Chapter 1

System Verification

This chapter discusses the need for system verification for software as well as
for hardware systems. It surveys the main techniques in systematic system
verification such as testing, simulation, and deductive methods and introduces
model checking as a valuable technique for defect detection.

1.1 Introduction

Our reliance on the functioning of ICT systems (Information and Communi-
cation Technology) is growing rapidly. These systems are becoming more and
more complex and are massively encroaching on daily life via Internet and all
kinds of embedded systems such as smartcards, hand-held computers, mobile
phones and high-end television sets. In 1995 it was estimated that we are con-
fronted with about 25 ICT-devices on a daily basis. Services like electronic
banking and tele-shopping have become reality. The daily cash flow via Inter-
net is about 10'? million US dollar. Roughly 20% of the product development
costs of modern transportation devices such as cars, high-speed trains and air-
planes is devoted to information processing systems. ICT systems are universal
and omnipresent. They control the stock exchange market, form the heart of
telephone switches, are crucial to Internet technology, and are vital for several
kinds of medical systems. Our reliance on embedded systems makes their reli-
able operation of large social importance. Besides offering a good performance
in terms like response times and processing capacity, the absence of annoying
errors is one of the major quality indications.

It is all about money. We are annoyed when our mobile phone malfunctions,
or when our video recorder reacts unexpectedly and wrongly to our issued
commands. These software and hardware bugs do not threathen our lifes, but
may have substantial financial consequences for the manufacturer. Correct ICT
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systems are essential for the survival of a company. Dramatic examples are
known. The bug in Intel’s Pentium-II floating-point division unit in the early
nineties caused a loss of about 475 million US dollar to replace faulty processors,
and severely damaged Intel’s reputation as a reliable chip manufacturer. The
software bug in a baggage handling system postponed the opening of Denver’s
airport for 9 months, at a loss of 1.1 million US dollar per day. 24 hours of
failure of the worldwide on-line ticket reservation system of a large airplane
company will cause its bankruptcy because of missed orders.

Figure 1.1: The Ariane-5 launch on June 4, 1996; it crashed 36 seconds after
the launch due to a conversion of a 64-bit floating point into a 16-bit integer
value

It is all about safety: bugs can be catastrophic too. The fatal defects in the
control software of the Ariane-5 missile (cf. Figure 1.1), the Mars Pathfinder
and the airplanes of Airbus led to headlines in the newspapers all over the world
and are renowned by now. Similar software is used for the process control of
safety-critical systems such as chemical plants, nuclear power plants, traffic
control and alert systems, and storm surge barriers. Clearly, bugs in such
software can have disasterous consequences. For example, a software bug in the
control part of the radiation therapy machine Therac-25 caused the death of 6
cancer patients between 1985 and 1987 as they were exposed to an overdosis of
radiation.

The increasing reliance of critical applications on information processing leads
us to state:

The reliability of ICT systems is a key issue
in the system design process.

Their magnitude grows excessively, but their complexity grows rapidly too. ICT
systems are no longer stand alone, but are typically embedded in a larger con-
text, connecting and interacting with several other components and systems.
They thus become much more vulnerable to errors — the number of defects grows
exponentially with the number of interacting system components. In particu-
lar, phenomena such as concurrency and non-determinism that are central to
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modelling interacting systems, turn out to be very hard to handle with stan-
dard techniques, both in software engineering and in hardware design. Their
growing complexity, together with the pressure to drastically reduce system
development time (“time-to-market”), makes the delivery of low-defect ICT
systems an enormous challenging and complex activity.

1.2 Hard- and Software Verification

System verification techniques are applied to design ICT systems in a more
reliable way. To put it bluntly, system verification is used to establish that the
design or product under consideration possesses certain properties. The proper-
ties to be validated can be quite elementary, e.g., a system should never be able
to reach a situation in which no progress can be made (a deadlock scenario),
but are mostly obtained from the system’s specification. This specification pre-
scribes what the system has to do and what not, and thus constitutes the basis
for any verification activity. A defect is found once the system does not fulfill
one of the specification’s properties. The system is considered to be “correct”
whenever it satisfies all properties obtained from its specification. A schematic
view on verification is depicted in Figure 1.2.

system
specification

Design Process

product or
prototype

\) Verification

no bugs found

Figure 1.2: Schematic view of a posteriori system verification

This book deals with a verification technique, called model checking, that starts
from a formal system specification. Before introducing this technique and dis-
cussing the role of formal specifications, we briefly review software and hardware
verification.
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1.2.1 Software Verification

Software verification techniques. Peer reviewing and testing are the major soft-
ware verification techniques used in practice.

A peer review amounts to a software inspection carried out by a team of soft-
ware engineers that preferably has not been involved in the development of the
software under review. The uncompiled code is not executed, but analyzed
completely statically. Empirical studies indicate that peer review provides an
effective technique that catches between 31 and 93 percent of the defects with
a median around 60%. While mostly applied in a rather ad-hoc manner, more
dedicated types of peer review procedures, e.g., those that are focused at spe-
cific error-detection goals, are even more effective. Despite its almost complete
manual nature, peer review is thus a rather useful technique. It is therefore not
surprising that some form of peer review is used in almost 80% of all software
engineering projects. Due to its static nature, experience has shown that subtle
errors such as concurrency and algorithm defects are hard to catch using peer
review.

Software testing constitutes a significant part of any software engineering project.
About 30% upto 50% of the total software project costs are devoted to testing.
As opposed to peer review that analyzes code statically without executing it,
testing is a dynamic technique that actually runs the software. Testing takes
the piece of software under consideration and provides its compiled code with
inputs, called tests. Correctness is thus determined by forcing the software to
traverse a set of execution paths, sequences of code statements representing a
run of the software. Based on the observations during test execution, the ac-
tual output of the software is compared to the output as documented in the
system specification. Although test generation and test execution can partly
be automated, the comparison is usually performed by human beings. The
main advantage of testing is that it can be applied to all sorts of software rang-
ing from application software (e.g., e-business software) to elementary software
such as compilers and operating systems. As exhaustive testing of all execution
paths is practically infeasible, in practice only a small subset of these paths is
treated. Testing can thus never be complete. That is to say, testing can only
show the presence of errors, not their absence. Another problem with testing
is to determine when to stop. Practically, it is hard, and mostly impossible, to
indicate the intensity of testing to reach a certain defect density — the fraction
of defects per number of uncommented code lines.

Studies have provided evidence that peer review and testing catch different
classes of defects at different stages in the development cycle. They are there-
fore often used both. To increase the reliability of software, these software
verification approaches are complemented with software process improvement
techniques, structured design and specification methods (such as the Unified
Modeling Language) and the use of version- and configuration management
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control systems. Formal techniques are used, in one form or the other, in about
10 — 15% of all software projects. These techniques are discussed later on in
this chapter.

Catching software bugs: the sooner, the better. It is of great importance to
locate software bugs. The slogan is: the sooner, the better. The costs of
repairing a software bug during maintenance are roughly 500 times higher than
a fix after detection in an early design phase, cf. Figure 1.3. System verification
should thus take place at an early stage in the design process.
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Figure 1.3: Software life-cycle and error introduction, detection and repair-
costs [81]

About 50% of all defects are introduced during programming, the phase in
which actual coding takes place. Whereas just 15% of all errors are detected in
the initial design stages, most errors are found during testing. At the start of
unit testing, which is oriented to discovering defects in the individual software
modules that make up the system, a defect density of about 20 defects per 1,000
lines of (uncommented) code is typical. This has been reduced to about 6 defects
per one thousand code lines at the start of system testing, where a collection
of such modules is tested that constitutes a real product. On launching a new
software release, the typical accepted software defect density is about one defect
per 1,000 lines of code lines!.

Errors are typically concentrated in a few software modules — about half of the
modules are defect free, and about 80% of the defects arise in a small fraction
(about 20%) of the modules — and often occur when interfacing modules. The
repair of errors that are detected prior to testing can be done rather econom-
ically. The repair cost significantly increases from about 1,000 US dollar (per
error repair) in unit testing to a maximum of about 12,500 US dollar when the
defect is demonstrated during system operation only. It is of vital importance

!For some products this is much higher, though. Microsoft has acknowledged that Windows
95 contained at least 5,000 defects. Despite the fact that users were daily confronted with
anomalous behaviour, Windows 95 was very successful.
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to seek techniques that find defects as early as possible in the software design
process: the costs to repair them are substantially lower, and their on the rest
of the design is less substantial.

1.2.2 Hardware Verification

The importance of hardware verification. Preventing errors in hardware de-
sign is vital. Hardware is subject to high fabrication costs, fixing defects after
delivery to customers is difficult, and quality expectations are high. Whereas
software defects can be repaired by providing users patches or updates — nowa-
days users even tend to anticipate and accept this — hardware bug fixes after
delivery to customers are very difficult and mostly require refabrication and
redistribution. This has immense economic consequences. The replacement of
the faulty Pentium II processors caused Intel a loss of about 475 million US
dollar. Moore’s law — the number of logical gates in a circuit doubles every 18
months — has proven to be true in practice and is a major obstacle for producing
correct hardware. Empirical studies have indicated that more than 50% of all
ASICs (Application-Specific Integrated Circuit) do not work properly after ini-
tial design and fabrication. It is not surprising that chip manufacturers invest
a lot in getting their designs right. Hardware verification is a well-established
part of the design process. The design effort in a typical hardware design com-
prises only 27% of the total time spent on the chip; the rest is devoted to bug
detection and prevention.

Hardware verification techniques. Emulation, simulation and structural analysis
are the major techniques used in hardware verification.

Structural analysis comprises several specific techniques such as synthesis, tim-
ing analysis, and equivalence checking that are not described in further detail
here.

Emulation is a kind of testing. A re-configurable generic hardware system (the
emulator) is configured such that it behaves like the circuit under consideration
and is then extensively tested. Like with software testing, emulation amounts
to providing a set of stimuli to the circuit and comparing the generated output
with the expected output as laid down in the chip specification. To fully test
the circuit, all possible input combinations in every possible system state should
be examined. This is impractical and the number of tests needs to be reduced
significantly, yielding potential undiscovered bugs.

With simulation, a model of the circuit at hand is constructed and simulated.
Models are typically provided using hardware description languages such as
Verilog or VHDL that are both standardized by IEEE. Based on stimuli, exe-
cution paths of the chip model are examined using a simulator. These stimuli
may be provided by a user, or by automated means such as a random generator.
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A mismatch between the simulator’s output and the output described in the
specification determines the presence of bugs. Simulation is like testing, but is
applied to models. It suffers from the same limitations, though: the number
of scenarios to be checked in a model to get full confidence goes beyond any
reasonable subset of scenarios that can be examined in practice.

Simulation is the most popular hardware verification technique and is used in
various design stages, e.g., at register-transfer level, gate and transistor level.
Typically, about 21% of the verification time is spent on emulation, 63% on sim-
ulation and 16% on structural analysis. Besides these bug detection techniques,
hardware testing is needed to find fabrication faults resulting from layout defects
in the fabrication process.

1.3 Formal Verification Techniques

In software and hardware design of complex systems, more time and effort
is spent on verification than on construction. Techniques are sought to reduce
and ease the verification efforts while increasing their coverage. Formal methods
offer a large potential to obtain an early integration of verification in the design
process, to provide more effective verification techniques, and to reduce the
verification time. This section presents a survey of the main formal verification
techniques.

1.3.1 Formal Methods

Let us first briefly discuss the role of formal methods. To put it in a nutshell,
formal methods can be considered as “the applied mathematics for modeling
and analyzing ICT systems”. Their aim is to establish system correctness with
mathematical rigour. Their great potential has led to an increasing use by engi-
neers of formal methods for the verification of complex software and hardware
systems. Besides, formal methods are one of the “highly recommended” verifi-
cation techniques for software development of safety-critical systems according
to e.g., the best practices standard by the IEC (International Electrotechni-
cal Commission) and standards by the ESA (European Space Agency). The
resulting report of an investigation by the FAA (Federal Aviation Authority)
and NASA (North-Atlantic Space Agency) about the use of formal methods
concludes that

“Formal methods should be part of the education of every computer
scientist and software engineer, just as the appropriate branch of
applied maths is a necessary part of the education of all other engi-
neers.”
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During the last decade, research in formal methods has led to the development
of some very promising verification techniques that facilitate the early detection
of defects. These techniques are accompanied by powerful software tools that
can be used to automate various verification steps. Investigations have shown
that formal verification procedures would have revealed the exposed defects in
e.g., the Ariane-5 missile, Mars Pathfinder, Intel’s Pentium IT processor and the
Therac-25 therapy radiation machine.

Roughly speaking, two brands of formal verification approaches can be distin-
guished: deductive and model-based methods.

With deductive methods, the correctness of systems is determined by properties
in a mathematical theory. These properties are proven with the highest possible
precision using tools such as theorem provers and proof checkers.

Model-based techniques are based on models describing the possible system be-
haviour in a mathematical precise and unambiguous manner. It turns out that —
prior to any form of verification — the accurate modelling of systems often leads
to the discovery of incompleteness, ambiguities and inconsistencies in informal
system specifications. Such problems are usually only discovered in a much later
stage of the design. The system models are accompanied by algorithms that
systematically explore all states of the system model. This provides the basis
for a whole range of verification techniques ranging from an exhaustive explo-
ration (model checking) to experiments with a restrictive set of scenarios in the
model (simulation), or in reality (testing). Due to unremitting improvements
of underlying algorithms and data structures together with the availability of
faster computers and larger computer memories, model-based techniques that
a decade ago only worked for very simple examples, are nowadays applicable
to realistic designs. As the starting-point of these techniques is a model of the
system under consideration, we have as a given fact that:

Any verification using model-based techniques is only
as good as the model of the system.

1.3.2 Model-based Simulation

As argued before, one of the most well-known and practically used verification
techniques is simulation. The software tool, the simulator, allows the user to
study the system behaviour. This happens by determining, on the basis of the
system model, how the system will react on certain specific scenarios (stimuli).
These scenarios are either provided by the user or are generated by tools such
as random scenario generators.

Simulation of formal models is typically useful for a first, quick assessment of
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the quality of the (prototype) design. It is, however, less suited to find subtle
errors because it is mostly impossible to generate all possible system scenarios,
let alone simulate them all. The number of scenarios easily gets out of hand.
For a mobile phone or remote control unit with a very restricted number, five
say, of choices per step, the number of scenarios with 20 steps already equals
520 (almost 100,000,000,000,000 possibilities). The exhaustive generation and
simulation of scenarios is time-consuming and costly. In practice, only a small
subset of all possible scenarios is actually examined. Consequently, there is a
realistic risk that subtle defects remain hidden. Unexplored scenarios might
reveal the fatal bug.

Besides, after examining a restricted number of scenarios, it is hard to quantify
the degree of the system’s correctness. Quantitative measures of the number of
errors left in the system are difficult to obtain, let alone, indications about the
probability that such errors will be discovered when the system is in operation.
In practice, this often means that the criterion to stop simulation is simply
when the project runs out of money!

1.3.3 Model Checking

Model checking is a verification technique that explores all possible system
states in a brute force manner. Similar to a computer chess program that
checks possible moves, a model checker, the software tool that performs the
model checking, examines all possible system scenarios in a systematic manner.
In this way, it can be shown that a given system model truly satisfies a certain
property. It is a real challenge to examine the largest possible state spaces that
can be treated with current means, i.e., processors and memories. State-of-the-
art model checkers can handle state spaces of about 108107 states with explicit
state-space enumeration. Using clever algorithms and tailored data structures,
larger state spaces (1020 upto even 10*76 states) can be handled for specific
problems. Even the subtle errors that remain undiscovered using emulation,
testing and simulation can potentially be revealed using model checking.

Typical properties that can be checked using model checking are of a qualitative
nature: Is the generated result ok?, Can the system reach a deadlock situation,
e.g., when two concurrent programs are mutually waiting for each other and
thus halt the entire system? But also timing properties can be checked: Can
a deadlock occur within 1 hour after a system reset?, or Is a response always
received within 8 minutes? Model checking requires a precise and unambigu-
ous statement of the properties to be examined. As with making an accurate
system model, this step often leads to the discovery of several ambiguities and
inconsistencies in the informal documentation. For instance, the formalization
of all system properties for a subset of the ISDN user part protocol revealed
that 55% (!) of the original, informal system requirements were inconsistent.
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Figure 1.4: Schematic view of the model-checking approach

The system model is usually automatically generated from a model description
that is specified in some appropriate dialect of programming languages like C or
Java or hardware description languages such as Verilog or VHDL. Note that the
property specification prescribes what the system should do, and what it should
not do, whereas the model description addresses how the system behaves. The
model checker examines all relevant system states to check whether they satisfy
the desired property. If a state is encountered that violates the property under
consideration, the model checker provides a counterexample that indicates how
the model could reach the undesired state. The counterexample describes an
execution path that leads from the initial system state to a state that violates
the property being verified. With the help of a simulator, the user can replay
the violating scenario, in this way obtaining useful debugging information, and
adapt the model (or the property) accordingly, cf. Figure 1.4.

Model checking has been successfully applied to several ICT systems and their
applications. For instance, deadlocks have been detected in on-line airline reser-
vation systems, modern e-commerce protocols have been verified, and several
studies of international IEEE standards for in-house communication of domes-
tic appliances have led to significant improvements of the system specifications.
Five previously undiscovered errors were identified in an execution module of
the Deep Space 1 space-craft controller (cf. Figure 1.5), in one case identifying a
major design flaw. A bug identical to one discovered by model checking escaped
testing and caused a deadlock during a flight experiment 96 million kilometers
from earth. In the Netherlands, model checking has revealed several serious
design flaws in the control software of a storm surge barrier that protects the
main port of Rotterdam for flooding.

Ezample 1. Most errors, such as the ones exposed in the Deep Space-1 space-
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Figure 1.5: Modules of NASA’s Deep Space 1 space-craft (launched in October
1998) have been thoroughly examined using model checking

craft, are concerned with classical concurrency errors. Unforeseen interleavings
between processes may cause undesired events to happen. This is exemplified
by analysing the following concurrent program, in which three processes, Inc,
Dec and Reset cooperate. They operate on the shared integer variable x with
arbitrary initial value, that can be accessed (i.e., read), and modified (i.e., write)
by each of the individual processes. The processes are:

process Inc = while truedo if z < 200 then z :=z + 1fi od
process Dec = while truedo if z > Othen z:=x — 1fiod
process Reset = while truedo if z = 200 then z := 0 fi od

Process Inc increments © if its value is smaller than 200, Dec decrements x if
its value is at least 1, and Reset resets x once it has reached the value 200. They
all do so repetitively.

Is the value of x always between (and including) 0 and 20079 At first sight this
seems to be true. A more thorough inspection, though, reveals that this is not
the case. Suppose x equals 200. Process Dec tests the value of x, and passes
the test, as © exceeds 0. Then, control is taken over by process Reset. It tests
the value of x, passes its test, and immediately resets x to zero. Then, control
1s returned to process Dec and this process decrements x by one, resulting in
a negative value for x (viz. -1). Intuitively, we tend to interpret the tests on
z and the assignments to = as being executed atomically, i.e., as a single step,
whereas in reality this is (mostly) not the case. (End of example.)
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1.3.4 Model-based Testing

Whereas formal verification techniques such as simulation and model checking
are based on a model description from which all possible system states can be
generated, the well-established verification technique testing is even applicable
in cases where it is hard (e.g., in case of physical devices) or even impossible
(e.g., when the model is proprietary) to obtain a system model. With testing,
products or parts thereof are subject to scenarios to check whether there is an
appropriate reaction.

An important parameter of testing is the extent to which access to the internal
state of the system under test can be obtained. In white boz testing the in-
ternal structure of an implementation can be fully accessed, while in black boz
testing the internal structure is completely hidden. In practice, intermediate
scenarios are often encountered, referred to as grey bor testing. The main ad-
vantage of testing is its broad applicability, in particular to final products and
not restricted only to models. The drawback is comparable to simulation, as
exhaustive testing is practically impossible. Like simulation, testing can show
the presence of errors, not their absence.

Most currently available testing methods are rather ad-hoc and not very sys-
tematic. As a result, testing is a labour-intensive, error-prone and hardly man-
ageable activity. In particular, the manual generation and maintenance of ap-
propriate test cases causes a bottleneck. This leads to an increasing interest
in model-based testing, as this allows a much more systematic treatment by
mechanizing the generation of tests as well as the test execution phase. Analo-
gous to model checking, the starting-point of model-based testing is a precise,
unambiguous model description. With traditional testing methods such a basis
is often absent. Based on this formal specification, test generation algorithms
generate provably valid tests, i.e., tests that test what should be tested and no
more than that. Testing tools support these algorithms, thus providing auto-
matic, faster and less error-prone test generation. In this way, a test process in
which the system under test and its formal model are the only required input
parameters becomes possible, cf. Figure 1.6.

Model-based testing has important advantages too for regression testing. Re-
gression testing involves checking the correct behaviour of a modified version
of an existing system. This typically involves the adaptation, selection and
repetition of existing tests. In model-based testing, a small modification of the
system only requires an adaptation of its model, for which a new test suite (a
set of tests) can be automatically generated.

In practice, model-based testing has been implemented in several software tools
and has demonstrated its power in various case studies. For several systems, like
embedded systems that control the exchange of information between high-end
television sets and VCRs, errors have been found that remained undiscovered
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with conventional testing techniques.

1.3.5 Theorem Proving

With deductive methods, the verification problem is interpreted as a mathe-
matical theorem that typically has the form: system specification = desired
property. Trying to establish this result is referred to as theorem proving. In
order to apply theorem proving, it is a prerequisite that the system specifica-
tion has the form of a mathematical theory, or should be transformable into
such form. Using a set of axioms (the basic theorems), a theorem prover (the
software tool) tries to either construct a proof of the theorem by generating
the intermediate proof steps, or to refute it. The axioms are either built-in
or are provided by the user. Theorem provers are also called proof assistants.
The general demand to prove theorems of a rather general type and the use
of undecidable logics requires some user interaction. Different variants exist:
highly automated, general-purpose proof assistants, and interactive programs
with special-purpose capabilities.

Proof checkers are highly automated proof assistants that require a limited
interaction with the user. The checker basically checks whether a user-provided
proof suggestion is valid or not. The capability of proof checkers to generate
intermediate proof steps in an automatic way is rather limited.

General-purpose proof assistants incorporate search components. In order to
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reduce the search in theorem proving, interaction with the user takes place.
The user may well be aware of what is the best strategy to conduct a proof.
Usually, interactive proof assistants help in giving a proof by keeping track of
the things still to be done and by providing hints on how these remaining (inter-
mediate) theorems can be proven. Moreover, each proof step is automatically
verified. Typically many small and detailed steps have to be taken in order to
arrive at a fully proof-checked proof. The degree of interaction with the user is
usually rather high. This is due to the fact that human beings see much more
structure in their subject than logic or theorem provers do. This covers not
only the content of the theorem, but also how it is used. In addition, the use of
theorem provers or proof checkers requires much more scrunity than users are
used to. Typically, human beings skip certain small parts of proofs (“trivial”
or “analogous t0”) whereas the proof assistant requires these steps explicitly.

The main advantage of theorem proving is that it can deal with infinite state
spaces (relying on proof principles such as structural induction) and can verify
the validity of properties for arbitrary parameter values. Their main drawback
is that the verification process is usually slow, error-prone and labour-intensive
to apply. Besides, the mathematical logic used by the proof assistant requires a
rather high degree of user expertise. Although some successful applications of
theorem proving have been reported, like the thorough verification of smartcard
software, these characteristics have restricted their use mainly to the academic
world.

Logics for proof assistants. Logics used by proof assistants are variants of first-
order logic (and are thus undecidable). This logic ranges over an infinite set
of variables and a set of function and predicate symbols of given arities. The
arity specifies the number of arguments of a function or predicate symbol. A
term is either a variable or of the form f(¢1,...,t,) where f is a function
symbol of arity n and ¢; is a term. Constants can be viewed as functions
of arity 0. A predicate is of the form P(ti,...,t,) where P is a predicate
symbol of arity n and ¢; is a term. Sentences in first-order predicate logic are
either predicates, logical combinations of sentences, or existential or universal
quantifications over sentences. In typed logics there is, in addition, a set of
types and each variable, function and predicate symbol is typed. In these
typed logics, quantifications are over types (rather than over variables), since
the variables are typed. This enables to quantify over these types, which makes
the logic more expressive than first-order predicate logic. Many theorem provers
use higher-order logics: typed first-order logics where variables can range over
function types or predicate types. There does not exist the higher-order logic.
Various syntactic and semantic differences do exist. Examples of prominent
proof assistants for higher-order logics are PVS, Coq, HOL and Isabelle.

The internals of proof assistants. Most theorem provers have algorithmic and
search components. The algorithmic components are used to apply proof rules
and to obtain conclusions from this. Important techniques for this purpose are
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natural deduction (e.g., from the validity of ® and the validity of ¥ we may con-
clude the validity of ® A ¥), resolution, unification (a procedure which is used
to match two terms with each other by providing all substitutions of variables
under which two terms are equal), rewriting (where equalities are considered
to be directed; in case a system of equations satisfies certain conditions, the
application of these rules is guaranteed to yield a normal form).

These techniques are not sufficient to find the proof of a given theorem, even
if the proof exists. The tool needs to have a strategy (a tactic) which tells
how to proceed to find a proof. Such strategy may suggest to use rules back-
wards, starting with the sentence to be proven. This leads to goal-directed
proof attempts. The strategies that humans use in order to find proofs are not
formalized. Strategies that are used by theorem provers are simple strategies,
e.g., based on breadth-first and depth-first search principles.

1.4 Characteristics of Model Checking

This book is devoted to the principles of model checking;:

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,
systematically checks whether this property holds
for (a given state in) that model.

The next chapters treat the elementary technical details of model checking. This
section describes the process of model checking (how to use it), presents its main
advantages and drawbacks, and discusses its role in the system development
cycle.

1.4.1 The Model Checking Process

In applying model checking to a design the following different phases can be
distinguished:

e Modeling phase:

— model the system under consideration using the model description
language of the model checker at hand

— as a first sanity check and quick assessment of the model perform
some simulations

— formalise the property to be checked using the property specification
language
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e Running phase: run the model checker to check the validity of the prop-
erty in the system model

e Analysis phase:

— property satisfied? — check next property (if any)
— property violated? —
1. analyse generated counterexample by simulation
2. refine the model, design, or property
3. and repeat the entire procedure

— out of memory? — try to reduce the model and try again

In addition to these steps, the entire verification should be planned, adminis-
tered and organized. This is called verification organization. We discuss these
phases of model checking in somewhat more detail below.

Modeling

The prerequisite inputs to model checking are a model of the system under
consideration and a formal characterization of the property to be checked.

Models of systems describe the behaviour of systems in an accurate and unam-
biguous way. They are mostly expressed using finite-state automata, consist-
ing of a finite set of states and a set of transitions. States comprise informa-
tion about the current values of variables, the previously executed statement
(e.g., a program counter), and the like. Transitions describe how the system
evolves from one state into another. For realistic systems, finite-state automata
are described using a model description language such as an appropriate di-
alect/extension of C, Java, VHDL, or the like. Modeling systems, in particular
concurrent ones, at the right abstraction level is rather intricate and is really
an art; it is treated in more detail in Chapter 2.

In order to improve the quality of the model, a simulation prior to the model
checking can take place. Simulation can be used effectively to get rid of the
simpler category of modelling errors. Eliminating these simpler errors before
any form of thorough checking takes place may reduce the costly and time
consuming verification effort.

To make a rigorous verification possible, properties should be described in a
precise and unambiguous manner. This is typically done using a property spec-
ification language. We focus in particular on the use of a temporal logic as
property specification language, a form of modal logic that is appropriate to
specify relevant properties of ICT systems. In terms of mathematical logic,
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one checks that the system description is a model of a temporal logic for-
mula. This explains the term “model checking”. Temporal logic is basically
an extension of traditional propositional logic with operators that refer to the
behaviour of systems over time. It allows the specification of a broad range
of relevant system properties such as: functional correctness (does the system
what it is supposed to do?), reachability (is it possible to end up in a deadlock
state?), safety (“something bad never happens”), liveness (“something good will
eventually happen”), fairness (does, under certain conditions, an event occurs
repeatedly?), and real-time properties (is the system acting in time?).

Although the aforementioned steps are often well understood, in practice it
may be a serious problem to judge whether the formalized problem statement
(model + properties) is an adequate reflection of the actual verification prob-
lem. This is also known as the wvalidation problem. The complexity of the
involved system as well as the lack of precision of the informal specification of
the system’s functionality may make it hard to answer this question satisfacto-
rily. Verification and validation should not be confused. Verification amounts
to check that the design satisfies the requirements that have been identified,
i.e., verification is “check that we are building the thing right”. In validation, it
is checked whether the formal model is consistent with the informal conception
of the design, i.e., validation is “check that we are building the right thing”.

Running the model checker

The model checker first has to initialised by appropriately setting the various
options and directives that may be used to carry out the exhaustive verification.
Subsequently, the actual model checking takes place. This is basically a solely
algorithmic approach in which the validity of the property under consideration
is checked in all states of the system model.

Analyzing the results

There are basically three possible outcomes: the specified property is either
valid in the given model or not, or the model turns out to be too large to fit
within the physical limits of the computer memory.

In case the property is valid, the following property can be checked, or, in case
all properties have been checked, the model is concluded to possess all desired
properties.

Whenever a property is falsified, the negative result may have different causes.
There may be a modeling error, i.e., upon studying the error it is discovered that
the model does not reflect the design of the system. This implies a correction of
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the model, and verification has to be restarted with the improved model. This
re-verification includes the verification of those properties that were checked
before on the erroneous model and whose verification may be invalidated by the
model correction! If the error analysis shows that there is no undue discrepancy
between the design and its model, then either a design error has been exposed,
or a property error has taken place. In case of a design error, the verification is
concluded with a negative result, and the design (together with its model) has
to be improved. It may be the case that upon studying the exposed error it
is discovered that the property does not reflect the informal requirement that
had to be validated. This implies a modification of the property, and a new
verification of the model has to be carried out. As the model is not changed,
no re-verification of properties that were checked before has to take place. The
design is verified if and only if all properties have been checked with respect to
a valid model.

Whenever the model is too large to be handled — state spaces of real-life systems
may be many orders of magnitude larger than what can be stored by currently
avalaible memories — there are various ways to proceed. A possibility is to
apply techniques that try to exploit implicit regularities in the structure of the
model. Examples of these techniques are the representation of state spaces using
symbolic techniques such as binary decision diagrams or partial-order reduction.
Alternatively, rigorous abstractions of the complete system model are used.
These abstractions should preserve the (non-)validity of the properties that
need to be checked. Often, abstractions can be obtained that are sufficiently
small with respect to a single property. In that case, different abstractions need
to be made for the model at hand. Another way of dealing with too large state
spaces is to give up the precision of the verification result. The probabilistic
verification approaches explore only part of the state space while making a
(often negligible) sacrifice in the verification coverage. The most important
state-space reduction strategies are discussed in Chapters 11 through 14 of this
book.

Verification organization

The entire model-checking process should be well organized, well structured
and well planned. Industrial applications of model checking have provided ev-
idence that the use of version and configuration management is of particular
relevance. During the verification process, for instance, different model descrip-
tions are made describing different parts of the system, various versions of the
verification models are available (e.g., due to abstraction) and plenty of verifi-
cation parameters (e.g., model checking options) and results (diagnostic traces,
statistics) are available. This information needs to be documented and main-
tained very carefully in order to manage a practical model checking process and
to allow the reproduction of the experiments that were carried out.
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1.4.2 Strengths and Weaknesses

The strengths of model checking.

e It is a general verification approach that is applicable to a wide range of
applications such as embedded systems, software engineering, and hard-
ware design.

e It supports partial verification, i.e., properties can be checked individu-
ally, thus allowing to focus on the essential properties first. No complete
requirement specification is needed.

e It is not vulnerable to the likelihood with which an error is exposed; this
contrasts with testing and simulation that are aimed at tracing the most
probable defects.

o It provides diagnostic information in case a property is invalidated; this
is very useful for debugging purposes.

e It is a potential “push-button” technology; the use of model checking does
neither require a high degree of user-interaction nor a high degree of ex-
pertise.

e It enjoys a rapidly increasing interest by industry; several hardware com-
panies started their in-house verification labs, job offers with required
skills in model checking frequently appear, and commercial model check-
ers become available.

e It can be easily integrated in existing development cycles; its learning
curve is not very steep, and empirical studies indicate that it may lead to
shorter development times.

e It has a sound and mathematical underpinning; it is based on elementary
theory in graph algorithms, data structures, and logic.

The weaknesses of model checking.

e It is mainly appropriate to control-intensive applications and less suited
for data-intensive applications as data typically ranges over infinite do-
mains.

o Its applicability is subject to decidability issues; for infinite-state systems,
or reasoning about abstract data types (that requires undecidable or semi-
decidable logics), model checking is in general not effectively computable.

e It verifies a system model, and not the actual system (product or pro-
totype) itself; any obtained result is thus as good as the system model.
Complementary techniques such as testing are needed to find fabrication
faults (for hardware) or coding errors (for software).
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e It checks only stated requirements, i.e., there is no guarantee of complete-
ness. The validity of properties that are not checked cannot be judged.

o It suffers from the state-space explosion problem, i.e., the number of states
needed to model the system accurately may easily exceed the amount of
available computer memory. Despite the development of several very ef-
fective methods to combat this problem (cf. Chapter 5), models of realistic
systems may still be too large to fit in memory.

e Its usage requires some ezpertise in finding appropriate abstractions to
obtain smaller system models and to state properties in the logical for-
malism used.

e [t is not guaranteed to yield correct results: as any tool, a model checker
may contain software defects.?

o It does not allow to check generalizations: in general, checking systems
with an arbitrary number of components, or parameterized systems can-
not be treated. Model checking can, however, suggest results for arbitrary
parameters that may be verified using proof assistants.

We believe that one can never achieve absolute guaranteed correctness for sys-
tems of realistic size. Despite the above limitations we conclude that:

Model checking is an effective technique
to expose potential design errors.

Thus, model checking can provide a significant increase in the level of confidence
of a system design.

1.4.3 Integration in the Development Cycle

Model-checking hardware. With the notable exception of communication proto-
cols, formal verification has been more successful for hardware than for software.
There are several reasons for this. The high-quality standards in hardware de-
sign, together with the rather standard design levels (e.g., architecture, reg-
ister transfer, gate, and transistor level) in its development cycle have paved
the way to the smooth introduction of techniques such as model checking and
theorem proving. Besides, the role of checking the correctness of circuits as
part of the design process, together with the usage of finite-state models have
been benificial. Both theorem proving and model checking, and combinations
thereof, have found their place in the hardware development process of compa-
nies like Cadence, Fujitsu, IBM, Intel and Motorola. Theorem proving is mostly

2Parts of the more advanced model-checking procedures have been formally proven using
theorem provers to circumvent this.
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used for checking data paths, signal processors and arithmetic units, whereas
model checking is typically used for the control logic (one of the main sources
of design flaws), controllers, and combinatorial circuits. Model checking is a
widely accepted technique for the design phases that deal with circuits at the
register transfer level and the gate level. At these levels, phenomena like non-
determinism, concurrency, and module composition — issues par excellence for
model checking — play a prominent role. Recently, IBM reported the successful
usage of model checking at multiple levels in their design trajectory, includ-
ing the more abstract architecture level. Industrial experiments have provided
evidence that model checking is no worse than random simulation in terms of
time spent and that it is clearly superior in terms of coverage. The design of a
memory bus adapter at IBM showed that 24% of all defects found were found
with model checking, while 40% of these errors would most likely not have been
found by simulation.

Model-checking software. Model checking has been successfully applied to a
particular branch of software, namely the development of communication pro-
tocols. In such protocols, notions like atomicity, concurrency control and non-
determinism play a crucial role, and these phenomena can extremely well be
captured by model checkers. Lucent Technologies, in earlier days known as
AT&T, and IBM have played a prominent role in the practical development of
(the first) model checkers. Several serious defects in communication protocols
have been found using model checking. One of the most prominent example is
perhaps the bug that was exposed in the popular Needham-Schroeder encryp-
tion protocol that remained undetected for over 17 years.

As opposed to hardware design, software engineering has not exposed a “ver-
ification aware” discipline in the design process. Formal verification of (se-
quential) computer programs has started in the late fourties by Turing and
has emerged in the sixties with the pioneering works by Floyd and Hoare. De-
spite this early interest in correctness of software, these rigorous verification
techniques have mainly been used by academia only. Although the rigid verifi-
cation approach using axioms and proof rules never has become popular among
software engineers, concepts like assertions, and, more importantly, pre- and
postconditions have found their role in modern software engineering methods.
In the popular “design by contract” software engineering philosophy, pre- and
postconditions constitute the specification (i.e., the contract) to which the soft-
ware under development should comply.

One of the main reasons for the conservative attitude of software engineers with
respect to model checking has been the need for constructing a model of their
software that is amenable to model checking. This obstacle has recently led to
an increased interest by large companies and institutes such as Microsoft, NASA
and Compaq to automatically generate compact models from programs written
in programming languages such as C, C++, Java, or the like. First experiments
with these techniques are very promising. It is expected that model-checking
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techniques will rapidly be adopted on a wider scale by sofware engineers in the
near future. According to Holzmann, the main developer of one of the leading
model-checking tools SPIN, “within 5 years it (model checking) will become
standard in most software development tools”.

1.5 Bibliographic Notes

Model checking. Model checking originates from the independent work of two
couples in the early eighties: Clarke and Emerson [24] and Queille and Sifakis [102].
The term model checking was coined by Clarke and Emerson. The brute force
examination of the entire state space in model checking can be considered as
an extension of automated protocol validation techniques by Hajek [51] and
West [121, 122]. While these earlier techiques were restricted to checking the
absence of deadlocks or livelocks, model checking allows for the examination of
broader classes of properties. Introductory papers to model checking can be
found in [28, 26, 30, 90, 124]. The limitations of model checking were discussed
by Apt and Kozen [5]. More information on model checking is available in
the earlier books by Holzmann [58], McMillan [86] and Kurshan [74] and the
recent works by Clarke, Peled and Grumberg [29], Huth and Ryan [64], and
Bérard et al. [10]. The model-checking trajectory has recently been described
by Brinksma and Ruys [14].

Software verification. Empirical data about software engineering is gathered
by the Center for Empirically Based Software Engineering (www.cebase.org);
their collected data about software defects has recently been summarised by
Boehm and Basili [11]. The different characterisations of verification (“are
we building the thing right?”) and validation (“are we building the right
thing?”) originate from Boehm [12]. An overview of software testing is by
Whittaker [123]; books about software testing are by Myers [93] and Beizer [8].
Testing based on formal specifications has been studied extensively in the area
of communication protocols. This has led to an international standard for
conformance testing [65]. The use of software verification techniques by Ger-
man software industry has been studied by Liggesmeyer et al. [81]. Books by
Storey [114] and Leveson [77] describe techniques for developing safety-critical
software and discuss the role of formal verification in this context. Rushby [104]
addresses the role of formal methods for developing safety-critical software. The
recent book of Peled [97] gives a detailed account on formal techniques for soft-
ware reliability that includes testing, model checking and deductive methods.

Model-checking software. Model-checking communication protocols has become
popular through the pioneering work by Holzmann [58, 59]. An interesting
project at Bell Labs in which a model-checking team and a traditional design
team worked on the design of part of the ISDN user part protocol has been
reported by Holzmann [57]. In this large case study, 112 serious design flaws
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were discovered while checking 145 formal properties in about 10,000 verifica-
tion runs, Errors found by Clarke et al. [27] in the IEEE Futurebus+ standard
(checking a model of more than 103 states) has led to a substantial revision of
the protocol by IEEE. Chan et al. [20] used model checking to verify the control
software of a traffic control and alert system for airplanes. Recently, Staunstrup
et al. [113] have reported the succesful model-checking of a train model consist-
ing of 1,421 state machines comprising a state space of 10%7® states. Lowe [82]
discovered using model checking a flaw in the well-known Needham-Schroeder
public key encryption algorithm. The usage of formal methods (that includes
model checking) in the software development process of a safety-critical sys-
tem within a Dutch software house is presented by Tretmans, Wijbrans and
Chaudron [118]. The formal analysis of NASA’s Mars Pathfinder and the Deep
Space-1 space-craft are addressed by Havelund, Lowry and Penix [53], and Holz-
mann, Najm and Serhrouchini [60], respectively. The automated generation of
abstract models amenable to model checking from programs written in pro-
gramming languages such as C, C++, or Java has been pursued, for instance,
by Godefroid [45], Dwyer, Hatcliff and co-workers [52], at Microsoft Research
by Ball, Podelski and Rajamani [7] and at NASA Research by Havelund and
Pressburger [54].

Model-checking hardware. Applying model checking to hardware originates from
Browne et al. [16] analyzing some moderate self-timed sequential circuits. Suc-
cessful applications of (symbolic) model checking to large hardware systems
have been first reported by Burch et al. [18] in the early nineties. They ana-
lyzed a synchronous pipeline circuit of approximately 102 states. Overviews of
formal hardware verification techniques can be found in works by Gupta [49],
and the books by Yoeli [125] and Kropf [72]. The need for formal verification
techniques for hardware verification has been advocated by, amongst others,
Sangiovanni- Vincentelli, McGeer and Saldanha [106]. The integration of model
checking techniques for bug finding in the hardware development process at
IBM has been recently described by Schlipf et al. [107] and Abarbanel-Vinov
et al. [1]. They conclude that model checking is a powerful extension of the
traditional verification process, and consider it as complementary to simula-
tion/emulation.

Theorem proving. The Boyer-Moore proof assistant NQTHM (nowadays called
ACL2) [13] for first-order logic has been used for hardware verification by,
amongst others, Bronstein and Talcott [15] and Pierre [98]. Higher-order logics
have recently become more popular for this purpose. Well-known higher-order
logic proof assistants are Coq [63], HOL [89], Isabelle [96], Nuprl [31], and
PVS [95]. A recent overview of checking proofs for distributed, concurrent
systems has been provided by Groote, Monin and van de Pol [48]. An inter-
esting current trend is the application of proof assistants to the verification of
smartcards, see, e.g., the recent work by Poll, van den Berg and Jacobs [100].
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