a, a f does not appear in σ′ and a f is fresh in P, we can apply Lemma 5.23.2
and have that (P{a f/a} · σ′){b/a f } = P{b/a} · σ′. We can thus conclude that
P[a f/a]~σ′�P[a f /a][b/a f] = P{b/a} · σ′.

230 Meta-theory of SOS

5.24 Nominal bisimilarity equates too much inλ-calculus:

Proof of Theorem 5.7.4

Before embarking on the proof of Theorem 5.7.4, let us first state some lem-
mas.

Lemma 5.24.1 (Free atoms of a term after a substitution) Let T be an NTSS and let
M be a term over the signature of T. For all atoms b, it holds that:

• If f a(M) = Φ and a < Φ, then f a(M[b/a]) = Φ (if M[b/a] is defined).

• If f a(M) = Φ ∪ {a} and a < Φ, then f a(M[b/a]) = Φ ∪ {b} (if M[b/a] is defined).

Lemma 5.24.2 (Substituting a free atom with a binding-closed term) Consider the
NTSS of our lazy λ-calculus defined in Section 5.5.1. Let M ∈ C(Σλ) and let f a(M) = {a},

for some atom a. For all terms M′
∈ C(Σλ) and N ∈ C(Σλ)0, it holds that if M a T

7→N
−→ M′

then M′
∈ C(Σλ)0.

Lemmas 5.24.1 and 5.24.2 can both be proved by an induction on the structure of
M. The proofs are simple and omitted. Note, however, that these proofs rely on
the straightforward fact that a < f a([a]M) for every atom a and term M.

Lemma 5.24.3 (α-conversions preserve the set of free atoms) Let T be an NTSS
whose set of rules contains the rules for α-conversion transitions as defined in Section
5.4.2. Let M be a term over the signature of T and let f a(M) = Φ. For all terms N, it
holds that if M→α N then f a(N) = Φ.

Intuitively, it is easy to see from the rules of Section 5.4.2 that an α-conversion
transition does not introduce or delete free atoms in a term. Lemma 5.24.3 can
be proved by an induction on the length of the proofs of provable α-conversion
transitions. However, such a proof makes use of a technical detail for the case
of terms of form [a].M. We shall discuss only this case in detail. There are two
possible α-conversion transitions from the term [a].M. Namely (1) [a]M→α [b]M′

by rule (abs1α), with b#M and M a A
7→b
−→ M′, and (2) [a]M →α [a]M′ by rule (abs2α),

with M→α M′.

Let us consider (1). Let f a([a].M) = Φ. By definition of the set f a, a < Φ. We also
have that f a(M) = Φ or f a(M) = Φ ∪ {a}. Now, By Lemma 5.4.2, which states the
correctness of substitution transitions, we know that M′ = M[b/a]. By Lemma
5.24.1 we can conclude that f a(M[b/a]) = Φ and b < Φ, or f a(M[b/a]) = Φ ∪ {b}.

Matteo Cimini 231

Either way, when we abstract on the atom b from M[b/a], we have f a([b].M[b/a]) =

Φ.

Let us consider (2). Let f a([a].M) = Φ, it holds again that a < Φ and that f a(M) = Φ,
or f a(M) = Φ∪{a}. Now, since the proof length for proving the transition M→α M′

is strictly less than the proof length for proving [a]M →α [a]M′, by the inductive
hypothesis we can conclude that f a(M′) = Φ or f a(M′) = Φ ∪ {a}. Either way,
when we abstract on the atom a from M′, we have f a([a].M′) = Φ.

As a straightforward consequence of Lemma 5.24.3, α-conversion transitions pre-
serve binding-closedness of terms, as stated below.

Lemma 5.24.4 (α-conversions preserve binding-closedness of terms) Let T be an
NTSS with signature Σ and let the set of rules of Σ contain the rules for α-conversion
transitions as defined in Section 5.4.2. Let M ∈ C(Σ)0. For all terms N, it holds that if
M→α N then N ∈ C(Σ)0.

For any two α-equivalent terms of our formulation of the lazy λ-calculus, it holds
that either they both have a normal form or they both do not have a normal form,
as stated below.

Lemma 5.24.5 (α-conversions preserve the normal form) Consider the NTSS of our
lazy λ-calculus defined in Section 5.5.1. Let M be a term over Σλ and let M have a normal
form. For all terms N, it holds that if M→α N then N has a normal form.

Lemma 5.24.5 follows easily from the fact that the reduction → is up to α-
equivalence and the transition→α is ’symmetric’, as shown in the proof of The-
orem 5.4.4 in Section 5.14. These two facts imply that if the transition M→M′

is provable, then also the transition N→M′ is provable, by α-converting first N
back to M.

Lemma 5.24.6 (Substitutions are always possible on λ-terms) Consider the NTSS
of our lazy λ-calculus defined in Section 5.5.1. Let M ∈ C(Σλ). For all atoms a and terms

N, it holds that M a T
7→N
−→ M′ for some term M′.

Lemma 5.24.6 can be proved by an induction on the length of the proofs of
provable substitution transitions. The only delicate point is when performing

a substitution a T
7→N
−→ in a term M and M contains an abstraction [b].M1 with b not

fresh in N. However, as argued in Section 5.5.3, since we set the term-for-atom
substitutions of our lazy λ-calculus to be up to α-equivalence, a substitution
transition is possible also in this case.

232 Meta-theory of SOS

By way of example, consider the provable transition

(λ([a].λ([b].(b a)))
c T
7→(b b)
−→ (λ([a].λ([d].(d a))),

where d is fresh in (b a). In this case an α-conversion takes place before the
application of rule (abs1Ts).

This point is not shown formally here. However, it follows exactly the same
reasoning employed in case 3 of the enumeration that contains the proofs of a few
cases for Lemma 5.24.7 below.

Lemma 5.24.7 (Substitutions are ’ineffective’ on binding-closed terms) Consider
the NTSS of our lazy λ-calculus defined in Section 5.5.1. Let M ∈ C(Σλ)0 and let b be an

atom fresh in M. For all terms N and M′, it holds that if M b T
7→N
−→ M′ then M→α M′.

Intuitively, it is easy to see that the substitution transitions defined by the rules
of Section 5.4.1 can only substitute free atoms in a term. Since a binding-closed
term contains no free atom, a substitution ends up in the same term up to α-
equivalence.

Lemma 5.24.7 can be proved by an induction on the length of the proofs of
provable substitution transitions. However, the cases involving an abstraction
[a].M are quite delicate and we wish to discuss them in detail.

1. Let us consider the term [a]M and the substitution transition b T
7→N
−→where b , a

and a is fresh in N. By the proviso of the lemma, we have also that b is fresh
in [a]M. In this case we can apply only the rule (abs1Ts), as (abs2Ts) requires
that a = b. The rule (abs1Ts) is instanciated as follows.

M b T
7→N
−→ M′ a#N a , b

[a]M b T
7→N
−→ [a]M′

Notice that the premises a#N and a , b are satisfied. Moreover, since b is
fresh in [a]M, then b < f a(M). Indeed, the term M may have only the atom
a as free, if any. Since b is fresh in M, and since the proof length for proving

the transition M b T
7→N
−→ M′ is strictly less than the proof length for proving

[a]M b T
7→N
−→ [a]M′, the inductive hypothesis the inductive hypothesis applies

Matteo Cimini 233

and M →α M′. Therefore, the transition proved above is [a]M b T
7→N
−→ [a]M′,

with [a]M→α [a]M′ (by rule (abs2α)).

2. Let us consider the term [a].M and the substitution transition a T
7→N
−→ (it is

irrelevant whether a is fresh in N or not). In this case we cannot apply the
rule (abs1Ts) above, as the premise a , b is not satisfied. However, we can

apply the rule (abs2Ts) and prove the transition [a]M a T
7→N
−→ [a]M, for which it

clearly holds that [a]M→α [a]M.

3. The case discussued in this item is related to the case pointed out for Lemma
5.24.6 above. Let us consider the term [a].M and the substitution transition
b T
7→N
−→where b , a and a is not fresh in N. By the proviso of the lemma, we have
also that b is fresh in [a]M. In this case we cannot apply the rule (abs1Ts), as
it requires that a#N. Also, we cannot apply the rule (abs2Ts), as it requires
that a = b. However, since the term-for-atom substitution transitions are
set to be up to α-equivalence, we can pick an atom c that is fresh in N and
instanciate the rule (b T

7→ N · upToα) as follows.

[a]M→α [c]M′ [c]M′
b T
7→N
−→ [d]M′′

[a]M b T
7→N
−→ [d]M′′

.

Now, by Lemma 5.24.3, since [a]M →α [c]M′ we have that f a([a]M) =

f a([c]M′). This means that since b is fresh in [a]M then b is fresh also
in [c]M′. Given this fact, and also since the proof length for proving the

transition [c]M′
b T
7→N
−→ [d]M′′ is strictly less than the proof length for prov-

ing [a]M b T
7→N
−→ [d]M′′, the inductive hypothesis applies and we have that

[c]M′
→α [d]M′′. Since [a]M →α [c]M′ is provable and also [c]M′

→α [d]M′′

is provable, we can use the rule (α ·upToα), (basically closing by transitivity),
and prove the transition [a]M→α [d]M′′ as required.

The reader may benefit also from an informal intuition on the dynamics at play
in the cases above. The enumeration below contains useful examples and will
serve this purpose. Note that, each number of the enumeration for the examples
below corresponds to the number of the enumeration of the cases proved above.
In what follows, atoms with distinct names are considered different atoms.

234 Meta-theory of SOS

1. (λ([a].λ([b].(b a)))
c T
7→(d d)
−→ (λ([a].λ([b].(b a))), employing the rule (λTs) with

(abs1Ts).

2. (λ([a].λ([b].(b a)))
a T
7→(d d)
−→ (λ([a].λ([b].(b a))), employing the rule (λTs) with

(abs2Ts). Employing the same rules we can prove also (λ([a].λ([b].(b a)))
a T
7→(b b)
−→

(λ([a].λ([b].(b a))).

3. (λ([a].λ([b].(b a)))
c T
7→(b b)
−→ (λ([a].λ([d].(d a))), where d is fresh in (b a). This case

is related to Lemma 5.24.6.

Lemma 5.24.8 (Reductions preserve binding-closedness and the normal form)
Consider the NTSS of our lazy λ-calculus defined in Section 5.5.1. Let M ∈ C(Σλ)0 have
a normal form. For all terms M′, it holds that if M→M′ then M′

∈ C(Σλ)0 and M′ has
a normal form.

Lemma 5.24.8 can be proved by an induction on the length of the proofs of
provable transitions → . We single out only the case when the rule (app) is
applied. Let us assume that (M N)→M′′′ is provable by the rule (app) instanciated
as follows.

M→λ([a]M′) M′
a T
7→N
−→ M′′ M′′

→M′′′

(M N)→M′′′

(app)

Now, since (M N) ∈ C(Σλ)0, we have that M ∈ C(Σλ)0 and N ∈ C(Σλ)0. As the
transition M→λ([a]M′) is provable, M has a normal form. Since also M ∈ C(Σλ)0

and the fact that the proof length for proving the transition M→λ([a]M′) is strictly
less than the proof length for proving (M N)→M′′′, the inductive hypothesis
applies and we have that λ([a]M′) ∈ C(Σλ)0. This means that f a(M′) = ∅ or
f a(M′) = {a}. If f a(M′) = ∅, then M′

∈ C(Σλ)0 and by Lemmas 5.24.7 and 5.24.3

we can conclude that after the transition M′
a T
7→N
−→ M′′ we have that M′′

∈ C(Σλ)0

(by applying also Lemma 5.24.4 to M′′). If f a(M′) = {a}, since N ∈ C(Σλ)0, we
can apply Lemma 5.24.2 and have that M′′

∈ C(Σλ)0. Either way, we have that
M′′
∈ C(Σλ)0. Now, since the transition M′′

→M′′′ is provable, M′′ has a normal
form. Since also M′′

∈ C(Σλ)0 and the fact that the proof length for proving the
transition M′′

→M′′′ is strictly less than the proof length for proving (M N)→M′′′,
the inductive hypothesis applies and we have that M′′′

∈ C(Σλ)0 and has a normal
form.

The rest of the proof proceeds following standard lines. Note, however, that
the proof for transitions M→M′ up to α-conversion, i.e. an α-conversion takes

Matteo Cimini 235

place first, makes use of Lemmas 5.24.4 and 5.24.5, which state that α-conversions
preserve binding-closedness and ’having a normal form’, respectively.

We are now ready to prove Theorem 5.7.4. To this end, it is sufficient to show that
the relation

R = {(M,N) |M,N ∈ C(Σλ)0 and M,N have normal f orm}

is a nominal bisimulation.

Notice first of all that R is symmetric. Assume now that M R N. There are three
types of transitions that we need to consider within the bisimulation game of
Definition 5.6.2. Namely, (1) substitutions transitions, (2) α-conversion transitions
and (3) transitions performed by the reduction step → .

Let us consider first the case (1). Let us pick an atom a and a term P and assume

that M a T
7→P
−→ M′, for some term M′. Since M ∈ C(Σλ)0, by Lemma 5.24.7 we know

that M →α M′. Since M ∈ C(Σλ)0 and M has a normal form, by Lemmas 5.24.4
and 5.24.5 we can conclude that M′

∈ C(Σλ)0 and also that M′ has a normal form.
Now, since N ∈ C(Σλ)0, by Lemma 5.24.6 substitutions are always possible and

we have that N a T
7→P
−→ N′ for some term N′. By Lemma 5.24.7, we also know that

N →α N′. Again, since N ∈ C(Σλ)0 and N has a normal form, by Lemmas 5.24.4
and 5.24.5 we can conclude that N′ ∈ C(Σλ)0 and also that N′ has a normal form.
We therefore have that M′

R N′.

Let us consider now the case (2) and assume that M →α M′, for some term M′.
Using Lemmas 5.24.4 and 5.24.5, we know that M′

∈ C(Σλ)0 and that M′ has a
normal form. Now, we can use the rule (idα) in order to prove the transition
N →α N. Since N ∈ C(Σλ)0 and N has a normal form, we have therefore that
M′
R N.

Let us consider now the case (3) and assume that M→M′, for some term M′. By
Lemma 5.24.8 we know that M′

∈ C(Σλ)0 and that M′ has a normal form. Now,
since N has a normal form, we have that we can prove a transition N→N′, for
some term N′. Moreover, by Lemma 5.24.8 we have that N′ ∈ C(Σλ)0 and also
that N′ has a normal form. We have therefore that M′

R N′. This concludes the
proof.

236

237

Chapter 6

Conclusions

Don’t let it end like this. Tell them I said something.
Pancho Villa.

SOS is one of the most natural and successful ways for providing programming
and specification languages with a formal semantics. The meta-theory of SOS has
been investigated for over 20 years and has led to many foundational results from
which the community can benefit.

This thesis has presented some contributions to the meta-theory of SOS. The
contributions are not specific to a single subject. They rather attack different
research problems.

In Chapter 2 we proposed rule-matching bisimilarity, a method for establishing
the soundness of equations between open terms constructed using operations
whose semantics is specified by rules in the GSOS format of Bloom, Istrail and
Meyer [44]. We proved that rule-matching bisimilarity is a sound proof method
for showing the validity of equations with respect to bisimilarity. The method
is not complete. However, we show by means of examples that rule-matching
bisimilarity is expressive enough to establish the validity of relevant equations
from the literature.

An extension of the proof method to the setting of GSOS languages with predicates
is also offered.

Proofs of validity of equations (modulo bisimilarity) are often lengthy, work-
intensive and need to be carried out for many equations and languages. Au-
tomated methods devoted to this task are thus desirable, especially if they are

238 Meta-theory of SOS

applicable in a general fashion, as in the context of rule formats, rather than
confined to specific calculi.

We believe that rule-matching bisimilarity represents a good tool for the mech-
anization of the task. The reader should also bear in mind that the GSOS rule
format and its extension with predicates, although constrained on the permissible
shapes of their rules, are still expressive enough to formulate many languages.
For instance, most process algebras can be specified within them.

We point out some future research direction concerning the theory of rule-matching
bisimilarity.

• Rensink’s HP-bisimilarity: Rule-matching bisimilarity is inspired by de
Simone’s FH-bisimilarity [52]. In [125], Rensink presented a natural sharp-
ening of de Simone’s FH-bisimilarity, the hypothesis preserving bisimilarity.
His extension is orthogonal to ours, and it adds to FH-bisimilarity the ca-
pability to store some information about the variable transitions during the
computation. Adding this feature to our method would lead to a more pow-
erful rule-matching equivalence, in particular the validity of the equation
in Example 2.5.4 of Section 2.5, which witnesses the incompleteness of the
rule-matching bisimilarity, would be provable. We leave this sharpening as
future work.

• Extension to more expressive rule formats: It would be worthwhile to
extend our method to rule formats that are more expressive than the GSOS
format, for example NTyft/NTyxt [66] and Panth [150], just to name a few.
The main challenge in this context amounts in providing a corresponding
Ruloid Theorem for the rule format considered and also a logic that is
capable of reasoning about the satisfiability of its premises. Moreover, for
mechanization purposes, the entailment of this logic, as defined in Section
2.4, must be decidable.

• Completeness for restricted classes of languages: Although we show that
the rule-matching bisimilarity is incomplete within the full GSOS format,
in Section 2.7 we provide some restricted classes within GSOS for which
our method is a complete proof technique for establishing equality between
open terms. Admittedly, those classes are not quite expressive and as future
work, we plan to investigate complete classes that are more interesting than
the ones proposed.

Matteo Cimini 239

• Robustness of equations: Sound equations may become unsound after
an operationally conservative extension; for examples see [107] , [103] and
Example 2.5.6 on page 37. It is thus desirable to provide criteria under which
the validity of equations is instead preserved. The main benefit is that it
prevents the user from repeating proofs in the context of the new extended
semantics.

We provide some criteria along this line in the context of rule-matching
bisimilarity. Theorems 2.5.8 and 2.8.11 offer some conditions guaranteeing
that the equations proved by our method are preserved in disjoint extensions
of the original language. It would be worthwhile to provide more results
of this kind. To this end, we may benefit largely from the work in [103],
where the authors address the topic of the robustness of equations in a
reasoned account. Especially, we may benefit from [102], a longer version
of the mentioned paper, which contains also some considerations about the
rule-matching bisimilarity in this context.

• Implementation: We plan on working on an implementation of a prototype
checker for rule-matching bisimilarity.

In Chapters 3 and 4, we provide rule formats that tackle two basic algebraic
laws that have not been addressed before in the context of rule formats, i.e., the
existence of zero elements and the distributivity law. We showed that several
classical examples from the literature indeed fit the formats, witnessing their
applicability and expressiveness. In Chapter 3, we also reformulate one of the
rule formats for zero elements in order to address unit elements. A rule format
for unit elements has been already addressed in an earlier contribution, [22]. It
turns out, however, that the two formats are incomparable.

Mechanizing the rule formats in a tool-set is a long-term goal of research on SOS
rule formats. We believe that the formats presented in Chapters 3 and 4 are strong
candidates for mechanization for checking the addressed algebraic laws.

With the contributions contained in Chapters 3 and 4 of this thesis, the meta-
theory of SOS tackles all the basic algebraic laws in the context of rule formats.
Namely, we currently have rule formats for

• commutativity in [110],

• associativity in [49],

• idempotence in [4],

240 Meta-theory of SOS

• unit elements in [22] and in Chapter 3,

• zero elements in Chapter 3, and

• distributivity in Chapter 4.

In a sense, the contributions presented in Chapters 3 and 4 complete the picture
insofar the basic algebraic laws is concerned.

However, a substantial amount of work on rule formats still has to be done. We
point out some future research.

• Improvement of existing formats: To begin with, there is room for im-
provements of the mentioned rule formats. We just name two examples.
The associativity rule format in [49] can be extended in order to be applied
to SOS semantics that use negative premises. This would allow us to rec-
ognize associativity laws that are not captured so far by rule formats. An
example is the associativity of the sequencing operator ; that is discussed in
Section 2.61.

Also, the rule formats for distributivity presented in Chapter 4 deal with
operators � that must be choice-like. It is worthwhile to extend the rule
formats in order to address a larger class of operators.

• Rule formats for other properties: Some basic properties of transition sys-
tems have not been addressed yet by rule formats. We limit ourselves to
mention the most prominent example: the confluence property. The notion of
confluence arises in various forms and with different motivations in several
areas within the theory of computation, see, for instance, [33, 96]. Intuitively,
confluence guarantees determinacy in computation by requiring that, of any
two possible computation steps, the occurrence of one will never preclude
the other. Despite the fact that this property occurs in many contexts and
has been subject of extensive investigation, a rule format guaranteeing con-
fluence has not been offered yet and it is part of our future work.

• Impossibility results: In Section 4.7 of Chapter 4 we offer some impossibility
results concerning the validity of the distributivity law. Unlike previous
results about rule formats for algebraic properties, these results allow one
to recognize when a certain algebraic law is guaranteed not to hold. When
designing operational specifications for operators that are intended to satisfy

1 In Section 2.6 we establish the validity of this associativity law using the rule-matching
bisimilarity.

Matteo Cimini 241

a certain algebraic law, a language designer might benefit from considering
also these kinds of negative results.

To our knowledge this type of result does not have any precursor in the field
of rule formats. Hitherto, all rule formats aimed at providing sufficient con-
ditions for establishing semantic properties, whereas the above-mentioned
results are the first ones that offer necessary syntactic conditions for some
semantic property to hold.

It would be worthwhile to investigate analogous impossibility results also
in the context of other properties. In particular in the context of congruence
formats and also concerning the other algebraic laws.

In Chapter 5 we propose Nominal SOS, a formal framework for the handling
of names and binders in SOS. We treat some basic notions that are common in
nominal calculi, such as α-conversion and substitution. These notions are usually
left out of the level of the semantics and they are treated as operations at the
meta-level. As our design choice, Nominal SOS does not come equipped with
such notions. We show, however, that they can be naturally captured within
the Nominal SOS framework as ordinary transitions. The language specifier has
the possibility to define and explore, for instance, other types of substitution
or equivalence of terms. Moreover, since α-conversion and substitutions are
transitions just like any other, they can be the subject of meta-theorems based on
the shape of rules that may be developed in the future.

We specify two of the most prominent examples of nominal calculi, namely the
lazy λ-calculus and the early π-calculus, in Nominal SOS and show that our
specifications coincide operationally with the original definitions of [2] and [132],
respectively. These examples show the expressiveness and perhaps the natural-
ness of the framework. From the rules that formulate the early π-calculus we can
see that freshness premises play a role. Indeed, the novelty of having freshness
tests in rules is not only useful in modelling in a direct way meta-level operations
such as substitutions and α-conversion, but it is also useful in the modelling of
specific features of languages.

Finally, we define a notion of nominal bisimilarity naturally arising from our
framework. We show that in the case of the π-calculus our notion coincides with
the well-known open bisimilarity, [132, 131].

The meta-theory of SOS is by now a mature field. However, relatively little
meta-theory has been done in the context of calculi with binders. We believe that

242 Meta-theory of SOS

Nominal SOS represents a good candidate in order to carry out a systematic study
of the meta-theory for those phenomena that are specifically related to calculi with
binders.

Nominal SOS is close enough to the framework of the ordinary SOS and we believe
that this similarity with ordinary SOS will have the following main benefits.

• We will be able to lift/adapt already existing meta-theory to the context of
binders with relative little effort.

• The content of the meta-theorems and the line of investigation will resemble
closely those achieved so far for ordinary SOS, and with which SOS users
are familiar.

• Moreover, thanks to the nominal approach, we hopefully have an intuitive
and familiar language with which we could explain why certain calculi
afford a property while others do not, for instance by means of presence/ab-
sence of freshness premises, or of a syntactic discipline in the use of them or
of other related nominal concepts.

The overarching aim is to develop the framework of Nominal SOS in a way that
is comparable to that of the standard theory of SOS, as surveyed in, e.g., [18, 109],
and to hopefully establish Nominal SOS as a framework of reference for the
study and the development of the theory of languages with first-class notions of
names and binders. More specifically, the main goals of our future work are as
follows.

• Application of Nominal SOS: We intend to provide further evidence that
Nominal SOS is expressive enough to capture the original semantics of
nominal calculi, such as variants of the π-calculus and its higher-order ver-
sion [130], the psi-calculi [36] and the object calculi [1], and to prove formally
the correspondence between the presentation in terms of Nominal SOS and
the original ones. Also, we plan to address different notion of equivalence
betweens terms. Just to name a few examples, it would be worth defining
within Nominal SOS a notion that is the analogous of the applicative bisim-
ilarity in the context of the λ-calculus, [2], and investigating the relation
between the notion of nominal bisimilarity and the applicative bisimilar-
ity. Also, it is part of our future work to adapt the definition of nominal
bisimilarity in order to coincide with the open bisimilarity with distinctions,
[132, 131], in the context of π-calculus terms.

Matteo Cimini 243

• Extending the framework of Nominal SOS: Chapter 5 should be considered
as containing the basic developments of the framework of Nominal SOS.
We are aware of a few possible extensions of the framework that would be
worth adding. For instance, it seems natural to consider also the possibility
to state negative freshness premises in rules. It would be also worth adding
the possibility to write nominal terms of the form ([xA]tσ)[A]σ. Namely,
terms can abstract also on a variable that ranges over atoms rather than on a
concrete atom. This feature should be accompanied by adding premises of
the form x#t, with x a variable of atom sort. As argued in Section 5.9.1, this
extension seems useful in some contexts in order to avoid the replication
of certain rules for all atoms. For instance, the λ-calculus would be finitely
formalized in this extension of Nominal SOS. Another research line consists
in providing to the user a suitable language capable of defining the meaning
of the binders involved in the language at hand.

• Developing the meta-theory of Nominal SOS: We plan to develop the meta-
theory of Nominal SOS, for example by providing congruence formats for
behavioural semantics in the context of calculi with binders, possibly gen-
eralizing those proposed in [153] and [56], for instance. Also, we mentioned
above that confluence is an important property that has not been tackled yet
by the theory of SOS in the context of rule formats. Many important conflu-
ence results stem from the realm of calculi equipped with binders; the reader
may indeed think of the λ-calculus and its variants. It would be thus desir-
able to provide rule formats guaranteeing the confluence property within
the framework of Nominal SOS. Meta-theory over Nominal SOS can be car-
ried out also for all those phenomena that are specifically related to binders.
For instance, it would be worth providing rule formats guaranteeing that
the late and early bisimilarity coincide, see [132].

• Lifting/adapting results from the ordinary SOS: We expect to extend a
wealth of classic SOS meta-results and techniques to the framework of Nom-
inal SOS.

• Implementation: We plan on providing tool support for Nominal SOS.

244

245

Bibliography

[1] Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer-Verlag, New York, 1996. [cited at p. 7, 194, 242]

[2] Samson Abramsky. The lazy lambda calculus. In D.A. Turner, editor,
Research Topics in Functional Programming, pages 65–116. Addison Wesley,
Reading, Mass., 1990. [cited at p. 16, 156, 160, 171, 172, 182, 194, 204, 241, 242]

[3] Samson Abramsky. A domain equation for bisimulation. Information and
Computation, 92(2):161–218, 1991. [cited at p. 11]

[4] Luca Aceto, Arnar Birgisson, Anna Ingolfsdottir, MohammadReza
Mousavi, and Michel A. Reniers. Rule formats for determinism and idem-
potency. In Proceedings of the 3rd International Conference on Fundamentals of
Software Engineering (FSEN’09), Lecture Notes in Computer Science, Kish
Island, Iran, 2009. Springer-Verlag, Berlin, Germany. [cited at p. 11, 14, 57, 68, 110, 125,

132, 135, 239]

[5] Luca Aceto, Bard Bloom, and Frits Vaandrager. Turning sos rules into
equations. Information and Computation, 111:1–52, May 1994. [cited at p. 13, 24, 25,

44, 111, 122, 123]

[6] Luca Aceto, Georgiana Caltais, Eugen-Ioan Goriac, and Anna Ingólfsdóttir.
Axiomatizing gsos with predicates. In Proceedings of the 8th Workshop on
Structural Operational Semantics 2011 (SOS 2011), volume 62 of Electronic
Proceedings in Theoretical Computer Science, pages 1–15, 2011. [cited at p. 13]

[7] Luca Aceto, Matteo Cimini, and Anna Ingolfsdottir. A bisimulation-based
method for proving the validity of equations in GSOS languages. In Pro-
ceedings of the 6th Workshop on Structural Operational Semantics 2009 (SOS
2009), August 31, 2009, Bologna (Italy), volume 18 of Electronic Proceedings in
Theoretical Computer Science, pages 1–16, 2010. [cited at p. 16, 68, 87, 88, 89, 100, 142]

246 Meta-theory of SOS

[8] Luca Aceto, Matteo Cimini, and Anna Ingolfsdottir. Proving the validity
of equations in gsos languages using rule-matching bisimilarity, 2011. to
appear in Mathematical Structures in Computer Science. [cited at p. 16]

[9] Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Mohammad Reza Mousavi,
and Michel A. Reniers. Sos rule formats for zero and unit elements. Theo-
retical Computer Science, 412(28):3045–3071, 2011. [cited at p. 16]

[10] Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, Mohammadreza Mousavi,
and Michel A. Reniers. Rule formats for distributivity. Technical Report
CSR-10-16, TU/Eindhoven (2010). [cited at p. 16]

[11] Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, MohammadReza Mousavi,
and Michel A. Reniers. On rule formats for zero and unit elements. In Pro-
ceedings of the 26th Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXVI), Ottawa, Canada, volume 265 of Electronic Notes in
Theoretical Computer Science, pages 145–160. Elsevier B.V., The Netherlands,
2010. [cited at p. 16, 110]

[12] Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, Mohammadreza Mousavi,
and Michel A. Reniers. Rule formats for distributivity. In Proceedings of the
5th International Conference on Language and Automata Theory and Applications
(LATA 2011), volume 6638 of Lecture Notes in Computer Science, pages 79–90.
Springer-Verlag, 2011. [cited at p. 16]

[13] Luca Aceto, Wan Fokkink, Anna Ingolfsdottir, and Bas Luttik. CCS with
Hennessy’s merge has no finite equational axiomatization. Theoretical Com-
puter Science, 330(3):377–405, 2005. [cited at p. 111]

[14] Luca Aceto, Wan Fokkink, Anna Ingolfsdottir, and Bas Luttik. Finite equa-
tional bases in process algebra: Results and open questions. In Processes,
Terms and Cycles: Steps on the Road to Infinity, volume 3838 of Lecture Notes
in Computer Science, pages 338–367. Springer, 2005. [cited at p. 19, 111]

[15] Luca Aceto, Wan Fokkink, Anna Ingolfsdottir, and Bas Luttik. A finite
equational base for ccs with left merge and communication merge. ACM
Transactions on Computational Logic, 10:6:1–6:26, January 2009. [cited at p. 20, 111]

[16] Luca Aceto, Wan Fokkink, Anna Ingolfsdottir, and Sumit Nain. Bisimilarity
is not finitely based over BPA with interrupt. Theoretical Computer Science,
366(1–2):60–81, 2006. [cited at p. 111]

Matteo Cimini 247

[17] Luca Aceto, Wan Fokkink, and Chris Verhoef. Conservative extension in
structural operational semantics. Bulletin of the European Association for The-
oretical Computer Science, 69:504–524, 1999. [cited at p. 11]

[18] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational seman-
tics. In Handbook of Process Algebra, pages 197–292. Elsevier, 1999. [cited at p. 10,

13, 21, 26, 67, 69, 109, 112, 124, 156, 157, 158, 193, 194, 242]

[19] Luca Aceto and Anna Ingolfsdottir. Cpo models for gsos languages - part i:
Compact gsos languages. Information and Computation, 129, 1994. [cited at p. 11]

[20] Luca Aceto, Anna Ingólfsdóttir, Bas Luttik, and Paul van Tilburg. Finite
equational bases for fragments of ccs with restriction and relabelling. In
Proceedings of the 5th IFIP International Conference On Theoretical Computer
Science (IFIP TCS 2008), volume 273 of IFIP, pages 317–332, 2008. [cited at p. 20]

[21] Luca Aceto, Anna Ingolfsdottir, MohammadReza Mousavi, and Michel A.
Reniers. Algebraic properties for free! Bulletin of the EATCS, 99:81–104,
October 2009. [cited at p. 67, 110, 126, 139]

[22] Luca Aceto, Anna Ingolfsdottir, MohammadReza Mousavi, and Michel A.
Reniers. Rule formats for unit elements. In Proceedings of the 36th Interna-
tional Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2010), Lecture Notes in Computer Science, Spindleruv Mlyn,
Czech Republic, 2010. Springer-Verlag, Berlin, Germany. [cited at p. 11, 57, 68, 73,

76, 77, 85, 86, 94, 98, 100, 104, 110, 239, 240]

[23] The Coq Proof Assistant. http://coq.inria.fr/. [cited at p. 192]

[24] Jos C. M. Baeten, Twan Basten, and Michel A. Reniers. Process Algebra:
Equational Theories of Communicating Processes. Cambridge University Press,
New York, NY, USA, 1st edition, 2009. [cited at p. 21, 80, 109, 111, 121, 136, 137]

[25] Jos C. M. Baeten and Jan A. Bergstra. Process algebra with a zero object. In
Proceedings of the Theories of Concurrency: Unification and Extension (CONCUR
’90), volume 458 of Lecture Notes in Computer Science, pages 83–98, London,
UK, 1990. Springer-Verlag. [cited at p. 53, 82]

[26] Jos C. M. Baeten and Jan A. Bergstra. Mode transfer in process algebra.
Technical Report Report CSR 00–01, Eindhoven University of Technology,
2000. [cited at p. 122]

248 Meta-theory of SOS

[27] Jos C. M. Baeten, Jan A. Bergstra, and Jan W. Klop. Syntax and defin-
ing equations for an interrupt mechanism in process algebra. Fundamenta
Informaticae, IX(2):127–168, 1986. [cited at p. 123, 144]

[28] Jos C. M. Baeten and Sjouke Mauw. Delayed choice: An operator for joining
Message Sequence Charts. In Proceedings of the 7th IFIP WG6.1 International
Conference on Formal Description Techniques (FORTE 1994), volume 6 of IFIP
Conference Proceedings, pages 340–354. Chapman & Hall, 1995. [cited at p. 122]

[29] Jos C. M. Baeten and Cornelis A. Middelburg. Process Algebra with Timing.
Monographs in Theoretical Computer Science, An EATCS Series. Springer-
Verlag, Berlin, 2002. [cited at p. 80, 156]

[30] Jos C. M. Baeten and Frits W. Vaandrager. An algebra for process creation.
Acta Informatica, 29(4):303–334, 1992. [cited at p. 41]

[31] Jos C. M. Baeten and Chris Verhoef. A congruence theorem for structured
operational semantics with predicates. In Eike Best, editor, International
Conference on Concurrency Theory (CONCUR’93), volume 715 of Lecture Notes
in Computer Science, pages 477–492. Springer-Verlag, Berlin, Germany, 1993.
[cited at p. 10]

[32] Jos C. M. Baeten and Erik P. de Vink. Axiomatizing gsos with termination.
In Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer
Science (STACS ’02), volume 2285 of Lecture Notes in Computer Science, pages
583–595, London, UK, 2002. Springer-Verlag. [cited at p. 13, 47, 93]

[33] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, Revised
edition. North Holland, 1984. [cited at p. 159, 160, 172, 185, 240]

[34] Henk. P. Barendregt. Lambda calculi with types, pages 117–309. Oxford
University Press, Inc., New York, NY, USA, 1992. [cited at p. 190]

[35] Falk Bartels. Gsos for probabilistic transition systems. Electronic Notes in
Theoretical Computer Science, 65(1):29–53, 2002. [cited at p. 13]

[36] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn Victor.
Psi-calculi: Mobile processes, nominal data, and logic. In Proceedings of
the 24th Annual IEEE Symposium on Logic In Computer Science, pages 39–48,
Washington, DC, USA, 2009. IEEE Computer Society. [cited at p. 194, 242]

Matteo Cimini 249

[37] Jan A. Bergstra and Jan W. Klop. Fixedpoint semantics in process alge-
bra. Technical Report IW 206/82, Center for Mathematics, Amsterdam, The
Netherlands, 1982. [cited at p. 68, 81, 121, 137]

[38] Jan A. Bergstra and Jan W. Klop. Process algebra for synchronous com-
munication. Information and Control, 60(1/3):109–137, 1984. [cited at p. 109, 111,

121]

[39] Jan A. Bergstra and Cornelis A. Middelburg. Preferential choice and coordi-
nation conditions. Journal of Logic and Algebraic Programming, 70(2):172–200,
2007. [cited at p. 84]

[40] Karen L. Bernstein. A congruence theorem for structured operational se-
mantics of higher-order languages. In LICS, pages 153–164, 1998. [cited at p. 10,

166]

[41] George David Birkhoff. A set of postulates for plane geometry, 1932. Annals
of Mathematics 33. [cited at p. 9]

[42] Bard Bloom. Many meanings of monosimulation: Denotational. opera-
tional and logical characterizations of a notion of simulation of concurrent
processes, 1991. Unpublished manuscript. [cited at p. 11]

[43] Bard Bloom, Wan Fokkink, and Rob J. van Glabbeek. Precongruence formats
for decorated trace semantics. ACM Transactions on Computational Logic,
5(1):26–78, 2004. [cited at p. 29]

[44] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced.
In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’88, pages 229–239, New York, NY, USA,
1988. ACM. [cited at p. 10, 11, 13, 16, 20, 21, 24, 25, 28, 29, 48, 68, 72, 237]

[45] Christiano de O. Braga, Edward H. Haeusler, José Meseguer, and Peter D.
Mosses. Mapping modular sos to rewriting logic. In Proceedings of the
12th international conference on Logic based program synthesis and transforma-
tion, LOPSTR’02, pages 262–277, Berlin, Heidelberg, 2003. Springer-Verlag.
[cited at p. 156]

[46] Ed Brinksma. A tutorial on LOTOS. In Proceedings of the IFIP WG6.1 Fifth
International Conference on Protocol Specification, Testing and Verification, pages
171–194. North-Holland Publishing Co., 1985. [cited at p. 122]

250 Meta-theory of SOS

[47] Roberto Bruni, David de Frutos-Escrig, Narciso Marti-Oliet, and Ugo Mon-
tanari. Bisimilarity congruences for open terms and term graphs via tile
logic. In Proceedings of CONCUR 2000 - Concurrency Theory, 11th Interna-
tional Conference, volume 1877 of Lecture Notes in Computer Science, pages
259–274. Springer, 2000. [cited at p. 20, 56]

[48] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proceedings of
Foundations of Software Science and Computation Structures (FoSSaCS 1998),
volume 1378 of Lecture Notes in Computer Science, pages 140–155. Springer-
Verlag, April 1998. [cited at p. 7]

[49] Sjoerd Cranen, MohammadReza Mousavi, and Michel A. Reniers. A rule
format for associativity. In Franck van Breugel and Marsha Chechik, ed-
itors, Proceedings of the 19th International Conference on Concurrency Theory
(CONCUR’08), volume 5201 of Lecture Notes in Computer Science, pages 447–
461, Toronto,Canada, 2008. Springer-Verlag, Berlin, Germany. [cited at p. 11, 57,

68, 92, 110, 126, 239, 240]

[50] Martin Davis. Engines of Logic: Mathematicians and the Origin of the Computer.
W. W. Norton & Co., Inc., New York, NY, USA, 2001. [cited at p. 8]

[51] Robert de Simone. Calculabilité et Expressivité dans l’Algèbre de Processus
Parallèles Meije. Thèse de 3e cycle, Univ. Paris 7, 1984. [cited at p. 34, 36, 43]

[52] Robert de Simone. Higher-level synchronising devices in meije-sccs. Theo-
retical Computer Science, 37:245–267, 1985. [cited at p. 16, 20, 34, 36, 38, 41, 42, 43, 54, 56, 124,

238]

[53] Guillame Doumenc, Eric Madelaine, and Robert De Simone. Proving pro-
cess calculi translations in ECRINS. Technical Report RR1192, INRIA, 1990.
[cited at p. 34]

[54] Maribel Fernandez and Murdoch J. Gabbay. Nominal rewriting. Information
and Computation, 205(6):917–965, 2007. [cited at p. 161]

[55] William Ferreira, Matthew Hennessy, and Alan Jeffrey. A theory of weak
bisimulation for core cml. Journal of Functional Programming, 8(5):447–491,
1998. [cited at p. 7]

[56] Marcelo Fiore and Sam Staton. A congruence rule format for name-passing
process calculi from mathematical structural operational semantics. In Pro-
ceedings of the 21st Annual IEEE Symposium on Logic in Computer Science, pages

Matteo Cimini 251

49–58, Washington, DC, USA, 2006. IEEE Computer Society. [cited at p. 184, 194,

243]

[57] Marcelo P. Fiore and Daniele Turi. Semantics of name and value passing. In
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science
(LICS’01), pages 93–104. IEEE Computer Society, Los Alamiots, CA, USA,
2001, 2001. [cited at p. 184]

[58] Wan Fokkink, Rob J. van Glabbeek, and Paulien de Wind. Compositionality
of hennessy-milner logic by structural operational semantics. Theoretical
Computer Science, 354(3):421–440, 2006. [cited at p. 13, 29]

[59] Wan Fokkink and Chris Verhoef. A conservative look at operational seman-
tics with variable binding. Information and Computation, 146:24–54, October
1998. [cited at p. 11, 24, 184]

[60] Wan Fokkink and Thuy Duong Vu. Structural operational semantics and
bounded nondeterminism. Acta Informatica, 39(6-7):501–516, 2003. [cited at p. 11]

[61] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax involving binders. In 14th Annual Symposium on Logic in Computer
Science, pages 214–224. IEEE Computer Society Press, Washington, 1999.
[cited at p. 156, 186, 187]

[62] Andrew Gacek. The abella interactive theorem prover (system description).
In Proceedings of the 4th international joint conference on Automated Reason-
ing, IJCAR ’08, pages 154–161, Berlin, Heidelberg, 2008. Springer-Verlag.
[cited at p. 189]

[63] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Combining generic
judgments with recursive definitions. In Proceedings of the 23rd Annual IEEE
Symposium on Logic in Computer Science, pages 33–44, Washington, DC, USA,
2008. IEEE Computer Society. [cited at p. 189]

[64] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Reasoning in Abella
about structural operational semantics specifications. In A. Abel and
C. Urban, editors, International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP 2008), number 228 in Electronic
Notes in Theoretical Computer Science, pages 85–100, 2008. [cited at p. 184, 189,

190]

[65] D. Plotkin Gordon. A structural approach to operational semantics. Journal
of Logic and Algebraic Programming, 60-61:17–139, 2004. [cited at p. 21, 67, 109, 155]

252 Meta-theory of SOS

[66] Jan F. Groote. Transition system specifications with negative premises (ex-
tended abstract). In CONCUR ’90: Proceedings on Theories of concurrency :
unification and extension, pages 332–341, New York, NY, USA, 1990. Springer-
Verlag New York, Inc. [cited at p. 10, 238]

[67] Jan F. Groote, Michel A. Reniers, Jos J. Van Wamel, and Mark B. Van
Der Zwaag. Completeness of timed mcrl. Fundamenta Informaticae, 361:2002,
2002. [cited at p. 156]

[68] Jan F. Groote and Frits Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100:202–260,
October 1992. [cited at p. 10, 21, 30]

[69] Ott User Guide. http://www.cl.cam.ac.uk/ pes20/ott/ott_manual_0.20.3.html.
[cited at p. 192]

[70] Carl A. Gunter. Semantics of Programming Languages: Structures and Tech-
niques. Foundations of Computing Series. MIT, Cambridge, MA, 1992.
[cited at p. 3]

[71] Pieter H. Hartel. Letos - a lightweight execution tool for operational se-
mantics. Software - Practice and Experience, 29:1379–1416, December 1999.
[cited at p. 156]

[72] Matthew Hennessy. Algebraic theory of processes. MIT Press series in the
foundations of computing. MIT Press, 1988. [cited at p. 21]

[73] Matthew Hennessy. The Semantics of Programming Languages: An Elementary
Introduction Using Structured Operational Semantics. Wiley, New York, 1991.
[cited at p. 3]

[74] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism
and concurrency. Journal of the ACM, 32(1):137–161, 1985. [cited at p. 12, 19, 33, 40,

87]

[75] David Hilbert. The Foundations of Geometry. Open Court, La Salle, Illinois,
tenth edition, 1899. Translated by Leo Unger. [cited at p. 9]

[76] Charles A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978. [cited at p. 121]

[77] Charles A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1985. [cited at p. 21, 40, 46, 80, 109, 121]

Matteo Cimini 253

[78] Charles A. R. Hoare, Ian J. Hayes, He Jifeng, Carroll Morgan, A. William
Roscoe, Jeff W. Sanders, I. Holm Sorensen, J. Michael Spivey, and Bernard A.
Sufrin. Laws of programming. Communications of the ACM, 30:672–686, 1987.
[cited at p. 19]

[79] Douglas R. Hofstadter. Godel, Escher, Bach: An Eternal Golden Braid (Penguin
Philosophy). Penguin Books Ltd, new edition, 1990. [cited at p. 8, 9]

[80] Hans Huttel. Transitions and Trees: An Introduction to Structural Operational
Semantics. Cambridge University Press, 2010. [cited at p. 3]

[81] Joxan Jaffar, Michael Maher, Kim Marriott, and Peter Stuckey. The semantics
of constraint logic programs. Journal of Logic Programming, 37(1):1–46, 1996.
[cited at p. 186]

[82] Marco Kick. Coalgebraic Modelling of Timed Processes. Phd thesis, LFCS,
School of Informatics, University of Edinburgh, 2002. [cited at p. 13]

[83] Bartek Klin and Vladimiro Sassone. Structural operational semantics for
stochastic process calculi. In Roberto M. Amadio, editor, Proceedings of
Foundations of Software Science and Computation Structures (FoSSaCS 2008),
volume 4962 of Lecture Notes in Computer Science, pages 428–442. Springer,
2008. [cited at p. 13]

[84] Matthew R. Lakin. An executable meta-language for inductive definitions with
binders. PhD thesis, University of Cambridge, 2010. [cited at p. 184, 186]

[85] Matthew R. Lakin and Andrew M. Pitts. A metalanguage for structural
operational semantics. In Symposium on Trends in Functional Programming,
pages 1–16, 2007. [cited at p. 184, 185]

[86] Matthew R. Lakin and Andrew M. Pitts. Resolving inductive defini-
tions with binders in higher-order typed functional programming. In
G. Castagna, editor, 18th European Symposium on Programming (ESOP ’09),
volume 5502 of Lecture Notes in Computer Science, pages 47–61. Springer, Mar
2009. [cited at p. 184, 186]

[87] Matthew R. Lakin and Andrew M. Pitts. Encoding abstract syntax without
fresh names. Journal of Automated Reasoning, 2011. To appear. [cited at p. 184, 186]

[88] Kim Guldstrand Larsen and Liu Xinxin. Compositionality through an op-
erational semantics of contexts. In Proceedings of the 17th International Col-
loquium on Automata, Languages and Programming (ICALP’90), volume 443

254 Meta-theory of SOS

of Lecture Notes in Computer Science, pages 526–539. Springer-Verlag, 1990.
[cited at p. 13, 20, 56]

[89] Eric Madelaine and Didier Vergamini. Finiteness conditions and structural
construction of automata for all process algebras. In Proceedings of the 2nd
International Workshop on Computer Aided Verification, CAV ’90, pages 353–
363, London, UK, 1991. Springer-Verlag. [cited at p. 34]

[90] Cornelis A. Middelburg. Variable binding operators in transition system
specifications. Journal of Logic and Algebraic Programming, 47(1):15–45, 2001.
[cited at p. 184]

[91] Cornelis A. Middelburg. An alternative formulation of operational con-
servativity with binding terms. Journal of Logic and Algebraic Programming
(JLAP), 55(1-2):1–19, 2003. [cited at p. 184]

[92] Dale Miller and Alwen Tiu. A proof theory for generic judgments: An
extended abstract. In Proceedings of the 18th Annual IEEE Symposium on
Logic in Computer Science, pages 118–127, Washington, DC, USA, 2003. IEEE
Computer Society. [cited at p. 189]

[93] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM
Transactions on Computational Logic, 6:749–783, October 2005. [cited at p. 184, 188,

189]

[94] Robin Milner. Fully abstract models of typed lambda-calculi. Theoretical
Computer Science, 4(1):1–22, 1977. [cited at p. 11]

[95] Robin Milner. A complete inference system for a class of regular behaviours.
Journal of Computer and System Sciences, 28(3):439–466, 1984. [cited at p. 19]

[96] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989. [cited at p. 6, 12, 19, 21, 24, 39, 46, 61, 72, 84, 99, 109, 111, 114, 116,

121, 138, 156, 240]

[97] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part i. Information and Computation, 100, 1989. [cited at p. 7, 156]

[98] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, ii. Information and Computation, 100:41–77, September 1992. [cited at p. 16,

156, 168, 171]

[99] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Defi-
nition of Standard ML - Revised. The MIT Press, 1997. [cited at p. 7]

Matteo Cimini 255

[100] Faron Moller. The importance of the left merge operator in process algebras.
In Proceedings of the 17th International Colloquium on Automata, Languages and
Programming (ICALP ’90), volume 443 of Lecture Notes in Computer Science,
pages 752–764. Springer-Verlag, 1990. [cited at p. 111]

[101] Faron Moller. The nonexistence of finite axiomatisations for CCS congru-
ences. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science (LICS’90), pages 142–153. IEEE Computer Society, 1990. [cited at p. 111]

[102] Peter D. Mosses, Mohammad Reza Mousavi, and Michel A. Reniers. Robust-
ness of equations under operational extensions. Technical Report RR1192,
INRIA, 1990. [cited at p. 55, 239]

[103] Peter D. Mosses, Mohammad Reza Mousavi, and Michel A. Reniers. Ro-
bustness of equations under operational extensions. In Proceedings of the
17th International Workshop on Expressiveness in Concurrency (EXPRESS’10),
volume 41 of Electronic Proceedings in Theoretical Computer Science, pages
106–120, 2010. [cited at p. 54, 55, 239]

[104] Mohammad Reza Mousavi. Towards sos meta-theory for language-based
security. Electronic Notes in Theoretical Computer Science, 162:267–271, 2006.
[cited at p. 13]

[105] Mohammad Reza Mousavi, Iain Phillips, Michel A. Reniers, and Irek Uli-
dowski. Semantics and expressiveness of ordered sos. Information and
Computation, 207(2):85–119, 2009. [cited at p. 13]

[106] Mohammad Reza Mousavi, Iain C. C. Phillips, Michel A. Reniers, and Irek
Ulidowski. The meaning of ordered sos. In S. Arun-Kumar and N. Garg,
editors, Proceedings of the 26th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’06), volume 4337 of Lecture Notes
in Computer Science, pages 334–345, Kolkata, India, 2006. Springer-Verlag.
[cited at p. 13]

[107] Mohammad Reza Mousavi and Michel A. Reniers. Orthogonal extensions
in structural operational semantics. In Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming (ICALP’05), volume
3580 of Lecture Notes in Computer Science, pages 1214–1225. Springer-Verlag,
2005. [cited at p. 24, 54, 239]

[108] Mohammad Reza Mousavi and Michel A. Reniers. Prototyping sos meta-
theory in maude. Electronic Notes in Theoretical Computer Science, 156:135–

256 Meta-theory of SOS

150, May 2006. [cited at p. 156]

[109] Mohammad Reza Mousavi, Michel A. Reniers, and Jan F. Groote. Sos
formats and meta-theory: 20 years after. Theoretical Computer Science,
373(3):238–272, 2007. [cited at p. 10, 11, 13, 21, 67, 69, 109, 112, 124, 156, 157, 158, 193, 194, 242]

[110] MohammadReza Mousavi, Michel A. Reniers, and Jan F. Groote. A syntactic
commutativity format for SOS. Information Processing Letters, 93:217–223,
March 2005. [cited at p. 11, 57, 68, 110, 126, 239]

[111] Gopalan Nadathur and Dale Miller. An overview of lambda prolog. In
Proceedings of the Fifth International Conference and Symposium on Logic Pro-
gramming (ICLP-SLP 1988), pages 810–827. MIT Press, 1988. [cited at p. 189]

[112] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, ATP:
Theory and application. Information and Computation, 114(1):131–178, 1994.
[cited at p. 134]

[113] Hanne R. Nielson and Flemming Nielson. Semantics with Applications: A
Formal Introduction. Wiley Series in Data Communications and Networking
for Computer Progammers. wiley, chichester, 1992. [cited at p. 3]

[114] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
- A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002. [cited at p. 192]

[115] David Park. Concurrency and automata on infinite sequences. In Pro-
ceedings of the 5th GI-Conference on Theoretical Computer Science, volume 104
of Lecture Notes in Computer Science, pages 167–183, London, UK, 1981.
Springer-Verlag. [cited at p. 19, 24, 72, 109, 116]

[116] Giuseppe Peano. Arithmetices principia, nova methodo exposita, 1899. [cited at p. 8]

[117] Andrew M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computation, 186:2003, 2002. [cited at p. 186, 187]

[118] Gordon D. Plotkin. Lcf considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977. [cited at p. 11]

[119] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Tech-
nical Report DAIMI FN-19, University of Aarhus, 1981. [cited at p. 4, 67, 109, 155]

[120] Gordon D. Plotkin. The origins of structural operational semantics. Journal
of Logic and Algebraic Programming, 60:60–61, 1981. [cited at p. 6]

Matteo Cimini 257

[121] Gordon D. Plotkin. An operational semantics for csp. In Dines Bjørner,
editor, Formal Description of Programming Concepts – II, pages 199–225, Am-
sterdam, 1983. North-Holland. [cited at p. 7]

[122] The HOL project. http://hol.sourceforge.net/. [cited at p. 192]

[123] Teodor C. Przymusinski. The well-founded semantics coincides with the
three-valued stable semantics. Fundamenta Informaticae, 13(4):445–463, 1990.
[cited at p. 115]

[124] Teodor C. Przymusinski. Well-founded semantics coincides with three-
valued stable semantics. Fundamenta Informaticae, XIII:445–463, 1990.
[cited at p. 165]

[125] Arend Rensink. Bisimilarity of open terms. Information and Computation,
156(1-2):345–385, 2000. [cited at p. 20, 54, 56, 238]

[126] Jan J. M. M. Rutten. Deriving denotational models for bisimulation from
structured operational semantics. In Proceedings of the IFIP Working Group
2.2/2.3 Working Conference, pages 155–177. North-Holland, The Netherlands,
1990. [cited at p. 11]

[127] Jan J. M. M. Rutten. Processes as terms: Non-well-founded models for
bisimulation. Mathematical Structures in Computer Science (MSCS), 2(3):257–
275, 1992. [cited at p. 11]

[128] Jan J. M. M. Rutten and Daniele Turi. Initial algebra and final coalgebra
semantics for concurrency. In Proceedings of REX School/Symposium’1993,
volume 803 of Lecture Notes in Computer Science, pages 530–582. Springer-
Verlag, 1994. [cited at p. 11]

[129] Davide Sangiorgi. Bisimulation for higher-order process calculi. Information
and Computation, 131(2):141–178, 1996. [cited at p. 166]

[130] Davide Sangiorgi. pi-calculus, internal mobility, and agent-passing cal-
culi. In Selected papers from the 6th international joint conference on Theory and
practice of software development, TAPSOFT ’95, pages 235–274, Amsterdam,
The Netherlands, The Netherlands, 1996. Elsevier Science Publishers B. V.
[cited at p. 194, 242]

[131] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Infor-
matica, 33(1):69–97, 1996. [cited at p. 156, 180, 182, 194, 241, 242]

258 Meta-theory of SOS

[132] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile
Processes. Cambridge Univ. Press, 2001. [cited at p. 16, 137, 156, 168, 171, 175, 176, 179, 180,

181, 182, 194, 208, 241, 242, 243]

[133] David A. Schmidt. The Structure of Typed Programming Languages. Founda-
tions of Computing. MIT, Cambridge, MA, 1994. [cited at p. 3]

[134] Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathe-
matische Methoden in der Geometrie. Springer, Berlin, 1983. [cited at p. 9]

[135] Peter Sewell, Francesco Z. Nardelli, Scott Owens, Gilles Peskine, Thomas
Ridge, Susmit Sarkar, and Rok Strniša. Ott: effective tool support for
the working semanticist. ACM SIGPLAN Notices, 42:1–12, October 2007.
[cited at p. 184, 190, 191, 192]

[136] Mark R. Shinwell. The Fresh Approach: functional programming with names
and binders. PhD thesis, University of Cambridge, 2005. [cited at p. 186]

[137] Mark R Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML:
Programming with binders made simple. In Eighth ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP 2003), Uppsala, Sweden,
pages 263–274. ACM Press, 2003. [cited at p. 186]

[138] Alex K. Simpson. Sequent calculi for process verification: Hennessy-milner
logic for an arbitrary gsos. Journal of Logic and Algebraic Programming, 60-
61:287–322, 2004. [cited at p. 12]

[139] Allen Stoughton. Fully abstract models of programming languages. Pitman
Publishing, Inc., Marshfield, MA, USA, 1988. [cited at p. 11]

[140] Bent Thomsen. A theory of higher order communicating systems. Informa-
tion and Computation, 116(1):38–57, 1995. [cited at p. 166]

[141] Simone Tini. Rule formats for non interference. In Proceedings of the 12th
European Symposium on Programming (ESOP 2003), volume 2618 of Lecture
Notes in Computer Science, pages 129–143, 2003. [cited at p. 13]

[142] Simone Tini. Rule formats for compositional non-interference properties.
Journal of Logic and Algebraic Programming, 60-61:353–400, 2004. [cited at p. 13]

[143] Irek Ulidowski and Iain C. C. Phillips. Ordered sos process languages for
branching and eager bisimulations. Information and Computation, 178(1):180–
213, 2002. [cited at p. 13]

Matteo Cimini 259

[144] Irek Ulidowski and Shoji Yuen. Process languages with discrete relative time
based on the ordered sos format and rooted eager bisimulation. Journal of
Logic and Algebraic Programming, 60-61:401–460, 2004. [cited at p. 13]

[145] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unifi-
cation. Theoretical Computer Science, 323:473–497, 2004. [cited at p. 156, 157, 159, 161,

193]

[146] Rob J. van Glabbeek. The linear time-branching time spectrum i - the
semantics of concrete, sequential processes. In Handbook of Process Algebra,
chapter 1, pages 3–99. Elsevier, 1999. [cited at p. 39, 61]

[147] Rob J. van Glabbeek. The meaning of negative premises in transition sys-
tem specifications II. Journal of Logic and Algebraic Programming (JLAP),
60-61:229–258, 2004. [cited at p. 164, 165]

[148] Jan van Heijenoort, editor. From Frege to Gödel: A sourcebook in mathematical
logic, 1879 – 1931. Harvard University Press, 1967. [cited at p. 8]

[149] Muck van Weerdenburg. Automating soundness proofs. In Proceedings
of the 5th Workshop on Structural Operational Semantics (SOS 2008), volume
229 of Electronic Notes in Theoretical Computer Science, pages 107–118, 2009.
[cited at p. 20, 38, 56, 57]

[150] Chris Verhoef. A congruence theorem for structured operational semantics
with predicates and negative premises. In Proceedings of CONCUR ’94:
Concurrency Theory, 5th International Conference, volume 836 of Lecture Notes
in Computer Science, pages 433–448, London, UK, 1994. Springer-Verlag.
[cited at p. 10, 238]

[151] Chris Verhoef. A congruence theorem for structured operational seman-
tics with predicates and negative premises. Nordic Journal on Computing,
2(2):274–302, 1995. [cited at p. 92]

[152] Glynn Winskel. The Formal Semantics of Programming Languages: An In-
troduction. Foundation of Computing Series. MIT, Cambridge, MA, 1993.
[cited at p. 3]

[153] Axelle Ziegler, Dale Miller, and Dale Palamidessi. A congruence format
for name-passing calculi. In Proceedings of the 2nd Workshop on Structural
Operational Semantics (SOS’05), volume 156 of Electronic Notes in Theoretical
Computer Science, pages 169–189, Lisbon, Portugal, 2005. Elsevier Science
B.V. [cited at p. 194, 243]

260 Meta-theory of SOS

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

	1 Introduction
	1.1 Semantics
	1.2 Structural Operational Semantics
	1.3 Meta-theory of SOS
	1.4 Contributions: A summary
	1.4.1 Publications resulting from the thesis work

	2 Proving Equivalence of Open Terms
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Eliminating junk rules

	2.3 Ruloids and the operational specification of contexts
	2.4 A logic of transition formulae
	2.5 Rule-matching bisimulation
	2.6 Examples
	2.7 Partial completeness results
	2.8 Extending rule-matching bisimilarity to GSOS with predicates
	2.8.1 GSOS with predicates
	2.8.2 A ruloid theorem for GSOS languages with predicates
	2.8.3 The logic of initial transitions with predicates
	2.8.4 Rule-matching bisimilarity
	2.8.5 Examples

	2.9 Related and future work
	2.10 Proof of Theorem 2.5.3
	2.11 Proof of Theorem 2.7.2
	2.12 Proof of Theorem 2.7.4

	3 Rule Formats for Zero and Unit Elements
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Transition system specifications and bisimilarity
	3.2.2 Predicates

	3.3 Rule format
	3.4 Examples
	3.5 Discussion of the format
	3.5.1 Premises of rules
	3.5.2 Checking the format, algorithmically

	3.6 A rule format for zero elements based on GSOS
	3.6.1 The logic of initial transitions
	3.6.2 An alternative rule format for zero elements

	3.7 From zero to unit
	3.8 Conclusions
	3.9 Proof of Theorem 3.3.2
	3.10 Proof of Theorem 3.6.2
	3.11 Proof of Theorem 3.7.2

	4 Rule Formats for Distributivity
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Transition system specifications and bisimilarity

	4.3 The left-distributivity rule formats
	4.3.1 The firability condition
	4.3.2 The matching-conclusion condition
	4.3.3 The second left-distributivity format

	4.4 Analyzing the distributivity compliance
	4.5 Examples
	4.6 Examples of left-distributivity laws involving unary operators
	4.7 Impossibility results
	4.7.1 Left-inheriting operators
	4.7.2 The use of negative premises

	4.8 Conclusions
	4.9 Proof of Theorem 4.3.6
	4.10 Proof of Theorem 4.3.8
	4.11 Proof of Theorem 4.3.22
	4.12 Proof of Theorem 4.7.6

	5 Structural Operational Semantics with Binders
	5.1 Introduction
	5.2 Nominal terms
	5.3 Nominal SOS
	5.3.1 Semantics of NTSS's

	5.4 Substitution and -conversion
	5.4.1 Substitution transitions
	5.4.2 -conversion Transitions

	5.5 Examples
	5.5.1 The lazy -Calculus
	5.5.2 The early -calculus
	5.5.3 A remark on the Barendregt Convention

	5.6 Nominal bisimilarity
	5.7 Applicative Bisimilarity
	5.8 Related Work
	5.8.1 MLSOS and ML
	5.8.2 FO
	5.8.3 SOS in Abella
	5.8.4 SOS with Ott
	5.8.5 General Remarks

	5.9 Conclusions and Future works
	5.9.1 Extensions of the framework

	5.10 Useful definitions for nominal terms.
	5.11 Useful definitions for -terms.
	5.12 Useful definitions for -terms.
	5.13 Correctness of Substitution Transitions w.r.t. Syntactic Substitution: Proof of Theorem 5.4.2
	5.14 Correctness of -Conversion Transitions w.r.t. Syntactic -Conversion: Proof of Theorem 5.4.4
	5.15 Correctness of : Proof of Theorem 5.5.1
	5.16 Correctness of early : Proof of Theorem 5.5.2
	5.17 Correctness of substitutions for : Proof of Lemma 5.15.1
	5.18 Correctness of substitutions for : Proof of Lemma 5.16.1
	5.19 Correctness of -conversions for : Proof of Lemma 5.15.2
	5.20 Correctness of -conversions for : Proof of Lemma 5.16.2
	5.21 Bisimilarity when ignoring substitution transitions: Proof of Theorem 5.6.3
	5.22 Open bisimilarity and Bisimilarity coincide: Proof of Theorem 5.6.6
	5.23 Simulation of Substitutions by One-Step Substitutions: Proof of Theorem 5.22.5
	5.24 Nominal bisimilarity equates too much in -calculus: Proof of Theorem 5.7.4

	6 Conclusions

