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Chapter 1

Introduction

One of the research areas of great importance in Computer Science is the study of the
semantics of concurrent reactive systems [HP85]. These are systems that compute by
interacting with their environment, and typically consist of several parallel components,
which execute simultaneously and potentially communicate with each other. Examples of
such systems range from rather simple devices such as calculators and vending machines,
to programs controlling mechanical devices such as cars, subways or spaceships. In light
of their widespread deployment and complexity, the application of rigorous methods for
the specification, design and reasoning on the behaviour of reactive systems has always
been a great challenge.

One possible approach to formally handle reactive systems is to use a “common language"
for describing both the actual implementations and their specifications. When following
this technique, checking whether an implementation and its specification describe the
same behaviour reduces to proving some notion of equivalence/preorder between their
corresponding descriptions over the chosen language. This procedure is also referred to
as “equivalence checking”.

Intuitively, we say that an implementation complies to its specification whenever the
implementation displays only the behaviour allowed by the specification, and nothing
more. However, it is important to notice that system verification can be performed at
different levels of abstraction, with respect to non-determinism, for example, depend-
ing on the context of application. In this regard, we refer to a suite of semantics that
are thoroughly studied throughout this thesis, namely: bisimilarity [MP81, Mil89] –
the standard notion of behavioural equivalence in concurrency –, the spectrum of dec-
orated trace semantics in van Glabbeek’s work [vG01a], and must and may testing se-
mantics [CH89, DH84, Hen88].

Along time, different mathematical frameworks have been exploited for modelling reac-
tive systems and their behaviours, and for deriving efficient verification algorithms for
their computer-aided analysis. In the sequel, we provide a short overview on two of such
“dual” frameworks: algebra [BS12, Hen88] and coalgebra [JR97, Rut00].

1



2 Chapter 1. Introduction

1.1 Algebra

Algebraic process theories, or “process algebras", have been successfully used as pro-
totype specification languages for reactive systems. Typically, the definition of process
algebras consists in providing a syntax and an operational semantics, usually given in
terms of so-called Structural Operational Semantics (SOS) rules [Plo04]. Intuitively, SOS
is a framework used for describing how programs compute step by step, by emphasising
the corresponding state-transformations that occur after the execution of certain actions.
Once a desired notion of behavioural equivalence or preorder over processes is fixed, a
corresponding sound (and ideally complete) axiomatisation is given. This way, one can
establish the conformance of an implementation with its specification in an equational
style, without generating the state space of processes, therefore potentially combatting
the state explosion problem. We hint, for example, to the works in [ABV94] and [BdV04],
where sound and complete axiomatisations for bisimilarity of systems complying to the
GSOS [BIM95] format and GSOS with termination, respectively, are provided.

Unfortunately, this approach has low flexibility as regards language modifications. ax-
iomatisations are usually shown sound and complete by means of proof techniques that
take into account the combinators of the language under consideration; hence new syn-
tactical constructs frequently impose new proofs (from scratch). Consider, for instance,
the work in [ACEII11] extending the results in [ABV94] to the case of GSOS with predi-
cates such as termination, divergence and convergence. Even though syntactically trivial,
the extension required the construction of a new axiomatisation that had to be proven
sound and complete (which is often not a trivial task).

However, as soon as an axiomatisation is identified, the implementation of a verification
tool based on equational reasoning is almost straightforward. We refer, for example,
to the automated tool in [ACGI11] which can be used for reasoning on bisimilarity of
systems complying to the extended GSOS format in [ACEII11].

Moreover, in the algebraic setting, SOS rules can be used not only for specifying the
behaviour of systems in an intuitive fashion, but also for imposing a series of (syntac-
tic) constraints to guarantee that a certain notion of behavioural equivalence (or pre-
order) for systems satisfying the aforementioned restrictions is also a (pre)congruence.
Semantics which are also (pre)congruences are important from the practical perspective
as well. Intuitively, whenever a subcomponent of a system is replaced, showing the equiv-
alence between the new “upgraded” system and the initial one, with respect to a notion of
(pre)congruence, reduces to showing the equivalence between the two subsystems that
have been interchanged. This way, the complexity of the verification procedure is obvi-
ously reduced. In this respect, we refer, for instance, to the GSOS [BIM95] format which
guarantees that bisimilarity is a congruence. In related work [BFvG04], precongruence
formats for decorated trace semantics [vG01a] were established via modal characterisa-
tions of the corresponding preorders.

1.2 Coalgebra

A possible representation of implementations and their specifications is in terms of state
machines. These allow for a uniform manipulation of systems such as: streams [Rut05],
(non)deterministic and probabilistic automata [RS59, Rab80], Moore [Moo56] and
Mealy [Mea55] machines, and labelled transition systems [Kel76].
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Coalgebra [JR97, Rut00] is a recent unifying theory combining ideas from the mathemat-
ical theory of dynamical systems and from the theory of state-based computation, and
has been successfully applied as a mathematical framework for the study of state-based
systems. Intuitively, from the coalgebraic perspective, systems with (possibly) infinite be-
haviour are represented as black-box machines analyzed only according to their observ-
able behaviour. Mathematically, one can describe such a machine in terms of a coalgebra
(X ,δ : X → F (X )) consisting of a set (of states) X , and a map δ encapsulating the cor-
responding behaviour based on a functor F . This map represents the set of observers,
or destructors, allowing one to “break” (infinite) system behaviour into analyzable frag-
ments.

Coalgebraic analysis on the behaviours of systems can be performed as follows. First,
identify the appropriate functor associated with the class of systems under analysis. Then,
reason on the corresponding notion of behavioural equivalence by coinduction [SR11], a
proof technique based on bisimulation, already implemented in automated tools [BP13,
CGK+13, CPS93a, GLMS11, RL09].

All the systems mentioned above can be coalgebraically modelled in a uniform way, by
simply varying the behaviour functorF . For instance, for the case of streams (i.e., infinite
words) over an alphabet A, the functor F (X ) = A× X provides the head of the stream,
which is an element of A, and its tail, which is again a stream. Labelled transition systems
are intuitively defined by the functor F (X ) = (P X )A, which for an action labelled in A

returns the set of states that can be (non-deterministically) reached after executing that
action. More interestingly, note that each functor induces a notion of behavioural equiv-
alence [Rut00]. For streams, for example, this coincides with stream equality, whereas
for deterministic automata and labelled transition systems, the corresponding notions of
behavioural equivalence are language equivalence and bisimilarity [MP81, Mil89], re-
spectively.

As already stated, verification of systems can be performed at different levels of abstrac-
tion, depending on the context of application. The work in this thesis is closely related
to the results in [SBBR10]. There it is shown how the generality and modularity of
coalgebras can be exploited (via a coalgebraic subset construction) in order to uniformly
reason about the behaviour of labelled transition systems in terms of trace, ready or
failure equivalence [vG01a], rather than bisimilarity. Moreover, reasoning on the afore-
mentioned equivalences follows “for free” by coinduction, and can be performed in a fully
automated fashion using the tool in [BP13].

Even though the coalgebraic setting abstracts from the syntax in process description lan-
guages, its generality and uniformity enables also the interplay with syntax-based charac-
terisations of systems. For example, we refer to the works in [Kli09, TP97], where bialge-
braic frameworks for deriving congruence rule formats and proving compositionality of
various kinds of semantics (such as bisimilarity and decorated trace semantics [vG01a])
were provided based on the so-called distributive laws of syntax over behaviour. From
a simpler perspective, note that the dynamics of transition systems for process algebras
can be coalgebraically characterised (in terms of states and transitions between states)
according to the SOS rules expressing their behaviours.
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1.3 Aim and approach

Along the research lines mentioned so far, the aim of our work is to exploit the strengths
of the (co)algebraic framework in modelling reactive systems and reasoning on several
types of associated semantics, in a uniform fashion. In particular, we are interested in
handling notions of behavioural equivalence/preorder ranging from bisimilarity for sys-
tems that can be represented as non-deterministic coalgebras [SBR10], to decorated trace
semantics for labelled transition systems and probabilistic systems, and testing semantics
for labelled transition systems with internal behaviour. Moreover, we aim at deriving a
suite of corresponding verification algorithms suitable for implementation in automated
tools.

The approach we adopt is based on the following steps.

• First, we focus on the results in [BRS09] introducing a language of expressions
for specifying a large class of systems that can be modelled as non-deterministic
coalgebras, and a sound and complete axiomatisation for bisimilarity of such sys-
tems. The latter include, for example, streams, (non)deterministic automata, Mealy,
Moore and labelled transition systems. In [BRS09], systems which are coalgebras of
non-deterministic functors are described in a rather algebraic fashion, in terms of a
language of expressions derived according to the functor of interest. Then, expres-
sions are shown to have a coalgebraic structure, hence further enabling reasoning
on their equivalence by coinduction.

In our approach, we exploit a combination of algebra and coalgebra, based on inter-
plays such as constructors – destructors, induction – coinduction (both as definition
and as proof principles), and congruence – bisimilarity [JR97]. Building on these
associations and on the strength of coalgebras in deriving algorithms and tools for
the automatic verification of systems, we construct a decision procedure for the
bisimilarity of generalised regular expressions [BRS09] (and therefore, of their cor-
responding non-deterministic systems). This is achieved by providing an algebraic
specification for the coalgebra of expressions, and reducing coinduction to an en-
tailment relation between this specification and a suitable set of equations.

The theory was implemented in CIRC [GLR00, RL09] – an automated theorem
prover based on coinduction, successfully used for reasoning on properties of infi-
nite data structures such as streams –, and can be tested online at:
http://goriac.info/tools/functorizer/.

• Although bisimilarity [MP81, Mil89] is the standard notion of behavioural equiva-
lence in concurrency theory, considerable amount of work has been dedicated to the
treatment of decorated trace semantics [vG01a, JS90], and may and must testing
semantics [CH89, DH84, Hen88], for instance.

Studying semantics other than bisimilarity is not only an interesting research subject
per se, but is also important from the applicability perspective.

For example, bisimilarity, which belongs to the class of the so-called “branching
time” semantics, can be sometimes too fine for system verification. Therefore,
coarser semantics such as the “linear time” semantics might be more appropriate. In
this respect, we refer to the work in [vG01b] for a survey on the aforementioned se-
mantic equivalences (and preorders), and for a study on their context of application
and advantages.

http://goriac.info/tools/functorizer/
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Semantics coarser than bisimilarity, for example, that are also
(pre)congruences, can play an important role in system reduction as well. Con-
sider a scenario in which the correctness of concurrent systems is established ac-
cording to a property expressed by a set of logical formulae. It would be desirable
to use a (pre)congruence preserving such a property for deriving a smaller (re-
duced) labelled transition system whose components are eventually checked for the
aforementioned property. Hence, the coarser the (pre)congruence, the coarser the
refinement of the original system.

We refer, for example, to the work in [Val95], where it is shown that trace equiv-
alence [vG01a] is the weakest congruence preserving the property “P may ever
execute action a”, whereas the so-called “stable failure equivalence” is the weak-
est deadlock-preserving congruence with respect to any set of Basic Lotos [BB87]
operators containing parallel composition.

We also hint to the work in [SBBR10], where trace, failure and readiness seman-
tics [vG01a] were recovered in a coalgebraic setting by applying the generalised
powerset construction [SBBR13], which is reminiscent of the determinisation of
non-deterministic automata.

Also of interest in concurrency, are must and may testing semantics [DH84, Hen88].
Unlike weak bisimilarity, must testing distinguishes between livelock and deadlock,
for instance. This can be useful in practice as, even though internal behaviour of
systems do not provide any information to an external observer, it can be desirable
to set apart infinite internal computations from the impossibility of performing any
further move. In [CH89], an alternative characterisation of may and must testing se-
mantics is based on sequences of observable actions processes can execute. Hence,
it is of interest studying a possible connection with the approach in [SBBR10], for
a coalgebraic modelling of these semantics.

Motivated by these results and observations, as a second step we provide a uniform
coalgebraic modelling of decorated trace, may and must testing semantics via the
generalised powerset construction.

• Last, but not least, we exploit the coalgebraic modelling of decorated trace and must
testing semantics (which is more interesting than may testing semantics, as it is
sensitive to the non-determinism of processes), and devise algorithms for reasoning
on the corresponding equivalences and preorders.

Existing algorithms for the automated checking of these behavioural semantics over
finite-state systems rely on the following idea. First, non-deterministic systems
are transformed into the so-called (deterministic) “acceptance graphs”, by apply-
ing a technique which is reminiscent of the determinisation of non-deterministic
automata [RS59]. Then, reasoning on the aforementioned semantics on the orig-
inal non-deterministic systems is reduced to the equivalent problem of reasoning
on bisimilarity of the associated acceptance graphs. We refer to [CPS93b, CS96,
CDLT08] for examples of automated tools implementing such algorithms.

In our work, however, the coalgebraic setting enables the construction of verifica-
tion algorithms which are not available for bisimilarity. More precisely, we build
an algorithm based on (Moore-) bisimulations (up-to) [BP13, SR11, San98], which
follows as a consequence of the determinisation procedure previously mentioned.
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Moreover, we provide a variation of Brzozowski’s algorithm [Brz62], by exploiting
the abstract coalgebraic theory in [BBRS12].

Our approach is uniform and modular: once the “recipe” for handling failure se-
mantics is established, the almost straightforward extension to non-deterministic
systems with internal behaviour enabled shifting to must testing semantics. This
is also a consequence of the fact that failure semantics coincides with must test-
ing in the absence of divergence [CH89, Nic87]. Furthermore, the algorithms for
reasoning on failure semantics can be easily adapted also for other decorated trace
semantics studied in this thesis.

Both the bisimulation-based and Brzozowski’s minimisation techniques were imple-
mented in an automated tool, and can be tested online at:
http://perso.ens-lyon.fr/damien.pous/brz/.

http://perso.ens-lyon.fr/damien.pous/brz/
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1.4 Thesis outline

We summarise the content and the main contributions of the thesis.

Chapter 2 provides the basic definitions from coalgebra and recalls the generalised pow-
erset construction, which we will use in our work.

Chapter 3 presents an algorithm to decide whether two (generalised regular) expressions
defining systems that can be modelled as non-deterministic coalgebras are bisimilar or
not. The aforementioned expressions and an analogue of Kleene’s theorem and Kleene
algebra, were recently proposed by Silva, Bonsangue and Rutten in [SBR10]. Examples
of systems we handle include infinite streams, deterministic automata, Mealy machines
and labelled transition systems. The procedure is implemented in the automatic theorem
prover CIRC, by reducing coinduction to an entailment relation between an algebraic
specification and an appropriate set of equations.

The main contributions are summarised in the table below.

A decision procedure for bisimilarity

Algebraic modelling of expressions Figure 3.2

Algebraic encoding of bisimilarity Corollary 3.3.4

Soundness Theorem 3.4.2

Decision procedure Theorem 3.4.3

This chapter is based on the following papers:
[BCG+11] Marcello M. Bonsangue, Georgiana Caltais, Eugen-Ioan Goriac, Dorel Lucanu,

Jan J. M. M. Rutten, Alexandra Silva. A decision procedure for bisimilarity of generalised

regular expressions. Proc. 13’th Brazilian Symposium on Formal Methods, 2011:226–241.

[BCG+13] Marcello M. Bonsangue, Georgiana Caltais, Eugen-Ioan Goriac, Dorel Lucanu,

Jan J. M. M. Rutten, Alexandra Silva. Automatic equivalence proofs for non-deterministic
coalgebras. Science of Computer Programming, 2013:1324–1345.

Chapter 4 provides the coalgebraic handling of a series of semantics on transition sys-
tems in a uniform modular fashion, by employing the generalised powerset construction
introduced by Silva, Bonchi, Bonsangue and Rutten in [SBBR13]. As we shall see, this
construction yields a notion of minimal representatives for (i) decorated trace equiva-
lences for labelled transition systems (LTS’s) [Kel76] and generative probabilistic systems
(GPS’s) [vG01a, JS90] and, (ii) must and may testing semantics for non-deterministic
systems with internal behaviour [CH89, DH84, Hen88]. As a consequence, reasoning
on the aforementioned notions of behavioural equivalence/preorder can be performed
in terms of (Moore-) bisimulations. Moreover, we show how the spectrum of decorated
trace semantics can be recovered from the coalgebraic modelling.

The main contributions are listed in the following table.
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Decorated traces and testing semantics coalgebraically

Correctness of the coalgebraic modelling of:

Ready & failure semantics for LTS’s Theorem 4.1.3

(Complete) trace semantics for LTS’s Theorem 4.1.9

Possible-futures semantics for LTS’s Theorem 4.1.12

Ready & failure trace semantics for LTS’s Theorem 4.1.16

Ready & (maximal) failure semantics for GPS’s Theorem 4.2.5

(Maximal) trace semantics for GPS’s Theorem 4.2.7

May testing semantics Theorem 4.6.2

Must testing semantics Theorem 4.6.7

Recovering the spectrum Lemma 4.5.1
Lemma 4.5.2

This chapter is based on the papers:
[BBC+12] Filippo Bonchi, Marcello Bonsangue, Georgiana Caltais, Jan Rutten, Alexandra

Silva. Final semantics for decorated traces. Electronic Notes in Theoretical Computer Science,

2012:73–86. Proc. Mathematical Foundations of Programming Semantics 2012.

Chapter 5 focuses on checking language equivalence (or inclusion) of finite automata.
This is a classical problem in computer science, which has recently received a renewed
interest and found novel and more effective solutions, such as the approaches based on
antichains [ACH+10, WDHR06] or bisimulations up-to [BP13, RBR13, SR11, San98].
Several notions of equivalence (or preorder) have been proposed for the analysis of con-
current systems. Some approaches reduce the problem of checking these equivalences to
the problem of checking bisimilarity. In this chapter, we tackle this challenge differently,
and propose to “adapt” algorithms for language semantics. More precisely, we introduce
an analogue of Brzozowski’s algorithm and HKC – an optimisation of Hopcroft and Karp’s
algorithm [HK71] based on bisimulations up-to –, for checking must testing equivalence
and preorder as well as failure equivalence. To achieve this transfer of technology (from
language to must/failure semantics), we take a coalgebraic look at the problem at hand.

The table below summarises the main contributions of this chapter.

Algorithms for decorated trace and must testing semantics

HKC for failure semantics Sections 5.2.1, 5.2.3
Brzozowski for failure semantics Sections 5.2.4, 5.2.5
HKC for must testing semantics Sections 5.2.2, 5.2.3
Brzozowski for must testing semantics Sections 5.2.6, 5.2.7

This work is based on the paper:
Filippo Bonchi, Georgiana Caltais, Damien Pous, Alexandra Silva. Brzozowski’s and Up-to
Algorithms for Must Testing. To appear in volume 8301 of the Lecture Notes in Computer

Science series.
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1.5 Related work

The contributions of the thesis stem from the underlying idea of formally specifying and
verifying concurrent reactive systems in a uniform fashion, both in theory and practice,
by exploiting the (co)algebraic framework.

On the one hand, we build our work based on previous results originating from the corre-
spondence between regular expressions and finite deterministic automata (DFA’s) – two
of the most basic structures in Computer Science –. Kleene’s theorem [Kle56] gives a fun-
damental correspondence between these two structures: each regular expression denotes
a language that can be recognised by a DFA and, conversely, the language accepted by
a DFA can be specified by a regular expression. A sound and complete axiomatisation
(later refined by Kozen in [Koz91, Koz01]) for proving the equivalence of regular expres-
sions was introduced by Salomaa [Sal66], and an extension for the case of LTS’s modulo
bisimilarity was derived by Milner in [Mil84].

For coalgebras of a large class of functors, a language of regular expressions, a corre-
sponding generalisation of Kleene’s theorem, and a sound and complete axiomatisation
for the associated notion of behavioural equivalence were introduced in [SBR10]. Both
the language of expressions and their axiomatisation were derived, in a modular fashion,
from the functor defining the type of the system.

One of the contributions of the thesis consists in a decision procedure for bisimilarity
of generalised regular expressions in [SBR10], implemented in the coinductive theorem
prover CIRC [GLR00, RL09]. More explicitly, we derived an encoding of generalised
regular expressions and their coalgebraic structure into CIRC-compatible constructs, and
implemented a tool allowing this translation automatically, hence enabling the automated
reasoning on bisimilarity of non-deterministic coalgebras.

We further mention some of the existing coalgebraic based tools for proving bisimilarity
and the main differences with our tool. CoCasl [HMS05] and CCSL [RTJ01] are tools
that can generate proof obligations for theorem provers from coalgebraic specifications.
In [HMS05] several tactics for interactive and automatic bisimulation building are imple-
mented in Isabelle/HOL and are used to derive bisimilarities for translated specifications
from CoCasl. The main difference between our tool and CoCasl or CCSL is that, given a
functor, the tool derives a specification language for which equivalence is decidable (that
is, it is automatic and not interactive). CIRC [GLR00, RL09], on top of which the current
tool is built, is based on hidden logic [Ros00] and uses a partial decision procedure for
proving bisimilarities via implicit construction of bisimulations. Our tool can be seen as an
extension of CIRC to a fully automatic theorem prover for the class of non-deterministic
coalgebras. We stress the fact that the focus of our work is on a language for which equiv-
alence is decidable. Tools such as CoCasl, CCSL or CIRC have a more expressive language,
where one can, for instance, specify streams, which in our language could not be specified
(intuitively, the streams we can specify in our language are eventually periodic). In those
tools decidability of equivalence can, however, not be guaranteed.

On the other hand, we exploit the coalgebraic framework in order to provide a uniform
handling of a suite of semantics, other than bisimilarity. More explicitly, we are interested
in deriving coalgebraic characterisations and algorithms suitable for implementation for:
decorated trace semantics in the context of LTS’s and GPS’s as introduced in [vG01a,
JS90], and testing semantics for LTS’s with internal behaviour as given in [CH89].

In the recent past, some of the decorated trace semantics in van Glabbeek’s spectrum
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have been cast in the coalgebraic framework. Notably, trace semantics of LTS’s was widely
studied [HJS07, LPW00, SBBR10] and, more recently, (complete) trace, ready and failure
semantics were recovered in [SBBR13] via a coalgebraic generalisation of the classical
powerset construction [CHL03, Len99, SBBR10]. A coalgebraic characterisation of the
spectrum was also attempted in [Mon08]
Since the introduction of process calculi, a lot of research has also been devoted to the
analysis of testing semantics [DH84]. Intuitively, with respect to a fixed set of tests, two
systems are deemed to be equivalent if they pass exactly the same tests.
In [CH89], a trace-based alternative characterisation of may and must testing was given.
Based on this approach, we provide a coalgebraic modelling of the aforementioned se-
mantics via the generalised powerset construction. Another coalgebraic outlook on must
testing is presented in [BG06] which introduces a fully abstract coalgebraic semantics for
CSP. The main difference with our work consists in the fact that [BG06] builds a coalge-
bra from the syntactic terms of CSP, while here we build a coalgebra starting from LTS’s.
As a further coalgebraic approach to testing, it is worth mentioning test-suites [Kli04],
which tackle the semantics in van Glabbeek’s spectrum [vG01a], but not must testing.
The problem of automatically reasoning on decorated trace and testing semantics of LTS’s
is an interesting research topic per se. One possible approach, which is reminiscent of
the determinisation of non-deterministic automata, consists in deriving deterministic-like
systems for which checking bisimilarity coincides with reasoning on the aforementioned
semantics in the original LTS’s. Several bisimulation-based algorithms are implemented
in tools such as the ones in [CPS93b, CS96, CDLT08]. We also refer to the more recent
work in [BP13], where the determinised automata are related based on bisimulations
up-to [SR11, San98]. The advantage of this procedure is that, in most cases, building
the bisimulations up-to requires visiting only portions of the automata. The partial ex-
ploration is also the key feature of the antichain algorithm [WDHR06] for reasoning on
language equivalence of non-deterministic finite automata.
The best-known algorithm for minimising LTS’s with respect to bisimilarity is the so-
called partition refinement [KS83, PT87], which is analogous to Hopcroft’s minimisation
algorithm [Hop71] for deterministic automata with respect to language equivalence. Last,
but not least, we refer to Brzozowski’s minimisation algorithm [Brz62], which has been
provided with a coalgebraic understanding in [BBRS12].
Along this line of research, in Chapter 5 we introduce an analogue of Brzozowski’s algo-
rithm and an algorithm based on bisimulations up-to for failure and must testing seman-
tics.



Chapter 2

Preliminaries

In this chapter we recall the basic definitions for sets and coalgebras that are needed in
the rest of the thesis. We also introduce the coalgebraic modelling of the (generalised)
powerset construction. We assume the reader is familiar with basic notions from category
theory. We refer the interested reader to [Rut00] and [Awo10] for more information on
coalgebras and category theory, respectively.

2.1 Sets

Let Set denote the category of sets (represented by capital letters X , Y, . . .) and functions
(represented by lower case letters f , g, . . .). We write Y X for the family of functions from
X to Y and Pω(X ) for the collection of finite subsets of a set X . The product of two sets

X , Y is written as X × Y and has the projections functions π1 and π2: X
π1
←− X × Y

π2
−→ Y .

We define X ✸+ Y = X ⊎ Y ⊎ {⊥,⊤} where ⊎ is the disjoint union of sets, with injections

X
κ1
−→ X⊎Y

κ2
←− Y . Note that the set X✸+Y is different from the classical coproduct of X and

Y (which we shall denote by X + Y ), because of the two extra elements ⊥ and ⊤. These
extra elements are used to represent, respectively, underspecification and inconsistency
in the specification of some systems.

For each of the operations defined above on sets, there is an analogous one on functions.
For the sake of brevity, we first introduce the notation i ∈ 1, n as a shorthand for i ∈

{1, . . . , n}. Let f : X → Y , f1 : X → Y and f2 : Z →W . We define the following operations:

f1 × f2 : X × Z → Y ×W f1 ✸+ f2 : X ✸+ Z → Y ✸+W

( f1 × f2)(x , z) = 〈 f1(x), f2(z)〉 ( f1 ✸+ f2)(c) = c, c ∈ {⊥,⊤}

( f1 ✸+ f2)(κi(x)) = κi( fi(x)), i ∈ 1,2

f A : X A→ Y A Pω( f ): Pω(X )→Pω(Y )

f A(g) = f ◦ g Pω( f )(X1) = {y ∈ Y | f (x) = y, x ∈ X1}

Note that in the definition above we are using the same symbols introduced for the oper-
ations on sets. It will always be clear from the context which operation is being used.

11
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2.2 Coalgebras

The examples handled throughout this thesis live in the standard setting of sets and func-
tions. We therefore define our formal frameworks for modelling and reasoning on be-
havioural equivalence of systems based on coalgebras of functors on Set.

2.2.1 DEFINITION (Coalgebra). A coalgebra is a pair (S, f : S → F (S)), where S is a set
of states and F : Set→ Set is a functor. ♣

The functor F , together with the function f , determines the transition structure (or dy-
namics) of the coalgebra [Rut00], also referred to as F -coalgebra.
A coalgebra (S, f ) is finite if S is a finite set.

2.2.2 DEFINITION (Coalgebra homomorphism). A homomorphism h: (S, f )→ (T, g) from
an F -coalgebra (S, f ) to an F -coalgebra (T, g), is a function h: S→ T making the follow-
ing diagram commute:

S
h

f

T

g g ◦ h=F (h) ◦ f

F (S)
F (h)

F (T )
♣

2.2.3 DEFINITION (Coalgebra isomorphism). A coalgebra homomorphism
i : S → T is a coalgebra isomorphism if there exists a coalgebra homomorphism j : T → S

such that i ◦ j = idT and j ◦ i = idS .

2.2.4 DEFINITION (Final coalgebra). AnF -coalgebra (Ω,ω) is final if for anyF -coalgebra
(S, f ) there exists a unique F -coalgebra homomorphism

¹−º: (S, f )→ (Ω,ω):

S
¹−º

f

Ω

ω ω ◦¹−º=F (¹−º) ◦ f

F (S)
F (¹−º)

F (Ω)
♣

Note that not all functors admit final coalgebras. However, it was shown in [Rut00] that
such coalgebras exist for the class of bounded functors [GS02]. A functor F is bounded
if there are sets B and A and a surjective natural transformation from B × (−)A to F
(Theorem 4.7 in [GS02]). Moreover, final coalgebras, if they exist, are unique up to
isomorphism.
Intuitively, a final F -coalgebra (Ω,ω) represents the universe of all possible behaviours
of F -coalgebras (S, f ). The unique homomorphism ¹−º maps each element of S to its
behaviour. Using this mapping, behavioural equivalence can be defined as follows.
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2.2.5 DEFINITION (Behavioural equivalence). Let F be a functor that admits final coal-
gebras. For any two F -coalgebras (S, f ) and (T, g), s ∈ S and t ∈ T are behaviourally

equivalent, written s ∼F t, if and only if they have the same behaviour, that is:

s ∼F t iff ¹sº = ¹tº. (2.1)

Coalgebras provide a useful technique for proving behavioural equivalence, namely, bisim-
ulation [AM89].

2.2.6 DEFINITION (Bisimulation). Let (S, f ) and (T, g) be two F -coalgebras. A relation
R ⊆ S × T is a bisimulation if there exists a map α: R → F (R) such that the projections
π1 : R → S and π2 : R → T are coalgebra homomorphisms, i.e., they make the following
diagram commute:

S

f

R

α

π1 π2
T

g

F (S) F (R)
F (π1) F (π2)

F (T )
♣

The following alternative definition of bisimulation, sometimes more appropriate for the
proofs, was given in [HJ98]: a relation R⊆ S × T is a bisimulation if and only if

(s, t) ∈ R⇒ ( f (s), g(t)) ∈ F (R)

where F (R) is defined as

F (R) = {(F (π1)(x),F (π2)(x)) | x ∈ F (R)} (2.2)

If two states are bisimilar, and a final coalgebra exists, then they are behaviourally equiv-
alent.
In [Rut00], it was shown that under certain conditions on F (which are met by all the
functors considered in this thesis), bisimulations are a sound and complete proof technique
for behavioural equivalence. Namely, by coinduction it holds that:

s ∼F t iff there exists a bisimulation R such that s R t. (2.3)

For simplicity, we abuse the notation and write s ∼F t whenever there exists a bisimula-
tion relation containing (s, t), and we call ∼F the bisimilarity relation.
Note that different functors F induce different notions of behavioural equivalence. For
the case of streams, deterministic automata, and finite labelled transition systems, for
example, behavioural equivalence corresponds to stream equality, language equivalence
and the standard notion of bisimilarity by Milner and Park [MP81, Mil89], respectively.
For more insight on the coalgebraic framework introduced in this section, we further
provide the coalgebraic modelling of deterministic and Moore automata (extensively used
in Chapter 4 and Chapter 5).

2.2.7 EXAMPLE. A deterministic automaton (DA) is a pair (X , 〈o, t〉), where X is a (possibly
infinite) set of states and 〈o, t〉: X → 2× X A is a function with two components: o, the
output function, determines if a state x is final (o(x) = 1) or not (o(x) = 0); and t, the
transition function, returns for each letter a in the input alphabet A the next state. Note
that here 2 stands for the set with two elements {0,1}.
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DA’s are coalgebras for the functor D(X ) = 2× X A. The final coalgebra of this functor is
(2A∗ , 〈ε, (−)a〉) where 2A∗ is the set of languages over A and 〈ε, (−)a〉, given a language L,
determines whether or not the empty word ǫ is in the language (ε(L) = 1 or ε(L) = 0,
respectively) and, for each input letter a, returns the derivative of L: La = {w ∈ A∗ | aw ∈

L}.
From any DA, there is a unique map ¹−º into 2A∗ which assigns to each state its behaviour
(that is, the language that the state recognises) [Rut98].

X
¹−º

〈o,t〉

2A∗

〈ε,(−)a〉

2× X A

id×¹−ºA
2× (2A∗)A

¹xº(ǫ) = o(x)

¹xº(aw) = ¹t(x)(a)º(w)

Behavioural equivalence for the functor D coincides with the classical language equiva-
lence of automata: given a deterministic automaton (S, 〈o, t〉), two states x , y ∈ S are said
to be language equivalent if and only if they accept the same language. ♠

We further provide the coalgebraic modelling of Moore automata – a generalisation of
DA’s – which, as we shall later see, will enable shifting from language equivalence to the
context of decorated trace semantics.

2.2.8 EXAMPLE. Moore automata with inputs in A and outputs in B are coalgebras for the
functorM (X ) = B×X A, that is pairs (X , 〈o, t〉) where X is a set, t : X → X A is the transition
function (like for DA) and o : X → B is the output function which maps every state to its
output. Thus DA can be seen as a special case of Moore automata where B = 2.
The final coalgebra forM is (BA∗ , 〈ε, (−)a〉) where BA∗ is the set of all functions ϕ : A∗→ B,
ε: BA∗ → B maps each ϕ into ϕ(ǫ) and (−)a : BA∗ → (BA∗)A is defined for all ϕ ∈ BA∗ , a ∈ A

and w ∈ A∗ as (ϕ)a(w) = ϕ(aw).

X
¹−º

〈o,t〉

BA∗

〈ε,(−)a〉

B× X A

id×¹−ºA
B× (BA∗)A

¹xº(ǫ) = o(x)

¹xº(aw) = ¹t(x)(a)º(w)

Hence, reasoning on behavioural equivalence of Moore automata reduces to checking
equality of functions. ♠

2.3 The generalised powerset construction

Sometimes, it is interesting to consider other equivalences than ∼F for reasoning about
F -coalgebras. This is the case for non-deterministic automata (NDA’s), for which lan-
guage equivalence is often the intended semantics, instead of bisimilarity. NDA’s are coal-
gebras for the functorN (X ) = 2×(Pω(X ))

A, wherePω stands for the finite powerset, and
bisimilarity, which we denote by ∼N , is strictly included in language equivalence. This
can be achieved by applying the classical powerset construction [RS59] for determinising
non-deterministic automata, which can be briefly summarised as follows.
Consider an NDA, which is a coalgebra

(X , 〈o, t〉: X → 2× (PωX )A)
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where (similarly to the case of DA’s in Example 2.2.7): o is the output function and
determines if a state x is final (o(x) = 1) or not (o(x) = 0), t is the transition function
returning for each input letter a the set of next states, and 2 stands for the set with two
elements {0,1}.
The powerset construction derives a DA

(PωX , 〈o♯, t♯〉: PωX → 2× (PωX )A),

by associating to each state x ∈ X of the NDA, a state {x} ∈ PωX . The new output and
transition functions are:

o♯(Y ) =
⊔
y∈Y

o(y)

t♯(Y )(a) =
⊔
y∈Y

t(y)(a)
(2.4)

where
⊔

is used to represent both the “Boolean or” and the set union. Intuitively,
⊔

stands for the join operation corresponding to the semilattice with carrier {0,1}, and the
one with carrier PωS, with S ∈ Set, respectively. The final coalgebra of the DA is the set
of languages 2A∗ over A, and the semantic map

¹−º: PωX → 2A∗

associates to each {x} the language ¹{x}º accepted by x , and is defined as introduced in
Example 2.2.7 in the previous section. Consequently, reasoning on language equivalence
of two states x1 and x2 of an NDA reduces to identifying a bisimulation R relating {x1}

and {x2} in the corresponding DA:

¹{x1}º= ¹{x2}º iff {x1} R {x2}. (2.5)

Based on these observations, we refer to the generalised powerset construction [CHL03,
Len99, SBBR10] for coalgebras f : X → F T (X ) for a functor F and a monad T . Intu-
itively, this construction applies to the context of NDA’s by simply instantiating T with Pω
and F with 2×(−)A (more details are provided later on in this section, in Example 2.3.4).
Monads are used to encompass computational effects such as non-determinism (T (X ) =

Pω(X )) or partiality (T (X ) = 1+ X , where 1 = {∗} stands for termination). They come
equipped with two operations: unit (η) and multiplication (µ). Intuitively, η enables the
embedding of any value into the monad structure, whereas µ allows to collapse several
levels of computational effects. For instance, the unit and multiplication of the powerset
monad T = (Pω,η,µ) are defined as follows:

ηX : X →PωX µX : Pω(PωX )→PωX

ηX (x) = {x} µX (U) =
⋃

S∈U

S. (2.6)

We further provide an overview of the notions of a monad and algebras of a monad, and
a series of intuitions for their integration into the context of the generalised powerset
construction.
First recall that, given two functors F and G on Set, a natural transformation λ: F ⇒ G

is a family of functions λX : F (X ) → G (X ) such that, for all functions f : X → Y , the
following holds:

λY ◦F ( f ) = G ( f ) ◦λX .



16 Chapter 2. Preliminaries

2.3.1 DEFINITION (Monad). Let T be a functor on Set. A monad is a triple (T,η,µ)where
η : I d ⇒ T and µ: T 2⇒ T are two natural transformations, called unit and multiplication,
respectively, such that the following diagrams commute:

T
Tη

id

T 2

µ

T
ηT

id

T 3
Tµ

µT

T 2

µ

T T 2
µ

T
♣

2.3.2 DEFINITION (Algebra of a monad). An algebra of a monad (T,η,µ), or a T -algebra,
is a pair (X ,h: T (X )→ X ) satisfying the laws

h ◦η= id h ◦µ= h ◦ Th. ♣

Intuitively, these laws show how to eliminate the computational effects by propagating
the operation h throughout the monadic structure.
For the case of the powerset monad defined in (2.6), for example, T -algebras are semilat-
tices (with bottom). Consider a join semilattice (S,

⊔
) with 0 the least element. Showing

that S carries an algebra structure consists in proving that there exists h: Pω(S) → S

satisfying the laws in Definition 2.3.2. It is easy to check that by taking

h(U) =
⊔

u∈U

u,

with U ⊆ S, we get the appropriate map.
The proof is as follows. Consider u ∈ S and Ψ⊆Pω(PωS). Then:

(h ◦η)(u) = h({u})

= u

(h ◦µ)(Ψ) = h(µ(Ψ))

= h(
⋃

Ui∈Ψ

Ui)

=
⊔

Ui ∈Ψ

u j ∈ Ui

u j

(h ◦Pωh)(Ψ) = h(Pωh(Ψ))

= h({h(Ui) | Ui ∈Ψ})

= h({
⊔

u j∈Ui

u j | Ui ∈Ψ})

=
⊔

Ui ∈Ψ

u j ∈ Ui

u j

The first set of equalities is associated to the law h ◦ η = id in Definition 2.3.2 and,
intuitively, states that eliminating the non-determinism from a singleton set {u} consists
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in simply considering the value u. The last two sets of equalities correspond to the law
h ◦ µ = h ◦ Th. Intuitively, they show that eliminating two levels of non-determinism
captured within a set Ψ ⊆ Pω(PωS) can be performed in two different ways: (a) first
flatten Ψ and then return the join of the elements in the resulted set, or (b) first compute
the joins h(Ui) of the elements of sets Ui ∈Ψ and then return the join of all such h(Ui)’s.

2.3.3 DEFINITION (Algebra homomorphism). Let (T,η,µ) be a monad. A function
f : X → Y is a homomorphism between two T -algebras (X ,h: T (X )→ X ) and (Y, g : T (Y )→

Y ) if it makes the following diagram commute:

T (X )
T ( f )

h

T (Y )

g

X
f

Y
♣

These are the key ingredients exploited in [SBBR13] in order to derive the generalised
powerset construction for coalgebras f : X → F T (X ) for a functor F and a monad
T , with the proviso that F T (X ) is a T -algebra, and F has a final coalgebra (Ω,ω), as
summarised in the following commuting diagram:

X

f

η
T (X )

f ♯

¹−º
Ω

ω

F T (X )
F (¹−º)

F (Ω)

(2.7)

We refer the interested reader to [SBBR13] where all the technical details are explored
and many instances of the construction are shown.
At an intuitive level, the coalgebra f : X → F T (X ) is extended to f ♯ : T (X ) → F T (X )

which, for two elements x1, x2 ∈ X , enables checking their “F -equivalence with respect
to the monad T” (η(x1) ∼F η(x2)) rather than checking their F T -equivalence. Formally,
assuming that F T (X ) is a T -algebra, f ♯ is the unique algebra map between (T (X ),µ) and
(F T (X ),h) (where h is a given algebra structure on F T (X )) such that

f ♯ = h ◦ T f .

Remark 1 Based on (2.1) and (2.3), verifying F -behavioural equivalence of two states

x1, x2 in a coalgebra (T (X ), f ♯) consists in identifying a bisimulation R relating η(x1) and

η(x2):

¹η(x1)º= ¹η(x2)º iff η(x1) R η(x2). (2.8)

2.3.4 EXAMPLE. Consider again the case of NDA’s which are coalgebras

(X , 〈o, t〉: X → 2× (PωX )A), ♠

as introduced in the beginning of this section. Observe thatP (X ) and 2∼= P (1) are (join)
semilattices, which are algebras of the powerset monad (here 1 stands for the singleton
set {∗}). Moreover, product and exponentiation preserve the algebra structure, hence
guaranteeing that 2× (Pω(X ))

A is an algebra for Pω as well.
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At this point it is easy to see that the generalised powerset construction applies to the
context of NDA’s by simply instantiating T with Pω and F with 2× (−)A. It follows that
the operation 〈o, t〉 of the NDA can be uniquely extended to 〈o♯, t♯〉, as in (2.4), in a deter-
ministic setting. The language recognised by a non-deterministic state x can be defined
by precomposing the unique morphism ¹−º: PωX → 2A∗ with the unit η of Pω. This
enables reasoning on language equivalence of states of NDA’s in terms of bisimulations,
as in (2.5). Recall that for the case of deterministic LTS’s, language equivalence and
bisimilarity coincide [Eng85].
As a last aspect, note that the set of languages 2A∗ can be provided a join semilattice
structure by considering the union of languages as the binary operation and the empty
language as the least element. It can be easily shown (by induction on words w ∈ A∗) that
the semantic map ¹−º is a join semilattice homomorphism (or, equivalently, aPω-algebra
homomorphism).
More generally, the semantic map ¹−º in (2.7) is a T -algebra homomorphism whenever
there exists a distributive law TF ⇒F T , which guarantees that the carrier Ω of the final
coalgebra is a T -algebra as well (see Proposition 4 in [JSS12]).



Chapter 3

Deciding bisimilarity

The results in this chapter are based on the work in [SBR10], where a language of reg-
ular expressions for specifying a large class of systems that can be modelled as non-
deterministic coalgebras, and a sound and complete axiomatisation for the corresponding
notions of behavioural equivalence were introduced.

Our contribution consists in a novel method for checking bisimilarity of generalised reg-
ular expressions using the coinductive theorem prover CIRC [GLR00, RL09]. The main
novelty of the method lies in the generality of the systems it can handle; examples in-
clude streams of real numbers, Mealy machines and labelled transition systems. More
precisely, our approach deals with systems that can be represented as locally finite coal-
gebras or, equivalently, coalgebras for which the smallest subcoalgebra generated by a
state is finite [Rut00].

CIRC is a metalanguage application implemented in Maude [CDE+07], and its target is to
prove properties over infinite data structures. It has been successfully used for checking
the equivalence of programs, and trace equivalence and strong bisimilarity of processes.
The tool may be tested online and downloaded from:
https://fmse.info.uaic.ro/tools/Circ/.

Determining whether two expressions are equivalent is important in order to be able to
compare behavioural specifications. In the presence of a sound and complete axiomati-
sation one can determine equivalence using algebraic reasoning. A coalgebraic perspec-
tive on regular expressions has however provided a more operational/algorithmic way of
checking equivalence: one constructs a bisimulation relation containing both expressions.
The advantage of the bisimulation approach is that it enables automation since the steps
of the construction are fairly mechanic and require almost no ingenuity. We illustrate
this with an example, to give the reader the feeling of the more algorithmic nature of
bisimulation. We want to stress however that we are not underestimating the value of
an algebraic treatment of regular expressions: on the contrary, as we will show later, the
axiomatisation plays an important role in guaranteeing termination of the bisimulation
construction and is therefore crucial for the main result of this chapter.

We show below a proof of the sliding rule: a(ba)∗ ≡ (ab)∗a. The algebraic proof, using
the rules and equations of Kleene algebra, needs to show the two containments

a(ba)∗ ≤ (ab)∗a and (ab)∗a ≤ a(ba)∗
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and it requires some ingenuity in the choice of the equation applied in each step. We
show the proof for the first inequality, the other follow a similar proof pattern.

a(ba)∗ ≤ (ab)∗a

⇐ a+ (ab)∗a(ba)≤ (ab)∗a right-star rule [Koz91]:
b+ xa ≤ x ⇒

ba∗ ≤ x

⇐⇒ (1+ (ab)∗ab)a ≤ (ab)∗a associativity and distributivity
⇐⇒ (ab)∗a ≤ (ab)∗a right expansion rule: 1+ r∗r = r∗

For the coalgebraic proof, we build incrementally, and rather mechanically, a bisimulation
relation containing the pair (a(ba)∗, (ab)∗a). We start with the pair we want to prove
equivalent and then we close the relation with respect to syntactic language derivatives,
also known as Brzozowski derivatives. In the current example, the bisimulation relation
would contain three pairs:

R= {(a(ba)∗, (ab)∗a), ((ba)∗, b(ab)∗a+ 1), (0,0)}

where 1 and 0 are, respectively, the regular expressions denoting the language containing
only the empty word and the empty language. In constructing this relation, no deci-
sions were made, and hence the suitability of bisimulation construction as an automatic
technique to prove equivalence of regular expressions.

The main contributions of this chapter can be summarised as follows. We present a
decision procedure to determine equivalence of generalised regular expressions, which
specify behaviours of many types of transition systems, including Mealy machines, la-
belled transition systems and infinite streams. We illustrate the decision procedure we
devised by applying it to several examples. As a vehicle of implementation, we choose
CIRC, a coinductive theorem prover which has already been explored for the construction
of bisimulations. To ease the implementation in CIRC, we present the algebraic specifi-
cations’ counterpart of the coalgebraic framework of the generalised regular expressions
mentioned above. This enables us to automatically derive algebraic specifications that
model the language of expressions, and to define an appropriate equational entailment
relation which mimics our decision procedure for checking behavioural equivalence of
expressions. The implementation of both the algebraic specification and the entailment
relation in CIRC allows for automatic reasoning on the equivalence of expressions.

Organisation of the chapter. Section 3.1 recalls the basic definitions of the language as-
sociated with a non-deterministic functor. Section 3.2 describes the decision procedure
to check equivalence of regular expressions. Section 3.3 formulates the aforementioned
language as an algebraic specification, which paves the way to implement in CIRC the
procedure to decide equivalence of expressions. The implementation of the decision pro-
cedure and its soundness are described in Section 3.4. In Section 3.5 we show, by means
of several examples, how one can check bisimilarity, using CIRC. In Section 3.6 we briefly
wrap up the contributions of this chapter.

3.1 generalised regular expressions

In this section we briefly recall the basic definitions in [SBR10].
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Non-deterministic functors are functors G : Set → Set built inductively from the identity,
and constants, using ×, ✸+, (−)A and Pω:

NDF ∋ G ::= Id | B | G ✸+G | G ×G | G A | PωG (3.1)

where B is a finite join-semilattice and A is a finite set. Typical examples of such functors
include S = B× Id, M = (B× Id)A, D = 2× IdA, Q = (1 ✸+ Id)A, N = 2×Pω(Id)

A and
L = 1 ✸+ Pω(Id)

A. These functors represent, respectively, the type of streams, Mealy,
deterministic, partial deterministic automata, non-deterministic automata and labelled
transition systems with explicit termination. S -bisimulation is stream equality, whereas
D-bisimulation coincides with language equivalence.

Next, we give the definition of the ingredient relation, which relates a non-deterministic
functor G with its ingredients, i.e., the functors used in its inductive construction. We shall
use this relation later for typing our expressions.

3.1.1 DEFINITION. Let Ã⊆ NDF × NDF be the least reflexive and transitive relation on
non-deterministic functors such that

G1 ⊳G1 ×G2 G2 Ã G1 ×G2 G1 Ã G1 ✸+G2

G2 Ã G1 ✸+G2 G Ã G A G ÃPωG . ♣

Throughout this chapter we use F Ã G as a shorthand for (F ,G ) ∈Ã. If F Ã G , then F
is said to be an ingredient of G . For example, 2, Id, IdA and D itself are all the ingredients
of the deterministic automata functor D.

A language of expressions ExpG is associated with each non-deterministic functor G :

3.1.2 DEFINITION (Expressions). Let A be a finite set, B a finite join-semilattice and X a
set of fixed-point variables. The set Exp of all (generalised regular) expressions is given by
the following grammar, where a ∈ A, b ∈ B and x ∈ X :

ǫ ::= x | ǫ⊕ ǫ | γ (3.2)

where γ is a guarded expression given by:

γ ::= ; | γ⊕ γ | µx .γ | b | l〈ǫ〉 | r〈ǫ〉 | l[ǫ] | r[ǫ] | a(ǫ) | {ǫ} (3.3)

In the expression µx .γ, µ is a binder for all the free occurrences of x in γ. Variables that
are not bound are free. A closed expression is an expression without free occurrences of
fixed-point variables x . We denote the set of closed expressions by Expc .

The language of expressions for non-deterministic coalgebras is a generalisation of the
classical notion of regular expressions: ;, ǫ1 ⊕ ǫ2 and µx .γ play similar roles to the reg-
ular expressions denoting empty language, the union of languages and the Kleene star.
Moreover, note that, not unexpectedly, in [SBR10], ⊕ was axiomatised as an associative,
commutative and idempotent operator, with ; as a neutral element. The expressions l〈ǫ〉,
r〈ǫ〉, l[ǫ], r[ǫ], a(ǫ) and {ǫ} specify the left and right-hand side of products and sums,
function application and singleton sets, respectively.

Next we present a type assignment system for associating expressions to non-deterministic
functors. This will allow us to associate with each functor G the expressions ǫ ∈ Expc that
are valid specifications of G -coalgebras.
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3.1.3 DEFINITION (Type system). We define a typing relation ⊢ ⊆ Exp×NDF×NDF that
will associate an expression ǫ with two non-deterministic functors F and G , which are
related by the ingredient relation (F is an ingredient of G ). We shall write ⊢ ǫ : F Ã G

(read “ǫ is of type F Ã G ”) for (ǫ,F ,G ) ∈ ⊢. The rules that define ⊢ are the following:

⊢ ;: F Ã G ⊢ b : BÃ G
(b ∈ B)

⊢ x : G Ã G
(x ∈ X )

⊢ ǫ : G Ã G

⊢ µx .ǫ : G Ã G

⊢ ǫ1 : F Ã G ⊢ ǫ2 : F Ã G

⊢ ǫ1 ⊕ ǫ2 : F Ã G

⊢ ǫ : G Ã G

⊢ ǫ : Id Ã G

⊢ ǫ : F2 Ã G

⊢ r[ǫ] : F1 ✸+F2 Ã G

⊢ ǫ : F Ã G

⊢ a(ǫ) :F A
Ã G

(a ∈ A)
⊢ ǫ : F1 Ã G

⊢ l〈ǫ〉 :F1 ×F2 Ã G

⊢ ǫ : F2 Ã G

⊢ r〈ǫ〉 : F1 ×F2 Ã G

⊢ ǫ : F1 Ã G

⊢ l[ǫ] : F1 ✸+F2 Ã G

⊢ ǫ : F1 Ã G

⊢ {ǫ} : PωF1 ⊳G ♣

We can now formally define the set of G -expressions: well-typed expressions associated
with a non-deterministic functor G .

3.1.4 DEFINITION (G -expressions). Let G be a non-deterministic functor and F an in-
gredient of G . We define ExpFÃG by:

ExpFÃG = {ǫ ∈ Exp
c | ⊢ ǫ : F Ã G} .

We define the set ExpG of well-typed G -expressions by ExpGÃG . ♣

In [SBR10], it was proved that the set of G -expressions for a given non-deterministic
functor G has a coalgebraic structure:

δG : ExpG →G (ExpG )

More precisely, in [SBR10], which we refer to for the complete definition of δG , the
authors defined a function δFÃG : ExpFÃG →F (ExpG ) and then set δG = δGÃG .
The coalgebraic structure on the set of expressions enabled the proof of a Kleene-like
theorem:

3.1.5 THEOREM (Theorems 3.12 and 3.14 in [SBR10]). Consider G a non-deterministic

functor.

1. For any ǫ ∈ ExpG , there exists a finite G -coalgebra (S, g) and s ∈ S such that ǫ ∼ s.

2. For every finite G -coalgebra (S, g) and s ∈ S there exists an expression ǫs ∈ ExpG such

that ǫs ∼ s.

In order to provide the reader with intuition regarding the notions presented above, we
illustrate them with an example.

3.1.6 EXAMPLE. Let us instantiate the definition of G -expressions to the functor of streams
S = B× Id (the ingredients of this functor are B, Id and S itself). Let X be a set of (re-
cursion or) fixed-point variables. The set ExpS of stream expressions is given by the set of
closed, guarded expressions generated by the following BNF grammar. For x ∈ X :

ExpS ∋ ǫ ::= ; | ǫ⊕ ǫ | µx .ǫ | x | l〈τ〉 | r〈ǫ〉
τ ::= ; | b | τ⊕τ

(3.4)
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Intuitively, the expression l〈b〉 is used to specify that the head of the stream is b, while
r〈ǫ〉 specifies a stream whose tail behaves as specified by ǫ. For the two element join-
semilattice B = {0,1} (with ⊥B = 0) examples of well-typed expressions include ;,
l〈1〉 ⊕ r〈l〈;〉〉 and µx .r〈x〉 ⊕ l〈1〉. The expressions l[1], l〈1〉 ⊕ 1 and µx .1 are exam-
ples of non well-typed expressions for S , because the functor S does not involve ✸+, the
subexpressions in the sum have different type, and recursion is not at the outermost level
(1 has type BÃ S ), respectively.
By applying the definition in [SBR10], the coalgebra structure on expressions δS is given
by:

δS : ExpS → B×ExpS
δS (;) = 〈⊥B,;〉

δS (ǫ1⊕ ǫ2) = 〈b1 ∨ b2,ǫ′1 ⊕ ǫ
′
2〉 where 〈bi ,ǫ

′
i
〉 = δS (ǫi), i ∈ 1,2

δS (µx .ǫ) = δS (ǫ[µx .ǫ/x])

δS (l〈τ〉) = 〈δBÃS (τ),;〉
δS (r〈ǫ〉) = 〈⊥B,ǫ〉

δBÃS (;) = ⊥B

δBÃS (b) = b

δBÃS (τ⊕τ
′) = δBÃS (τ)∨ δBÃS (τ

′)

The proof of Kleene’s theorem provides algorithms to go from expressions to streams and
vice-versa. We illustrate it by means of examples.
Consider the following stream:

s1 s2 s3

1 0 1

We draw the stream with an automata-like flavor. The transitions indicate the tail of
the stream represented by a state and the output value the head. In a more traditional
notation, the above automata represents the infinite stream (1,0,1,0,1,0,1, . . .).
To compute expressions ǫ1, ǫ2 and ǫ3 equivalent to s1, s2 and s3 we associate with each
state si a variable x i and get the equations:

ǫ1 = µx1.l〈1〉 ⊕ r〈x2〉 ǫ2 = µx2.l〈0〉 ⊕ r〈x3〉 ǫ3 = µx3.l〈1〉 ⊕ r〈x2〉

As our goal is to remove all the occurrences of free variables in our expressions, we
proceed as follows. First we substitute x2 by ǫ2 in ǫ1, and x3 by ǫ3 in ǫ2, and obtain the
following expressions:

ǫ1 = µx1.l〈1〉 ⊕ r〈ǫ2〉 ǫ2 = µx2.l〈0〉 ⊕ r〈ǫ3〉

Note that at this point ǫ1 and ǫ2 already denote closed expressions. Therefore, as a last
step, we replace x2 in ǫ3 by ǫ2 and get the following closed expressions:

ǫ1 = µx1.l〈1〉 ⊕ r〈ǫ2〉 ǫ2 = µx2.l〈0〉 ⊕ r〈ǫ3〉 ǫ3 = µx3.l〈1〉 ⊕ r〈µx2.l〈0〉 ⊕ r〈x3〉〉

satisfying, by construction, ǫ1 ∼ s1, ǫ2 ∼ s2 and ǫ3 ∼ s3.
For the converse construction, consider the expression ǫ = (µx .r〈x〉)⊕ l〈1〉. We construct
an automaton by repeatedly applying the coalgebra structure on expressions δS , modulo
associativity, commutativity and idempotency (ACI) of ⊕ in order to guarantee finiteness.
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First, note that δS (µx .r〈x〉) = δS (r〈µx .r〈x〉〉) = 〈⊥B,µx .r〈x〉〉. Applying the definition
of δS above, we have:

δS (ǫ) = 〈1, (µx .r〈x〉)⊕;〉 and δS ((µx .r〈x〉)⊕ ;) = 〈0, (µx .r〈x〉)⊕ ;〉

which leads to the following stream (automaton):

ǫ (µx .r〈x〉)⊕;

1 0

At this point, we want to remark that the direct application of δS , without ACI, might
generate infinite automata. Take, for instance, the expression ǫ = µx .r〈x ⊕ x〉 . Note that
δS (µx .r〈x ⊕ x〉) = 〈0,ǫ ⊕ ǫ〉, δS (ǫ ⊕ ǫ) = 〈0, (ǫ ⊕ ǫ)⊕ (ǫ ⊕ ǫ)〉, and so on. This would
generate the infinite automaton

ǫ ǫ⊕ ǫ (ǫ⊕ ǫ)⊕ (ǫ⊕ ǫ) . . .

0 0 0 . . .

instead of the intended, simple and very finite, automaton

ǫ

0

In order to guarantee finiteness, one needs to identify the expressions modulo ACI, as we
will discuss further in this chapter. Moreover, the axiom ǫ ⊕ ; ≡ ǫ could also be used in
order to obtain smaller automata, but it is not crucial for termination.
Streams will be often used as a basic example to illustrate the definitions. It should be
remarked that the framework is general enough to include more complex examples, such
as deterministic automata, automata on guarded strings, Mealy machines and labelled
transition systems. The latter two will be used as examples in Section 3.5.

3.2 Deciding equivalence of expressions

In this section, we briefly describe the decision procedure to determine whether two
generalised regular expressions are equivalent or not.
The key observation is that point 1. of Theorem 3.1.5 above guarantees that each expres-
sion in the language for a given system can always be associated with a finite coalgebra.
Given two expressions ǫ1 and ǫ2 in the language ExpG of a given functor G we can decide
whether they are equivalent by constructing a finite bisimulation between them. This is
because the finite coalgebra generated from an expression contains precisely all states
that one needs to construct the equivalence relation. Even though this might seem like
a trivial observation, it has very concrete consequences: for (all well-typed) generalised
regular expressions we can always either determine that they are bisimilar, and exhibit a
proof in the form of a bisimulation, or conclude that they are not bisimilar and pinpoint
the difference by showing why the bisimulation construction failed. Hence, we have a
decision procedure for equivalence of generalised regular expressions.
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We will give the reader a brief example on how the equivalence check works. Further
examples, for different types of systems, including examples of non-equivalence, will
appear in Section 3.5.

We will show that the stream expressions

ǫ1 = µx .r〈x〉 ⊕ l〈0〉

and

ǫ2 = r〈µx .r〈x〉 ⊕ l〈0〉〉 ⊕ l〈0〉

are equivalent. In order to do that, we have to build a bisimulation relation R on expres-
sions for the stream functor S , defined above, such that (ǫ1,ǫ2) ∈ R. We do this in the
following way: we start by taking R = {(ǫ1,ǫ2)} and we check whether this is already a
bisimulation, by applying δS to each of the expressions and checking whether the expres-
sions have the same output value and, moreover, that no new pairs of expressions (mod-
ulo associativity, commutativity and idempotency, for more details see page 38) appear
when taking transitions. Note that, for simplicity, we also use the sound axiom ǫ⊕ ; ≡ ǫ.
If new pairs of expressions appear we add them to R and repeat the process. Intuitively,
for this particular example, the transition structure can be depicted as in Figure 3.1.

ǫ1
R

ǫ2 R= {(ǫ1,ǫ2)}

ǫ1 ⊕; = ǫ1 ǫ1 = ǫ1 ⊕;
not yet in R; add it

R= {(ǫ1,ǫ2), (ǫ1,ǫ1)}

ǫ1
R

ǫ1 Ø

Figure 3.1: Bisimulation construction

In Figure 3.1, we omit the output values of the expressions, which are all 0, and use the

notation ǫ1
R
ǫ2 to denote (ǫ1,ǫ2) ∈ R. Note that R= {(ǫ1,ǫ2), (ǫ2,ǫ2)} is closed under

transitions and is therefore a bisimulation. Hence, ǫ1 and ǫ2 are bisimilar and specify the
same infinite stream (concretely, the stream with only zeros).

3.3 An algebraic view on the coalgebra of expressions

Recall that our goal is to reason about equality of generalised regular expressions in a fully
automated manner. Obtaining this equality can be achieved in two distinct ways: either
algebraically, reasoning with the axioms, or coalgebraically, by constructing a bisimula-
tion relation. The latter, because of its algorithmic nature, is particularly suited for au-
tomation. Automatic constructions of bisimulations have been widely explored in CIRC
and we will use this tool to implement our algorithm. This section contains material that
enables us to soundly use CIRC. We want to stress however that the main result of this
chapter is the description of a decision procedure to determine whether two expressions
are equivalent or not. This procedure in turn could be implemented in any other suitable
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tool or even as a standalone application. Choosing CIRC was natural for us, given the
pre-existent work on bisimulation constructions.

In short, CIRC is a behavioural extension of Maude [CDE+07] enabling the coinductive
definition of infinite data structures by means of the so-called “derivatives” (δG for the
case of generalised regular expressions). The prover allows the (automated) reasoning on
properties of such structures by coinduction (or bisimulation construction). The coinduc-
tive definitions are fed to CIRC in the shape of algebraic specifications which are closely
related to the original mathematical representations. Once a proof obligation is set, CIRC
starts the proving mechanism which repeatedly applies the derivatives, and (potentially)
stops when a bisimulation containing the initial obligation is reached. For more insight
on CIRC we refer to [GLR00, RL09] and Section 3.4.

In Section 3.4, we show that the process of generating the G -coalgebras associated with
expressions by repeatedly applying δG and normalising the expressions obtained at each
step is closely related to the proving mechanism already existent in CIRC.

In Section 3.1, we have introduced a (theoretical) framework which, given a functor
G, allows for the uniform derivation of 1) a language ExpG for specifying behaviours
of G -systems, and 2) a coalgebraic structure on ExpG , which provides an operational
semantics to the set of expressions. In this context, given that CIRC is based on algebraic
specifications, we need two things in order to reach our final goal:

– extend and adapt the framework of Section 3.1 in order to enable the implementa-
tion of a tool which allows the automatic derivation of algebraic specifications that
model 1) and 2) above, to deliver to CIRC;

– provide a decision procedure, implemented in CIRC based on an equational entail-

ment relation, in order to check bisimilarity of expressions.

In the rest of this chapter we will present the algebraic setting for reasoning on bisim-
ilarity of generalised regular expressions. A brief overview on the parallel between the
coalgebraic concepts in [SBR10] and their algebraic correspondents introduced in this
section is provided later, in Figure 3.2.

An algebraic specification is a triple E = (S,Σ, E), where S is a set of sorts, Σ is a S-sorted

signature and E is a set of conditional equations of the form (∀X ) t = t ′ if (
∧

i∈I ui = vi),
where t, t ′, ui , and vi (i ∈ I – a set of indices for the conditions) are Σ-terms with
variables in X . We say that the sort of the equation is s whenever t, t ′ ∈ TΣ,s(X ). Here,
TΣ,s(X ) denotes the set of terms of sort s of the Σ-algebra freely generated by X . If I = ;

then the equation is unconditional and may be written as (∀X ) t = t ′.

Let ⊢ be the equational entailment (deduction) relation defined as in [GM92]. We write
E ⊢ e whenever equation e is deducible from the equations E in E by reflexivity, symmetry,
transitivity, congruence or (conditional) substitutivity (i.e., whenever E ⊢ e).

The algebraic specification of generalised regular expressions is built on top of definitions
based on grammars in Backus-Naur form (BNF), such as (3.1) and (3.2). Next we intro-
duce the general technique for transforming BNF notations into algebraic specifications.

The general rule used for translating definitions based on BNF grammars into algebraic
specifications is as follows: each syntactical category and vocabulary is considered as a
sort and each production is considered as a constructor operation or a subsort relation.

For instance, according to the grammar (3.1) of non-deterministic functors, we have a
sort SltName – representing the vocabulary of join-semilattices B, a sort AlphName – for



3.3. An algebraic view on the coalgebra of expressions 27

the vocabulary of the alphabets A, a sort Functor – associated with the syntactical category
of the non-deterministic functors G , a subsort relation SltName<Functor representing the
production G ::= B, and constructor operations for the other productions.
Generally, each production A::= rhs gives rise to a constructor (rhs)→ (A), the direction
of the arrow being reversed. For instance, for grammar (3.1), the production G ::= Id is
represented by a constant (nullary operation) Id:→ Functor, and the sum construction by
the binary operation

_✸+_ :Functor Functor→ Functor.

Remark 2 Note that the above mechanism for translating BNF grammars into algebraic

specifications makes use of subsort relations for representing productions such as G ::= B.

This is because CIRC works with order-sorted algebras, and we want to keep the algebraic

specifications of non-deterministic functors as close as possible to their implementation in

CIRC.

The algebraic specifications of coalgebras of generalised regular expressions are defined
in a modular fashion, based on the specifications of:

– non-deterministic functors (G );

– generalised regular expressions (ǫ ∈ ExpG );

– “transition" functions (δG );

– “structured" expressions (σ ∈ F (ExpG ), for all F ingredients of G ).

Moreover, recall that for a non-deterministic functor G , bisimilarity of G -expressions is de-
cided based on the relation lifting G over “structured" expressions in G (ExpG ) (see (2.2)
in Section 2.2). Therefore, the deduction relation ⊢ has to be extended to allow a re-
stricted contextual reasoning over “structured" expressions inF (ExpG ), for all ingredients
F of G .
The aforementioned algebraic specifications and the extension of ⊢ are modelled as fol-
lows.

The algebraic specification of a non-deterministic functor G includes:

– the translation of the BNF grammar (3.1), as presented above;

– the specification of the functor ingredients, given by a sort Ingredient and a con-
structor _ ⊳ _: Functor Functor→ Ingredient (according to Definition 3.1.1);

– the specification of each alphabet A = {a1, . . . , an} occurring in the definition of G :
this consists of a subsort A<Alph, a constant ai:→ A for i ∈ 1, n, and a distinguished
constant A of sort AlphName used to refer the alphabet in the definition of the
functor;

– the specification of each semilattice B = ({b1, . . . , bn},∨,⊥B) occurring in the def-
inition of G : this consists of a subsort B < Slt, a constant bi : → B for i ∈ 1, n, a
distinguished constant B of sort SltName used to refer the corresponding semilat-
tice in the definition of the functor, and the equations defining ∨ and ⊥B (this should
be one of the bi ’s);

– an equation defining G (as a functor expression).
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The algebraic specification of generalised regular expressions consists of:

– (according to the BNF grammar in Definition 3.1.2) a sort Exp representing ex-
pressions ǫ, FixpVar the sort for the vocabulary of the fixed-point variables, and
Slt the sort for the elements of semilattices. Moreover, we consider constructor
operations for all the productions. For example, the production ǫ ::= ǫ ⊕ ǫ is rep-
resented by an operation _⊕ _ : Exp Exp→ Exp, and ǫ ::= µx .γ is represented by
µ_._ : FixpVar Exp → Exp. (We chose not to provide any restriction to guarantee
that γ is a guarded expression, at this stage in the definition of µ_._. However,
guards can be easily checked by pattern matching, according to the grammars in
Definition 3.1.2);

– the specification of the substitution of a fixed-point variable with an expression,
given by an operation _[_ /_]: Exp Exp FixpVar→ Exp and a set of equations, one
for each constructor. For example, the equations associated with ; and ⊕ are:
;[ǫ/x] = ;, and respectively, (ǫ1 ⊕ ǫ2)[ǫ/x] = (ǫ1[ǫ/x])⊕ (ǫ2[ǫ/x]), where ǫ,ǫ1,ǫ2

are G -expressions and x is a fixed-point variable;

– the specification of the type-checking relation in Definition 3.1.3, given by an oper-
ation _ :_ : Exp Ingredient→ Bool and an equation for each inference rule defining
this relation. For example the rule

⊢ ǫ1 : F Ã G ⊢ ǫ2 : F Ã G

⊢ ǫ1 ⊕ ǫ2 : F Ã G

is represented by the equation ǫ1 ⊕ ǫ2 : F ⊳G = ǫ1 : F ⊳G ∧ ǫ2 : F ⊳G . The type-
checking operator is used in order to verify whether the expressions checked for
equivalence are well-typed (Definition 3.1.4). Moreover, note that for the consis-
tency of notation, algebraically we write ǫ : F ⊳G to represent expressions ǫ of type
F ⊳G .

The algebraic specification of δG consists of:

– the specification of the coalgebra of G -expressions δG given by three operations

δ_(_): Ingredient Exp→ ExpStruct

Empt y : Ingredient→ ExpStruct
Plus_(_,_): Ingredient ExpStruct ExpStruct→ ExpStruct;

– equations describing the definitions of these operations as in [SBR10].

As mentioned above, the set of G -expressions is provided with a coalgebraic structure
given by the function δG : ExpG → G (ExpG ), where G (ExpG ) can be understood as the
set of expressions with structure given by G (and its ingredients). The set of structured
expressions is defined by the following grammar:

σ ::= ǫ | b | 〈σ,σ〉 | k1(σ) | k2(σ) | ⊥ | ⊤ | λ.(a,F ⊳G ,σ) | {σ} (3.5)

where ǫ ∈ ExpG and b ∈ B. The typing rules below give precise meaning to these ex-
pressions. Note that ⊥,⊤ are two expressions coming from G = G1 ✸+G2, used to denote
underspecification and overspecification, respectively.
The associated algebraic specification includes:
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– a sort ExpStruct representing expressions σ (from F (ExpG ), with F ⊳G ), and one
operation for each production in the BNF grammar (3.5). Note that the construction
λ.(a,F ⊳G ,σ) has as coalgebraic correspondent a function f ∈ F A(ExpG ), and is
defined by cases as follows:

λ.(a,F ⊳G ,σ)(a′) = if (a = a′) then σ else EmptyF ⊳G ;

– the extension of the type-checking relation to structured expressions, defined by:

⊢ b : B ⊳G

⊢ b ∈ B(ExpG )

⊢ ǫ : Id ⊳G

⊢ ǫ ∈ Id(ExpG )

⊢ ⊥ ∈ F1✸+F2(ExpG ) ⊢ ⊤ ∈ F1✸+F2(ExpG )

⊢ σ ∈ Fi(ExpG )

⊢ ki(σ) ∈ F1✸+F2(ExpG )
i ∈ 1,2

⊢ σ1 ∈ Fi(ExpG ) ⊢ σ2 ∈ Fi(ExpG )

⊢ 〈σ1,σ2〉 ∈ F1×F2(ExpG )

⊢ σ ∈ F (ExpG ), a ∈ A

⊢ λ.(a,F ⊳G ,σ) ∈ F A(ExpG )

⊢ σ ∈ F (ExpG )

⊢ {σ} ∈ PωF (ExpG )

and specified by an operation _ ∈ _(Exp_) : ExpStruct Functor Functor → Bool

(where we used a mix-fix notation) and an equation for each of the above infer-
ence rules. For example, the first rule has associated the equation b ∈ B(ExpG ) =
b : B ⊳G . For consistency of notation, we write σ ∈ F (ExpG ) to denote that σ is an
element of F (ExpG ).

Remark 3 In terms of membership equational logic (MEL) [BJM00], both F ⊳G and

F (ExpG ) can be thought of as being sorts and, for example, ǫ : F ⊳G as a membership

assertion. Even if MEL is an elegant theory, we prefer not to use it here because this implies

the dynamic declaration of sorts and a set of assertions for such a sort. The above approach

is generic and therefore more flexible.

As previously hinted at the beginning of this section, in order to algebraically reason on
bisimilarity of G -expressions in CIRC, one has to extend the deduction relation ⊢ to allow
a restricted contextual reasoning on expressions in F (ExpG ), for all ingredients F of a
non-deterministic functor G . We call the extended entailment ⊢NDF .

The aforementioned restriction refers to inhibiting the use of congruence during equa-
tional reasoning, in order to guarantee the soundness of CIRC proofs. This is realised
by means of a freezing operator, which intuitively behaves as a wrapper on the expres-
sions checked for equivalence, by changing their sort to a fresh sort Frozen. This way,
the hypotheses collected during a CIRC proof session cannot be used freely in contextual
reasoning, hence preventing the derivation of untrue equations (as illustrated in Exam-
ple 3.4.1).
We further show how the freezing mechanism is implemented in our algebraic setting,
and define ⊢NDF .
Let E be an algebraic specification. We extend E by adding the freezing operation − : s→

Frozen for each sort s ∈ Σ, where Frozen is a fresh sort. By t we represent the frozen
form of a Σ-term t, and by e a frozen equation of the shape (∀X ) t = t ′ if c. Note
that, according to [RL09], conditions c need not to be frozen, as their (so-called visible)
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sort does not allow their collection into the set of CIRC hypotheses. The entailment
relation ⊢ is defined over frozen equations following [RL09]; more details are provided
in Section 3.4.
Recall that a relation R ⊆ ExpG × ExpG is a bisimulation if and only if (s, t) ∈ R ⇒

(δG ⊳G (s),δG ⊳G (t)) ∈ G (R). Here, G (R) ⊆ G (ExpG ) × G (ExpG ) is the lifting of the re-
lation R⊆ ExpG × ExpG , defined as

G (R) = {(G (π1)(x),G (π2)(x)) | x ∈ G (R)} .

So, intuitively, reasoning on bisimilarity of two expressions (ǫ,ǫ′) in R reduces to checking
whether the application of δG maps them into G (R).
Therefore, checking whether a pair (sδ, tδ) is in G (R) consists in checking, for example for
the case of G = G1 ×G2, whether (sδ1 , tδ1 ) ∈ G1(R) and (sδ2 , tδ2 ) ∈ G2(R), where sδ = 〈sδ1 , sδ2 〉

and tδ = 〈tδ1 , tδ2 〉. In an algebraic setting, this would reduce to building an algebraic
specification E and defining an entailment relation ⊢NDF such that one can infer E ⊢NDF

〈sδ1 , sδ2 〉 = 〈t
δ
1 , tδ2 〉 (this is the algebraic correspondent we consider for (〈sδ1 , sδ2 〉, 〈t

δ
1 , tδ2 〉) ∈

G (R)) by showing E ⊢NDF sδ1 = tδ1 (or (sδ1 , tδ1 ) ∈ G1(R)) and E ⊢NDF sδ2 = tδ2 (or (sδ2 , tδ2 ) ∈

G2(R)). We hint that the aforementioned algebraic specification E consists of EG and a set
of frozen equations (see Corollary 3.3.4).
The entailment relation ⊢NDF for reasoning on bisimilarity of G -expressions is based on
the definition of G .

3.3.1 DEFINITION. The entailment relation ⊢NDF is the extension of ⊢ with the following
inference rules, which allow a restricted contextual reasoning over the frozen equations
of structured expressions:

EG ⊢NDF σ1 = σ
′
1 EG ⊢NDF σ2 = σ

′
2

EG ⊢NDF 〈σ1,σ2〉 = 〈σ
′
1,σ′2〉

(3.6)

EG ⊢NDF σ = σ
′

EG ⊢NDF ki(σ) = ki(σ
′)

i ∈ 1,2 (3.7)

EG ⊢NDF f (a) = g(a) , for al l a ∈ A

EG ⊢NDF f = g
(3.8)

EG ⊢NDF σi1
= σ′

j1
, . . . , EG ⊢NDF σik

= σ′
jk

EG ⊢NDF {σ1, . . . ,σn} = {σ
′
1, . . . ,σ′

m
}

{i1, . . . , ik}= {1, . . . , n}

{ j1, . . . , jk}= {1, . . . , m}
(3.9)

Remark 4 Note that the extension of the entailment relation ⊢ to ⊢NDF implies that

EG ⊢ e iff EG ⊢NDF e holds, for any equation e of shape ǫ1 = ǫ2 or ǫ1 = ǫ2, with ǫ1,ǫ2

non-structured expressions. Below, we will use the notation EG ⊢NDF E, where E is a set of

possibly frozen equations, to denote ∀e∈E · EG ⊢NDF e.

It is interesting to recall the relation lifting for the powerset functor which is encoded in
the last rule of Definition 3.3.1. A pair (U , V ) is in PωG (R) if and only if for every u ∈ U

there exists a v ∈ V such that (u, v) belongs to G (R) and, conversely, for every v ∈ V , there
exists a u ∈ U such that (u, v) belongs to G (R).



3.3. An algebraic view on the coalgebra of expressions 31

Remark 5 As already hinted (and proved in Corollary 3.3.4), reasoning on bisimilarity

of expressions in a binary relation R ⊆ ExpG × ExpG reduces to showing that δG (s) =

δG (t) is a ⊢NDF -consequence, for all (s, t) ∈ R. The equational proof is performed in a “top-

down" fashion, by reasoning on the subsequent equalities between the components of the

corresponding structured expression δG (s), δG (t) in an inductive manner. This is realised by

applying the inverted rules (3.6)–(3.9).

Moreover, note that rule (3.9) is not invertible in the usual sense; rather any statement

matching the form of the conclusion can only be proved by some instance of the rule.

We will further formalise the connection between the inductive definition of G (on the
coalgebraic side) and ⊢NDF (on the algebraic side) in Theorem 3.3.2, hence enabling the
definition of bisimulations in algebraic terms, in Corollary 3.3.4.

Remark 6 Equations in EG (built as previously described in this section) are used in the

equational reasoning only for reducing terms of shape op(t1, . . . , tn) according to the def-

inition of the operation op. For the simplicity of the proofs of Theorem 3.3.2 and Corol-

lary 3.3.4, whenever we write op(t1, . . . , tn), we refer to the associated term reduced accord-
ing to the definition of op.

First we introduce some notational conventions. Let G be a non-deterministic functor and
R ⊆ ExpG ×ExpG . We write:

– Rid to denote the set R∪ {(ǫ,ǫ) | EG ⊢ ǫ : G ⊳G = true};

– cl(R) for the closure of R under transitivity, symmetry and reflexivity;

– R to represent the set
⋃

e∈R{ e }; (application of the freezing operator to all elements
of R)

– δG ⊳G (ǫ = ǫ
′) to represent the equation δG ⊳G (ǫ) = δG ⊳G (ǫ

′);

– EG ∪ R as a shorthand for (S,Σ, E ∪ { ǫ = ǫ′ | (ǫ,ǫ′) ∈ R}), where EG = (S,Σ, E);

– (σ,σ′) ∈ G (R) as a shorthand for: (σ,σ′) is among the enumerated elements of a
set S explicitly constructed as an enumeration of the finite set G (R) (in the algebraic
setting, G (R) is a subset of TΣ,ExpStruct×TΣ,ExpStructand EG ⊢ G (R) = S).

3.3.2 THEOREM. Consider a non-deterministic functor G . Let F be an ingredient of G , R a

binary relation on the set of G -expressions, and σ,σ′ ∈ F (ExpG ).

a) If G is not a constant functor, then (σ,σ′) ∈ F (cl(Rid)) iff EG ∪ R ⊢NDF σ = σ
′ ;

b) If G is a constant functor B, then (σ,σ′) ∈ B(cl(Rid)) iff EG ⊢NDF σ = σ
′ .

In order to prove Theorem 3.3.2.a) we introduce the following lemma:

3.3.3 LEMMA. Consider G a non-deterministic functor and R a binary relation on the set of

G -expressions. If (ǫ,ǫ′) ∈ cl(Rid) then EG ∪ R ⊢NDF ǫ = ǫ
′ .

PROOF. The proof is trivial, as equality is reflexive, symmetric and transitive.

We are now ready to prove Theorem 3.3.2.

PROOF (Theorem 3.3.2).
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– Proof of Theorem 3.3.2.a).

• “⇒ ”. The proof is by induction on the structure of F .
Base case:

∗ F = B. It follows that (σ,σ′) is of shape (b, b) where b ∈ B, therefore
EG ∪ R ⊢NDF b = b holds by reflexivity.

∗ F = Id. In this case (σ,σ′) ∈ cl(Rid) = Id(cl(Rid)), so the result follows
immediately by Lemma 3.3.3.

Induction step:

∗ F =F1×F2. Obviously, σ = 〈σ1,σ2〉 and σ′ = 〈σ′1,σ′2〉, where (σ1,σ′1) ∈

F1(cl(Rid)) and (σ2,σ′2) ∈ F2(cl(Rid)). Therefore, by the induction hy-

pothesis, both EG ∪ R ⊢NDF σ1 = σ′1 and EG ∪ R ⊢NDF σ2 = σ′2 hold.

Hence, according to the definition of ⊢NDF (see (3.6)), we conclude that
EG ∪ R ⊢NDF 〈σ1,σ2〉 = 〈σ

′
1,σ′2〉 holds.

∗ The cases F = F1 ✸+F2, F = F A
1 and F = PωF

′ are handled in a similar
way.

• “ ⇐ ”. We proceed also by induction on the structure of F . Moreover, recall
that the observations in Remark 6 hold (for each of the subsequent cases).
Base case:

∗ F = B. In this case (σ,σ′) is of shape (b, b′), where b, b′ are two elements
of the semilattice B. Also, recall that G 6= B, therefore, the equations (of
type G ⊳G 6=F (ExpG )) in R are not involved in the equational reasoning.

We deduce that b = b′ is proved by reflexivity, hence (b, b′) = (b, b) ∈

B(cl(Rid)).

∗ F = Id. Note that for this case, σ,σ′ are expressions of the same type with
the expressions in R. We further identify two possibilities:

· σ = σ′ is proved by reflexivity. Therefore (σ,σ′) ∈ {(ǫ,ǫ) | ǫ:G ⊳G} ⊆

Rid ⊆ cl(Rid) = Id(cl(Rid)).

· The equations in R are used in the equational reasoning EG ∪ R ⊢NDF

σ = σ′ . In addition, the freezing operator inhibits contextual rea-
soning, therefore σ = σ′ is proved according to the equations in
R , based on the symmetry and transitivity of ⊢NDF . In other words,

(σ,σ′) ∈ cl(Rid) = Id(cl(Rid)).

Induction step:

∗ F = F1 × F2. Obviously, due to their type, the equations in R are not
involved in the equational reasoning. Therefore, EG ∪ R ⊢NDF 〈σ1,σ2〉 =

〈σ′1,σ′2〉 is a consequence of the inverted rule (3.6). More explicitly, it

follows that EG ∪ R ⊢NDF σ1 = σ
′
1 and EG ∪ R ⊢NDF σ2 = σ

′
2 must hold.

By the induction hypothesis, we deduce that (σ1,σ′1) ∈ F 1(cl(Rid)) and

(σ2,σ′2) ∈ F 2(cl(Rid)). So by the definition of F1 ×F2 we conclude that

(〈σ1,σ2〉, 〈σ
′
1,σ′2〉) = (σ,σ′) ∈ F1 ×F2(R).
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∗ The cases F = F1 ✸+ F2, F = (F1)
A and F = PωF

′ follow a similar
reasoning.

– Proof of Theorem 3.3.2.b). It follows immediately by the definition of B and Re-
mark 6.

Remark 7 For a more intuitive justification on the distinction of constant/non-constant

functor in Theorem 3.3.2, note that in CIRC, proof obligations ǫ = ǫ′ of a type (sort)

that serves as “base case” in the co-recursive definitions are not collected as hypotheses dur-

ing a proof session. Hence, in the context of G -expressions, whenever G = B, the hypotheses

set R is empty. Consequently, a corresponding obligation ǫ = ǫ′ of type B is proved only

according to the equations in EG , by applying transitivity, symmetry and reflexivity.

3.3.4 COROLLARY. Let G be a non-deterministic functor and R a binary relation on the set
of G -expressions.

a) If G is a non-constant functor, then cl(Rid) is a bisimulation iff EG ∪ R ⊢NDF δG ⊳G (R) ;

b) If G is a constant functor B, then cl(Rid) is a bisimulation iff EG ⊢NDF δG ⊳G (R) .

PROOF.

– Proof of Corollary 3.3.4.a). We reason as follows:

cl(Rid) is a bisimulation

⇔ (∀(ǫ,ǫ′) ∈ cl(Rid)).((δG ⊳G (ǫ),δG ⊳G (ǫ
′)) ∈ G (cl(Rid))

⇔ EG ∪ R ⊢NDF δG ⊳G (cl(Rid)) (Thm. 3.3.2)

⇔ EG ∪ R ⊢NDF δG ⊳G (R) (cl(Rid),⊢NDF)

– Proof of Corollary 3.3.4.b). It follows immediately by the definition of bisimulation
relations and according to the observations in Remark 6.

In Figure 3.2 we briefly summarise the results of the current section, namely, the algebraic
encoding of the coalgebraic setting presented in [SBR10].

3.4 Deciding bisimilarity in CIRC

We next describe how the coinductive theorem prover CIRC [LGCR09] can be used to
implement the decision procedure for the bisimilarity of generalised regular expressions,
which we discussed above.
CIRC can be seen as an extension of Maude with behavioural features and its implemen-
tation is derived from that of Full-Maude. In order to use the prover, one needs to provide
a specification (a CIRC theory) and a set of goals. A CIRC theory B = (S, (Σ,∆), (E,I ))

consists of an algebraic specification (S,Σ, E), a set ∆ of derivatives, and a set I of equa-
tional interpolants, which are expressions of the form e ⇒ {ei | i ∈ I} where e and ei

are equations. The intuition for this type of expressions is simple: e holds whenever
for any i in I the equation ei holds. In other words, to prove E ⊢ e one can chose to
instead prove E ⊢ {ei | i ∈ I}. For the particular case of non-deterministic functors, we
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coalgebraic algebraic

⊢ ǫ : F ⊳G EG ⊢ ǫ : F ⊳G = true

ExpF ⊳G {ǫ ∈ TΣ,Exp| EG ⊢ ǫ : F ⊳G = true}

ExpG {ǫ ∈ TΣ,Exp| EG ⊢ ǫ : G ⊳G = true}

F (ExpG ) {σ ∈ TΣ,ExpStruct| EG ⊢ σ ∈ F (ExpG ) = true}

δF ⊳G : ExpF ⊳G →F (ExpG ) δ_(_): Ingredient Exp→ ExpStruct

EG ⊢ σ ∈ F (ExpG ) = true,

EG ⊢ σ
′ ∈ F (ExpG ) = true

(σ,σ′) ∈ F (cl(Rid)) EG ∪ R ⊢NDF σ = σ
′ if G 6= B

or

EG ⊢NDF σ = σ
′ if G = B (Thm. 3.3.2)

cl(Rid) is a bisimulation EG ∪ R ⊢NDF δG ⊳G (R) if G 6= B

or

EG ⊢NDF δG ⊳G (R) if G = B (Cor. 3.3.4)

Figure 3.2: Non-deterministic functors - coalgebraic vs. algebraic approach

use equational interpolants to extend the initial entailment relation in a consistent way
with rules (3.6)–(3.9). (For more information on equational interpolants see [GLR10]).
A derivative δ ∈∆ is a Σ-term containing a special variable ∗:s (i.e., a Σ-context), where
s is the sort of the variable ∗. If e is an equation t = t ′ with t and t ′ of sort s, then
δ[e] is δ[t/∗:s] = δ[t ′/∗:s]. We call this type of equation a derivable equation. The other
equations are non-derivable. We write δ[R] to represent {δ[e] | e ∈ R}, where R is a set of
derivable equations, and ∆[e] for the set {δ[e] | δ ∈∆ appropriate for e}.
Moreover, note that CIRC works with an extension of the entailment relation ⊢ over
frozen equations (introduced in Section 3.3), with two more axioms, as in [RL09]:

E ∪ R ⊢ e iff E ⊢ e (3.10)

E ∪ R ⊢ G implies E ∪δ[R] ⊢ δ[G] for each δ ∈∆ (3.11)

Above, E ranges over unfrozen equations, e over non-derivable unfrozen equations, and
R, G over derivable frozen equations.

Remark 8 Note that the new entailment ⊢NDF extended over frozen equations (in Defini-

tion 3.3.1) satisfies the assumptions (3.10) and (3.11).

CIRC implements the coinductive proof system given in [RL09] using a set of reduction
rules of the form (B , F, G) ⇒ (B , F ′, G′), where B represents a specification, F is the
coinductive hypothesis (a set of frozen equations) and G is the current set of goals. The
freezing operator is defined as described in Section 3.3. Here is a brief description of
these rules:

[Done]: (B , F, {})⇒ ·

Whenever the set of goals is empty, the system terminates with success.
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[Reduce]: (B , F, G ∪ { e })⇒ (B , F, G) if B ∪ F ⊢ e

If the current goal is a ⊢-consequence of B ∪ F then e is removed from the set of
goals.

[Derive]: (B , F, G ∪ { e })⇒ (B , F ∪ { e }, G ∪ ∆[e] ) if B ∪ F 6⊢ e

When the current goal e is derivable and it is not a ⊢-consequence, it is added to
the hypothesis and its derivatives to the set of goals.

[Simplify]: (B , F, G ∪ { θ(e) })⇒ (B , F, G ∪ { θ(ei) | i ∈ I})

if e⇒ {ei | i ∈ I} is an equational interpolant from the
specification and θ : X →TΣ(Y ) is a substitution.

[Fail]: (B , F, G ∪ { e })⇒ failure if B ∪ F 6⊢ e ∧ e is non-derivable

This rule stops the reduction process with failure whenever the current goal e is
non-derivable and is not a ⊢-consequence ofB ∪ F .

It is worth noting that there is a strong connection between a CIRC proof and the con-
struction of a bisimulation relation. We illustrate this fact and the importance of the
freezing operator with a simple example.

3.4.1 EXAMPLE. Consider the case of infinite streams. The set Bω of infinite streams over
a set B is the final coalgebra of the functor S = B×Id, with a coalgebra structure given by
hd and tl, the functions that return the head and the tail of the stream, respectively. Our
purpose is to prove that 0∞ = (00)∞. Let z and zz represent the stream on the left-hand
side and, respectively, on the right-hand side. These streams are defined by the equations:
hd(z) = 0, tl(z) = z,hd(zz) = 0, tl(zz) = 0:zz. Note that equations over B like hd(z) = 0

are not derivable and equations over streams like tl(z) = z are derivable.
In Figure 3.3 we present the correlation between the CIRC proof and the construction
of the bisimulation relation. Note how CIRC collects the elements of the bisimulation as
frozen hypotheses.
Let us analyze what would happen if the freezing operator − was not used. Suppose
the circular coinduction algorithm would add the equation z = zz in its unfrozen form to
the hypotheses. After applying the derivatives we obtain the goals hd(z) = hd(zz), tl(z) =

tl(zz). At this point, the prover could use the freshly added equation z = zz, and accord-
ing to the congruence rule, both goals would be proven directly, though we would still
be in the process of showing that the hypothesis holds. By following a similar reasoning,
we could also prove that 0∞ = 1∞! In order to avoid these situations, the hypotheses
are frozen, (i.e., their sort is changed from Stream to Frozen) and this stops the applica-
tion of the congruence rule, forcing the application of the derivatives according to their
definition in the specification. Therefore, the use of the freezing operator is vital for the
soundness of circular coinduction.

Next, we focus on using CIRC for automatically reasoning on the equivalence of G -
expressions. As we will show, the implementation of both the algebraic specifications
associated with non-deterministic functors and the equational entailment relation de-
scribed in Section 3.3 is immediate. Given a non-deterministic functor G , we define a
CIRC theoryBG = (S, (Σ,∆), (E,I )) as follows:

– (S,Σ, E) is EG

– ∆ = {δG ⊳G (∗:Exp)}, so the only derivable equations are those of sort Exp. As we
have already seen for the example of streams, equations of sort Slt must not be



36 Chapter 3. Deciding bisimilarity

CIRC proof Bisimulation construction

(add goal z = zz .)
z zz (zz)′

0 0 0

(B ,;, { z = zz }) F = ;; z ∼ zz ?

[Derive]
−→

�
B , { z = zz },

¨
hd(z) = hd(zz)

tl(z) = tl(zz)

«�
F = {(z, zz)};

z
0
−→z

zz
0
−→(zz)′

[Reduce]
−→ (B , { z = zz }, { z = 0:zz }) F = {(z, zz)}; z ∼ (zz)′ ?

[Derive]
−→

�
B ,

�
z = zz

z = 0:zz

�
,

¨
hd(z) = hd(0:zz)

tl(z) = tl(0:zz)

«�
F = {(z, zz), (z, (zz)′)};

z
0
−→z

(zz)′
0
−→zz

[Reduce]
−→

�
B ,

�
z = zz

z = 0:zz

�
, {}

�
F = {(z, zz), (z, (zz)′)} Ø

Figure 3.3: Parallel between a CIRC proof and the bisimulation construction

derivable. Since we have the subsort relation Slt< Exp, we avoid the application
of the derivative δG ⊳G (∗:Exp) over equations of sort Slt by means of an interpolant
(see below).

– I consists of the following equational interpolants , whose role is to replace current
proof obligations over non-trivial structures with simpler ones:

〈σ1,σ2〉= 〈σ
′
1,σ′2〉 ⇒ {σ1 = σ

′
1, σ2 = σ

′
2} (3.12)

ki(σ) = ki(σ
′) ⇒ {σ = σ′} (3.13)

f = g ⇒ { f (a) = g(a) | a ∈ A} (3.14)

∪i∈1,n{σi} = ∪ j∈1,m{σ
′
j
} ⇒ {∧i∈1,n(∨ j∈1,mσi = σ

′
j
)

∧ j∈1,m (∨i∈1,nσi = σ
′
j
)} (3.15)

together with an equational interpolant

t = t ′ ⇒ {t ≃ t ′ = true} (3.16)

where ≃ is the equality predicate equationally defined over the sort Slt. The last
interpolant transforms the equations of sort Slt from derivable (because of the sub-
sort relation Slt< Exp) into non-derivable and equivalent ones.

The interpolants (3.12–3.16) in I extend the entailment relation ⊢NDF (introduced in
Definition 3.3.1) as follows:

E ⊢NDF {ei | i ∈ I}

E ⊢NDF e
i f e⇒ {ei | i ∈ I} in I
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3.4.2 THEOREM (Soundness). Let G be a non-deterministic functor, and G a binary rela-

tion on the set of G -expressions.

If (BG , F0 = ;, G0 = G )
∗
⇒ (BG , Fn, Gn = ;) using [Reduce], [Derive] and [Simplify], then

G ⊆∼G .

PROOF. The idea of the proof is to find a bisimulation relation eF s.t. G ⊆ eF .
First let F be the set of hypotheses (or derived goals) collected during the proof session.
We distinguish between two cases:

a) G = B. For this case, the set of expressions in G is given by the following grammar:

ǫ ::= ; | b | ǫ⊕ ǫ | µx .ǫ . (3.17)

Note that the goals ǫ = ǫ′ in G are proven

1. either according to [Simplify], applied in the context of the equational inter-
polant (3.16). If this is the case, then ǫ = ǫ′ holds by reflexivity, therefore

BG ⊢NDF δB⊳B(ǫ) = δB⊳B(ǫ
′) (3.18)

also holds;

2. or after the application of [Derive], case in which BG ∪ F ⊢NDF δB⊳B(ǫ) =

δB⊳B(ǫ
′) holds. Note that δB⊳B(ǫ) and δB⊳B(ǫ

′) are reduced to b, respectively
b′ ∈ B, according to (3.17) and the definition of δB⊳B. Consequently, the non-
derivable (due to the subsort relation B<Slt) goal b = b′ holds by reflexivity,
so the following is a sound statement:

BG ⊢NDF δB⊳B(ǫ) = δB⊳B(ǫ
′) . (3.19)

Based on (3.18), (3.19) and Corollary 3.3.4.b), we conclude that eF = cl(Gid) is a
bisimulation, hence G ⊆ cl(Gid) ⊆∼G .

b) G 6= B. Based on the reduction rules implemented in CIRC, it is quite easy to see
that the initial set of goals G is a ⊢NDF -consequence ofBG ∪ F . In other words, G ⊆

cl(Fid). So, if we anticipate a bit, we should show that eF = cl(Fid) is a bisimulation,
i.e., according to Corollary 3.3.4, BG ∪ F ⊢NDF δG ⊳G (F) . This is achieved by

proving that BG ∪ F ⊢NDF Gi (i ∈ 0, n) (note that δG ⊳G (F) ⊆
⋃

i∈0,n G i , according

to [Derive]). The proof is by induction on j, where n− j is the current proof step,
and by case analysis on the CIRC reduction rules applied at each step.

We further provide a sketch of the proof.
The base case j = n follows immediately, as BG ∪ F ⊢NDF Gn = ;.
For the induction step we proceed as follows. Let e ∈ G j . If e ∈ G j+1 then BG ∪

F ⊢NDF e by the induction hypothesis. If e 6∈ G j+1 then, for example, if [Reduce]

was applied then it holds thatBG∪F j ⊢NDF e . Recall that F j ⊆ F , soBG∪ F ⊢NDF e

also holds. The result follows in a similar fashion for the application of [Derive] or
[Simplify].
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Remark 9 The soundness of the proof system we describe in this chapter does not follow

directly from Theorem 3 in [RL09]. This is due to the fact that we do not have an experiment-

based definition of bisimilarity. So, even though the mechanism we use for proving BG ∪

F ⊢NDF δG ⊳G (F) (for the case G 6= B) is similar to the one described in [RL09], the current

soundness proof is conceived in terms of bisimulations (and not experiments).

Remark 10 The entailment relation ⊢NDF that CIRC uses for checking the equivalence of

generalised regular expressions is an instantiation of the parametric entailment relation ⊢

from the proof system in [RL09]. This approach allows CIRC to reason automatically on a

large class of systems which can be modelled as non-deterministic coalgebras.

As already stated, our final goal is to use CIRC as a decision procedure for the bisimilarity
of generalised regular expressions. That is, whenever provided a set of expressions, the
prover stops with a yes/no answer with respect to their equivalence. In this context, an
important aspect is that the sub-coalgebra generated by an expression ǫ ∈ ExpG by repeat-
edly applying δG is, in general, infinite. Take for example the non-deterministic functor
S = B × Id associated with infinite streams, and consider the property µx .; ⊕ r〈x〉 =

µx .r〈x〉. In order to prove this, CIRC builds an infinite proof sequence by repeatedly
applying δS as follows:

δS (µx .; ⊕ r〈x〉) = δS (µx .r〈x〉)

↓

〈0,; ⊕ (µx .;⊕ r〈x〉)〉 = 〈0,µx .r〈x〉〉

δS (;⊕ (µx .;⊕ r〈x〉)) = δS (µx .r〈x〉)

↓

〈0,; ⊕ ;⊕ (µx .;⊕ r〈x〉)〉 = 〈0,µx .r〈x〉〉 [. . .]

In this case, the prover never stops. We observed in Section 3.2 that Theorem 3.1.5 guar-
antees we can associate a finite coalgebra to a certain expression. In the proof of the
aforementioned theorem, which is presented in [SBR10], it is shown that the axioms for
associativity, commutativity and idempotency (ACI) of ⊕ guarantee finiteness of the gen-
erated sub-coalgebra (note that these axioms have also been proven sound with respect
to bisimulation). ACI properties can easily be specified in CIRC as the prover is an exten-
sion of Maude, which has a powerful matching modulo ACUI (ACI plus unity) capability.
The idempotence is given by the equation ǫ ⊕ ǫ = ǫ, and the commutativity and asso-
ciativity are specified as attributes of ⊕. It is interesting to remark that for the powerset
functor termination is guaranteed without the axioms, because the coalgebra structure
on the expressions for the powerset functor already includes ACI (since Pω(Exp) is itself
a join-semilattice).

3.4.3 THEOREM. Let G be a set of proof obligations over generalised regular expressions.

CIRC can be used as a decision procedure for the equivalences in G, that is, it can decide

whenever a goal (ǫ1,ǫ2) ∈ G is a true or false equality.

PROOF. Note that as proven in [SBR10], the ACI axioms for ⊕ guarantee that δG is ap-
plied for a finite number of times in the generation of the sub-coalgebra associated with
a G -expression. Therefore, it straightforwardly follows that by implementing the ACI ax-
ioms in CIRC (as attributes of ⊕), the set of new goals obtained by applying δG is finite.
In these circumstances, whenever CIRC stops according to the reduction rule [Done], the
initial proof obligations are bisimilar. On the other hand, whenever it terminates with
[Fail], the goals are not bisimilar.
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3.5 A CIRC-based Tool

We have implemented a tool that, when provided with a functor G , automatically gen-
erates a specification for CIRC which can then be used in order to automatically check
whether two G -expressions are bisimilar.
The tool is implemented as a metalanguage application in Maude. It can be downloaded
from the address http://goriac.info/tools/functorizer/. In order to start the
tool, one needs to launch Maude along with the extension Full-Maude and load the down-
loaded file using the command in functorizer.maude .

The general use case consists in providing the join-semilattices, the alphabets and the
expressions. After these steps, the tool automatically checks if the provided expressions
are guarded, closed and correctly typed. If this check succeeds, then it outputs a speci-
fication that can be further processed by CIRC. In the end, the prover outputs either the
bisimulation, if the expressions are equivalent, or a negative answer, otherwise.
We present two case studies in order to emphasise the high degree of generality for the
types of systems we can handle, and show how the tool is used.

3.5.1 EXAMPLE. We consider the case of Mealy machines, which are coalgebras for the
functor (B× Id)A.
Formally, a Mealy machine is a pair (S,α) consisting of a set S of states and a transition
function α: S → (B× S)A, which for each state s ∈ S and input a ∈ A associates an output

value b and a next state s′. Typically, we write α(s)(a) = (b, s′)⇔ s
a|b

s′ .

In this example and in what follows we will consider for the output the two-value join-
semilatice B= {0,1} (with ⊥B = 0) and for the input alphabet A= {a, b}. The expressions
for Mealy machines are given by the grammar:

E ::= ; | x | E ⊕ E | µx .E2 | a(r〈E〉) | b(r〈E〉) | a(l〈E1〉) | b(l〈E1〉)

E1 ::= ; | E1 ⊕ E1 | 0 | 1

E2 ::= ; | E2 ⊕ E2 | µx .E2 | a(r〈E〉) | b(r〈E〉) | a(l〈E1〉) | b(l〈E1)

Intuitively, an expression of shape a(l〈E1〉) specifies a state that for an input a has an
output value specified by E1. For example, the expression a(l〈1〉) specifies a state that
for input a outputs 1, whereas in the case of a(l〈;〉) the output is 0. An expression
of shape a(r〈E〉) specifies a state that for a certain input a has a transition to a new
state represented by E. For example, the expression µx .a(r〈x〉) states that for input a,
the machine will perform a “a-loop" transition, whereas a(r〈;〉) states that for input a

there is a transition to the state denoted by ;. It is interesting to note that a state will
only be fully specified in what concerns transitions and output (for a given input a if
both a(l〈E1〉) and a(r〈E〉) appear in the expression (combined by ⊕). In the case only
transition (respectively, output) are specified, the underspecification is solved by setting
the target state (respectively, output) to ; (respectively, ⊥B = 0). ♠

Next, to provide the reader with intuition, we will explain how one can reason on the
bisimilarity of two simple expressions, by constructing bisimulation relations. Later on,
we show how CIRC can be used in conjunction with our tool in order to act as a decision
procedure when checking equivalence of two expressions, in a fully automated manner.
We will start with the expressions ǫ1 = µx .a(r〈x〉) and ǫ2 = ;. We have to build a bisim-
ulation relation R on G -expressions, such that (ǫ1,ǫ2) ∈ R. We do this in the following

http://goriac.info/tools/functorizer/
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way: we start by taking R= {(ǫ1,ǫ2)} and we check whether this is already a bisimulation,
by considering the output values and transitions and check whether no new expressions
appear in this process. If new pairs of expressions appear we add them to R and repeat
the process. Intuitively, this can be represented as follows:

ǫ1

a|0

R

b|0

ǫ2

a|0
b|0

R = {(ǫ1,ǫ2)}

ǫ2

a|0,b|0

ǫ1
R

ǫ2 ǫ2

not yet in R; add it
a|0,b|0

R = {(ǫ1,ǫ2), (ǫ2,ǫ2)}

ǫ2a|0,b|0 ǫ2 a|0,b|0

R

Ø

Figure 3.4: Bisimulation construction

In the figure above, and as before, we use the notation ǫ1
R
ǫ2 to denote (ǫ1,ǫ2) ∈

R. As illustrated in Figure 3.4, R = {(ǫ1,ǫ2), (ǫ2,ǫ2)} is closed under transitions and is
therefore a bisimulation. Hence, ǫ1 ∼G ǫ2.

The proved equality ;= µx .a(r〈x〉) might seem unexpected, if the reader is familiar with
labelled transition systems. The equality is sound because these are expressions specifying
behaviour of a Mealy machine and, semantically, both denote the function that for every
non-empty word outputs 0 (the semantics of Mealy machines is given by functions BA+ ,
intuitively one can think of these expressions as both denoting the empty language). This
is visible if one draws the automata corresponding to both expressions (say, for simplicity,
the alphabet is A= {a}):

;

a|0

µx .a(r〈x〉)

a|0

Note that (i) the ; expression for Mealy machines is mapped with δ to a function that
for input a gives 〈0,;〉, which represents a state with an a-loop to itself and output 0;
(ii) the second expression specifies explicitly an a-loop to itself and it also has output 0,
since no output value is explicitly defined. Now, also note that similar expressions for
labelled transition systems (LTS’s), or coalgebras of the functor Pω(−)

A, would not be
bisimilar since one would have an a-transition and the other one not. This is because the
; expression for LTS’s really denotes a deadlock state. In operational terms they would be
converted to the systems

; µx .a(x)

a

which now have an obvious difference in behaviour.

By performing a similar reasoning as in the example above one can show that the expres-
sions ǫ1 = µx .a(r〈x〉)⊕ b(r〈x〉) and ǫ2 = µx .a(r〈x〉) are bisimilar, and the bisimulation
relation is built as illustrated in Figure 3.5:
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ǫ1

a|0

R

b|0

ǫ2

a|0
b|0

R = {(ǫ1,ǫ2)}

ǫ1

a|0,b|0

ǫ1
R

ǫ2 ;

not yet in R; add it
a|0,b|0

R = {(ǫ1,ǫ2), (ǫ1,;)}

ǫ1a|0,b|0 ; a|0,b|0

R

Ø

Figure 3.5: Bisimulation construction

Let us further consider the Mealy machine depicted in Figure 3.6, where all states are
bisimilar.

s1 a|0

b|1

a|0

b|1

b|1a|0 s2 b|1a|0

Figure 3.6: Mealy machine: s1 ∼ s2

We show how to check the equivalence of two expression characterising the states s1 and
s2, in a fully automated manner, using CIRC. These expressions are ǫ1 = µx .b(l〈1〉) ⊕

b(r〈ǫ2〉) ⊕ a(µy.a(r〈y〉) ⊕ b(r〈ǫ2〉) ⊕ b(l〈1〉)) and ǫ2 = µx .b(l〈1〉) ⊕ b(r〈x〉) ⊕ a(r〈x〉),
respectively.
In order to check bisimilarity of ǫ1 and ǫ2 we load the tool and define the semilattice
B = {0,1} and the alphabet A= {a, b}:

(jslt B is 0 1 bottom 0 . 0 v 0 = 0 . 0 v 1 = 1 . 1 v 1 = 1 . endjslt)

(alph A is a b endalph)

We provide the functor G using the command (functor (B x Id)^A .). The command (set

goal ... .) specifies the goal we want to prove:

(set goal
\mu X:FixpVar . b(l<1>) (+) a(l<0>) (+) b(r<X:FixpVar>) (+)

a(r<X:FixpVar>) =
\mu X:FixpVar . b(l<1>) (+) b(<\mu X:FixpVar . b(l<1>) (+)

b(r<X:FixpVar>) (+) a(r<X:FixpVar>)>) (+)
a(\mu Y:FixpVar . a(r<Y:FixpVar>) (+)
b(<\mu X:FixpVar . b(l<1>) (+) a(l<0>) (+)
b(r<X:FixpVar>) (+) a(r<X:FixpVar>)>) (+) b(l<1>)) .)

In order to generate the CIRC specification we use the command (generate coalgebra .).
Next we need to load CIRC along with the resulting specification and start the proof
engine using the command (coinduction .).
As already shown, behind the scenes, CIRC builds a bisimulation relation that includes the
initial goal. The proof succeeds and the output consists of (a subset of) this bisimulation:

Proof succeeded.
Number of derived goals: 2
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Number of proving steps performed: 50
Maximum number of proving steps is set to: 256

Proved properties:
- phi (+) (\mu X . a(l<0>) (+) a(r<X>) (+) b(l<1>) (+) b(r<X>)) =

phi (+) (\mu Y . a(r<Y>) (+) b(l<1>) (+)
b(r<\mu X . a(l<0>) (+) a(r<X>) (+) b(l<1>)(+)b(r<X>)>))

- \mu X . a(l<0>) (+) a(r<X>) (+) b(l<1>) (+) b(r<X>) =
\mu Z . a(r<\mu Y . a(r<Y>) (+) b(l<1>) (+)

b(r<\mu X . a(l<0>) (+) a(r<X>) (+) b(l<1>) (+) b(r<X>)>)>) (+)
b(l<1>) (+) b(r<\mu X . a(l<0>) (+) a(r<X>) (+)
b(l<1>) (+) b(r<X>)>)

For the ease of understanding, here we printed a readable version of the proved prop-
erties. In Section 3.5.1, however, we show that internally each expression is brought to
a canonical form by renaming the variables. Moreover, note that in our tool, ; is repre-
sented by the constant phi. All the examples provided in the current section make use of
this convention.

As previously mentioned, CIRC is also able to detect when two expressions are not
equivalent. Take, for instance, the expressions µx .a(l〈0〉) ⊕ a(r〈a(l〈1〉)⊕ a(r〈x〉)〉) and
a(l〈0〉) ⊕ a(r〈a(r〈µx .a(r〈x〉) ⊕ a(l〈0〉)〉) ⊕ a(l〈1〉)〉), characterising the states s1 and s3

from the Mealy machines in Figure 3.7. After following some steps similar to the ones
previously enumerated, the proof fails and the output message is Visible goal [...] failed

during coinduction.

s1

a|0

s2
a|1

s3

a|0

s4

a|1

s5 a|0

Figure 3.7: Mealy machines: s1 6∼ s3

3.5.2 EXAMPLE. Next we show how to check strong bisimilarity of non-deterministic pro-
cesses of a non-trivial CCS-like language with termination, deadlock, and divergence, as
studied in [AH92]. A process is a guarded, closed term defined by the following grammar:

P ::= Ø | δ | Ω | a.P | P + P | x | µx .P (3.20)

where:

– Ø is the constant for successful termination,

– δ denotes deadlock,

– Ω is the divergent computation (i.e., the undefined process),

– a.P is the process executing the action a and then continuing as the process P, for
any action a from a given set A,

– P1 + P2 is the non-deterministic process behaving as either P1 or P2, and
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– µx .P is the recursive process P[µx .P/x].

In [SBR10] is is shown that, up to strong bisimilarity, the above syntax of processes is
equivalent to the canonical set of (guarded, closed) regular expressions derived for the
functor 1✸+Pω(Id)

A,

E ::= ; | E ⊕ E | x | µx .E | l[E1] | r[E2]

E1 ::= ; | E1⊕ E1 | 1

E2 ::= ; | E2⊕ E2 | a(E3)

E3 ::= ; | E3⊕ E3 | {E}

The translation map (−)† from processes to expressions is defined by induction on the
structure of the process:

(Ø)† = l[1] (a.P)† = r[a({P†})]

(δ)† = r[;] (P1 + P2)
† = (P1)

†⊕ (P2)
†

(Ω)† = ; (µx .P)† = µx .P†

x† = x .

Consider now two processes P and Q over the alphabet A= {a, b}:

P = µx .(a.x + a.P1 + b.b.Ø+ b.(δ+Ω))
Q = µz.(a.z + b.(δ+ b.Ø) + b.δ)

where P1 = µy.(a.(y+δ)+b.δ+b.(δ+b.Ø)+δ). Graphically, the two processes can be rep-
resented by the following labelled transition systems (for simplicity we omit annotating
states with information regarding the satisfiability of successful termination, divergence,
and deadlock):

Pa
b

a
b

Q a

b
b

P1 a
b

b
b b

b

Figure 3.8: Non-deterministic processes: Q ∼ P

We want to check if the process P is strongly bisimilar to the process Q. By using the
above translation, process P is represented by the expression

µx .(r[a({µy.(r[a({y ⊕ r[;]})]⊕ r[b({r[;]})]⊕

r[b({r[;]⊕ r[b({l[1]})]})]⊕ r[;])})]⊕

r[a({x})]⊕ r[b({r[b({l[1]})]})]⊕ r[b({r[;]⊕ ;})])

whereas process Q is represented by the expression

µz.(r[a({z})]⊕ r[b({r[;]⊕ r[b({l[1]})]})]⊕ r[b({r[;]})]). ♠
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In order to use the tool, one needs to specify the semilattice, the alphabet, the functor,
and the goal in a manner similar to the one previously presented:

(jslt B is 1 bottom 1 . 1 v 1 = 1 . endjslt)

(alph A is a b endalph)

(functor B + (P Id)^A .)

(set goal \mu X:FixpVar .
r[ a( { X:FixpVar } ) ] (+)
r[ a( { \mu Y:FixpVar .

r[ a( { Y:FixpVar (+) r[ phi ] } ) ] (+)
r[ b( { r[ phi ] } ) ] (+)
r[ b( { r[ phi ] (+) r[ b( { l[ 1 ] } ) ] } ) ] (+)
r[ phi ]

} )
] (+)
r[ b( { r[ b( { l[ 1 ] } ) ] } ) ] (+)
r[ b( { r[ phi ] (+) phi } ) ]
=
\mu Z:FixpVar .
r[ a( { Z:FixpVar } ) ] (+)
r[ b( { r[ phi ] (+) r[ b( { l[ 1 ] } ) ] } ) ] (+)
r[ b( { r[ phi ] } ) ] .)

For the generated specification CIRC terminates and outputs a positive result:

Proof succeeded.
Number of derived goals: 15
Number of proving steps performed: 58
Maximum number of proving steps is set to: 256

Proved properties:
- r[phi] (+) (\mu Y. r[phi] (+) r[a({r[phi] (+) Y})] (+) r[b({r[phi]})]

(+) r[b({r[phi] (+) r[b({l[1]})]})])
=
\mu Z. r[a({Z})] (+) r[b({r[phi]})] (+) r[b({r[phi] (+) r[b({l[1]})]})]

- r[b({l[1]})] = r[phi] (+) r[b({l[1]})]
- \mu Y. r[phi] (+) r[a({r[phi] (+) Y})] (+) r[b({r[phi]})] (+)

r[b({r[phi] (+) r[b({l[1]})]})]
=
\mu Z. r[a({Z})] (+) r[b({r[phi]})] (+) r[b({r[phi] (+) r[b({l[1]})]})]

- \mu X. r[a({X})] (+) r[a({\mu Y. r[phi] (+) r[a({r[phi] (+) Y})] (+)
r[b({r[phi]})] (+) r[b({r[phi] (+) r[b({l[1]})]})]})] (+)
r[b({r[phi] + phi})] (+) r[b({r[b({l[1]})]})]
=
\mu Z. r[a({Z})] (+) r[b({r[phi]})] (+) r[b({r[phi] (+) r[b({l[1]})]})]

3.5.1 Implementation

In this section we present details on the implementation of the algebraic specification
given in Section 3.3, based on the examples from Section 3.5.
In order to generate the algebraic specifications for CIRC when provided a functor and
two expressions, we used the Maude system [CDE+07]. We choose it for its suitability for
performing equational and rewriting logic based computations, and because of its reflec-
tive properties allowing for the development of advanced metalanguage applications. As
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the technical aspects on how to work at the meta-level are beyond the scope of this paper,
we refrain from presenting them and show, instead, what the generated specifications
consist of.

Most of the algebraic specifications from Section 3.3 have a straightforward implemen-
tation in Maude. Consider, for instance, the case of Mealy machines presented in Exam-
ple 3.5.1. The generated grammars for functors (3.1) and expressions (Definition 3.1.2)
are coded as:

sort Functor . sorts Exp ExpStruct Alph Slt .
sorts AlphName SltName . subsort Exp < ExpStruct .
subsort SltName < Functor . enum A is a b . enum B is 0 1 .

subsort A < Alph .
op A : -> AlphName . subsort B < Slt .
op B : -> SltName .
op G : -> Functor . op _‘(+‘)_ : Exp Exp -> Exp .
op Id : -> Functor . op _‘(_‘) : Alph Exp -> Exp .
op _+_ : Functor Functor -> Functor . op \mu_._ : FixpVar Exp -> Exp .
op _^_ : Functor AlphName -> Functor . ops l<_> r<_> : Exp -> Exp .
op _x_ : Functor Functor -> Functor . op phi : -> Exp .

eq G = (B x Id) ^ A .

Most of the syntactical constructs are Maude-specific: sorts and subsort declare the sorts
we work with and, respectively, the relations between them; op declares operators; eq

declares equations (the equation in our case defines the shape of the functor G). The only
CIRC-specific construct, enum, is syntactic sugar for declaring enumerable sorts, i.e., sorts
that consist only of the specified constants. As a side note, if brackets ((, [, {) are used in
the declaration of an operation, then they must be preceded by a backquote (‘).

As mentioned in Section 3.1, in order to guarantee the finiteness of our procedure, one
needs to include the ACI axioms for (+). Moreover, we have observed that the unity
axiom for (+) plays an important role in decreasing the number of states generated by
the repeated application of δG , therefore improving the overall time performance of the
tool. For example, the number of rewritings CIRC performed in order to prove the
bisimilarity of ǫ1 and ǫ2 in Figure 3.5 was halved when the unity axiom was used.

By turning on the axiomatisation flag using the command (axioms on .), the following code
is generated:

op _‘(+‘)_ : Exp Exp -> Exp [assoc comm] .
eq E:Exp (+) E:Exp = E:Exp .
eq E:Exp (+) phi = E:Exp .

It is an obvious question why not to add other axioms to the tool, since the unity axiom
has improved performance. At this stage we have not studied in detail how much adding
other axioms would help. It is in any case a trade-off on how many extra axioms one
should include, which will get the automaton produced from an expression closer to the
minimal automaton, and how much time the tool will take to reduce the expressions in
each step modulo the axioms. For classical regular expressions, there is an interesting
empirical study on this [ORT09]. We leave it as future work to carry on a similar study
for our expressions and axioms.

The process of substituting fixed-point variables has a natural implementation. We present
the equations handling the basic expressions ; and x , and the operation (+):
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op _‘[_/_‘] : Exp Exp FixpVar -> Exp .
eq phi [ E:Exp / X:FixpVar ] = phi .
ceq Y:FixpVar [ E:Exp / X:FixpVar ] = E:Exp if (X:FixpVar == Y:FixpVar) .
eq Y:FixpVar [ E:Exp / X:FixpVar ] = Y:FixpVar [owise] .
eq (E1:Exp (+) E2:Exp) [ E:Exp / X:FixpVar ] =

(E1:Exp [E:Exp / X:FixpVar]) (+) (E2:Exp [E:Exp / X:FixpVar]) .

In order to avoid matching problems and to overcome the fact that in Maude one cannot
handle an equation that has fresh variables in its right-hand-side (i.e., they do not appear
in the left-hand-side), we replace expression variables with parameterised constants: op

var : Nat -> FixpVar . The operation that obtains this canonical form has an inductive defi-
nition on the structure of the given expression and makes use of the substitution operation
presented above. For this reason, the bisimulation CIRC builds contains parameterised
constants instead of the user declared variables. The property proved in Example 3.5.2
is, therefore, written as:

\mu var(2) . r[a({var(2)})] (+) r[a({\mu var(1) . r[phi] (+)
r[a({r[phi] (+) var(1)})] (+) r[b({r[phi]})] (+) r[b({r[phi] (+)
r[b({l[1]})]})]})] (+) r[b({r[phi] (+) phi})] (+) r[b({r[b({l[1]})]})]
=
\mu var(1) . r[a({var(1)})] (+) r[b({r[phi]})] (+)
r[b({r[phi] (+) r[b({l[1]})]})]

The most important part of the algebraic specification consists of the equations defining
the operations δ_(_), Plus_(_,_), and Empty. Most of these equations are implemented as
presented in [SBR10]. The only difficulties we encountered were for the exponentiation
case, as Maude does not handle higher-order functions. Without entering into details, as a
workaround, we introduced a new sort Function < ExpStruct and an operation \. : ExpoCase

Alph Functor ExpStruct -> Function in order to emulate function-passing. The first argument
is used to memorize the origin where the exponentiation ingredient is encountered: δ,
Plus, or Empty. Its purpose is purely technical – we use it in order to avoid some internal
matching problems. The other three parameters are those of the structured expression
λ.(a,F ⊳G ,σ) presented in Section 3.3: a letter in the alphabet, an ingredient, and some
other structured expression.
Another thing worth describing is the way we enable CIRC to prove equivalences when
the powerset functor occurs. Namely, we present how interpolant (3.15) is implemented.
Recall that we want to show that two sets of expressions are equivalent, which means
that for each expression in the first set there must be an equivalent one in the second set
and vice-versa.
In order to handle sets of structured expressions we introduce a new sort, ExpStructSet as
a supersort for ExpStruct. We also consider the set separator _,_ : ExpStructSet ExpStructSet

-> ExpStructSet [assoc,comm], the empty set emptyS : -> ExpStructSet, and the set wrapping
operation {_} : ExpStructSet -> ExpStruct. In order to mimic universal quantification over
a set, we use a special constant referred to as token “[/]”. In what follows, we consider
two variables of sort ExpStructSet: ES and ES’, and two variables of sort ExpStructSet: ESS

and ESS’. We now describe the process of finding the equivalence between two sets:

– whenever encountering two wrapped expression sets we add the universal quantifi-
cation token to each of them in two distinct goals:

srl {ESS} = {ESS’} => {[/] ESS} = {ESS’} /\ {ESS} = {[/] ESS’} .
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– iterate through the expressions on the left-hand-side (similarly for the other direc-
tion):

srl {[/] (ES , ESS)} = {ESS’} =>
{[/] ES} = {ESS’} /\ {[/] ESS} = {ESS’} .

srl {ESS} = {[/] (ES’ , ESS’)} =>
{ESS} = {[/] ES’} /\ {ESS} = {[/] ESS’} .

– when left with one expression on the left-hand-side, start iterating through the
expressions on the right-hand-side until finding an equivalence (similarly for the
other direction):

srl {[/] ES} = {ES’ , ESS’} => ES = ES’ \/ {[/] ES} = {ESS’} .
srl {ES , ESS} = {[/] ES’} => ES = ES’ \/ {ESS} = {[/] ES’} .

– if no equivalence has been found, transform the current goal into a visible failure:

srl {ESS} = emptyS => true = false .
srl emptyS = {ESS} => true = false .

Finally, the type checker for structured expressions has a straightforward implementation.
Its code does not appear in the generated specification as it is only used when the tool
receives the expressions as input. This prevents obtaining the specification and starting
the prover in case invalid expressions are provided.

3.6 Discussion

In this chapter we provided a decision procedure for the bisimilarity of generalised reg-
ular expressions. In order to enable the implementation of the decision procedure, we
have exploited an encoding of coalgebra into algebra, and we formalised the equivalence
between the coalgebraic concepts associated with non-deterministic coalgebras [SBR10]
and their algebraic correspondents. This led to the definition of algebraic specifications
(EG ) that model both the language and the coalgebraic structure of expressions. More-
over, we defined an equational deduction relation (⊢NDF ), used on the algebraic side for
reasoning on the bisimilarity of expressions.
The most important result of the parallel between the coalgebraic and algebraic ap-
proaches is given in Corollary 3.3.4, which formalises the definition of the bisimulation
relations in algebraic terms. Actually, this result is the key for proving the soundness of
the decision procedure implemented in the automated prover CIRC [LGCR09]. As a coin-
ductive prover, CIRC builds a relation F closed under the application of δG with respect
to ⊢NDF (EG ∪ F ⊢NDF δG (F) ), hence automatically computing a bisimulation the initial
proof obligations belong to.
The approach we present in this chapter enables CIRC to perform reasoning based on
bisimulations (instead of experiments [RL09]). This way, the prover is extended to check-
ing bisimilarity in a large class of systems that can be modelled as non-deterministic coal-
gebras. Note that the constructions above are all automated – the (non-trivial) CIRC
algebraic specification describing EG , together with the interpolants implementing ⊢NDF

are generated with the Maude tool presented in Section 3.5.
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Decorated trace and testing semantics coalgebraically

The study of behavioural equivalence of systems has been a research topic in concurrency
for many years now. For different kinds of systems, several types of behavioural equiva-
lences and preorders have been proposed throughout the years, each suitable for use in
different contexts of application.

In Chapter 3 we showed how (co)algebras can be used in order to model and reason on
bisimilarity of expressions describing non-deterministic systems.

The focus of this chapter is on a suite of other semantics of interest for labelled tran-
sition systems (LTS’s), generative probabilistic systems (GPS’s) and labelled transition
systems with divergence. More explicitly, we consider decorated trace semantics including
ready, failure, (complete) trace, possible-futures, ready trace and failure trace for LTS’s,
as described in [vG01a] and ready, (maximal) failure and (maximal) trace for GPS’s, as
introduced in [JS90]. For the case of divergent LTS’s, the emphasis is on must and may
testing semantics [CH89].

In short, our approach consists in providing a coalgebraic modelling of the aforemen-
tioned systems and their semantics. The latter are derived by employing the generalised
powerset construction [SBBR13] and proved equivalent with their counterparts as de-
fined in [CH89, vG01a, JS90]. This further allows reasoning on the corresponding no-
tions of behavioural equivalence/preorder in terms of (Moore-) bisimulations.

We further provide the intuition behind decorated trace and testing semantics.

At the left-hand side of Figure 4.1 we illustrate the hierarchy (based on the coarseness
level) among bisimilarity, ready, failure, (complete) trace, possible-futures, ready trace
and failure trace semantics for LTS’s, as introduced in [vG01a]. On the right-hand side a
similar hierarchy is depicted for bisimilarity, ready, (maximal) failure and (maximal) trace
semantics for GPS’s, as in [JS90]. For example, for both types of systems, bisimilarity
(the standard behavioural equivalence on F -coalgebras) is the finest of the semantics,
whereas trace semantics is the coarsest one. Moreover, note that for the case of GPS’s,
maximality does not yield more distinguishing power and ready and failure semantics are
equivalent.

In order to get some intuition on the type of distinctions the equivalences above encom-
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LTS’s: GPS’s:

bisimilarity bisimilarity

possible-futures ready (max.) failure

ready trace (max.) trace

failure trace ready

failure

complete trace

trace

Figure 4.1: Lattices of semantic equivalences for LTS’s and GPS’s.

pass, consider the following LTS’s:

p
a

a
q

a

r
aa

s
a

aa

• •
cb

•
cb

•
b

•
c

•
b

•

bc

•
c

• • • • • • • •

None of the top states of the systems above are bisimilar. The state p is the only one
among the four in which an action a can lead to a deadlock state, whereas q, r and s have
a different branching structures.

The traces of the states p,q, r and s are {a, ab, ac}, and therefore they are all trace equiv-
alent. Of the four states above, q and r and s are complete trace equivalent as they can
execute the same traces that lead to states where no further action are possible, whereas
p is the only state that can trigger a and terminate.

Ready (respectively, failure) semantics identifies states according to the set of actions they
can (respectively, fail to) trigger immediately after a certain trace has been executed.
None of the states above are ready equivalent; for example, after the execution of action
a, process p can reach a deadlock state whereas q has always to choose between actions
b and c. Orthogonally, only r and s are failure equivalent.

Possible-futures semantics identifies states that can perform the same traces w and, more-
over, the states reached by executing such w’s are trace equivalent. None of the states
above are possible-futures equivalent. For example, after triggering action a, p can reach
a deadlock state (with no further behaviour) whereas q can execute the set of traces {b, c}.

Ready (respectively failure) trace semantics identifies states that can trigger the same
traces w and the (pairwise-taken) intermediate states determined by such w’s are ready
(respectively refuse) to trigger the same sets of actions. None of the systems above is
ready trace equivalent. For example, after performing action a, process q reaches a state
that is ready to trigger both b and c, whereas r cannot. The analysis on failure trace
equivalence follows a similar reasoning, but different results.

The corresponding semantic equivalences in Figure 4.1 distinguish between p,q, r and s
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as summarised in the table below:

p,q p, r p, s q, r q, s r, s

bisimilarity × × × × × ×

trace Ø Ø Ø Ø Ø Ø

complete trace × × × Ø Ø Ø

ready × × × × × ×

failure × × × × × Ø

possible-futures × × × × × ×

ready trace × × × × × ×

failure trace × × × × × Ø

where Ø to stands for a “yes” answer with respect to the behavioural equivalence of two
of the states p,q, r and s, whereas × represents a “no” answer.
Intuitively, GPS’s resemble LTS’s, with the difference that each transition is labelled by
both an action and the probability of that action being executed. For more insight on
decorated trace semantics for GPS’s, consider the following systems:

p′

a[1]

q′
a[x] a[1−x]

•b[x] b[1−x] •
b[1]

•
b[1]

•
c[1]

•
d[1]

•
c[1]

•
d[1]

• • • •

In the setting of GPS’s, decorated trace semantics take into consideration paths w which
can be executed by a probabilistic process p. Reasoning on the corresponding equiva-
lences is based on the sum of probabilities of occurrence of such w’s that, for example,
lead p to a set of processes, for the case of trace semantics, or to a set of processes that
(fail to) trigger the same sets of actions as a first step, for ready (respectively, failure)
semantics.
In [JS90] a notion of maximality was introduced for the case of trace and failure se-
mantics. Intuitively, the former takes into consideration the probability of a process p to
execute a certain trace w and terminate, whereas the latter takes into consideration the
largest set of actions p fails to trigger as a first step after the execution of w. However, it
has been proven in [JS90] that maximality does not increase the distinguishing power of
decorated trace semantics and, moreover, ready and failure equivalence of GPS’s coincide.
With respect to (maximal) trace semantics, amongst the systems above, p′ and q′ are
equivalent: they have the same probability of executing traces w ∈ {ǫ, a, ab, abc, abd}.
Moreover, each such w leads p′ and q′ to sets of processes S1,S2 ready to fire the same
actions. Consequently, S1 and S2 fail to trigger the same sets of actions as a first step.
Hence, p′ and q′ are both ready and maximal failure equivalent at the same time. None
of the processes above are bisimilar: the corresponding states reached via transitions la-
belled a (with total probability 1) display different behaviour as they either have different
branching structure, or can trigger different actions.
Orthogonally, as previously stated, in this chapter we also focus on providing a coalgebraic
modelling of must and may testing semantics for divergent LTS’s.
Intuitively, in the setting of testing semantics, fixed a set of tests, two systems are deemed
to be equivalent if they pass exactly the same tests. With concurrent non-deterministic
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processes, a system may pass a test in some, but not all, its executions. This leads to the
definitions of may testing (a system may pass a test in some execution) and must testing

(a system must pass a test in all its executions).

However, alternative trace-based characterisations of must and may testing were pro-
vided in [CH89, DH84, Hen88]. Intuitively, must testing preorder abstracts from infinite
internal computations. It relates two processes p and q only if, for each trace w, when-
ever p does not engage in divergent behaviour in its attempt to execute w, then so does
q. Moreover, q has to be “less non-deterministic” than p – a property established based
on the inclusion of the acceptance (ready) sets associated with q and p, respectively. Two
processes are must equivalent whenever the must preorder relates them in both direc-
tions. May testing preorder (respectively, equivalence) coincides with the usual language
inclusion (respectively, equality).

Consider for an example the following two systems, where τ is used to represent an
internal computation step:

p
a d

q
a

a
d

•
b c

•

τ

•

b

•
c

•

• • • •

Processes p and q cannot be related in terms of the must testing semantics. On the one
hand, q does not diverge with respect to action d, whereas p diverges. On the other hand,
p is less non-deterministic than q, as the ready set {{b, c}} of p after performing action a is
not included in the ready set {{b}, {c}} of q. However, p and q are may testing equivalent
as they both execute the same sets of (visible) traces {ǫ, a, d, ab, ac}.

In this chapter we show how decorated trace, must and may testing semantics can be
recovered in a coalgebraic setting by employing the generalised powerset construction
in [SBBR13]. The derived coalgebraic characterisations leads to canonical representa-
tives in terms of final Moore automata which further enabled reasoning by constructing
bisimulations witnessing the desired notion of behavioural equivalence/preorder. More-
over, as we also saw in the previous chapter, this result is interesting from the point of
view of tool development as well: construction of bisimulations is known to be particu-
larly suitable for automation.

It is also interesting to observe that the spectrum of decorated trace semantics in Fig-
ure 4.1 can be recovered from our coalgebraic modelling. The procedure is briefly sum-
marised in Section 4.5, for the case of failure and complete trace semantics for LTS’s, and
ready and trace semantics for GPS’s, respectively.

Organisation of the chapter. In Section 4.1 and Section 4.2, we show how the powerset
construction can be applied for determinising LTS’s and GPS’s, respectively, in terms of
Moore automata (X , f : X → B × X A), in order to coalgebraically characterise the corre-
sponding decorated trace semantics. Here we also prove that the obtained coalgebraic
models are equivalent to the original definitions, and illustrate how one can reason about
decorated trace equivalence by constructing (Moore) bisimulations. A compact overview
on the uniform coalgebraic framework is given in Section 4.3. Section 4.4 discusses that
the canonical representatives of LTS’s and GPS’s we obtain coalgebraically coincide with
the corresponding minimal automata one would obtain by identifying all states equivalent
with respect to a particular decorated trace semantics. In Section 4.5 we show that the
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spectrum of decorated trace semantics can be obtained from the coalgebraic modelling.
A coalgebraic modelling of may and must testing semantics, respectively, is provided in
Section 4.6 by exploiting extensions of trace and failure semantics, respectively, to the
context of LTS’s with internal behaviour. Finally, Section 4.7 contains a summary of the
results in this chapter.

4.1 Decorated trace semantics of LTS’s

In this section, our aim is to provide a coalgebraic view on decorated trace equivalences
of labelled transition systems (LTS’s). We use the generalised powerset construction and
show how one can determinise arbitrary LTS’s obtaining particular instances of Moore
automata (with different output sets) in order to model ready, failure, (complete) trace,
possible-futures, ready trace and failure trace equivalences. This paves the way to build-
ing a general framework for reasoning on decorated trace equivalences in a uniform
fashion, in terms of bisimulations (up-to context).
Note that our results are derived in the context of image finite LTS’s, in accordance with
the setting proposed in [vG01a]. An LTS is a pair (X ,δ) where X is a set of states and
δ : X → (PωX )A is a function assigning to each state x ∈ X and to each label a ∈ A a finite

set of possible successors states. We write x
a
−→ y whenever y ∈ δ(x)(a). We extend

the notion of transition to words w = a1 . . . an ∈ A∗ as follows: x
w
−→ y if and only if

x
a1
−→ . . .

an
−→ y . For w = ǫ, we have x

ǫ
−→ y if and only if y = x .

The coalgebraic characterisation of ready, failure and (complete) trace was originally
obtained in [SBBR13]. We recall it here, with a slight adaptation which will be useful for
the generalisations we will explore. Given an arbitrary LTS

(X ,δ : X → (PωX )A),

one constructs a decorated LTS, which is a coalgebra of the functorFI (X ) = BI ×(PωX )A.
More precisely, we construct

(X , 〈oI ,δ〉: X → BI × (PωX )A),

where the output operation
oI : X → BI

provides the observations of interest (the decorations) corresponding to the original LTS
and depending on the equivalence (I ) we want to study. Note that both the output
operation and its codomain are parameterised by I .
Then, the decorated LTS is determinised as depicted in Figure 4.2, according to the power-
set construction summarised in diagram (2.7) in Section 2.3. Recall that the generalised
powerset construction is applied in the framework of coalgebras f : X → F T (X ) for a
functor F and a monad T , with F T (X ) a T -algebra. Intuitively, monads are used to hide
computational effects such as non-determinism, whereas the requirement that F T (X ) is
an algebra for T guarantees the unique extension of f to a T -algebra homomorphism f ♯

representing a new coalgebra with state space hiding the computational effects. Conse-
quently, this extension enables reasoning on F -equivalence in the coalgebra f ♯, rather
than reasoning on the (finer) F T -equivalence in the coalgebra f .
For the case of decorated LTS’s, we instantiate T with the powerset monad (Pω,η,µ) such
that η(x) = {x} and µ(U) =

⋃
Si∈U Si , and F with FI = BI × (Pω(−))

A. Moreover,F T (X )
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carries a T -algebra structure, that is a semilattice, as P (X ) and BI are a semilattices (as
we shall see later, for each of the semantics I ), and product and exponentiation preserve
the algebra structure. We will see that this extension enables shifting from reasoning
on bisimilarity of decorated LTS’s to reasoning on the (coarser) language (trace) equiv-
alence. Note that the semilattice structures ensure the existence of least upper bounds,
which further enable the definition of f ♯ = 〈o, t〉 and ¹−º as semilattice morphisms. In
Figure 4.2 we use

⊔
to denote both the operation of BI and the union of subsets in PωX .

X
{−}

〈oI ,δ〉

PωX
¹−º

〈o,t〉

(BI )
A∗

〈ε,(−)a〉

FI X = BI × (PωX )A
idBI

×¹−ºA
BI × ((BI )

A∗)A

o(Y ) =
⊔

y∈Y
oI (y)

t(Y )(a) =
⊔

y∈Y
δ(y)(a)

¹Yº(ǫ) = o(Y )

¹Yº(aw) = ¹
⊔

y∈Y
δ(y)(a)º(w)

Figure 4.2: The powerset construction for decorated LTS’s.

The coalgebraic modelling of possible-futures semantics could easily be recovered by fol-
lowing a similar approach. However, for the case of ready and failure trace semantics
the transition structure of the LTS also needs to be slightly modified before the deter-
minisation. This consists in changing the alphabet A to include additional information
represented by sets of actions ready to be triggered as a first step. Consequently, to each
LTS (X ,δ : X → (PωX )A) a unique coalgebra (X , 〈oI , δ̄ : X → (PωX )Ā〉) is associated, de-
fined in a natural fashion, as we will present later on. The construction in Figure 4.2 is
then applied on (X , 〈oI , δ̄〉).

The explicit instantiations of oI and BI are provided later in this section, where we will
also show that the coalgebraic modelling in fact coincides with the original definitions of
the corresponding equivalences. This was not formally shown in [SBBR13], for any of
the aforementioned semantics.

The coalgebraic modelling of decorated trace semantics enables the definition of the cor-
responding equivalences as Moore bisimulations [Rut00] (i.e., bisimulations for a functor
M = BI × X A). This way, checking behavioural equivalence of x1 and x2 reduces to
checking the equality of their unique representatives in the final coalgebra: ¹{x1}º and
¹{x2}º .

In the subsequent sections we a) prove the details on the coalgebraic modelling of ready,
failure, (complete) trace, possible-futures, ready trace and failure trace semantics, b)
show that the corresponding representations coincide with their original definitions in
[vG01a] and c) demonstrate, by means of examples, how the associated coalgebraic
framework can be used in order to reason on (some of) the aforementioned equivalences
in terms of Moore bisimulations.
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4.1.1 Ready and failure semantics

In this section we show how the ingredients of Figure 4.2 can be instantiated in order to
provide a coalgebraic modelling of ready and failure semantics. We also prove that the
resulting coalgebraic characterisations of these semantics are equivalent to their original
definitions in [vG01a]. Moreover, we provide an optimisation that can be used when
reasoning on failure equivalence, based on the isomorphism of downsets and antichains.
Consider an LTS (X ,δ : X → (PωX )A) and define, for a function ϕ : A→ PωX , the set of
actions enabled by ϕ:

I(ϕ) = {a ∈ A | ϕ(a) 6= ;}, (4.1)

and the set of actions ϕ fails to enable:

Fail(ϕ) = {Z ⊆ A | Z ∩ I(ϕ) = ;}.

For the particular case ϕ = δ(x), I(δ(x)) denotes the set of all (initial) actions ready to
be fired by x ∈ X , and Fail(δ(x)) represents the set of subsets of all (initial) actions that
cannot be triggered by such x .

A ready pair of x is a pair (w, Z) ∈ A∗ ×PωA such that x
w
−→ y and Z = I(δ(y)). A failure

pair of x is a pair (w, Z) ∈ A∗ ×PωA such that x
w
−→ y and Z ∈ Fail(δ(y)). We denote

by R(x) and F (x), respectively, the sets of all ready pairs and failure pairs, respectively,
associated with x .
Intuitively, ready semantics identifies states in X based on the actions a ∈ A they can
immediately trigger after performing a certain action sequence w ∈ A∗, i.e., based on their
ready pairs. It was originally defined as follows:

4.1.1 DEFINITION (Ready equivalence [OH86, vG01a]). Let (X ,δ : X → (PωX )A) be an
LTS and x , y ∈ X two states. States x and y are ready equivalent (R-equivalent) if and
only if they have the same set of ready pairs, that is R(x) =R(y), where

R(x) = {(w, Z) ∈ A∗ ×PωA | ∃x ′ ∈ X . x
w
−→ x ′ ∧ Z = I(δ(x ′))}. ♣

Failure semantics identifies behaviours of states in X according to their failure pairs.

4.1.2 DEFINITION (Failure equivalence [vG01a]). Let (X ,δ : X → (PωX )A) be an LTS
and x , y ∈ X two states. States x and y are failure equivalent (F -equivalent) if and
only if F (x) =F (y), where

F (x) = {(w, Z) ∈ A∗ ×PωA | ∃x ′ ∈ X . x
w
−→ x ′ ∧ Z ∈ Fail(δ(x ′))}. ♣

The coalgebraic modelling of ready, respectively, failure semantics is obtained in a uni-
form fashion, by instantiating the ingredients of Figure 4.2 as follows. For I ∈ {R,F},
oI : X →Pω(PωA) is defined as:

oR(x) = {I(δ(x))} oF (x) = Fail(δ(x)).

Intuitively, in the setting of ready semantics, the observations provided by the output op-
eration refer to the sets of actions ready to be executed by the states of the LTS. Similarly,
for failure semantics, the output operation refers to the sets of actions the states of the
LTS cannot immediately fire.
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Remark 11 Observe that the codomain of ōR is Pω(PωA), and not PωA, as one might

expect. However, this is consistent with the intended semantics. For BI = BR = BF =

Pω(PωA), the final Moore coalgebra has carrier (Pω(PωA))A
∗

which is isomorphic to P (A∗×

Pω(A)) the type ofR(x) and F (x). The unique homomorphism into the final coalgebra will

associate to each state {x} a function that for each w ∈ A∗ returns a set containing all sets

Rx ′ of ready (resp. failed) actions triggered by all x ′ such that x
w
−→ x ′, for x , x ′ ∈ X .

Next, we will prove the equivalence between the coalgebraic modelling of ready and
failure semantics and their original definitions, presented above. More explicitly, given
an arbitrary LTS (X ,δ : X → (PωX )A) and a state x ∈ X , we want to show that ¹{x}º is
equal to I (x), for I ∈ {R ,F}, depending on the semantics of interest. However, note
that the definition of ¹−º is independent of I ; the difference is (implicitly) made by the
output function oI .
The behaviour of a state x ∈ X is a function ¹{x}º: A∗ → Pω(PωA), whereas I (x) is
defined as a set of pairs in A∗ × PωA. We represent the set I (x) ∈ P (A∗ × PωA) by a
function ϕI

x
: Pω(PωA)A

∗

, where, for w ∈ A∗,

ϕR
x
(w) = {I(δ(y)) | x

w
−→ y}

ϕF
x
(w) = {Z ⊆ A | x

w
−→ y ∧ Z ∈ Fail(δ(y))}.

Showing the equivalence between the coalgebraic and the original definitions of ready,
respectively, failure semantics reduces to proving that

(∀x ∈ X ) .¹{x}º = ϕI
x

. (4.2)

4.1.3 THEOREM. Let (X ,δ : X → (PωX )A) be an LTS. Then for all x ∈ X , w ∈ A∗, and

I ∈ {R ,F}, ¹{x}º(w) = ϕI
x
(w).

PROOF. For I ranging over {R,F}, the proof is by induction on words w ∈ A∗. We
provide the details for the case of ready semantics. A similar reasoning can be applied for
failure semantics.

– Base case. w = ǫ. We have:

¹{x}º(ǫ) = o({x}) = oI (x) = {I(δ(x))}

ϕR
x
(ǫ) = {I(δ(y)) | x

ǫ
−→ y}= {I(δ(x))}

– Induction step. Consider w ∈ A∗ and assume, for all x ∈ X , ¹{x}º(w) = ϕR
x
(w). We

want to prove that ¹{x}º(aw) = ϕR
x
(aw), where a ∈ A.

¹{x}º(aw) = ¹δ(x)(a)º(w) = ¹t({x})(a)º(w)
=
⋃

x
a

−→z

¹{z}º(w) IH
=
⋃

x
a

−→z

ϕR
z
(w)

ϕR
x
(aw) = {I(δ(y)) | x

aw
−→ y}

= {I(δ(y)) | x
a
−→ z ∧ z

w
−→ y}

=
⋃

x
a

−→z

{I(δ(y)) | z
w
−→ y}

=
⋃

x
a

−→z

ϕR
z
(w)
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4.1.4 EXAMPLE. In what follows we illustrate the equivalence between the coalgebraic
and the original definitions of ready semantics by means of an example. Consider the
following LTS.

p0
a

a

p4 p2
c

p1
bb

p3
d

p5

We write an to represent the action sequence aa . . . a of length n ≥ 1, with n ∈ N. The set
R(p0) of all ready pairs associated with p0 is:

{(ǫ, {a}), (an, {a}), (an, {b}), (an b, {c}), (an b, {d}), (an bc,;), (an bd,;) | n≥ 1}.

We can construct a Moore automaton, for S = {p0, p1, . . . , p5},

(PωS, 〈o, t〉: PωS→Pω(PωA)× (PωS)A)

by applying the generalised powerset construction on the LTS above. The automaton will
have 26 = 64 states. We depict the accessible part from state {p0}, where the output sets
are indicated by double arrows: The output sets of a state Y of the Moore automaton in

{p0}

a

{{a}}

{p0, p1}

b
a

{{a}, {b}}

{;} {p4} {p2, p3}

d

c
{{c}, {d}} {p5} {;}

Figure 4.3: Ready determinisation when starting from {p0}.

Figure 4.3 is the set of actions associated with a certain state y ∈ Y which can immediately
be performed. For example, process p0 in the original LTS above is ready to perform action
a, whereas p1 can immediately perform b. Therefore it holds that o({p0}) = {{a}} and
o({p0, p1}) = {{a}, {b}}.
By simply looking at the automaton in Figure 4.3, one can easily see that the set of
action sequences w ∈ A∗ the state {p0} can execute, together with the corresponding
possible next actions equals R(p0). Therefore, the automaton generated according to the
generalised powerset construction captures the set of all ready pairs of the initial LTS. ♠

4.1.5 EXAMPLE. The last example considered in this section shows how the coalgebraic
framework can be applied in order to reason on failure equivalence of LTS’s. (Checking
ready equivalence follows a similar approach.) Consider the following two systems.

p1 p0

a

b c

a a
p2 q1 q0

a

b c

a a
q2

p3
a

b
c

p4
a

c
f

q3

b
c

a
q4
c

f

a

p5 p6

d

p7
e

p8 q5 q6
e

q7

d

q8

p9 p10 q9 q10
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Let Z = {a1, a2, . . . , an} be the set of actions a process fails executing as a first step. For
the simplicity of notation, we write [a1a2 . . . an] to denote the set of all non-empty subsets
Z ′ ⊆ Z. For example, if Z = {a1, a2}, then [a1a2] stands for {{a1}, {a2}, {a1, a2}}.
Note that p0 and q0 areF -equivalent, according to Definition 4.1.2, as they have the same
sets of failure pairs F (p0) and F (q0), respectively, equal to:

{(ǫ, [de f ]), (b, [abcde f ]), (c, [abcde f ])} ∪ {(an, [de f ]), (an, [bde]),

(an b, [abcde f ]), (anc, [abcde f ]), (anc, [abce f ]), (anc, [abcd f ]),

(an f , [abcde f ]), (ancd, [abcde f ]), (ance, [abcde f ]) | n ∈ N, n≥ 1}.

The same conclusion can be reached by checking behavioural equivalence of the two
Moore automata generated according to the powerset construction, starting with {p0}

and {q0}. The fragments of the two automata starting from the states {p0} and {q0} are
depicted in Figure 4.4 at page 57. The states {p0} and {q0} are Moore bisimilar, since
their corresponding automata are isomorphic.

{p0}
b

a
c

[de f ]

{p1} {p0, p3, p4}

a

b f
c

{p2}

[abcde f ] [de f ]∪[bde] [abcde f ]

{p1, p5} {p2, p6, p7}

d e

{p8}

[abcde f ] [abcde f ]∪

[abce f ] ∪

[abcd f ]

[abcde f ]

{p9} {p10}

[abcde f ] [abcde f ]

{q0}
b

a
c

[de f ]

{q1} {q0,q3,q4}

a

b f
c

{q2}

[abcde f ] [de f ]∪[bde] [abcde f ]

{q1,q5} {q2,q6,q7}

ed

{q8}

[abcde f ] [abcde f ]∪

[abce f ] ∪

[abcd f ]

[abcde f ]

{q9} {q10}

[abcde f ] [abcde f ]

Figure 4.4: Failure determinisation when starting from {p0} and {q0}.
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optimisation for failure semantics. In this section we showed how failure semantics
can be modelled in a coalgebraic setting, by employing the generalised powerset con-
struction. More explicitly, given a state p of an LTS (S,δ :S → (PωS)A), we showed how
to build a (final) Moore coalgebra (PωS, 〈o, t〉 :PωS → (Pω(Pω))

A∗) “capturing” the corre-
sponding set of failure pairs F (p), hence enabling reasoning on failure equivalence in
terms of Moore bisimulations.
An optimised, equivalent modelling of failure semantics can be provided by exploiting the
standard isomorphism between downsets and antichains. As we shall see, this enables
reasoning on the corresponding equivalence more effectively, based on bisimulations of
Moore automata with “smaller” output sets consisting of ready actions.
A downset in Pω(A) is a set D ⊆ Pω(A) such that if Z ∈ D and Z ′ ⊆ Z then Z ′ ∈ D. We
use D(Pω(A)) denote the set of downsets of Pω(A). Note that we can define a semilattice
(D(Pω(A)),⊔, 0) by taking ⊔ as being the union and 0 as the empty set.
An antichain on Pω(A) is a set I ⊆ Pω(A) such that if Z ∈ I then there exists no Z ′ ∈ I

such that Z ′ ⊂ Z. We use A (Pω(A)) denote the set of antichains of Pω(A). Note that the
union of antichains is not necessarily an antichain. However, we can define a semilattice
on A (Pω(A)) by taking the ⊔ defined as I1 ⊔ I2 = min(I1 ∪ I2) where

min(I) = {Z ∈ I | ( 6 ∃Z ′ ∈ I) . Z ′ ⊂ Z}. (4.3)

Now consider the homomorphisms i : D(Pω(A))→A (Pω(A)) defined as

i(F) = min(∪Fi∈F{A− Fi}) (4.4)

and j :A (Pω(A))→D(Pω(A)) defined as

j(I) = ↓(∪Ii∈I{A− Ii}), (4.5)

where ↓S denotes the downward closure of a set S. It is easy to see that one homomor-
phism is the inverse of the other and thus the semilattices D(Pω(A)) and A (Pω(A)) are
isomorphic.
At this point, it is worth to observe that for all X ∈ Pω(S), the Moore output function
o(X ) is a downset (since oF (x) is a downset for all x , and since the union of downset
is a downset). Therefore we can safely restrict the codomain of o : Pω(S) → Pω(Pω(A)),
to o : Pω(S)→D(Pω(A)). By exploiting the isomorphism discussed above, we can instead
define the function o1 : Pω(S)→A (Pω(A)) as follows: for all X ∈ Pω(S)

o1(X ) =





{I(δ(x))} if X = {x} with x ∈ S

0 if X = 0

min(o1(X1)⊔ o1(X2)) if X = X1 ⊔ X2

4.1.6 PROPOSITION. For all X , Y ∈ Pω(S), o(X ) = o(Y ) iff o1(X ) = o1(Y ).

PROOF. The proof follows from the fact that o1 = i ◦ o and that i : D(Pω(A))→A (Pω(A))

and j :A (Pω(A))→D(Pω(A)) are isomorphic. �

This optimisation can be applied also for the case of failure trace semantics in Sec-
tion 4.1.4. Moreover, as presented in Section 4.6.2, the isomorphism of downsets and
antichains is used for the coalgebraic modelling of must testing semantics.
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4.1.2 (Complete) trace semantics

In this section we model coalgebraically trace and complete trace semantics. Similar to
the previous section, we also show that the corresponding coalgebraic representations of
these semantics are equivalent to their original definitions.
Consider an LTS (X ,δ : X → (PωX )A). Trace semantics identifies states in X according to
the set of words w ∈ A∗ they can execute, whereas complete trace semantics identifies
states x ∈ X based on their set of complete traces. A trace w ∈ A∗ of x is complete if and
only if x can perform w and reach a deadlock state y or, equivalently,

(∃y ∈ X ) . x
w
−→ y ∧ I(δ(y)) = ;.

The difference between trace and complete semantics is that the latter enables an external
observer to detect stagnation, or deadlock states of a system.
Formally, trace and complete trace equivalences are defined as follows.

4.1.7 DEFINITION (Trace equivalence [Hoa78, vG01a]). Let (X ,δ : X → (PωX )A) be an
LTS and x , y ∈ X two states. States x and y are trace equivalent (T -equivalent) if and
only if T (x) = T (y), where

T (x) = {w ∈ A∗ | ∃x ′ ∈ X . x
w
−→ x ′}. (4.6)

4.1.8 DEFINITION (Complete trace equivalence [AFV99]). Consider an LTS (X ,δ : X →

(PωX )A) and x , y ∈ X two states. States x and y are complete trace equivalent (CT -
equivalent) if and only if CT (x) =CT (y), where

CT (x) = {w ∈ A∗ | ∃x ′ ∈ X . x
w
−→ x ′ ∧ I(δ(x ′)) = ;}. ♣

In what follows we instantiate the constituents of Figure 4.2 in order to provide the
associated coalgebraic modellings.
For I ∈ {T ,CT }, the output function oI : X → 2 is:

oT (x) = 1 oCT (x) =

�
1 if I(δ(x)) = ;
0 otherwise

Note that, for trace semantics, one does not distinguish between traces and complete
traces. Intuitively, all states are accepting, so they have the same observable behaviour
(i.e., oT (ϕ) = 1), no matter the transitions they perform. On the other hand, complete
trace semantics distinguishes between deadlock states and states that can still execute
actions a ∈ A.
Consider, for example, the following LTS:

p1 p0
a

a

p2
b

Observe that, for each n≥ 0, (ab)na is a complete trace of p0, as

p0

a
−→ p2

b
−→ p0

a
−→ p2

b
−→ . . .

b
−→ p0

a
−→ p1 (4.7)

where p1 cannot perform any further action.
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The above behaviour, described in terms of transitions between states of the Moore au-
tomaton derived according to the generalised powerset construction, can be depicted as
follows:

{p0}
a
−→ {p1, p2}

b
−→ {p0}

a
−→ {p1, p2}

b
−→ . . .

b
−→ {p0}

a
−→ {p1, p2}

where p1 is a deadlock state and p2 is not.
Intuitively, for n≥ 0, we can state that (ab)na is a complete trace of {p0}, as the deadlock
state p2 ∈ {p1, p2} can be reached from {p0} by performing (ab)na (see (4.7)).

Therefore, given Y1, Y2 ⊆ X and w ∈ A∗ such that Y1

w
−→ Y2, we observe that w is a complete

trace of Y1 whenever there exists a deadlock state y ∈ Y2. Otherwise, w is not a complete
trace of Y1.
In the coalgebraic modelling, the above observations with respect to the
(non)stagnating states appear in the definition of the function o : Pω(X )→ 2. Note that,
for example, o({p1, p2}) = 1 and o({p0}) = 0 for the case of complete trace equivalence, as
p1 is a deadlock state and p0 is not. For trace semantics we have o({p1, p2}) = o({p0}) = 1.
Here, BI = 2 and the final Moore coalgebra in Figure 4.2 is the set of languages 2A∗

over A (and the transition structure 〈ε, (−)a〉 is simply given by Brzozowski derivatives).
Therefore, we can state that the map into the final coalgebra associates to each state
Y ∈ PωX the set of all traces corresponding to states y ∈ Y , namely, the language:

L =
⋃

y∈Y

{w ∈ A∗ | (∃y ′ ∈ X ) . y
w
−→ y ′}.

The set P (A∗) is isomorphic to the set of functions 2A∗ which enables us to represent the
set I (x) in terms its characteristic function ϕI

x
: A∗→ 2 defined, for I ∈ {T ,CT }, w ∈ A∗,

as follows:

ϕT
x
(w) = 1 if ∃y ∈ X . x

w
−→ y ϕCT

x
(w) =

¨
1 if ∃y ∈ X . x

w
−→ y ∧ I(δ(y)) = ;

0 otherwise.

Proving the equivalence between the coalgebraic and the classic definition of (complete)
trace semantics reduces to showing that

(∀x ∈ X ) .¹{x}º = ϕI
x

. (4.8)

4.1.9 THEOREM. Let (X ,δ : X → (PωX )A) be an LTS. Then for all x ∈ X and w ∈ A∗,

¹{x}º(w) = ϕI
x
(w).

PROOF. The proof is by induction on words w ∈ A∗ (similar to the proof of Theorem 4.1.3).�

4.1.10 EXAMPLE. Consider the following two LTS’s:

w1 w0
a

a w′0 a

Observe that w0 and w′
0

are trace equivalent (according to Definition 4.1.7), as they
output the same sets of traces

T (w0) = T (w
′
0) = {ǫ} ∪ {a

n | n ∈ N, n≥ 1} ♠
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0 {w0}
a
{w0, w1}

a

1 0 {w′0} a

Figure 4.5: Complete trace determinisation when starting from {w0}, {w
′
0}.

but they are not complete trace equivalent (according to Definition 4.1.8), as w′0 can
never reach a deadlock state, whereas w0 can reach the stagnating state w1.
The complete trace determinisation contains the sub-automata starting from states {w0}

and {w′0} depicted in Figure 4.5: States {w0} and {w′0} are not behaviourally equivalent,
since {w0, w1} outputs 1, whereas {w′0} never reaches a state with this output. Hence, as
expected, we will never be able to build a bisimulation containing states {w0} and {w′0}.
On the other hand, in the setting of trace semantics, the determinised (Moore) automata
associated with w0 and w′0, respectively, are similar to those depicted in Figure 4.5, with
the difference that now all their states output value 1. This makes the aforementioned
automata bisimilar, hence providing a “yes” answer with respect to T -equivalence of w0

and w′0, as anticipated.

4.1.3 Possible-futures semantics

In what follows we provide a coalgebraic modelling of possible-futures semantics and
show that it coincides with the original definition in [vG01a]. We also give an example
on how the generalised powerset construction and Moore bisimulations can be used in
order to reason on possible-futures equivalence.
Let (X ,δ : X → (PωX )A) be an LTS. A possible future of x ∈ X is a pair 〈w, T 〉 ∈ A∗ ×P (A∗)

such that x
w
−→ y and T = T (y) (where T (y) is the set of traces of y , as in Section 4.1.2).

Possible-futures semantics identifies states that can trigger the same sets of traces w ∈ A∗

and moreover, by executing such w, they reach trace-equivalent states.

4.1.11 DEFINITION (Possible-futures equivalence [RB81, vG01a]). Consider an LTS
(X ,δ : X → (PωX )A) and x , y ∈ X two states. States x and y are possible-futures equivalent

(PF -equivalent) if and only if PF (x) =PF (y), where

PF (x) = {〈w, T 〉 ∈ A∗ ×P (A∗) | ∃x ′ ∈ X . x
w
−→ x ′ ∧ T = T (x ′)}. ♣

The ingredients of Figure 4.2 are instantiated as follows.
The output function ōPF : X → P (P A∗), which refers to the set of traces enabled by
states x ∈ X of the LTS, is defined as

ōP F (x) = {T (x)}.

Here, BI = BPF = P (P A∗) and the behaviour of a state x ∈ X in the final coalgebra is
given in terms of a function ¹{x}º: A∗ → P (P A∗)A

∗

, which, intuitively, for each w ∈ A∗

returns the set of sets Ty of traces corresponding to states y ∈ X such that x
w
−→ y .

Next we want to show that for each x ∈ X , ¹{x}º and PF (x) coincide.
First we choose to equivalently representPF (x) ∈ P (A∗×P (A∗)) – the set of all possible
futures of a state x ∈ X – in terms of ϕPF

x
∈ (P (P A∗))A

∗

, where

ϕPF
x
(w) = {T (y) | x

w
−→ y},
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Showing the equivalence between the coalgebraic and the original definition of possible-
futures semantics reduces to proving that

(∀x ∈ X ) .¹{x}º= ϕPF
x

. (4.9)

4.1.12 THEOREM. Let (X ,δ : X → (PωX )A) be an LTS. Then for all x ∈ X and w ∈ A∗,

¹{x}º(w) = ϕPF
x
(w).

PROOF. The proof is by induction on w ∈ A∗ (similar to the proof of Theorem 4.1.3). �

4.1.13 EXAMPLE. Consider the following LTS’s.

p0a a

p1b
a

a
p2

a
a

p3 p4
b

c

p5

c

p6

c

p7

c
b

p8 p9

d

p10

e

p11

d

p12

e

p13

p14 p15 p16 p17

q0a a

q1a
a

q2a
a

b

q3
b

c

q4

c

q5

c

q6

c
b

q7

q8 q9

d

q10

e

q11

d

q12

e

q13

q14 q15 q16 q17

Note that p0 and q0 are possible-futures equivalent, as the traces both can follow are
sequences w ∈ {a, ab, aa, aab, aac, aacd, aace} and moreover, by triggering the same w

they reach states with equal sets of traces. The equivalence between p0 and q0 can be
formally captured in terms of a bisimulation relation R on the associated Moore automata
(generated according to the generalised powerset construction) depicted in Figure 4.6,
where

R= {({p0}, {q0}), ({p1, p2}, {q1,q2}), ({p3}, {q7}), ({p8, p13}, {q8,q13}),

({p5, p5, p6, p7}, {q3,q4,q5,q6}), ({p9, p10, p11, p12}, {q9,q10,q11,q12}),

({p14, p16}, {q14,q16}), ({p15, p17}, {q15,q17}) }.

It is easy to check that R is a bisimulation, since both automata in Figure 4.6 are isomor-
phic. (Note that equality of the outputs – which are sets of traces – can be established
using the framework introduced in Section 4.1.2.)
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{p0}

a

{T (p0)}

{;} {p8, p13} {p1, p2}

b
a

{T (p1),T (p2)}

o1 {p4, p5, p6, p7}

b

c

{p3} {;}

o2 {p9, p10, p11, p12}

d
e

{;} {p14, p16} {p15, p17} {;}

{q0}

a

{T (q0)}

{;} {q8,q13} {q1,q2}

b
a

{T (q1),T (q2)}

o′1 {q3,q4,q5,q6}

b

c

{q7} {;}

o′2 {q9,q10,q11,q12}

d
e

{;} {q14,q16} {q15,q17} {;} ♠

Figure 4.6: Possible-futures determinisation when starting from {p0}, {q0}.
o1 = {T (p4),T (p5),T (p6),T (p7)}, o2 = {T (p9),T (p10),T (p11),T (p12)}, o′1 =

{T (q3),T (q4),T (q5),T (q6)}, o′2 = {T (q9),T (q10),T (q11),T (q12)}.

4.1.4 Ready and failure trace semantics

In this section we provide a coalgebraic modelling of ready and failure trace semantics
by employing the generalised powerset construction. Similarly to the other semantics
tackled so far, we show a) that the coalgebraic representation coincides with the original
definition in [vG01a] and b) how to apply the coalgebraic machinery in order to reason
on the corresponding equivalences.

Intuitively, ready trace semantics identifies two states if and only if they can follow the
same traces w, and moreover, the corresponding (pairwise-taken) states determined by
such w’s have equivalent one-step behaviours. Failure trace semantics identifies states that
can trigger the same traces w, and moreover, the (pairwise-taken) intermediate states
occurring during the execution of a such w fail triggering the same (sets of) actions.
Formally, the associated definitions are as follows:

4.1.14 DEFINITION (Ready trace equivalence [Pnu85, vG01a]). Consider an LTS
(X ,δ : X → (PωX )A) and x , y ∈ X two states. States x and y are ready trace equivalent
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(RT -equivalent) if and only if RT (x) =RT (y), where

RT (x) = { I0a1 I1a2 . . . an In ∈ Pω(A)× (A×Pω(A))
∗ |

(∃x1, . . . , xn ∈ X ) . x = x0

a1
−→ x1

a2
−→ . . .

an
−→ xn∧

(∀i = 0, . . . , n) . Ii = I(δ(x i)) }.

We call an element of RT (x) a ready trace of x . ♣

4.1.15 DEFINITION (Failure trace equivalence [Phi87]). Let (X ,δ : X → (PωX )A) be an
LTS and x , y ∈ X two states. States x and y are failure trace equivalent (FT -equivalent)
if and only if FT (x) =FT (y), where

FT (x) = { F0a1F1a2 . . . anFn ∈ Pω(A)× (A×Pω(A))
∗ |

(∃x1, . . . , xn ∈ X ) . x = x0

a1
−→ x1

a2
−→ . . .

an
−→ xn ∧ Fi ∈ Fail(δ(x i)) }.

We call an element of FT (x) a failure trace of x . ♣

In order to model these two equivalences coalgebraically we will have to apply the gen-
eralised powerset construction, from Figure 4.2, not only by adding the output function
but also by changing the transitions of the LTS.

In particular, we have to add to transitions of shape x
a
−→ y information regarding the sets

of actions ready to be triggered by x . In the new LTS we consider transitions of shape

x
〈a,I(δ(x))〉
−−−−−→ y therefore enabling the construction of Moore automata “collecting” states

that have been reached not only via one-step transitions with the same label, but also
from processes sharing the same initial behaviour. (Note that F ∈ Fail(δ(x)) whenever
F ⊆ A− I(δ(x)).)

We apply the generalised powerset construction to the decorated LTS:

X
〈oI ,δ〉

Pω(Pω(A))×Pω(X )
A×Pω(A)

where δ is defined by first computing the set I and then appending it to every successor
of a state by using the strength of powerset:

δ = X
δ
Pω(X )

A
〈I ,id〉

Pω(A)×Pω(X )
A st

Pω(Pω(A)× X )A→Pω(X )
A×Pω(A)

δ(x)(〈a, Z〉) =

(
δ(x)(a) if Z = I(δ(x))

; otherwise.

For I ∈ {RT , FT }, the output function ōI provides information with respect to the
actions ready, respectively, failed to be triggered by a state x ∈ X as a first step:

oRT (x) = {I(δ(x))} oFT (x) = Fail(δ(x)).

We need to show that for x0 ∈ X , there is a one-to-one correspondence between ¹{x0}º
and I (x0). Intuitively, for ready trace semantics, for example, each behaviour

¹{x0}º(w̄) = {Z j
n
| xa

w
−→ x j}, with w̄ = 〈a1, Z0〉 . . . 〈an, Zn−1〉 ∈ (A×Pω(A))

∗

and w = a1 . . . an ∈ A∗
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corresponds to a set of sequences of shape

Z0a1Z1a2 . . . Zn−1anZ j
n
∈ I (x0).

Given x ∈ X , for I ∈ {RT , FT }, we again represent I (x) ∈ P (Pω(A)× (A×Pω(A))
∗) by

a function ϕI
x

:

ϕRT
x
(w̄) = {Z ⊆ A | x

w̄
−→ y ∧ Z = I(δ(y))}

ϕFT
x
(w̄) = {Z ⊆ A | x

w̄
−→ y ∧ Z ∈ Fail(δ(y))}

Showing the equivalence between the coalgebraic and the original definition of ready and
failure trace semantics consists in proving that

(∀x ∈ X ) .¹{x}º = ϕI
x

. (4.10)

4.1.16 THEOREM. Let (X ,δ : X → (PωX )A) be an LTS. Then for all x ∈ X and w̄ ∈ (A×

Pω(A))
∗, ¹{x}º(w̄) = ϕI

x
(w̄).

PROOF. The proof follows by induction on words w ∈ (A×Pω(A))
∗ (similar to the proof

of Theorem 4.1.3). �

4.1.17 EXAMPLE. Consider the following two systems:

p0
a a

q0
a a

p1
b

c

p2
c

f
q1

b
c

q2
c

f

p3 p4

d

p5
e

p6 q3 q4
e

q5

d

q6

p7 p8 q7 q8

Note that they are not ready trace equivalent as, for example, {a}a{c, f }c{e} is a ready
trace of p0 but not of q0. Moreover, they are not failure trace equivalent as, for example,
{b, c, d, e, f }a{a, d, e, f }c{a, b, c, e, f }d{a, b, c, d, e, f } is a failure trace of p0 but not of q0.
It is easy to check that by taking exactly the generalised powerset construction (starting
with {p0}, {q0}) without changing the transition function, as in Section 4.1.1, one gets
two bisimilar Moore automata (for both the case of ready and failure trace equivalence).
This would indicate that the initial LTS’s are behavioural equivalent (which is not the case
for ready and failure trace!).
The change in the transition function generates the automata (with labels in A×Pω(A)) in
Figure 4.7. Then, for both semantics studied in this section, the determinisation derives
the two Moore automata in Figure 4.8.
For ready trace semantics it holds that:

o0 = o0 = {{a}} o12 = o12 = {{b, c}, {c, f }} o4 = o5 = {{d}} o5 = o4 = {{e}}

o3 = o6 = o7 = o8 = o3 = o6 = o7 = o8 = {;}.

Hence, the systems in Figure 4.8 are not bisimilar as, for example, both states {p4} and
{q4} can be reached via transitions labelled the same, but they output different sets of
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p0
〈a,{a}〉 〈a,{a}〉

q0
〈a,{a}〉 〈a,{a}〉

p1
〈b,{b,c}〉

〈c,{b,c}〉

p2

〈c,{c, f }〉
〈 f ,{c, f }〉

q1
〈b,{b,c}〉

〈c,{b,c}〉

q2

〈c,{c, f }〉
〈 f ,{c, f }〉

p3 p4

〈d,{d}〉

p5

〈e,{e}〉

p6 q3 q4

〈e,{e}〉

q5

〈d,{d}〉

q6

p7 p8 q7 q8

Figure 4.7: Altered transition function before determinisation.

{p3} {p4}
〈d,{d}〉

{p7}

o3 o4 o7

{p0}
〈a,{a}〉

{p1, p2}

〈b,{b,c}〉 〈c,{b,c}〉

〈c,{c, f }〉

〈 f ,{c, f }〉

{p5}
〈e,{e}〉

{p8}

o0 o12 o5 o8

{p6} o6

{q3} {q4}
〈e,{e}〉

{q7}

ō3 ō4 ō7

{q0}
〈a,{a}〉

{q1,q2}

〈b,{b,c}〉 〈c,{b,c}〉

〈c,{c, f }〉

〈 f ,{c, f }〉

{q5}
〈d,{d}〉

{q8}

ō0 ō12 ō5 ō8

{q6} ō6

♠

Figure 4.8: determinisation starting from {p0}, {q0}.

ready actions – namely {{d}} and {{e}}, respectively. Therefore, we conclude that p0 and
q0 are not ready trace equivalent.
Similarly, for failure trace we have:

o0 = o0 = [bcde f ] o12 = o12 = [ade f ]∪ [abde]

o4 = o5 = [abce f ] o5 = o4 = [abcd f ]

o3 = o6 = o7 = o8 = o3 = o6 = o7 = o8 = [abcde f ].

As before, the automata in Figure 4.8 are not bisimilar as, for example, both {p4} and
{q4} are reached via transitions labelled the same, but have different outputs. Therefore
we conclude that p0 and q0 are not failure trace equivalent.
The purpose of changing the transition labels with sets of ready actions is to collect in a
Moore state only states of the initial LTS’s that have been reached from “parents” with
the same one-step (initial) behaviour. Or dually, to distinguish between states that have
“parents” ready, respectively, failing to trigger different sets of actions. This way one
avoids the unfortunate situation of encapsulating, for example, the states p4, p5, respec-
tively q4,q5, fact which eventually would lead to providing a positive answer with respect
to both ready and failure trace equivalence of p0 and q0.
In other words, the change in the transition function is needed in order to guarantee that
whenever two states of an LTS are ready/failure trace equivalent, the (pairwise-taken)
states determined by the executions of a given trace have the same initial behaviour.
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4.2 Decorated trace semantics of GPS’s

In this section we show how the generalised powerset construction for coalgebras f : X →

F T (X ) for a functor F and a monad T in (2.7), Section 2.3, can be instantiated in order
to provide coalgebraic modellings of decorated trace semantics for generative probabilis-
tic systems (GPS’s). More explicitly, we show how the determinisation procedure can
be applied in order to derive coalgebraic representations of ready, (maximal) failure and
(maximal) trace semantics, equivalent to their standard definitions in [JS90].
A GPS is similar to an LTS, but each transition is labelled by both an action and a probabil-
ity p. More precisely, the transition dynamics is given by a probabilistic transition function

µ: X × A× X → [0,1] satisfying

(∀x ∈ X ) .
∑

a∈A
y∈X

µ(x , a, y)≤ 1, (4.11)

where X is the state space and A is the alphabet of actions. For simplicity, we write

µa(x , y) in lieu of µ(x , a, y) and we will use the notation x
a[v]
−−→ y for µa(x , y) = v. We

extend µ to words w ∈ A∗:

µǫ(x , y) =

¨
1 if x = y

0 if x 6= y
µaw(x , y) =
∑

x ′∈X

µa(x , x ′)× µw(x
′, y)

Intuitively, µw(x , y) represents the sum of the probabilities associated with all traces w

from x to y . Moreover, we write

µ0(x ,0) = 1−
∑

a∈A
y∈X

µ(x , a, y)

for the probability of x to terminate, where 0 is a special symbol not in A, called the zero

action, and 0 is the (deadlock-like) zero process whose only transition is µ0(0,0) = 1.
Similarly to the case of LTS’s, the set of initial actions that can be triggered (with a
probability greater than 0) from x ∈ X is given by

I(x) = {a ∈ A | (∃y ∈ X ) .µa(x , y)>0},

whereas failure sets Z ∈ PωA satisfy the condition Z ∩ I(x) = ;. We write Fail(x) to
represent the set of all failure sets of x .
The decorated trace semantics for GPS’s considered in this paper can be intuitively de-
scribed as follows. Given two states x , y ∈ X , we say that x and y are equivalent whenever
traces w ∈ A∗

– lead, with the same probability, x and y to processes that trigger (respectively, fail to
execute) as a first step the same sets of actions, for the case of ready (respectively,
failure) semantics. Note that maximal failure semantics takes into consideration
only the largest sets of failure actions (i.e., A− I(x), A− I(y)).

– can be executed with the same probability from both x and y , for the case of trace
semantics and, moreover, lead x and y to processes that have the same probability
to terminate, for the case of maximal trace semantics.
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To model GPS’s, we consider Dω(X ) – the (finitely supported sub)probability distribution
functor defined on Set. Dω maps a set X to

Dω(X ) = {ϕ : X → [0,1] | supp(ϕ) is finite and
∑

x∈X

ϕ(x)≤ 1},

where supp(ϕ) = {x ∈ X | ϕ(x)>0} is the support of ϕ. Given a function g : X → Y ,
Dω(g): Dω(X )→Dω(Y ) is defined as

Dω(g)(ϕ) = λy .
∑

g(x)=y

ϕ(x).

A GPS is a coalgebra
(X ,δ : X → (Dω(X ))

A)

such that δ(x)(a)(y) = µa(x , y)1.
To each GPS we associate a decorated GPS’s

(X , 〈oI ,δ〉: X → BI × (Dω(X ))
A)

“parameterised” by I , depending on the semantics under consideration.
Decorated GPS’s can be determinised according to the generalised powerset construction
as illustrated in Figure 4.9, whereF is BI×(−)

A and T is instantiated with the probability
distribution monad (Dω,η,µ):

η : X →Dω(X ) µ: Dω(Dω(X ))→Dω(X )

η(x) = λy .

�
1 if x = y

0 otherwise
µ(ψ) = λx .

∑
ϕ∈supp(ψ)

ϕ(x)×ψ(ϕ)

Algebras for this monad are the so-called positive convex structures [Dob08].
Moreover, for each of the semantics of interest the observations set BI has to carry
a Dω-algebra structure, or, equivalently, there has to exist a morphism hI such that
(BI ,hI : Dω(BI )→ BI ) is a Dω-algebra (as introduced in Definition 2.3.2, in Section 2.3).

The ingredients oI , BI and hI of Figure 4.9 are explicitly defined in the subsequent sec-
tions for each of the coalgebraic decorated trace semantics. The latter are also proven to
be equivalent with their corresponding definitions in [JS90].

4.2.1 Ready and (maximal) failure semantics

In this section we provide the detailed coalgebraic modelling of ready and (maximal)
failure semantics and show the equivalence with their counterparts defined in [JS90], as
follows:

4.2.1 DEFINITION (Ready equivalence [JS90]). The ready function

Rp : X → ((A∗ ×PωA)→ [0,1])

1Note that the coalgebraic type directly corresponds to reactive systems [BSdV04]. The embedding of gen-
erative into reactive is injective and poses no problems semantic-wise. In the sequel, when we write “Let
(X ,δ : X → (Dω(X ))

A) be a GPS” we implicitly mean a coalgebra of this type originating from a GPS defined by
a probabilistic function µ: X × A× X → [0, 1] as in (4.11).
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X
η

〈oI ,δ〉

Dω(X )
¹−º

〈o,t〉

(BI )
A∗

〈ε,(−)a〉

BI × (Dω(X ))
A

idBI
×¹−ºA

BI × ((BI )
A∗)A

o = hI ◦ Dω(oI )

t(ϕ)(a)(y)=
∑

x∈supp(ϕ)

δ(x)(a)(y)×ϕ(x)
¹ϕº(ǫ) = o(ϕ)

¹ϕº(aw) = ¹t(ϕ)(a)º(w)

Figure 4.9: The powerset construction for decorated GPS’s.

is given by

Rp(x)((w, I)) =
∑

I=I(y)

µw(x , y).

We say that x , x ′ ∈ X are ready equivalent whenever Rp(x) =Rp(x
′). ♣

4.2.2 DEFINITION (Failure equivalence [JS90]). The failure function

Fp : X → ((A∗ ×PωA)→ [0,1])

is given by

Fp(x)((w, Z)) =
∑

Z∩I(y)=;

µw(x , y).

We say that x , x ′ ∈ X are failure equivalent whenever Fp(x) =Fp(x
′). ♣

4.2.3 DEFINITION (Maximal failure equivalence [JS90]). The maximal failure function

MF p : X → ((A∗ ×PωA)→ [0,1]) is given by

MF p(x)((w, Z)) =
∑

Z=A−I(y)

µw(x , y).

We say that x , x ′ ∈ X are maximal failure equivalent wheneverMF p(x) =MF p(x
′). ♣

Intuition: ready and (maximal) failure semantics, respectively, identify states which have
the same probability of reaching processes sharing the same sets of ready actions I , or
(maximal) sets of failure actions Z, respectively, by executing the same traces w ∈ A∗.
Consequently, appropriate modellings in the coalgebraic setting should capture sets of
traces w, together with some notion of observations based on execution probabilities of
such w’s and sets of ready/(maximal) failure actions.
As a first step we define BI , the observation set in Figure 4.9, as [0,1]Pω(A), for ready,
failure and maximal failure semantics (for which, for consistency of notation, I will be
instantiated with Rp, Fp andMF p, respectively).

The associated “decorating” functions oI : X → [0,1]Pω(A) are defined for x ∈ X as:

oRp
(x)(I) =

¨
1 if I = I(x)

0 otherwise.
oFp
(x)(Z) =

¨
1 if Z ∩ I(x) = ;

0 otherwise.
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oMF p
(x)(Z) =

¨
1 if Z = A− I(x)

0 otherwise.

For the generalised powerset construction for GPS’s, BI = [0,1]Pω(A) is required to carry
a Dω-algebra structure. This structure is given by the pointwise extension of the free
algebra structure in [0,1] = Dω(1):

hI : Dω([0,1]Pω(A))→ [0,1]Pω(A)

hI (ϕ)(Z) =
∑

f ∈supp(ϕ)

ϕ( f )× f (Z).

It is easy to check that, for I ∈ {Rp,Fp,MF p}, the output function o = hI ◦ Dω(oI ) is
explicitly defined, for ϕ ∈ Dω(X ), as:

o(ϕ)(S) =
∑

x∈supp(ϕ)

ϕ(x)× oI (x)(S).

This enables the modelling of the behaviour of GPS’s in terms of (final) Moore machines
with state space in (BI )

A∗ and observations in BI . More explicitly, given a GPS (X ,δ),
the decorated trace behaviour of x ∈ X is represented in the coalgebraic setting by
¹η(x)º ∈ (BI )A

∗

= ([0,1]Pω(A))A
∗ ∼= [0,1]A

∗×Pω(A), precisely the type of the functions in
Definitions 4.2.1–4.2.3. This paves the way for reasoning on ready and (maximal) failure
equivalence by coinduction, in terms of Moore bisimulations.

4.2.4 EXAMPLE. Consider, for example, the following GPS’s:

p′
a[x] a[1−x]

u′

a[1]

q′

a[1]

r ′

a[1]

v′
a[y] a[1−y]

s′ t ′ w′ w′′

States p′ and u′ are ready equivalent, as their corresponding ready functions in Defini-
tion 4.2.1 are equal:

Rp(p
′)(ǫ,;) = 0 Rp(p

′)(ǫ, {a}) = 1 Rp(p
′)(a,;) = 0

Rp(p
′)(a, {a}) = µa(p

′,q′) + µa(p
′, r ′) = x + (1− x) = 1

Rp(p
′)(aa,;) = µaa(p

′, s′) +µaa(p
′, t ′) = x × 1+ (1− x)× 1= 1

Rp(p
′)(aa, {a}) = 0 Rp(u

′)(ǫ,;) = 0 Rp(u
′)(ǫ, {a}) = 1

Rp(u
′)(a, {a}) = µa(u

′, v′) = 1 Rp(u
′)(a,;) = 0 Rp(u

′)(aa, {a}) = 0

Rp(u
′)(aa,;) = µaa(u

′, w′) + µaa(u
′, w′′) = 1× y + 1× (1− y) = 1

Intuitively, Rp(p
′)(ǫ,;) = 0 states that from p′, by executing the empty trace ǫ, the prob-

ability to reach states that cannot further trigger any action is 0. This is indeed the case,
as p′ can always fire a as a first step. Similarly, Rp(u

′)(a, {a}) = 1 states that the probabil-
ity of performing a from u′ and reaching states with the ready set {a} is 1. This because

u′
a[1]
−−→ v′ and I(v′) = {a}. Nevertheless, the aforementioned ready equivalence follows ac-

cording to the hierarchy in the right-hand side of Figure 4.1, as p′ and u′ are probabilistic
bisimilar as well.
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The same answer with respect to the ready equivalence of p′ and u′ is obtained by apply-
ing the coalgebraic framework. As illustrated below, the corresponding Moore automata
derived starting from p′ and u′, respectively, are bisimilar; they have the same branching
structure and equal outputs:

p′: ϕ1
a

ϕ2
a

ϕ3 u′: α1
a

α2
a

α3

oϕ1
oϕ2

oϕ3
oα1

oα2
oα3

The state spaces of the aforementioned Moore machines consist of the functions:

ϕ1 = η(p′) = {p′→ 1, q′→ 0, r ′→ 0, s′→ 0, t ′→ 0}

ϕ2 = {p′→ 0, q′→ x , r ′→ 1− x , s′→ 0, t ′→ 0}

ϕ3 = {p′→ 0, q′→ 0, r ′→ 0, s′→ 1, t ′→ 1}

α1 = η(u′) = {u′→ 1, v′→ 0, w′→ 0, w′′→ 0}

α2 = {u′→ 0, v′→ 1, w′→ 0, w′′→ 0}

α3 = {u′→ 0, v′→ 0, w′→ y, w′′→ 1− y}.

The associated observations are:

oϕ1
= oα1

= oϕ2
= oα2

= (; 7→ 0, {a} 7→ 1), oϕ3
= oα3

= (; 7→ 1, {a} 7→ 0.)

The functions ϕ2, ϕ3, α2 and α3 together with their outputs are easily determined based
on the operations of the corresponding Moore coalgebra (as depicted in Figure 4.9).
The connection between the behaviour, i.e., ready function of p′ (respectively, u′) and ϕi

(respectively, αi), for i ∈ {1,2,3}, is straightforward. Each of the functions ϕ1,ϕ2 and ϕ3

captures the behaviour of the system starting from p′, after executing the traces ǫ, a and
aa, respectively. Note that, for example, the values of the ready function for trace ǫ and
ready sets ; and {a}, respectively, are in one to one correspondence with the assignments
in oϕ1

. Similarly for the case of u′.
By following the same approach, the coalgebraic machinery provides an “yes” answer with
respect to (maximal) failure equivalence of p′ and u′ as well. This is also in agreement
with the results in [JS90] stating that ready and (maximal) failure equivalence for GPS’s
have the same distinguishing power. ♠

The equivalence between the coalgebraic and the original definitions of the decorated
trace semantics I ∈ {Rp,Fp,MF p} in [JS90] consists in showing that, given a GPS
(X ,δ), x ∈ X , w ∈ A∗ and S ⊆ A, it holds that ¹η(x)º(w)(S) = I(x)(w,S).

4.2.5 THEOREM. Let (X ,δ : X → (Dω(X ))
A) be a GPS and (Dω(X ), 〈o, t〉) be its associated

determinisation as in Figure 4.9. Then, for all x ∈ X , w ∈ A∗ and S ⊆ A, it holds

¹η(x)º(w)(S) = I (x)(w,S).

PROOF. The proof is similar for all I in {Rp,Fp,MF p}, by induction on w ∈ A∗.

– Base case – w = ǫ: ¹η(x)º(ǫ)(S) = oI (x)(S) = I (x)(ǫ,S).

– Induction step. Here, we will use the fact that the map into the final coalgebra is
also an algebra map and the equality

I (x)(aw,S) =
∑

y∈Y

µa(x , y)×I (x)(w)(S).
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Consider aw ∈ A∗ and assume ¹η(y)º(w)(S) = I (y)(w,S), for all y ∈ X . We want
to prove that ¹η(x)º(aw)(S) = I (x)(aw)(S), for a ∈ A.

¹η(x)º(aw)(S) = ¹δ(x)(a)º(w)(S)
=
∑

y∈Y

δ(x)(a)(y)×¹η(y)º(w)(S) (¹−º is an algebra map)

=
∑

y∈Y

δ(x)(a)(y)×I (x)(w)(S) (IH)

=
∑

y∈Y

µa(x , y)×I (x)(w)(S) (µa(x , x ′) = δ(x)(a)(x ′))

= I (x)(aw)(S) �

4.2.2 (Maximal) trace semantics

In this section we provide the coalgebraic modelling of (maximal) trace semantics for
GPS’s. The approach resembles the one in the previous section: we first recall the afore-
mentioned semantics as introduced in [JS90], and then show how to instantiate the in-
gredients of Figure 4.9 in order to capture the corresponding behaviours in terms of (fi-
nal) Moore coalgebras. As a last step, we prove the equivalence between the coalgebraic
modellings and the original definitions in [JS90].

4.2.6 DEFINITION ((Maximal) trace equivalence [JS90]). The trace function

Tp : X → (A∗→ [0,1]) is given by

Tp(x)(w) =
∑

y∈X

µw(x , y).

The maximal trace functionMT p : X → (A∗→ [0,1]) is given by

MT p(x)(w) = µw0(x ,0).

We say that x , x ′ ∈ X are trace equivalent whenever Tp(x) = Tp(x
′). If MT p(x) =

MT p(x
′) holds as well, then we say that x and x ′ are maximal trace equivalent. ♣

From the definition above, it can be easily seen at an intuitive level that trace equivalence
identifies processes that can execute with the same probability the same sets of traces
w ∈ A∗. Moreover, maximal trace equivalence takes into consideration the probability of
not triggering any action after the performance of such w’s.
Therefore, we choose the set of observations BI (where I = Tp for trace and I =MT p

for maximal trace semantics) to denote probabilities (of processes to execute w ∈ A∗, or
stagnate after triggering such w’s) ranging over [0,1].
We define the “decorating” functions, for I ∈ {Tp,MT p}, oI : X → [0,1] by

oTp
(x) = 1 oMT p

(x) = µ0(x ,0)

The (Moore) output function o is given by, for all ϕ ∈ Dω(X ),

o(ϕ) =
∑

x∈supp(ϕ)

ϕ(x)× oI (x).

We can now show the equivalence between the coalgebraic and the original definition of
(maximal) trace semantics.
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4.2.7 THEOREM. Let (X ,δ : X → (Dω(X ))
A) be a GPS and (Dω(X ), 〈o, t〉) be its associated

determinisation as in Figure 4.9. Then, for all x ∈ X and w ∈ A∗:

¹η(x)º(w) = I (x)(w).

PROOF. By induction on w ∈ A∗, similar to Theorem 4.2.5. �

Consider, for instance, the systems p′ and u′ in Example 4.2.4. They are trace equivalent
as they both can execute traces ǫ, a and aa with total probability 1. Consequently, they
are maximal trace equivalent as well: for sequences ǫ and a, their associated maximal
trace functions compute value 0, whereas for aa the latter return value 1.
The same answer with respect to (maximal) trace equivalence of p′ and u′ is obtained
by reasoning on bisimilarity of their associated determinisations derived according to the
powerset construction. It is easy to check that in the current setting, the Moore automata
corresponding to ϕ1 and α1 in Example 4.2.4 output

– for the case of trace semantics:

(∀i ∈ {1,2,3}) . oϕi
= oαi

= 1;

– for the case of maximal trace semantics:

(∀i ∈ {1,2}) . oϕi
= oαi

= 0 and oϕ3
= oα3

= 1.

Therefore ϕ1 and α1 are bisimilar. Hence, p′ and u′ are (maximal) trace equivalent.

4.3 Decorated trace semantics in a nutshell

Next we provide a more compact overview on the coalgebraic machinery introduced in
Section 4.1 and Section 4.2. This also in order to emphasise on the generality and unifor-
mity of our coalgebraic framework.
Recall that for each of the decorated trace semantics we first instantiate the constituents of
Figure 4.2 (summarising the generalised powerset construction). Moreover, for the case
of LTS’s, the original definitions of the semantics under consideration are provided with
equivalent representations in terms of functionsϕI

Y
, paving the way to their interpretation

in terms of final Moore coalgebras.
All these are summarised in Figure 4.10, for an arbitrary LTS (X ,δ : X → (PωX )A) and an
arbitrary GPS (X ,δ : X → (DωX )A).
Once the ingredients of Figure 4.2 and, for LTS’s, functions ϕI

Y
are defined, we formalise

the equivalence between the coalgebraic modelling of I -semantics and its original defi-
nition.
For the case of LTS’s, for I ranging over T ,CT ,F ,R ,PF ,RT and FT , we show that
the following result holds:

4.3.1 THEOREM. Let (X ,δ : X → (PωX )A) be an LTS. For all x ∈ X , ¹{x}º= ϕI
x
∼= I (x).

Orthogonally, for the case of GPS’s, for I ranging over Rp,Fp,MF p,Tp and MT p, we
prove the following:

4.3.2 THEOREM. Let (X ,δ : X → (DωX )A) be a GPS. For all x ∈ X , ¹η(x)º= I (x).
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For each of the semantics under consideration, the proofs of Theorem 4.3.1 and Theo-
rem 4.3.2, follow by induction on words over the corresponding action alphabet. For more
details see the proof of Theorem 4.1.3 in Section 4.1.1 (for LTS’s) and Theorem 4.2.5 in
Section 4.2.1 (for GPS’s), respectively.

Remark 12 It is worth observing that by instantiating T with the identity functor, F with

Pω(−)
A and, respectively, Dω(−)

A in (2.7), in Section 2.3, one gets the coalgebraic modelling

of the standard notion of bisimilarity for LTS’s and, respectively, GPS’s.

Concrete examples on how to use the coalgebraic frameworks are provided for each of the
decorated trace semantics. We show how to derive determinisations of LTS’s and GPS’s
in terms of Moore automata, which eventually are used to reason on the corresponding
equivalences in terms of Moore bisimulations.

I BI ōI : X → BI

R Pω(PωA) oR(x) = {I(δ(x))}

F Pω(PωA) oF (x) = Fail(δ(x))

T 2 oT (x) = 1

CT 2 ōCT (x) =

�
1 if I(δ(x)) = ;

0 otherwise

PF P (P A∗) ōPF (x) = {T (x)}

RT Pω(PωA) oRT (x) = {I(δ(x))}

FT Pω(PωA) oFT (x) = Fail(δ(x))

Rp [0,1]Pω(A) oRp
(x)(I) =

¨
1 if I = I(x)

0 otherwise

Fp [0,1]Pω(A) oFp
(x)(Z) =

¨
1 if Z ∩ I(x) = ;

0 otherwise

MF p [0,1]Pω(A) oMF p
(x)(Z) =

¨
1 if Z = A− I(x)

0 otherwise

Tp [0,1] oTp
(x) = 1

MT p [0,1] oMT p
(x) = µ0(x ,0)

Figure 4.10: The coalgebraic framework in a nutshell.

4.4 Canonical representatives

Given a decorated system (X , 〈oI ,δ〉), we showed in the previous sections how to construct
a determinisation (T (X ), 〈o, t〉), with T =Pω for the case of LTS’s, and T = Dω for GPS’s,
respectively. The map ¹−º: T X → BA∗

I
provides us with a canonical representative of the

behaviour of each state in T X . The image (C ,δ′) of (T X , 〈o, t〉), via the map ¹−º, can be
viewed as the minimisation with respect to the equivalence I .
Recall that the states of the final Moore coalgebra (BA∗

I
, 〈ε, (−)a〉) are functions ϕ : A∗→ BI

and that their decorations and transitions are given by the functions ε: BA∗

I
→ BI and
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(−)a : BA∗

I
→ (BA∗

I
)A, defined in Example 2.2.8 in Section 2.2. The states of the canonical

representative (C ,δ′) are also functions ϕ : A∗→ BI , i.e., C ⊆ BA∗

I
. Moreover, the function

δ′ : C → BI ×CA is simply the restriction of 〈ε, (−)a〉 to C, that means δ′(ϕ) = 〈ϕ(ε), (ϕ)a〉
for all ϕ ∈ C.

Finally, it is interesting to observe that for LTS BA∗

I
carries a semilattice structure (inherited

from BI ) and that ¹−º: PωX → BA∗

I
is a semilattice homomorphism. From this observa-

tion, it is immediate to conclude that also C is a semilattice, but it is not necessarily freely
generated, i.e., it is not necessarily a powerset. Similarly, for GPS BA∗

I
carries a positive

convex algebra structure (these are the Dω-algebras) and ¹−º: DωX → BA∗

I
is a positive

convex algebra homomorphism. Again, from this observation, we know that also C is a
positive convex algebra (not necessarily freely generated).

4.5 Recovering the spectrum

We will briefly explain how to recover the spectrums from Figure 4.1 from the coalgebraic
modelling. First, we recall the following folklore result from coalgebra theory which is the
key behind building the spectrum. Let Coalg f (F ) denote the category of all F -coalgebras
with a free carrier (arising from a powerset construction) and F -homomorphisms. That
is, the objects are of the form T (X )→ F T (X ). Given two functors F and G , if one can
construct a functor σ : Coalg f (F )→ Coalg f (G ) then ∼F⊆∼G .

In the current setting, we apply this to the category Coalg f (F ) of all F -coalgebras with a
free carrier (arising from a powerset construction) and F -homomorphisms. That is, the
objects are of the form T (X )→F T (X ).

For all the relations in the spectrum we can indeed define such σ. We illustrate here the
case for failure and complete trace.

(Pω(X )
〈oF ,t〉

Pω(Pω(A
∗))×Pω(X )

A )
σ
7→ (Pω(X )

〈oCT ,t〉
2×Pω(X )

A)

In order to prove that σ is a functor we need to show that it preserves homomorphisms.

4.5.1 LEMMA. Consider f : Pω(X )→Pω(Y ) such that oF = oF ◦ f . Then oCT = oCT ◦ f .

PROOF.

oF (S) = oF ◦ f (S)

⇐⇒ {Z ⊆ A | Z ∩ I(δ(s)) = ;, s ∈ S}= {Z ⊆ A | Z ∩ I(δ(s′)) = ;, s′ ∈ f (S)}

⇐⇒ ∀s∈S∃s′∈ f (S) Z ∩ I(δ(s)) = ; ⇐⇒ Z ∩ I(δ(s′)) = ; and vice-versa.
⇒ ∀s∈S∃s′∈ f (S) I(δ(s)) = ; ⇐⇒ I(δ(s′)) = ; and vice-versa.
⇐⇒
∨

s∈S(I(δ(s)) = ;) =
∨

s′∈ f (S)(I(δ(s
′)) = ;)

⇐⇒ oCT (S) = oCT ◦ f (S)

Note that this is different from the technique used to recover a hierarchy of probabilistic
systems in [BSdV04] where injective natural transformations were defined between func-
tor types and then it was shown that bisimilarity was reflected by these transformations.
Here, the situation is different and, for several different equivalences, we have the same
functor (e.g., for CT and T ).
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In the case of the probabilistic spectrum similar proofs can be given. We illustrate it for
the case of probabilistic ready and trace semantics.

(Dω(X )
〈oRp

,t〉

[0,1]Pω(A
∗) ×Dω(X )

A )
σ
7→ (Dω(X )

〈oTp
,t〉

[0,1]×Dω(X )
A)

Again, in order to prove that σ is a functor we need to show that it preserves homomor-
phisms.

4.5.2 LEMMA. Consider f : Dω(X )→Dω(Y ) such that oRp
= oRp

◦ f . Then oTp
= oTp

◦ f .

PROOF.

oRp
(ϕ) = oRp

◦ f (ϕ) ⇐⇒
∑

x ∈ X

I = I(x)

ϕ(x) =
∑

y ∈ Y

I = I(y)

f (ϕ)(y), for all I ⊆ A.

⇒
∑
I⊆A

∑
x ∈ X

I = I(x)

ϕ(x) =
∑
I⊆A

∑
y ∈ Y

I = I(y)

f (ϕ)(y)

⇐⇒
∑
x∈X

ϕ(x) =
∑
y∈Y

f (ϕ)(y)

⇐⇒ oTp
(ϕ) = oTp

◦ f (ϕ)

4.6 Testing semantics

In this section we show how must and may testing [CH89, DH84, Hen88] can be modelled
coalgebraically by exploiting the generalised powerset construction in the context of LTS’s
with internal behaviour. As we shall see, the modelling of may testing is derived based
the coalgebraic characterisation of trace semantics in Section 4.1.2, in a straightforward
fashion. The coalgebraic characterisation of must testing follows as an “extension to
divergence” of failure semantics in Section 4.1.1.
In our approach we consider LTS’s on an alphabet A+ {τ}, where τ is a special label

representing internal actions. We write
ǫ
=⇒ to represent

τ
−→
∗

the reflexive and transitive

closure of
τ
−→ and, for a ∈ A, by

a
=⇒ we denote

τ
−→
∗ a
−→

τ
−→
∗
. For w ∈ A∗,

w
=⇒ is defined

inductively, in the obvious way.

4.6.1 From traces to may testing

In this section we show how may testing semantics can be modelled in the coalgebraic
setting.
Intuitively, may testing relates processes in terms of the observable traces (consisting of
actions different from τ) they can execute, by ignoring (any number of) occurrences of
the internal action τ.
Let L(p) represent the set of observable traces associated with a state p of an LTS with
actions in A∪ {τ}, referred to as the language of p:

L(p) = {w ∈ (A−{τ})∗ | (∃p′) . p
w
=⇒ p′ }. (4.12)

In [CH89], an alternative characterisation may testing semantics is defined as follows.
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4.6.1 DEFINITION (May semantics [CH89]). Let x and y be two states of an LTS. We
write x ⊑may y iff L(x) ⊆ L(y). We say that x and y are may-equivalent (x ∼may y) iff
x ⊑may y and y ⊑may x . ♣

The connection with trace semantics in Section 4.1.2 is rather obvious: both may and
trace distinguish processes depending on their languages. Hence, we further provide an
extension of the coalgebraic modelling of trace semantics to the context of LTS’s with
internal behaviour, and show it corresponds precisely the may testing as given in Defini-
tion 4.6.3.
To begin with, we model LTS’s with internal behaviour as coalgebras (S, t : S → (PωS)A),
such that, for x ∈ S and a ∈ A:

t(x)(a) = {y | x
a
=⇒ y}. (4.13)

Then, we decorate LTS’s by means of a function o : S→ 2 such that, for all x ∈ S

o(x) = 1

and apply the generalised powerset construction as depicted in Figure 4.2 in Section 4.1.
Similarly to the case of trace semantics, the final Moore coalgebra is 2A∗ – the set of
languages over A. Therefore, by the definition of the transition function t in (4.13), it
immediately follows that the behaviour map ¹−º captures precisely the languages of
states in S. Namely, for all x ∈ S:

¹{x}º∼= L(x).

Note that 2A∗ carries a join semilattice structure, where identity is the empty language
and join is the union of languages. Consider ⊑ the associated preorder. At this point, the
coalgebraic modelling of may testing semantics is straightforward:

4.6.2 THEOREM. Let x and y be two states of an LTS. Then

x ⊑may y iff ¹{x}º⊑ ¹{y}º and x ∼may y iff ¹{x}º= ¹{y}º.

4.6.2 From failures to must testing

In what follows we provide a coalgebraic handling of must testing semantics [DH84,
Hen88], and show the connection between our approach and the framework used for the
corresponding (alternative) modelling in [CH89].
Intuitively, must testing relates processes based on the traces that do not lead to divergent
states (i.e., states that can engage into infinite internal computations), and a notion of
non-determinism captured in terms of antichains of corresponding ready actions. By
exploiting the isomorphism of antichains and downsets introduced in Section 4.1.1, it
was easy to observe that must testing coincides failure semantics for LTS’s without internal
behaviour (as formalised in Proposition 4.6.10 later on in this section). With this intuition
in mind, we provide an extension of failure semantics to the context of divergent LTS’s and
show it coincides with must testing semantics. The aforementioned coincidence is proven
by employing a “lifting” of the isomorphism of downsets and antichains encompassing
information on both the degree of non-determinism and divergence of processes.
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We first recall some notations in [CH89]. The acceptance set of x after w is A(x , w) =

{{a ∈ A | x ′
a
−→} | x

w
=⇒ x ′ ∧ x ′ 6

τ
−→}. Intuitively, it represents the set of actions that can

be fired after “maximal” executions of w from x , those that cannot be extended by some
τ-labelled transitions.

The possibility of an LTS to execute τ-actions forever is referred to as divergence. We write
x 6 ↓ whenever x diverges. Dually, the convergence relation x↓w for a state x and a word
w ∈ A∗ is inductively defined as follows: x↓ǫ iff x does not diverge and x↓aw′ iff (a) x↓ǫ

and (b) if x
a
=⇒ x ′, then x ′↓w′.

Given two sets B, C ∈ Pω(Pω(A)), we write B ⊂⊂ C iff for all Bi ∈ B, there exists Ci ∈ C

such that Ci ⊆ Bi .

With these ingredients, it is possible to introduce must preorder and equivalence.

4.6.3 DEFINITION (Must semantics [CH89]). Let x and y be two states of an LTS. We
write x ⊑mst y iff for all words w ∈ A∗, if x↓w then y↓w and A(y, w) ⊂⊂ A(x , w). We say
that x and y are must-equivalent (x ∼mst y) iff x ⊑mst y and y ⊑mst x . ♣

As an example, consider the LTS’s depicted below. States x4, x5 and y1 are divergent. All
the other states diverge for words containing the letter b and converge for words on a∗.
For these words and states x , x1, x2, x3 and y , the corresponding acceptance sets equal
{{a, b}}. In particular, note that A(x2,ǫ) is {{a, b}} and not {{b}, {a, b}}. It is therefore
easy to conclude that x , x1, x2, x3 and y are all must equivalent.

x

b

a

a

x2

τ

b
x4 τ

x1

a

b

x3
a b

x5

τ

ya
b

y1 τ (4.14)

Coalgebraic characterisation of must semantics. In what follows we show how must
testing semantics can be captured in terms of coalgebras.

In order to proceed, we have to properly tackle internal behaviour and divergence. We
model LTS’s on A+ {τ} in terms of coalgebras (S, t : S→ (1+PωS)A), where 1= {⊤} is the
singleton set, and for x ∈ S,

t(x)(a) = ⊤, if x 6 ↓a t(x)(a) = {y | x
a
=⇒ y}, otherwise. (4.15)

Note that we use x 6 ↓a as a shorthand for x 6 ↓aǫ. Intuitively, a state x ∈ S that displays
divergent behaviour with respect to an action a ∈ A is mapped to⊤. Otherwise t computes
the set of states that can be reached from x through a (by possibly performing a finite
number of τ-transitions).

Similarly to failure equivalence in Section 4.1.1, we decorate the states of the LTS by
means of a function o : S→ 1+Pω(Pω(A)) defined as follows:

o(x) =





⊤ if x 6 ↓⋃
x
τ
−→x ′

o(x ′) if x
τ
−→

Fail(t(x)) otherwise.

(4.16)
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Note that (S, 〈o, t〉) is an F T -coalgebra for the functor F(S) = (1+Pω(PωA))× SA and the
monad T (S) = 1 + PωS. T -algebras are semilattice with bottom and an extra element
⊤ acting as top (i.e., such that x ⊔ ⊤ = ⊤ for all x). For any set U , 1+ Pω(U) carries
a semilattice with bottom and top: bottom is the empty set; top is the element ⊤ ∈ 1;
X ⊔ Y is defined as the union for arbitrary subsets X , Y ∈ Pω(U) and as ⊤ otherwise.
Consequently, 1+Pω(PωA) and F T (S) carry a T -algebra structure as well. This enables
the application of the generalised powerset construction (Section 2.3) associating to each
F T -coalgebra (S, 〈o, t〉) the F -coalgebra (1+PωS, 〈o♯, t♯〉) defined for all X ∈ 1+PωS as
expected:

o♯(X ) =

¨
⊤ if X =⊤⊔

x∈X o(x) if X ∈ Pω(S)
t♯(X )(a) =

¨
⊤ if X =⊤⊔

x∈X t(x)(a) if X ∈ Pω(S)

Note that in the above definitions, ⊔ is not simply the union of subsets (as it was the case
for failure), but it is the join operation in 1+Pω(Pω(A)) and 1+Pω(Pω(S)). Moreover,
(1+PωS, 〈o♯, t♯)〉 is a Moore machine with output in 1+Pω(PωA) and, therefore induces a
function ¹−º: (1+Pω(S))→ (1+Pω(PωA))A

∗

. The semilattice structure of 1+Pω(Pω(A))

can be easily lifted to (1+Pω(PωA))A
∗

: bottom, top and ⊔ are defined pointwise on A∗. We
denote by ⊑M the preorder on (1+Pω(PωA))A

∗

induced by this semilattice.
A result (based on the isomorphism between downsets and antichains) similar to the one
for failures, in Section 4.1.1, can also be derived in a modular fashion, for the case of
LTS’s decorated with outputs in 1+Pω(PωA).
As shown in Section 4.1.1, both the set of downsets D(Pω(A)), and the set of antichains
A (Pω(A)) carry join-semillatice structures. It is easy to see that the corresponding exten-
sions to 1+ (−) are join-semilattices with bottom as 0, top as ⊤ (which, intuitively, plays
the role of the greatest element) and ⊔ extended as ⊤⊔ C = ⊤ for C ∈ 1+D(Pω(A)), or
C ∈ 1+A (Pω(A)), respectively.
The isomorphism 1 + i : 1 + D(Pω(A)) → 1 +A (Pω(A)) follows immediately from the
isomorphism i :D(Pω(A))→A (Pω(A)) in (4.4) in Section 4.1.1, by defining

(1+ i)(⊤) =⊤ (1+ i)(F) = i(F), F 6= ⊤.

In the sequel, we will exploit 1+ i to define a “more efficient” characterisation of the func-
tion o♯ : 1+Pω(S)→ 1+Pω(Pω(A)), also useful to prove the soundness of the coalgebraic
modelling of must testing semantics (formalised in Theorem 4.6.7).
As a first step, observe that the function o : S→ 1+Pω(Pω(A)) can be restricted to o : S→

1+D(Pω(A)) (since if x↓ then o(x) is a downset and the union of downsets is a downset,
otherwise o(x) =⊤). In analogy with Section 4.1.1, we define o2 : S→ 1+A (Pω(A))

o2(x) =





⊤ if x 6 ↓

min(∪
x
τ
−→x ′

o(x ′)) if x
τ
−→

{I(t(x))} otherwise.

and o
♯
2 : 1+Pω(S)→ 1+A (Pω(A)) as

o
♯
2(X ) =





o2(x) if X = {x} with x ∈ S

⊤ if X =⊤

0 if X = 0

min(o2(X1)⊔ o2(X2)) if X = X1 ⊔ X2
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Proposition 4.6.6 states that it is equivalent computing o♯ or computing o
♯
2. To this aim,

we need the following lemmas.

4.6.4 LEMMA. (1+ i) ◦ o = o2

PROOF. If x 6 ↓, then o2(x) = ⊤ = (1+ i) ◦ o(x). If x↓ and x 6
τ
→, then o2(x) = {I(t(x))} =

(1+ i)(Fail(t(x))) = (1+ i) ◦ o(x). If x↓ and x
τ
→, then observe that o(x) =

⋃
{Fail(t(x ′)) |

x
τ
−→
∗

x ′ and x ′ 6
τ
−→} and that

o2(x) = min
�⋃
{I(t(x ′)) | x

τ
−→
∗

x ′ and x ′ 6
τ
−→}
�

.

We obtain the conclusion by the previous case and by the fact that i is a homomorphism
of semilattices. �

4.6.5 LEMMA. (1+ i) ◦ o♯ = o
♯
2

PROOF. Follows immediately by Lemma 4.6.4 and the fact that (1+ i) is a homomorphism
of semilattices. �

4.6.6 PROPOSITION. For all X , Y ∈ Pω(S), o♯(X ) = o♯(Y ) iff o
♯
2(X ) = o

♯
2(Y ).

PROOF. Follows from Lemma 4.6.5 and the fact that (1+ i) is an isomorphism of semilat-
tices. �

Remark 13 Note that the relation ⊂⊂ used for defining ⊑mst :

B ⊂⊂ C iff (∀Bi ∈ B).(∃Ci ∈ C).Ci ⊆ Bi (4.17)

is the ordering induced by ⊔ in A (Pω(A)):

min(B ⊔ C) = C

iff min(B ⊔ C) = min(C) (as C ∈ A (Pω(A))

iff (∀Bi ∈ B).(∃Ci ∈ C).Ci ⊆ Bi (by definition of min)

iff B ⊂⊂ C (by definition of ⊂⊂)

We formalise the coalgebraic modelling of must semantics in the following theorem.

4.6.7 THEOREM. Let x and y be two states of an LTS. Then

x ⊑mst y iff ¹{y}º⊑M ¹{x}º and x ∼mst y iff ¹{x}º= ¹{y}º.

The morphism o
♯
2 : 1+Pω(S) → 1+A (Pω(A)) is useful to prove that the preorders ⊑M

and ⊑mst coincide. Indeed, the Moore machine (1+PωS, 〈o
♯
2, t♯〉) induces the morphism

¹−º2 : 1+PωS→ (1+A (Pω(A)))
A∗ defined for all X ∈ 1+Pω(S) as

¹Xº2(ǫ) = o
♯
2(X ) ¹Xº2(aw) = ¹t♯(X )(a)º2(w).

The isomorphism (1 + i): 1 + D(Pω(A)) → 1 +A (Pω(A)) can be extended to the iso-
morphism (1 + i)A

∗

: (1 + D(Pω(A)))
A∗ → (1 +A (Pω(A)))

A∗ , defined for every function
φ ∈ (1+D(Pω(A)))

A∗ and word w ∈ A∗ as

(1+ i)A
∗

(φ)(w) = (i + 1)(φ(w)).

Note that the function ¹−º: 1+Pω(S)→ (1+PωPω(A))
A∗ can be restricted to ¹−º: 1+

Pω(S)→ (1+D(Pω(A)))
A∗ .
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4.6.8 PROPOSITION. (1+ i)A
∗

◦¹−º= ¹−º2
PROOF. This can be proved by ordinary induction on words, exploiting Lemma 4.6.5 for
the base case. �

The ordering ⊑M2
induced by the semilattice structure of (1+A (Pω(A)))

A∗ is given as

follows: for all φ,ψ ∈ (1+A (Pω(A)))
A∗ , φ ⊑M2

ψ iff for all w ∈ A∗

1. if φ(w) =⊤ then ψ(w) =⊤ and

2. if φ(w) 6=⊤ then either ψ(w) =⊤ or φ(w)⊂⊂ψ(w).

Observe that ¹Xº2(w) = ⊤ iff X 6 ↓w. Furthermore, whenever X = {x} and x↓w, ¹Xº2(w) =
A(x , w). As a consequence, the following proposition holds.

4.6.9 PROPOSITION. ¹{x}º2 ⊑M2
¹{y}º2 iff y ⊑mst x

PROOF. Suppose that ¹{x}º2 ⊑M2
¹{y}º2 and take one word w ∈ A∗. If y↓w, then

¹{y}º2(w) 6= ⊤ and also ¹{x}º2(w) 6= ⊤, that is x↓w. This means that ¹{x}º2(w) ⊂⊂
¹{y}º2(w), that is A(x , w)⊂⊂ A(y, w). summarising y ⊑mst x .
Now suppose that y ⊑mst x and take one word w ∈ A∗. If ¹{x}º2(w) = ⊤, then x 6 ↓w.
This implies that also y 6 ↓w (and thus ¹{y}º2(w) = ⊤) because otherwise the hypothesis
y ⊑mst x would be violated. If ¹{x}º2(w) 6= ⊤, then we have two possibilities: (a) y↓w

or (b) y 6 ↓w. For (a), we have that A(x , w) ⊂⊂ A(y, w), that is ¹{x}º2(w) ⊂⊂ ¹{y}º2(w).
For (b), we immediately have that ¹{y}º2 =⊤. �

From the two above propositions, Theorem 4.6.7 follows immediately.
Note that in absence of divergence, the “decorating” function in (4.16) and the transition
function in (4.15) correspond precisely to oF and δ in Section 4.1.1, for the case of
failure semantics. Hence, by Theorem 4.6.7, Definition 4.6.3 and Remark 13 it follows
immediately that must and failure semantics coincide in the context of LTS’s without
internal behaviour.

4.6.10 PROPOSITION. Consider two states x , y of an LTS without internal behaviour. Then

x ⊑mst y iff F (y)⊆F (x)

x ∼mst y iff F (x) =F (y).

Remark 14 Note that according to the definition of ⊑M , ¹{y}º ⊑M ¹{x}º iff ¹{y}º ⊔
¹{x}º= ¹{x}º, and since ¹−º is a T -homomorphism (namely it preserves bottom, top and
⊔), the latter equality holds iff ¹{y, x}º= ¹{x}º. Summarising,

x ⊑mst y iff ¹{x , y}º= ¹{x}º.

Consider, once more, the LTS in (4.14). The part of the Moore machine (1+Pω(S), 〈o
♯, t♯〉)

which is reachable from {x} and {y} is depicted below (the output function o♯ maps ⊤ to
⊤ and the other states to {0}).

⊤

a,b

{x}b
a
{x1, x2, x3}

b
a
{x , x1}

b

a
{x , x1, x2, x3}

b a

⊤

a,b

{y}

a

b

(4.18)
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The relation consisting of dashed lines is a bisimulation proving that ¹{x}º= ¹{y}º, i.e.,
that x ∼mst y .
Our construction is closely related to the one in [CH89], that transforms LTS’s into (deter-
ministic) acceptance graphs. We further provide more details on the connection between
the coalgebraic machinery for reasoning on must preorder and the corresponding frame-
work in [CH89].

Moore machines and acceptance graphs. As previously introduced in this section, the
behaviour of an LTS with divergence L = (S, t : S→ (1+PωS)A) can be captured in terms
of a Moore machine

M = (1+PωS, 〈o♯, t♯〉: 1+PωS→ (1+Pω(PωA))× (1+PωS)A)

derived according to the powerset construction, and that reasoning on must preorder is
equivalent to reasoning on the preorder ⊑M on the final Moore coalgebra, as stated in
Theorem 4.6.7.
In [CH89] must preorder is established in terms of a notion of prebisimulation (⊑〈Π,0〉)
on the so-called “acceptance graphs” generated from such L ’s, denoted by ST (L ). In-
tuitively, an acceptance graph ST (L ) consists of a set of nodes p of shape 〈Q, b〉 ∈

PωS × {tt, ff}, where Q is a set of states in S, and b is associated the boolean value tt

whenever all states in Q converge (written Q↓) and ff otherwise.
Orthogonally to the Moore machines with output in 1+Pω(PωA), for a node p = 〈Q, b〉 in
ST (L ), the information representing the divergence of (states in) Q is given by p.closed (=

b), and the corresponding (minimised) acceptance set consisting of visible actions that
can be triggered as a first step from the states in Q is represented by p.acc (defined later on

in this section). Moreover, (deterministic) transitions in ST (L ) are of shape 〈Q1, b1〉
a
−→

〈Q2, b2〉, where a ∈ A and Q2 is the set of a-successors of states in Q1, computed with

respect to
a
=⇒.

Based on the resemblance between the aforementioned Moore machines and acceptance
graphs, we consider worth investigating to what extent these constructions and the cor-
responding “alternative” semantics used for reasoning on must preorder are connected.
In what follows we recall the formal definition of acceptance graphs as introduced in
[CH89], show they are isomorphic (up-to divergent behaviours) with the Moore machines
used for the coalgebraic modelling of must semantics.
We proceed by first providing the basic ingredients needed for the definition of acceptance
graphs.

Consider Q ∈ PωS. The ǫ-closure of a Q is Qǫ = {p | q
ǫ
=⇒ p ∧ q ∈ Q}. The set of direct

a-successors of states q ∈Q is D(Q, a) = {q′ | q
a
−→ q′ ∧ q ∈Q}, where a ∈ A∪ {τ}.

4.6.11 DEFINITION (Acceptance graphs [CH89]). Consider L an LTS with divergence,
with state space S and visible actions labelled in A. The corresponding acceptance graph
ST (L ) = (T,A∪ {τ},→) is defined as follows.

1. T = {〈Q, b〉 ∈ PωS× {tt, ff} |Q =Qǫ ∧ (b = tt⇒Q↓)}.

2. For p = 〈Q, b〉 ∈ T define p.closed = b and

p.acc =

(
0 if p.closed = ff

min({{a ∈ A | q
a
−→} | q ∈Q ∧ q 6

τ
−→}) otherwise.
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(We refer to (4.3) in Section 4.1.1 for the definition of min.)

3. A transition 〈Q1, b1〉
a
−→T 〈Q2, b2〉 is performed exactly when the following hold:

a 6= τ, D(Q1, a)ǫ =Q2, and b1 = tt∧ (Q2↓ ⇒ b2 = tt). ♣

It is worth observing that, according to Definition 4.6.11, acceptance graphs are deter-
ministic, and moreover, there are no outgoing transitions from divergent states (see (c)
above). Considering graphs satisfying the latter property comes as a natural consequence
of the fact that the must preorder considers divergence catastrophic, as can be inferred
from Definition 4.6.3.
Given an LTS with divergenceL , and q a state ofL , the node in ST (L ) corresponding to
q is 〈{q}ǫ,q↓ǫ〉. Orthogonally, the state corresponding to q in the Moore machine derived
according to the powerset construction is {q}.
For an example, consider the following LTS:

q4

τ c

q2
b

c
q1

τa

a

q10 q3

τ

b
q7

q5 q8 q6
a c

q9

The associated Moore determinisation M when starting from q1 and the corresponding
acceptance graph ST (L ), respectively, are illustrated as follows.

M : {q1}
a

[abc] ST (L ): 〈{q1,q10}, tt〉
a

0

{q2,q3,q6}
a

b
c
[a]∪ [b] 〈{q2,q3,q6}, tt〉

a
b

c
{{b, c}, {a, c}}

{q8} ⊤ a,b,c {q5,q9} 〈{q8}, tt〉 〈{q4,q7}, ff〉 〈{q5,q9}, tt〉

[abc] ⊤ [abc] 0 0 0

Recall from Section 4.1.1 that for the simplicity of notation we write, for example, [abc]

in order to denote the powerset of {a, b, c}. In ST (L ), the notation 〈Q, b〉 ¹¹Ë B represents
a node p = 〈Q, b〉 such that p.acc = B and p.closed = b.
Observe that: both M and ST (L ) are deterministic, transitions starting from divergent
states ⊤ inM always produce output ⊤, whereas in ST (L ) divergent nodes p = 〈Qǫ , ff〉

are deadlock-like and, moreover, p.acc = 0.
Given an LTS L with state space S, the connection between non-divergent nodes Q in
the corresponding Moore machine M = (1 + PωS, 〈o♯, t♯〉) and those in the associated
acceptance graph ST (L ) is obvious. Each such Moore state Q corresponds to a node
p = 〈Qǫ , tt〉 in the acceptance graph such that p.acc = i(o♯(Q)), where i is the isomorphism
between downsets and antichains defined in Section 4.1.1.
For example, state {q1} inM is in one to one correspondence with p = 〈{qǫ1}= {q1,q10}, tt〉

in ST (L ), and, moreover:

i(o♯({q1})) = i(F = {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}})

= min(∪Fi∈F{A− Fi}) = 0= p.acc.

As already hinted, a divergent set of states Q is represented by ⊤ in the Moore machine
derived from an LTS, and it corresponds to a node p = 〈Qǫ , ff〉 in the associated acceptance
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graph, such that p has no outgoing transitions and p.acc = 0. For this case we refer to the
states Q = {q4,q7} in L .

An important remark is that divergent nodes and their successors in the Moore machines
can safely be ignored when reasoning on ⊑M . This follows as a consequence of:

¹Xº⊑M ¹Yº
iff (∀w ∈ A∗) .¹Xº(w)⊑ ¹Yº(w)
iff (∀w ∈ A∗) . Y ↓ ⇒ (X↓ ∧ ¹Xº(w)⊑ ¹Yº(w))

(as if X 6 ↓w then ¹Xº(w) = ⊤, which follows by induction on w ∈ A∗)

(4.19)

for all X , Y ∈ 1+PωS, where S is the state space of the LTS and A is the corresponding
action alphabet.

Hence, the corresponding subsequent transitions ⊤ ⊤ a can be ignored as well, for
all a ∈ A.

As a last ingredient in showing the connection between the Moore machine and the ac-
ceptance graph associated with an LTS with divergence, we make the following obser-

vations. Transitions o1 Q1
a

Q2 o2 between non-divergent states Q1,Q2 corre-

spond to transitions p1 = 〈Q
ǫ
1, tt〉

a
〈Qǫ2, tt〉= p2 such that pi .acc = i(oi), for i ∈ {1,2}.

Each transition o1 Q1
a
⊤ ⊤ with Q1 a non-divergent state matches a transition

p1 = 〈Q
ǫ
1, tt〉

a
−→ p2 such that p1.acc = i(o1), p2.closed = ff and p2.acc = 0.

At this point we conclude that, given an LTS with divergence L , the Moore machine
derived according to the powerset construction and the corresponding acceptance graph
ST (L ) are isomorphic up-to divergent behaviours.

4.7 Discussion

In this chapter, we have proved that the coalgebraic characterisations of decorated trace
semantics for labelled transition systems and generative probabilistic systems, respec-
tively, are equivalent with the corresponding standard definitions in [vG01a] and [JS90].
More precisely, we have shown that for a state x , the coalgebraic canonical representative
¹{x}º, given by determinisation and finality, coincides with the classical semantics I (x),
for I ranging over T ,CT ,R ,F ,PF ,RT and FT , representing the traces, complete
traces, ready pairs, failure pairs, possible futures, ready traces and, respectively, failure
traces of x in a labelled transition system. Similar equivalences have been proven for I
ranging overRp,Fp,MF p,Tp andMT p representing the ready, failure, maximal failure,
trace and maximal trace functions for the case of probabilistic systems.

We also showed that the spectrum of decorated trace semantics can be recovered from
the coalgebraic modelling.

Moreover, we provided an extension of trace and failure semantics to the context of la-
belled transition systems with internal behaviour, which further enabled the coalgebraic
modelling of may and must testing semantics in [CH89] via the generalised powerset
construction. A similar idea of system determinisation was also applied in [CH89], in a
non-coalgebraic setting where, in the absence of internal actions and divergence, respec-
tively, may testing coincides with trace and must testing coincides with failure semantics,
respectively. The connection with this work is also studied in this chapter.
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In addition, we have illustrated how to reason about decorated trace and testing seman-
tics using coinduction, by constructing suitable Moore bisimulations. This is a sound and
complete proof technique, and represents an important step towards automated reason-
ing, as it opens the way for the use of, for instance, coinductive theorem provers such as
CIRC [RL09].



Chapter 5

Algorithms for decorated trace and testing semantics

In Chapter 4 we provided a coalgebraic handling of a suite of semantics for different types
of systems. These consist of decorated trace semantics for labelled transition systems and
generative probabilistic systems, and may/must testing semantics for labelled transition
systems with internal behaviour. In this chapter we focus on deriving algorithms for
reasoning on failure and must testing, but our considerations hold also for the other
decorated trace semantics for LTS’s in Chapter 4, and for may testing semantics.

The problem of automatically checking these notions of behavioural equivalence is usually
reduced to the problem of checking bisimilarity, as implemented in several tools [CPS93b,
CS96, CDLT08, CGK+13] and proposed in [CH89] which introduces a procedure for
checking testing equivalences. The idea is the following. First, non-deterministic systems,
represented by labelled transition systems (LTS’s), are transformed into deterministic “ac-
ceptance graphs” with a construction which is reminiscent of the determinisation of non-
deterministic automata (NDA’s). Then, since bisimilarity in acceptance graphs coincides
with testing equivalence in the original LTS’s, one checks bisimilarity via the so-called par-

tition refinement algorithm [KS83, PT87]. Such algorithm, which is the best-known for
minimising LTS’s with respect to bisimilarity, is analogous to Hopcroft’s minimisation al-
gorithm [Hop71] for deterministic automata (DA’s) with respect to language equivalence.
In both, a partition of the state space is iteratively refined until the largest fixed-point is
reached. In a nutshell, the procedure for checking testing semantics adopted in [CH89]
is in essence the same as the classical procedure for checking language equivalence of
non-deterministic automata: first determinise and then compute a largest fixed-point.

This observation led us to experiment with applying other interesting language equiv-
alence algorithms, not available for bisimilarity, to solve the problem of checking must
and failure semantics. In order to achieve this, we took a coalgebraic perspective of
the problem at hand, which allowed us to study the constructions and the semantics
in a uniform fashion. The abstract coalgebraic framework enabled a unified study of
different kinds of state based systems: (a) both the determinisation of NDA’s and the
construction of acceptance graphs in [CH89] are instances of the generalised powerset
construction [CHL03, Len99, SBBR10], and (b) the iterations of both the Hopcroft and
the partition refinement algorithms are in one-to-one correspondence with the so-called
construction of the terminal sequence [AK95, Wor05]. While (b) is well-known in the
community of coalgebras [ABH+12, FME05, Kur00, Sta11], (a) is the key observation of
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this work, which enabled us to devise other algorithms for must and failure semantics
(introduced in Section 4.1.1 and Section 4.6.2, respectively).

First, we consider Brzozowski’s algorithm [Brz62] which transforms an NDA into the min-
imal deterministic automaton accepting the same language: the input automaton is re-
versed (by swapping final and initial states and reversing its transitions), determinised,
reversed and determinised once more. This somewhat intriguing algorithm can be ex-
plained in terms of duality and coalgebras [BBRS12, BPK12]. In particular, the approach
in [BBRS12] allows us to extend it to Moore machines, which paves the way to adapt
Brzozowski’s algorithm for checking testing semantics.

Next, we consider several more efficient algorithms that have been recently introduced in
a series of papers [ACH+10, BP13, DR10, WDHR06]. These algorithms rely on different
kinds of (bi)simulations up-to, which are proof techniques originally proposed for process
calculi [Mil89, MPW92, San98]. From these algorithms, we choose the one in [BP13]
(HKC), which can be easily proved correct using coalgebraic techniques. HKC can be easily
adapted to check must testing, once a coalgebraic characterisation of must equivalence is
given.
Comparing the efficiency of these three families of algorithms (partition refinement
[CH89], Brzozowski and bisimulations up-to) is not a trivial task. Both the problems
of checking language and testing equivalence are PSPACE-complete as shown in [MS73]
and [KS83], respectively. However, in both cases, the theoretical complexity appears
not to be problematic in practice, so that an empirical evaluation is more desirable.
In [TV05, Wat95, Wat00], experiments have shown that Brzozowski’s algorithm performs
better than Hopcroft’s one for “high-density” NDA’s, while Hopcroft’s algorithm is more
efficient for generic NDA’s. Both algorithms appear to be rather inefficient compared to
those of the new generation [ACH+10, BP13, DR10, WDHR06]. It is out of the scope of
this work to present an experimental comparison of the adaptation of these algorithms
for must equivalence; we confine our results to showing that each approach can be more
efficient than the others on concrete examples.

summarising, the main contributions of this chapter are:

– The adaptation of HKC and Brzozowski’s algorithm for failure and must semantics.
For the latter, this includes an optimisation which avoids an expensive determinisa-
tion step. All the observations for failure can be used for various other decorated
trace semantics, such as ready and ready trace.

– An interactive applet1 allowing one to experiment with these algorithms.

– Experiments checking the equivalence of an ideal and a distributed multiway syn-
chronisation protocol [PS96].

– At a more conceptual level, the present work also shows that the coalgebraic anal-
ysis of systems yields not only a good mathematical theory of their semantics but
also a rich playground to devise algorithms.

Organisation of the chapter. We first recall the word automata, the algorithms we will
start with, and their coalgebraic description (Sect. 5.1). We adapt these algorithms to
failure semantics (Sections 5.2.1, 5.2.3, 5.2.4, 5.2.5), and then to must semantics (Sec-
tions 5.2.2, 5.2.3, 5.2.6, 5.2.7) for finite machines: although failure semantics can be
seen as a special case of must semantics, the first generalisation is important for the sake

1http://perso.ens-lyon.fr/damien.pous/brz

http://perso.ens-lyon.fr/damien.pous/brz
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of clarity. We finally give examples illustrating the relative behaviour of the various algo-
rithms (Sections 5.3, 5.4), before concluding (Section 5.5).

5.1 Language equivalence

The core of this chapter is about the problem of checking whether two states in a finite
transition system are behavioural equivalent, for a certain notion of equivalence. More
explicitly, we will reduce the problem of reasoning on failure and must testing semantics,
respectively, to the classical problem of checking language equivalence.
We proceed by first providing a short overview on deterministic automata (DA’s), Moore
machines and non-deterministic automata (NDA’s), and the problem of recovering lan-
guage semantics of NDA’s, in the coalgebraic setting.
We recall again that a deterministic automaton over the input alphabet A is a pair (S, 〈o, t〉),
where S is a set of states and 〈o, t〉: S→ 2× SA is a function with two components: o, the
output function, determines whether a state x is final (o(x) = 1) or not (o(x) = 0); and
t, the transition function, returns for each state and each input letter, the next state.
From any DA, there exists a function ¹−º: S → 2A∗ mapping states to formal languages,
defined as follows, for all x ∈ S:

¹xº(ǫ) = o(x) ¹xº(a ·w) = ¹t(x)(a)º(w) (5.1)

The language ¹xº is called the language accepted by x , and it consists of all words
w ∈ A∗ which, if executed from x , lead to a final (or accepting) state. Given an automaton
(S, 〈o, t〉), the states x , y ∈ S are said to be language equivalent iff they accept they same
language.
Throughout this chapter, we will use Moore machines which are coalgebras for the functor
F(S) = B × SA. These are very similar to DA’s, but with outputs in any (fixed) set B. The
unique F -homomorphism to the final coalgebra ¹−º: S → BA∗ is defined exactly as for
DA’s by the equations in (5.1). Note that the behaviours of Moore machines are functions
ϕ : A∗ → B, rather than subsets of A∗. For each behaviour ϕ ∈ BA∗ , there exists a minimal
Moore machine realising it.
A non-deterministic automaton is similar to a DA but the transition function returns a set
of next-states instead of a single state. Thus, an NDA over the input alphabet A is a pair
(S, 〈o, t〉), where S is a set of states and 〈o, t〉: S → 2× (Pω(S))

A. An example is depicted
below (final states are overlined, labelled edges represent transitions).

x

a

za
a

y
a

u
a

a

w
a

va (5.2)

Classically, in order to recover language semantics of NDA, one uses the powerset con-

struction (see Section 2.3 for a reminder), transforming every NDA (S, 〈o, t〉) into the DA
(Pω(S), 〈o

♯, t♯〉) where o♯ : Pω(S)→ 2 and t♯ : Pω(S)→Pω(S)
A are defined for all X ∈ Pω(S)

as

o♯(X ) =
⊔

x∈X

o(x) t♯(X )(a) =
⊔

x∈X

t(x)(a) .

Note that we use ⊔ to denote the “Boolean or” in 2, the union of languages in 2A∗ and the
union of sets in Pω(S).
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For instance with the NDA from (5.2), o♯({x , y}) = 0⊔ 1= 1 (i.e., the state {x , y} is final)

and t♯({x , y})(a) = {y} ⊔ {z} = {y, z} (i.e., {x , y}
a
→ {y, z}).

Since (Pω(S), 〈o
♯, t♯〉) is a deterministic automaton, we can now apply the language se-

mantics above, yielding a function ¹−º: Pω(S)→ 2A∗ mapping sets of states to languages.
Given two states x and y , we say that they are language equivalent iff ¹{x}º = ¹{y}º.
More generally, for two sets of states X , Y ⊆ S, we say that X and Y are language equiva-
lent iff ¹Xº= ¹Yº.
In order to introduce the algorithms in full generality, it is important to recall here that
the sets 2, Pω(S), Pω(S)

A, 2× Pω(S)
A and 2A∗ carry a semilattice with bottom structure

(X ,⊔, 0) and that the functions 〈o♯, t♯〉: Pω(S) → 2× Pω(S)
A and ¹−º: Pω(S) → 2A∗ are

homomorphisms of semilattices with bottom. In the rest of the chapter we will indiscrim-
inately use 0 to denote the element 0 ∈ 2, the empty language in 2A∗ and the empty set in
Pω(S).

5.1.1 Language equivalence via bisimulation up-to: HKC

We recall the algorithm HKC from [BP13]. We first provide a notion of bisimulation on
sets of states, underlying the notion of progression. Note that this is equivalent to the
bisimulation introduced in Section 2.2, but more appropriate for the proofs in this chapter.

5.1.1 DEFINITION (Progression, Bisimulation). Given two relations R,R′ ⊆Pω(S)×Pω(S),
R progresses to R′, denoted R R′, if whenever X R Y then

1. o♯(X ) = o♯(Y ) and 2. for all a ∈ A, t♯(X )(a) R′ t♯(Y )(a).

A bisimulation is a relation R such that R R. ♣

This definition considers the states, the transitions and the outputs of the determinised
NDA. For this reason, the bisimulation proof technique is sound and complete for lan-
guage equivalence.

Consequently, the coinduction proof principle is stated as follows.

5.1.2 PROPOSITION (Coinduction). For all X , Y ∈ Pω(S), ¹Xº = ¹Yº iff there exists a

bisimulation that relates X and Y .

For an example, suppose that we want to prove the equivalence of {x} and {u} of the NDA
in (5.2). The part of the determinised NDA that is reachable from {x} and {u} is depicted
below. The relation consisting of dashed and dotted lines is a bisimulation which proves
that ¹{x}º= ¹{u}º.

{x}
a

1

{y}
a

2

{z}
a

3

{x , y}
a
{y, z}

a
{x , y, z}

a

{u}
a
{v, w}

a
{u, w}

a
{u, v, w} a

(5.3)

The dashed lines (numbered by 1, 2, 3) form a smaller relation which is not a bisimula-
tion, but a bisimulation up-to congruence: the equivalence of {x , y} and {u, v, w} can be
immediately deduced from the fact that {x} is related to {u} and {y} to {v, w}. In order to
formally introduce bisimulations up-to congruence, we need to define first the congruence
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closure c(R) of a relation R ⊆ Pω(S)× Pω(S). This is done inductively, by the following
rules:

X R Y

X c(R) Y X c(R) X

X c(R) Y

Y c(R) X

X c(R) Y Y c(R) Z

X c(R) Z

X1 c(R) Y1 X2 c(R) Y2

X1 ⊔ X2 c(R) Y1 ⊔ Y2

(5.4)

Note that the term “congruence” here is intended with respect to the semilattice structure
carried by the state space Pω(S) of the determinised automaton. Intuitively, c(R) is the
smallest equivalence relation containing R and which is closed w.r.t ⊔.

5.1.3 DEFINITION (Bisimulation up-to congruence). A relation R ⊆ Pω(S)×Pω(S) is a
bisimulation up-to c if R c(R), i.e., whenever X R Y then

1. o♯(X ) = o♯(Y ) and 2. for all a ∈ A, t♯(X )(a) c(R) t♯(Y )(a). ♣

5.1.4 THEOREM ([BP13]). Any bisimulation up-to c is contained in a bisimulation.

Figure 5.1 shows the corresponding algorithm, parametric on o♯, t♯, and c. Starting from
an NDA (S, 〈o, t〉) and considering the determinised automaton (S, 〈o♯, t♯〉), it can be used
to check language equivalence of two sets of states X and Y . Starting from the pair
(X , Y ), the algorithm builds a relation R that, in case of success, is a bisimulation up-to
congruence. In order to do that, it employs the set todo which, intuitively, at any step of
the execution, contains the pairs (X ′, Y ′) that must be checked: if (X ′, Y ′) already belongs
to c(R ∪ todo), then it does not need to be checked. Otherwise, the algorithm checks if
X ′ and Y ′ have the same outputs. If o♯(X ′) 6= o♯(Y ′) then X and Y are different, otherwise
the algorithm inserts (X ′, Y ′) in R and, for all a ∈ A, the pairs (t♯(X ′)(a), t♯(Y ′)(a)) in todo.
The check (X ′, Y ′) ∈ c(R∪ todo) at step 2.2 is done with the rewriting algorithm of [BP13,
Section 3.4].

5.1.5 PROPOSITION. For all X , Y ∈ Pω(S), ¹Xº= ¹Yº iff HKC(X , Y ).

The iterations corresponding to the execution of HKC({x}, {u}) on the NDA in (5.2) are
concisely described by the numbered dashed lines in (5.3). Observe that only a small
portion of the determinised automaton is explored; this fact usually makes HKC more effi-
cient than the algorithms based on minimisation, that need to build the whole reachable
part of the determinised automaton.

5.1.2 Language equivalence via Brzozowski’s algorithm

The problem of checking language equivalence of two sets of states X and Y of a non-
deterministic finite automaton can be reduced to that of building the minimal DA for
¹Xº and ¹Yº and checking whether they are the same (up to isomorphism). The most
well-known procedure consists in first determinising the NDA and then minimising it
with Hopcroft’s algorithm [Hop71]. Another interesting solution is Brzozowski’s algo-
rithm [Brz62].
To explain the latter, it is convenient to consider a set of initial states I . Given an NDA
(S, 〈o, t〉) and a set of states I , Brzozowski’s algorithm computes the minimal automaton
for the language ¹Iº by performing the 4 steps in Figure 5.1.
The operation “reverse and determinise” takes as input an NDA (S, 〈o, t〉) and returns a DA
(Pω(S), 〈oR, tR〉) where the functions oR : Pω(S)→ 2 and tR : Pω(S) → Pω(S)

A are defined
for all X ∈ Pω(S) as

oR(X ) = 1 iff X ∩ I 6= 0 tR(X )(a) = {x ∈ S | t(x)(a)∩ X 6= 0}
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HKC(X , Y ):

(1) R is empty; todo is {(X , Y )};

(2) while todo is not empty, do

(2.1) extract (X ′, Y ′) from todo;

(2.2) if (X ′, Y ′) ∈ c(R∪ todo) then continue;

(2.3) if o♯(X ′) 6= o♯(Y ′) then return false;

(2.4) for all a ∈ A, insert (t♯(X ′)(a), t♯(Y ′)(a)) in todo;

(2.5) insert (X ′, Y ′) in R;

(3) return true;

Brzozowski:
(1) reverse and determinise;

(2) take the reachable part;

(3) reverse and determinise;

(4) take the reachable part.

Figure 5.1: Generic HKC algorithm, parametric on o♯, t♯ and c. Generic Brzozowski’s al-
gorithm, parametric on reverse and determinise. Instantiation to language/failure/must
equivalence.

and the new initial state is the old set of final states: IR = {x | o(x) = 1}. The second step
consists in taking the part of (Pω(S), 〈oR, tR〉) which is reachable from IR. The third and
the fourth steps perform this procedure once more.
As an example, consider the NDA in (5.2) with the set of initial states I = {x}. Brzo-
zowski’s algorithm builds the minimal DA accepting ¹{x}º as follows. After the first two
steps, it returns the following DA where the initial state is {y}.

{y}
a
{x , z}

a
{z, y}

a
{x , y, z} a

After steps 3 and 4, it returns the DA below with initial state {{x , z}{x , y, z}}.

{{x , z}{x , y, z}}
a
{{y}{z, y}{x , y, z}}

a

{{x , z}{z, y}{x , y, z}}
a
{{y}{x , z}{z, y}{x , y, z}} a

Computing the minimal NDA in (5.2) with the set of initial states I = {u} results in an
isomorphic automaton, showing the equivalence of x and u.

5.2 Algorithms for failure and must testing semantics

In this section we show how the algorithms HKC and Brzozowski can be adapted for rea-
soning on failure and must testing semantics. Next we briefly summarise the coalgebraic
modelling of these semantics via the generalised powerset construction, as introduced in
Chapter 4.
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An LTS over the alphabet A is a pair (S, t) with t : S→Pω(S)
A. For a function ϕ ∈ Pω(S)

A,
I(ϕ) denotes the set of all labels “enabled” by ϕ, given by I(ϕ) = {a ∈ A | ϕ(a) 6= 0}, while
Fail(ϕ) denotes the set {Z ⊆ A | Z ∩ I(ϕ) = 0}. A failure pair of a state x ∈ S is a pair

(w, Z) ∈ A∗ ×Pω(A) such that x
w
→ y and Z ∈ Fail(t(y)). The set of failure pairs of x is

denoted by F (x). Given two states x , y ∈ S, x is failure equivalent to y (x ∼F y) if and
only if F (x) =F (y).
In short, the coalgebraic modelling of failure semantics in Section 4.1.1 is as follows. First,
the states of an LTS (S, t) are decorated by means of the output function o : S→Pω(Pω(A))

defined as
o(x) = Fail(t(x)). (5.5)

Then, the decorated LTS (S, 〈o, t〉) is translated, using the generalised powerset construc-
tion from Section 2.3, into a Moore machine (Pω(S), 〈o

♯, t♯〉) with o♯ : Pω(S)→Pω(Pω(A))

and t♯ : Pω(S)→Pω(S)
A defined for all X ∈ Pω(S) as

o♯(X ) =
⊔

x∈X

o(x) t♯(X )(a) =
⊔

x∈X

t(x)(a) (5.6)

where, in the left equation, ⊔ denotes the union of subsets in Pω(Pω(A)). Note that
(Pω(S), 〈o

♯, t♯〉) is a Moore machine with outputs in Pω(Pω(A)). The map into the fi-
nal Moore coalgebra ¹−º: Pω(S)→ (Pω(Pω(A)))A

⋆

associates to a set of states their “be-
haviours”. The latter are in one-to-one correspondence with failure pairs. More explicitly,
for all x ∈ S, Z ∈ Pω(Pω(A)) and w ∈ A∗:

Z ∈ ¹{x}º(w) iff (w, Z) ∈ F (x). (5.7)

Hence,
x ∼F y iff ¹{x}º= ¹{y}º. (5.8)

The trace-based characterisation of must testing in [CH89] leads to a similar coalgebraic
representation via the generalised powerset construction. In Section 4.6.2 we modelled
LTS’s with internal behaviour and divergence as coalgebras (S, t : S → (1+Pω(S))

A) such
that, for all x ∈ S and a ∈ A

t(x)(a) = ⊤, if x 6 ↓a t(x)(a) = {y | x
a
=⇒ y}, otherwise. (5.9)

Recall that
a
=⇒ denotes the execution of an action a ∈ A, possibly preceded or followed by

(any number of) internal steps τ, ↓ is the convergence predicate, and 1 = {⊤} is used to
coalgebraically “capture” divergent behaviours.
Then, we decorate such LTS’s by means of a function o : S → 1+Pω(PωA) such that, for
all x ∈ S and a ∈ A

o(x) =





⊤ if x 6 ↓⋃
x
τ
−→x ′

o(x ′) if x
τ
−→

Fail(t(x)) otherwise.

(5.10)

Finally, we apply the generalised powerset construction and derive a Moore machine
(1+Pω(S), 〈o

♯, t♯〉) defined for all x ∈ 1+Pω(S) and a ∈ A as

o♯(X ) =

¨
⊤ if X =⊤⊔

x∈X o(x) if X ∈ Pω(S)
t♯(X )(a) =

¨
⊤ if X = ⊤⊔

x∈X t(x)(a) if X ∈ Pω(S)
(5.11)
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The state space (1+Pω(Pω(A))
A∗ of the final Moore coalgebra carries the structure of a join

semilattice with top, inducing a partial order ⊑M . This, together with the behaviour map
¹−º: 1+Pω(S)→ (1+Pω(Pω(A))

A∗ further enabled formalising must testing preorder and
equivalence, respectively, as follows:

x ⊑mst y iff ¹{y}º⊑M ¹{x}º
x ∼mst y iff ¹{x}º= ¹{y}º. (5.12)

5.2.1 HKC for failure semantics

The algorithm HKC in Figure 5.1 can be used to check failure equivalence on an LTS
(S, t) by taking o♯ and t♯ as defined in (5.6). Then, the congruence closure c is defined
as for language equivalence in (5.4). The analogue of Proposition 5.1.5 can be proved
in exactly the same way (check Section 5.2.3): in particular, soundness of bisimulation
up-to-congruence is guaranteed from the fact that (Pω(S), 〈o

♯, t♯〉) is a bialgebra.

We provide an example of using bisimulation up-to congruence for reasoning on failure
semantics. Consider the following systems, where n is an arbitrary natural number:

v1

a,b

b

a

v2
b

a,b

a

. . .
b

vn

a,b

ax

a,b

b

a

y

a,b

u1

a,b

a

b

u2

a,b

a

b

. . .
a

un

a,b

b

It is easy to see that x and y are bisimilar: intuitively, all the states of the automata
depicted above can trigger actions a and b as a first step and, moreover, all their sub-
sequent transitions lead to states with the same behaviour. Therefore x and y are also
F -equivalent, according to van Glabbeek’s lattice of semantic equivalences [vG01a] (par-
tially) illustrated in Figure 4.1 in Chapter 4.

The coalgebraic machinery provides a “yes” answer with respect to
F -equivalence of the two LTS’s as well. After determinisation, {x} can reach all states
of shape: {x}∪ui , {x}∪ v i , {x}∪ui ∪ v i , for i ∈ {1, . . . , n} and {x}∪u j∪{v1}, {x}∪ v j∪{u1},
respectively, for j ∈ {2, . . . , n}. (We write, for example, ui in order to represent the set
{u1,u2, . . . ,ui}.)

Consequently, the generalised powerset construction associates to x a Moore automaton
consisting of 5n− 1 states, whereas the determinisation of y has only one state. Hence,
the (Moore) bisimulation relation R including ({x}, {y}) consists of 5n−1 pairs as follows:

R = {({x}, {y})}∪

{({x} ∪ ui ∪ {v1}, {y}), ({x} ∪ v i ∪ {u1}, {y}) | i ∈ {2, . . . , n}}∪

{({x} ∪ ui , {y}), ({x} ∪ v i , {y}), ({x} ∪ ui ∪ v i , {y}) | i ∈ {1, . . . , n}}.
(5.13)

For a better intuition, we illustrate bellow the determinisations starting from x and y , for
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the case n= 3:

{x}
a b

{y} a,b

{x ,u1}a b
{x , v1}a b

{x ,u1,u2}

a

b

{x ,u1, v1}a b
{x , v1, v2}

b

a

{x ,u1,u2, v1}

a

b
{x ,u1, v1, v2}

b

a

{x ,u1,u2, v1, v2}

a,b

It is easy to see that the bisimulation relating {x} and {y} consists of all pairs (X , {y}),
with X ranging over the state space of the Moore automaton derived according to the
generalised powerset construction, starting with {x}.

Observe that all the pairs in R in (5.13) can be “generated” from ({x}, {y}), ({x}∪ui , {y})

and ({x} ∪ v i , {y}) by iteratively applying the rules in (5.4). Therefore, for an arbitrary
natural number n, the bisimulation up-to congruence stating the equivalence of x and y

is:

Rc = {({x}, {y})} ∪ {({x} ∪ ui , {y}), ({x} ∪ v i , {y}) | i ∈ {1, . . . , n}}

and consists of only 2n+ 1 pairs. The latter represent exactly the states explored by HKC.

5.2.2 HKC for must semantics

The coalgebraic characterisation of must testing guarantees soundness and completeness
of bisimulation up-to congruence for the associated equivalence. Bisimulations are now
relations R ⊆ (1+Pω(S))× (1+Pω(S)) on the state space 1+Pω(S) where o♯ and t♯ are
defined as in (5.11). Now, the congruence closure c(R) of a relation R⊆ (1+Pω(S))×(1+

Pω(S)) is defined by the rules in (5.4) where ⊔ is the join in (1+Pω(S)) (rather than the
union in Pω(S)). By simply redefining o♯, t♯ and c(R), the algorithm in Figure 5.1 can be
used to check must equivalence and preorder (the detailed proof is in Section 5.2.3).

Consider, for an example, the LTS’s in Section 4.6.2:

x

b
a

a

x2

τ

b
x4 τ

x1

a

b

x3
a b

x5

τ

ya
b

y1 τ (5.14)

In Section 4.6.2 we showed that the states x and y are must equivalent, by identifying
a bisimulation relating {x} and {y}. This time however, we depict by the dashed lines
in (5.15) the relation R = {({x}, {y}), ({x1, x2, x3}, {y})} which is not a bisimulation, but a
bisimulation up-to congruence, since both (⊤,⊤) ∈ c(R) and ({x , x1}, {y}) ∈ c(R). For the
latter, observe that

{x , x1} c(R) {y, x1} c(R) {x1, x2, x3} c(R) {y}.
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⊤

a,b

{x}b
a
{x1, x2, x3}

b
a
{x , x1}

b

a
{x , x1, x2, x3}

b a

⊤

a,b

{y}

a

b

(5.15)

It is important to remark here that HKC computes this relation without the need of explor-
ing all the reachable part of the Moore machine (1+Pω(S), 〈o

♯, t♯〉). So, amongst all the
states in (5.15), HKC only explores {x}, {y} and {x1, x2, x3}.

5.2.3 Correctness of HKC

We provide a uniform proof of correctness of HKC in Figure 5.1 for language, failure and
must semantics (Proposition 5.1.5). The key step is (the analogue) of Theorem 5.1.4
stating that bisimulation up-to congruence is a sound proof technique. This holds for any
bialgebra (see e.g. Corollary 6.6 in [RBR13]) and, in particular, for (Pω(S), 〈o

♯, t♯〉) (or
(1+ Pω(S), 〈o

♯, t♯〉)) which is guaranteed to be a bialgebra by the generalised powerset
construction (we refer the interested reader to [Kli11] for a nice introduction on this
topic).
We first observe that if HKC(X , Y ) returns true then the relation R that is built before
arriving to step 3 is a bisimulation up-to congruence. Indeed, the following proposition is
an invariant for the loop corresponding to step 2:

R c(R∪ todo)

This invariant is preserved since at any iteration of the algorithm, a pair (X ′, Y ′) is re-
moved from todo and inserted in R after checking that o♯(X ′) = o♯(Y ′) and adding
(t♯(X ′)(a), t♯(Y ′)(a)) for all a ∈ A in todo. Since todo is empty at the end of the loop,
we eventually have R c(R), i.e., R is a bisimulation up-to congruence.
We now prove that if HKC(X , Y ) returns false, then ¹Xº 6= ¹Yº. Note that for all (X ′, Y ′)

inserted in todo, there exists a word w ∈ A⋆ such that, in the determinised NDA, X
w
→ X ′

and Y
w
→ Y ′. Since o♯(X ′) 6= o♯(Y ′), then ¹Xº(w) = o♯(X ′) 6= o♯(Y ′) = ¹Yº(w).

5.2.4 Brzozowski’s algorithm for failure semantics

A variation of Brzozowski’s algorithm for Moore machines is given in [BBRS12]. We
could apply such algorithm to the Moore machine (Pω(S), 〈o

♯, t♯〉) which is induced by a
decorated LTS (S, 〈o, t〉), with o defined as in (5.5). However, we propose a more efficient
variation that skips the first determinisation from (S, 〈o, t〉) to (Pω(S), 〈o

♯, t♯〉).
The novel algorithm consists of the four steps described in Section 5.1.2, where the pro-
cedure “reverse and determinise” is modified as follows: (S, 〈o, t〉) with initial state I is
transformed into (Pω(Pω(A))

S , oR, tR) where

oR : Pω(Pω(A))
S →Pω(Pω(A))

and
tR : Pω(Pω(A))

S → (Pω(Pω(A))
S)A
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are defined for all functions ψ ∈ Pω(Pω(A))
S as

oR(ψ) =
⊔

x∈I

ψ(x) tR(ψ)(a)(x) =
⊔

y∈t(x)(a)

ψ(y) (5.16)

and the new initial state is IR = o.
Note that the result of this procedure is a Moore machine. Brzozowski’s algorithm in
Figure 5.1 transforms an NDA (S, 〈o, t〉) with initial state I into the minimal DA for ¹Iº.
Analogously, our novel algorithm transforms an LTS into the minimal Moore machine for
¹Iº.
Let us illustrate the minimisation procedure by means of an example. Consider the LTS
(S, t) on the alphabet A= {a, b, c} depicted below.

q u o(p) = {0} o(s) = {0}

pa

b

c

a

s
a

b

c

o(q) =Pω(A) o(u) =Pω(A)

r v o(r) = Pω(A) o(v) = Pω(A)

The function o : S→Pω(Pω(A)) assigning to each state x the set Fail(t(x)) is given on the
right. Suppose we want to build the minimal Moore machine for the behaviour ¹{p}º,
i.e., the set of failure pairs of p:

F (p) = {(a∗, {0}), (a∗b,Pω(A)), (a
∗c,Pω(A))}.

By applying our algorithm to the decorated LTS (S, 〈o, t〉), we first obtain the intermediate
Moore machine on the left below, where a double arrow ψ⇒ Z means that the output of
ψ is the set Z. The new initial state isψ1 : S→Pω(PωA) which, by definition, is the output
function of the original LTS mapping p, s to {0} and q, r,u and v to Pω(A). The explicit
definitions of the other functions ψi can be easily computed according to the definition
of tR (5.16).

{0} ψ1
a

b,c

ψ2

b,c
a

{0}

Pω(A) ψ3

a

b,c
ψ4

a,b,c

0

α1
a

b,c
α2 a,b,c

α3 a,b,c

{0} Pω(A) 0

Observe that ¹ψ1º is the “reverse” of ¹{p}º. For instance, triggering a sequence in the
language denoted by ba∗ from ψ1 leads to ψ3 with output Pω(A); this is the same output
we get by executing a∗b from p, according to F (p). Executing “reverse and determinise”
once more (step 3) and taking the reachable part (step 4), we obtain the minimal Moore
machine depicted on the right, with initial state α1.
The correctness of this algorithm is established in Section 5.2.5; it builds on the coalge-
braic perspective on Brzozowski’s algorithm given in [BBRS12].

5.2.5 Correctness of Brzozowski for failure semantics

The main intuition behind Brzozowski algorithm is that the procedure reverse and
determinise transforms a system into one having the “reversed” behaviour. Moreover,
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if the original system is reachable (that is all the states are reachable from the initial state),
then the resulting system is observable (that is, all the states have different behaviours).
Therefore, after performing the first two steps of Brzozowski’s algorithm, one obtains a
system which is reachable and that has a “reversed” behaviour. After the third step, the
system has the original behaviour and, moreover, it is observable. After the fourth step, it
is observable and reachable, that is, it is minimal.

There are two key steps for our proof: (a) showing that the procedure reverse and
determinise introduced in Section 5.2.4 transforms a decorated LTS into a Moore ma-
chine having “reversed” behaviour; (b) showing that at the third step the algorithm trans-
forms a reachable Moore machine into an observable one.

Point (b) follows immediately from Section 5 in [BBRS12], where a variation of Brzo-
zowski’s algorithm for Moore machines is introduced: when restricted to Moore ma-
chines, the operations of reversing and determinising in the our algorithm coincide with
those in [BBRS12].

In the sequel, we prove (a) by relying on [BBRS12]. Let (S, t) be an LTS with the initial
set of initial states i : 1 → Pω(S) (we prefer to use this functional notation, rather than
I ∈ Pω(S), because it is more convenient for the proof). Let (Pω(S), 〈o

♯, t♯〉) be the corre-
sponding Moore machine (as defined in (5.6)) and let ¹−º: Pω(S) → (Pω(Pω(A)))A

⋆

be
the induced semantics map.

By reversing and determinising as in [BBRS12], we obtain the Moore machine

(Pω(Pω(A))
PωS , 〈o

♯
R t
♯
R〉)

with initial states iR, defined as

iR = o♯ o
♯
R(ϕ) = ϕ ◦ i t

♯
R(ϕ)(a)(X ) = ϕ(t

♯(X )(a)). (5.17)

According to [BBRS12], we know that this machine has “reversed” behaviour, i.e,

(∀w ∈ A∗) .¹iRº1(w) = ¹iº(wR) (5.18)

where

¹−º1 : Pω(Pω(A))
PωS → (Pω(Pω(A)))

A⋆

is the semantic map, and wR denotes the reverse word w inductively defined as ǫR = ǫ

and (aw′)R = w′Ra.

Our algorithm performs the determinisation and the “reverse and determinise” at once.
For a Moore machine defined as in (5.16,) the map to the final coalgebra

¹−º2 : Pω(Pω(A))
S → (Pω(Pω(A)))

A⋆

satisfies the following lemma.

5.2.1 LEMMA. Let ψ ∈ (Pω(PωA))S and ϕ ∈ (Pω(PωA))PωS be such that, for all X ∈ PωS

ϕ(X ) = ⊔x∈Xψ(x). (⋆)

Then, ¹ψº2 = ¹ϕº1.
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PROOF. The proof is by induction on w ∈ A∗. For the base case, w = ǫ, we have:

¹ψº2(ǫ) = oR(ψ) =
⊔

x∈i

ψ(x)
(⋆)
= ϕ(i) = o

♯
R(ϕ) = ¹ϕº1(ǫ)

For the inductive step, consider w ∈ A∗ and assume that ¹ψº2(w) = ¹ϕº1(w) holds for
all ψ,ϕ satisfying (⋆).

We want to prove that ¹ψº2(aw) = ¹ϕº1(aw) holds for a ∈ A. We first define ϕa(X ) =

ϕ(t♯(X )(a)) andψa(x) = ⊔y∈t(x)(a)ψ(y), where X ∈ PωS and x ∈ S (which, as an intuition,
will further be used when applying the induction hypothesis in our proof).

Note that (⋆) is satisfied by ϕa and ψa: ϕa(X ) =
⊔
x∈X

ψa(x), because

ϕa(X ) = ϕ(t
♯(X )(a)) = ϕ(
⊔

x∈X

t(x)(a))t
(⋆)
=
⊔

x∈X

⊔

y∈t(x)(a)

ψ(y) =
⊔

x∈X

ψa(x).

At this point it is easy to see that ¹ψº2(aw) = ¹ϕº1(aw):

¹ϕº1(aw) = ¹λX .ϕ(t♯(X )(a))º1(w) (by definition of t
♯
R)

= ¹λX .ϕa(X )º1(w)
= ¹λx .ψa(x)º2(w) (by the induction hypothesis)

= ¹λx . ⊔y∈t(x)(a)ψ(y)º2(w)
= ¹tR(ψ)(a)º2(w) = ¹ψº2(aw). �

In particular, if we take ψ = IR and ϕ = o♯, we have that ¹IRº2 = ¹o♯º1. By (5.18) and
the fact that and iR = o♯ the following holds:

(∀w ∈ A∗) .¹o♯º1(w) = ¹iº(wR).

summarising, for all w ∈ A∗, ¹IRº2(w) = ¹iº(wR).
For an example of this fact, observe that p and ψ1 in Section 5.2.4 have reversed be-
haviours.

5.2.6 Brzozowski’s algorithm for must semantics

The Brzozowski algorithm introduced in Section 5.2.4 for failure equivalence can be used
also for checking ∼mst and ⊑mst . Now, the procedure “reverse and determinise” returns
the Moore machine ((1+Pω(Pω(A)))

S, oR, tR). The initial state IR, the outputs

oR : (1+Pω(Pω(A)))
S → 1+Pω(Pω(A))

and the transitions

tR : (1+Pω(Pω(A)))
S → ((1+Pω(Pω(A)))

S)A

are defined as in (5.16), plus the case

tR(ψ)(a)(x) =⊤ if t(x)(a) =⊤,
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by replacing o and t with those defined in (5.10) and (5.9), and by considering the join
operation ⊔ in 1+Pω(Pω(A)) (rather than in Pω(Pω(A))).

In what follows, we illustrate Brzozowski’s algorithm for must testing, by means of an
example. Consider the divergent LTS (S, t) below:

x1

a

a

x3
b

x4

a,b
x5

τ

x2

a

a

and o : S→ 1+Pω(Pω(A)) the decoration function

o(x1) = o(x2) = {b}

o(x3) = {a}

o(x4) = {0}

o(x5) = ⊤.

Assume we want to build the minimal Moore machine for the behaviour of x1, which is
must testing equivalent with x2. By applying our algorithm to the decorated LTS (S, 〈o, t〉)

we obtain the following intermediate Moore machine:

{0, {b}} {0, {a}, {b}} 0

ψ1
a

b

ψ2
b

a

ψ4 b

a

ψ3
b

a ψ5

b

a

0 ⊤

Observe that ¹ψ1º is the “reverse” of ¹{x1}º. For instance, each sequence w in the lan-
guage denoted by ba∗ determines, when triggered fromψ1, the output 0, which coincides
with the (empty) set of actions that the automaton can fail to execute after performing
w. Finally, we execute reverse and determinise and get the following minimal Moore
automaton (with initial state α1):

{0, {b}} {0, {a}, {b}} 0

α1
a

b

α2
b

a

α4

a,b

α3a,b α5 a,b

0 ⊤

Remark that the behaviours of the must equivalent states x1 and x2 have been “collapsed”
into α1.
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5.2.7 Correctness of Brzozowski’s algorithm for must semantics

In this section we show the correctness of Brzozowski’s algorithm for must equivalence.
The approach is similar to the one described in Section 5.2.5; the slight differences which
are consequences of the divergence-sensitive nature of must semantics are summarised
as follows.
Consider an LTS with divergence (S, t : S→ (1+PωS)A), with the initial set of initial states
i : 1→Pω(S). As recalled in the beginning of this chapter, the corresponding coalgebraic
ingredients are extended to 1+Pω(−) (see 5.11): the associated Moore machine has the
state space in 1+PωS and observations in 1+Pω(PωA), whereas the induced semantic
map becomes ¹−º: 1+Pω(S)→ (1+Pω(Pω(A)))

A⋆ . Consequently, the current approach
considers the join operation ⊔ in 1+Pω(−), rather than in Pω(−), as for failure semantics.

By reversing and determinising as in [BBRS12], we obtain the Moore machine

MR = ((1+Pω(Pω(A)))
1+PωS , 〈o

♯
R t
♯
R〉)

for which the initial set of states iR, o
♯
R and t

♯
R are defined as in (5.17), in Section 5.2.5.

Equivalently to the statement in (5.18), this machine has the “reversed” behaviour of the
initial LTS.
The novel algorithm performing the determinisation and the “reverse and determinise” at
once returns, for the case of must semantics, the Moore machine

M R = ((1+Pω(Pω(A)))
S, oR, tR)

for which the corresponding initial state IR, the outputs oR : (1 + Pω(Pω(A)))
S → 1 +

Pω(Pω(A)) and the transitions tR : (1 + Pω(Pω(A)))
S → ((1 + Pω(Pω(A)))

S)A are defined
as in (5.16) (plus the case tR(ψ)(a)(x) = ⊤ if t(x)(a) = ⊤), by replacing o and t with
those defined in (5.10) and (5.9), in the beginning of this chapter.
The fact that M R has the reverse behaviour of the original LTS follows according to
a statement similar to the one in Lemma 5.2.1, by taking ¹−º2 : (1 + Pω(Pω(A)))

S →

(1+Pω(Pω(A)))
A⋆ , ψ = IR and ϕ = o♯ (satisfying (⋆)), and the fact thatMR has reversed

behaviour:
(∀w ∈ A∗) .¹iRº1(w) = ¹iº(wR).

To conclude, the soundness of our algorithm follows by:

(∀w ∈ A∗) .¹IRº2(w) = ¹iº(wR).

5.3 Three families of examples

As discussed in the beginning of this chapter, the theoretical complexity is not informative
about the behaviour of these algorithms on concrete cases. In this section, we compare
HKC, Brzozowski and partition refinement [CH89] on three families of examples. First,
we need some tools to measure their behaviours. For HKC, we take |R|, the size of the
produced relation R: indeed cycle 2 of HKC is repeated at most 1+ |A|·|R| times (where |A|
is the size of the alphabet). For [CH89], we consider the size n of the reachable part of
determinised system: the main loop of the partition refinement is iterated at most n times.
Finally, the cost of Brzozowski algorithm is related to the size of both the intermediate
Moore machine (built after steps 1,2) and the minimal one (built after steps 3,4).
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First consider the following LTS, where n is an arbitrary natural number. After the deter-
minisation, {x} can reach all the states of the shape {x} ∪ XN , where XN = {x i | i ∈ N}

for any N ⊆ {1, . . . , n}. More precisely, a trace w ∈ {a, b}∗ of length k which leads {x} to
{x}∪XN can be generally defined as a word whose k− i+1’st letter is b if and only if i ∈ N .

For instance for n = 2, {x}
aa
→ {x}, {x}

ab
→ {x , x1}, {x}

ba
→ {x , x2} and {x}

bb
→ {x , x1, x2}. All

those states are distinguished by must testing; for instance, ¹{x , x1, x2}º(a) = {a} while
¹{x , x2}º(a) = {0}. Therefore, the minimal Moore machine for ¹{x}º has at least 2n

states.

xa,b
b

x1

a,b
. . .

a,b
xn

b
u τ

ya,b
b

a,b

y1

a,b
. . .

a,b
yn

b
v τ

z
a

b

One can prove that x and y are must equivalent by showing that relation R=

{({x}, {y}), ({x}, {y, z}), (⊤,⊤)}∪ {({x} ∪ XN , {y, z} ∪ YN ) | N ⊆ {1, . . . , n}}

is a bisimulation (here YN = {yi | i ∈ N}). Note that R contains 2n + 3 pairs.
In order to check ¹{x}º=¹{y}º, HKC builds the following relation,

R′ = {({x}, {y}), ({x}, {y, z})} ∪ {({x , x i}, {y, z, yi}) | i ∈ {1, . . . , n}}

which is a bisimulation up-to and which contains only n+ 2 pairs. It is worth to observe
that R′ is like a “basis” of R: all the pairs (X , Y ) ∈ R can be generated by those in R′ by
iteratively applying the rules in (5.4). Therefore, HKC proves ¹{x}º=¹{y}º in polynomial
time, while minimisation-based algorithms (such as [CH89] or Brzozowski’s algorithm)
require exponential time.

For the following family of LTS’s, the algorithm from [CH89] is efficient (the LTS is already
deterministic) while Brzozowski’s algorithm is not: the intermediate Moore machine built
after steps 1,2 has exponentially many states (for similar reasons as in the previous
example, the automaton being reversed first).

xn

a,b
. . .

a,b
x1

b
x a,b

Finally consider the family of LTS’s on A= {a}, consisting in n disjoint cycles of increasing
lengths. The case n= 5 is depicted on the left below. Suppose that we want to show that
the superposition of states x1

0 , . . . , xn
0 is equivalent to u given on the right.

x1
0

a

x2
0

a

x2
1

a

x3
0

a

x3
1 a

x3
2

a

x4
0

a

x4
1

a

x4
3

a

x4
2

a

x5
0a

x5
1

a

x5
4

a

x5
2 a

x5
3

a

u

a

The states reachable from the set {x1
0 , . . . xn

0} in the determinised system are of the shape
Xk = {x

i
k mod i

| i ≤ n}. There are p such sets, where p = lcm[1..n] is the least com-
mon multiple of the first n natural numbers (this number is greater than 2n for n ≥ 8).



102 Chapter 5. Algorithms for decorated trace and testing semantics

With [CH89], one would start by constructing all those sets, and one can show that HKC
actually produces a relation of size p. Therefore, those two methods need exponentially
many steps. On the other hand, Brzozowski’s algorithm is extremely efficient on this fam-
ily of examples: the output of any state is always {0}, so that the only reachable state in
the intermediate Moore machines (built after steps 1 and 2) is the function mapping all
the states to {0}. Therefore we obtain the minimal realisation immediately.

5.4 Concrete tests on a synchronisation protocol

We implemented the presented algorithms (Brzozowski minimisation and HKC) for ready,
failure, and must semantics. Moreover, we tested our implementation and compared the
various algorithms, by analyzing some instances of a multiway synchronisation protocol
(MSP) due to Parrow and Sjödin [PS96].

The scenario is the following: there are several clients, denoted by 1,2, . . . , trying to
synchronise on communication channels, denoted by a, b . . . . Each channel comes with
a fixed subset of clients, all of which must agree to participate for the action to take
place. For instance, in a configuration denoted by a(1,2), b(1,2,3), with three clients
and two channels; clients 1 and 2 have to synchronise to perform action a, and the
three clients have to synchronise to perform action b. Parrow and Sjödin study protocols
allowing to schedule clients requests, so as to enforce the synchronisation constraints.
They propose an ideal and centralized scheduler as a specification, and a distributed
and more realistic scheduler. They prove them equivalent, using a notion of equivalence
called “cs-equivalence” which entails must-testing equivalence in the considered case.
Both schedulers are presented as finite LTS.

We computed those LTS for some small configurations, checked them for must equiv-
alence, and minimised the ideal scheduler with respect to must semantics. For each
configuration, we give various size indications in Figure 5.2: the first column is the con-
figuration; the second one gives the number of states of the minimal Moore machine; the
third and fourth column give the number of states of the ideal and distributed schedulers,
respectively. One can notice that the ideal schedulers are almost minimal, while the dis-
tributed ones are huge, comparatively. The fifth column gives the number of reachable
states, after determinisation along weak transitions (i.e., the number of states one would
start with with a partition-refinement algorithm); this number is usually smaller than
the size of the distributed scheduler since the later contains lots of intermediate states
that are removed by determinisation. The sixth column gives the size of the intermedi-
ate automaton, after performing half of Brzozowski’s minimisation algorithm; notice that
this intermediate automaton is usually much smaller than the distributed scheduler, but
also much larger than the ideal and minimal ones. The last column gives the number
of pairs required by HKC to prove the equivalence between the ideal and the distributed
scheduler; it is systematically much less than the size of the determinised automaton.

5.5 Discussion

In Chapter 4 we have introduced coalgebraic characterisations of decorated trace and
must testing semantics by means of the generalised powerset construction [SBBR10]. This
allowed us to adapt proof techniques and algorithms that have been developed for lan-
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config. min. ideal distr. determ. interm. HKC

a(1,2) 9 9 34 12 88 12
a(1,2,3) 27 27 304 84 1110 82

a(1,2),b(1) 15 18 6089 1074 189 294
a(1,2),b(3) 17 27 1057 303 436 225
a(1,2),b(1,2) 28 34 101532 18608 389 2236
a(1,2),b(1,3) 49 54 38288 11024 2568 5462
a(1,2),b(3,4) 65 81 8666 3230 7570 1806
a(1,2,3),b(1) 45 54 54090 8644 2207 2207
a(1,2,3),b(4) 53 81 12053 3330 5546 2116
a(1,2,3),b(1,4) - 162 259890 - - -

a(1),b(2),c(3) 9 27 5917 1594 126 830
a(1),b(1),c(2) 9 18 37380 7984 66 2351
a(1),b(1),c(1) 9 11 149267 41444 34 2685
a(1,2),b(3),c(4) 33 81 50844 20526 2176 6642

Figure 5.2: Concrete tests.

guage equivalence to must semantics. In particular, in this chapter, we showed that
bisimulations up-to congruence (that were recently introduced in [BP13] for NDA’s) are
sound also for must semantics. This fact guarantees the correctness of a generalisation of
HKC [BP13] for checking must equivalence and preorder and suggests that the antichains-
based algorithms [ACH+10, DR10, WDHR06] can be adapted in a similar way. We have
also proposed a variation of Brzozowski’s algorithm [Brz62] to check must semantics, by
exploiting the abstract theory in [BBRS12]. Our contribution is not a simple instantia-
tion of [BBRS12], but developing our algorithm has required some ingenuity to avoid
the preliminary determinisation that would be needed to directly apply [BBRS12]. We
implemented these algorithms together with an interactive applet available online.
Beyond must semantics, one can use such algorithms to check the decorated trace equiv-

alences [vG01a] that have been studied in [BBC+12]: like failure, these are obtained by
decorating the states of an LTS with a function o : S→ B. The key of our approach is that
B needs to be a semi-lattice with bottom (for must, a semi-lattice with bottom and top);
this is required by the generalised powerset construction so that decorated LTS’s can be
determinised into Moore machines.



Chapter 6

Future work

We provide an overview of the possible theoretical and practical further developments of
the work in this thesis.

With respect to the contributions on generalised regular expressions modelling non-
deterministic coalgebras introduced in Chapter 3, we consider:

Extensions to quantitative coalgebras. In the future, we would like to extend the class
of systems to include quantitative coalgebras. In [SBBR11], the approach for handling
non-deterministic coalgebras was extended to a large class of quantitative systems en-
compassing weighted automata, simple Segala, stratified and Pnueli-Zuck systems, by
considering a functor type that allows the transitions of systems to take values in a mo-
noid structure of quantitative values.
The challenge in this respect arises from the fact that computing bisimulation relations in
a quantitative setting will involve matrix manipulations, hence requiring linear algebra
techniques of which it is not clear how to implement in CIRC.

Tool enhancements and complexity studies. To improve usability, building a graphical
interface for the tool is an obvious next step. The graphical interface should ideally allow
the specification of expressions by means of systems of equations (which are then solved
internally) or even by means of an automaton, which would then be translated to an
expression using Kleene’s theorem.
We also would like to explore how adding more axioms than ACI to the prover (that is,
each step of the bisimulation checking is performed modulo more equations) improves
the performance of the tool. Our experience so far shows that by adding the axioms
describing the interplay between ; and the other constructs, i.e. ; ⊕ ǫ = ǫ, the prover
works significantly faster.
We have not yet studied complexity bounds for the algorithms presented in this paper.
We conjecture however that the bounds will be very similar to the already known ones
for classical regular expressions [Koz06, Wor08].

In connection with the coalgebraic handling of decorated trace, may and must testing
semantics in Chapter 4 and Chapter 5, we consider:

Coalgebraic handling of other semantics. In the future, we want to derive a new
representation of possible-futures semantics. This is motivated by the current drawback
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of storing for each state of the LTS’s the corresponding set of traces. In this context, it
might be more appropriate considering the definition of possible-futures semantics given
in terms of nested bisimulations [HM85], rather than the set-theoretic one in [vG01a].
Moreover, we aim at providing coalgebraic modellings for the remaining semantics of
the spectrum in [vG01a]. Amongst these, we mention possible-worlds semantics, whose
path-based characterisation shifts the problem of reasoning on the corresponding equiv-
alence to a setting close to possible-futures semantics. The coalgebraic modelling of
possible-futures semantics still requires an efficient handling of the traces associated with
a process, as mentioned above. Orthogonally, the challenge in deriving a straightforward
modelling of simulation semantics via the generalised powerset construction [SBBR13]
originates from the absence of an equivalent trace-based definition.
We would also like to understand how our approach can be combined with the results
in [BG06] to obtain a coinductive approach to denotational (linear-time) semantics of
different kinds of processes calculi. The work in [BG06] presents a fully abstract model
of must testing for CSP by turning the set of processes into a (partial) Moore automaton
with output on a certain semiring K and input from a set of actions A. The final semantics
of this automaton is then given as a powerserie in KA∗ . The approach can be easily
extended to trace equivalence and other calculi, such as CCS, but no other decorated
trace equivalences are further considered. Our work is similar in spirit of the above as
we also construct a Moore automaton from a transition system but, in general, we do
not need a semiring structure, making the entire framework much simpler. For example,
for the must testing, our Moore automata have outputs in the set 1+Pω(Pω(A)). The
framework is even simpler for the case of trace semantics, where our Moore automata
have outputs in the two elements set 2.
Furthermore, we think it is promising to investigate whether our approach can be ex-
tended to the testing semantics of probabilistic and non-deterministic processes
[DvGHM11, YL92, Seg96].

More algorithms. An interesting topic to investigate in the future is adapting the Brzo-
zowski and HKC algorithms to check fair testing [RV07]. In [RV07], fair testing is defined
in terms of the so-called failure trees. While the corresponding coalgebraic modelling can
be easily derived via the powerset construction, we do not know how to model fair testing
equivalence and preorder.
We would also like to study whether Brzozowski and HKC can be adapted and effectively
applied to reason on decorated trace semantics of generative probabilistic systems.

Rule formats for compositionality. In the future we consider worth studying to what ex-
tent the modal characterisations of decorated trace semantics in [vG01a] can be exploited
in order to develop a systematic study of their compositionality for languages defined by
SOS-like rules [Plo04] satisfying specific formats.
In this respect, we refer to the work in [Kli09], where both the rule formats and decorated
trace equivalences are “massaged” into a bialgebraic setting, by means of logical distribu-
tive laws defined in terms of notions of syntax and logical formulae. However, applying
the machinery in [Kli09] requires a certain amount of ingenuity for identifying the right
logical behaviour. Therefore, one of the challenges (also mentioned as pointer to future
work in [Kli09]) consists in (partially) automating the whole procedure or, at least, in
gaining more insight on how this could be achieved in a rather algorithmic fashion.
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Samenvatting (Dutch summary)

Het bestuderen van de semantiek van reactieve systemen (reactive systems) is een belan-
grijke richting binnen de informatica. Reactieve systemen voeren berekeningen uit mid-
dels interactie met hun omgeving, en zijn over het algemeen samengesteld uit meerdere
parallelle componenten die simultaan taken uitvoeren en met elkaar communiceren.
Toepassingen bevinden zich in relatief simpele systemen als rekenmachines en verkoopau-
tomaten, tot programma’s die mechanische apparaten zoals auto’s, metro’s of ruimte-
vaartuigen aansturen. Aangezien dit soort systemen veel gebruikt worden, en vaak erg
complex zijn, is het gebruik van rigoureuze methodes voor specificatie, ontwikkeling, en
redenatie over het gedrag van deze systemen een grote uitdaging. Een mogelijke aanpak
om reactieve systemen formeel te beschouwen is het gebruik van een gemeenschappeli-
jke taal voor de beschrijving van zowel de implementatie als de specificatie. In dit geval
correspondeert verificatie van de implementatie met betrekking tot de specificatie van
een reactief systeem met het bewijzen van een vorm van equivalentie/ordening tussen de
beschrijvingen in de formele taal.

De doelstelling van dit proefschrift is het benutten van de krachten van een algebraïsch–
coalgebraïsch raamwerk voor het modelleren van reactieve systemen en het redeneren
over verschillende soorten bijbehorende semantieken op een formele wijze. Daarnaast
richt dit proefschrift zich op het afleiden van een aantal verificatie algoritmes die geschikt
zijn voor implementatie in geautomatiseerde systemen.
In Hoofdstuk 3 presenteren wij een beslissingsprocedure voor bisimilariteit van een klasse
van expressies die oneindige rijen (streams), Mealy automaten, en gelabelde transitie sys-
temen, kan beschrijven. Deze procedure is geïmplementeerd in de automatische stelling-
bewijzer CIRC. Hoofdstuk 4 beschrijft een uniforme coalgebraïsche aanpak voor een col-
lectie van semantieken voor transitiesystemen. Hiervoor gebruiken we een uitbreiding
van de klassieke machtsverzameling constructie. In het bijzonder beschouwen we “deco-
rated trace” equivalenties voor gelabelde transitie-, en probabilistische systemen, en (de
zogenaamde “must” en “may”) “testing”-semantieken voor divergente niet deterministis-
che systemen. De coalgebraïsche aanpak stelt ons in staat te redeneren over de eerderge-
noemde begrippen van gedrag equivalentie/ordening in termen van bisimulaties. Verder
faciliteert ons raamwerk de constructie van geverifieerde algoritmes die niet aanwezig
zijn voor bisimulariteit, zoals beschreven in Hoofdstuk 5. In dit hoofdstuk beschrijven
we een variatie van Brzozowski’s algoritme om eindige automaten te minimaliseren, en
een optimalisatie van Hopcroft en Karp’s algoritme voor taal semantieken. Beide algo-
ritmes zijn succesvol toegepast voor het redeneren over “decorated trace” en “testing”
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semantieken. De bijbehorende implementaties kunnen online uitgeprobeerd worden:
http://perso.ens-lyon.fr/damien.pous/brz/

http://perso.ens-lyon.fr/damien.pous/brz/


Summary

One of the research areas of great importance in Computer Science is the study of the
semantics of concurrent reactive systems. These are systems that compute by interact-
ing with their environment, and typically consist of several parallel components, which
execute simultaneously and potentially communicate with each other. Examples of such
systems range from rather simple devices such as calculators and vending machines, to
programs controlling mechanical devices such as cars, subways or spaceships. In light
of their widespread deployment and complexity, the application of rigorous methods for
the specification, design and reasoning on the behaviour of reactive systems has always
been a great challenge. One possible approach to formally handle reactive systems is
to use a “common language" for describing both the actual implementations and their
specifications. When following this technique, verifying whether an implementation and
its specification describe the same behaviour reduces to proving some notion of equiva-
lence/preorder between their corresponding descriptions over the chosen language.
The aim of this thesis is to exploit the strengths of a (co)algebraic framework in modelling
reactive systems and reasoning on several types of associated semantics, in a uniform
fashion. Moreover, we derive a suite of corresponding verification algorithms suitable for
implementation in automated tools.
In Chapter 3 we present a decision procedure for bisimilarity of a class of expressions
defining systems such as infinite streams, deterministic automata, Mealy machines and
labelled transition systems. The procedure is implemented in the automatic theorem
prover CIRC. Chapter 4 provides a uniform coalgebraic handling of a series of semantics
on transition systems. This is achieved by employing a generalisation of the classical pow-
erset construction for determinising non-deterministic automata. In particular, we deal
with decorated trace equivalences for labelled transition systems and probabilistic systems
and, (the so-called “must” and “may”) testing semantics for divergent non-deterministic
systems. The coalgebraic approach enabled reasoning on the aforementioned notions of
behavioural equivalence/preorder in terms of bisimulations. Moreover, our framework
facilitated the construction of verification algorithms which are not available for bisim-
ilarity, as shown in Chapter 5. There we provide a variation of Brzozowski’s algorithm
to minimise finite automata and an optimisation of Hopcroft and Karp’s algorithm for
language semantics. Both algorithms were successfully applied to reason on decorated
trace and testing semantics. The corresponding implementations can be tested online at:
http://perso.ens-lyon.fr/damien.pous/brz/.
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