
Greedy Approximations of Independent Sets in Low DegreeGraphsMagnús M. Halldórsson� Kiyohito YoshiharayAbstractWe investigate the power of a family of greedy algorithms for the independent set prob-lem in cubic graphs and graphs of maximum degree three. These algorithm iteratively selectvertices of minimum degree, but di�er in the secondary rule for choosing among many can-didates. We study three such algorithms, and prove tight performance ratios, with the bestone being 9=7 � 1:28. All of these algorithms are practical and run in linear time, in contrastwith the algorithm with the best performance ratio known of 1:2.We also show certain inherent limitations in the power of this family of algorithm: anyalgorithm that greedily selects vertices of minimum has a performance ratio at least 1:25 ondegree-three graphs, even if given an oracle to choose among candidate vertices of minimumdegree.1 IntroductionAn independent set of a graph G is a subset of vertices in which no two are adjacent. The MaxIndependent Set problems is that of �nding an independent set of maximum cardinality. It isone of the core NP-hard problems [4], and thus, polynomial time exact algorithms are unlikelyto exist. It is therefore interesting to explore algorithms that produce solutions that are notalways optimal but are close to optimal. The quality of an approximation algorithm is generallymeasured by the performance ratio, or the maximum ratio of the size of an optimal solution (thesize of the maximum independent set) to the size of the solution found by the algorithm.The independent set problem is known to be hard to approximate on general graphs. Aroraet al. [1] showed that it is NP-hard to obtain a performance ratio of less than n� for some� > 0, where n is the number of vertices. On special classes of graphs, however, the problemdoes admit constant factor approximations.One important such class is that of bounded-degree graphs. After a decade of non-activityfollowing a paper of Hochbaum [9], there has been a �urry of results on the approximation ofindependent sets in bounded-degree graphs [3, 6, 7, 2]. The currently best ratios known are(� + 3)=5 for maximum degree � � 613 [3, 2], �=6 + O(1) for intermediate values of �, andO(�= log log�) [7, 8] for large values of �..In this paper we focus on a central case of bounded-degree graphs, namely when the maximumdegree is at most three. Since the independent set problem is polynomial solvable when maximumdegree is two, this problem can be thought of as the initial frontier of NP-hardness of theproblem. Also, many of the results for higher degrees use reductions to lower degree cases, in�Contact author. Science Institute, University of Iceland, IS-107 Reykjavik, Iceland. Research partly performedat Japan Advanced Institute of Science and Technology � Hokuriku, IBM Tokyo Research Lab, and Max PlanckInstitut fuer Informatik.yDepartment of Computer Science, Tokyo Institute of Technology1



which the degree-three plays the role of the basis case [3, 7, 5, 2], and improvements for thatcase translate to improvements for all odd degrees.We additionally consider cubic graphs, i.e. 3-regular graphs, where all vertices are of degreethree. The problem remains NP-hard and MAX SNP-hard (hard to approximate within some�xed constant greater than one) even under these strong restrictions.Let us review the known results about approximating independent sets in degree-threegraphs. Hochbaum [9] presented an algorithm with a 1:5 ratio, that runs in time proportionalto bipartite matching or O(n1:5). Berman and Fürer [3] gave a powerful local search approachthat attains a performance ratio of 1:25. This has recently been brought down to 1:2 by Bermanand Fujito [2] using additional tricks. The disadvantage of this approach is a phenomenally hightime complexity: the analysis of [3, 2] yields a bound of at least n2100 , while even with a tighteranalysis [7] the complexity appears to be no less than n50. In response to this, Halldórsson andRadhakrishnan [7] gave a scaled-down version of the local search approach of [3] which runs inlinear time with a performance ratio of 1:4. Generalizations [5] lead to a 1:33 + � ratio in timeO(exp(1=�)n).The algorithm paradigm that we consider in this paper is that of greedy algorithms: select avertex of minimum degree, add the vertex to the solution, remove the vertex and its neighbors,and repeat until the graph is empty. This approach is non-deterministic in the choice of aparticular vertex of minimum degree. The basic algorithm, selecting an arbitrary minimumdegree vertex, was analyzed in detail by Halldórsson and Radhakrishnan [6]. In particular, theperformance ratio on degree-three graphs was shown to be 5=3.We consider here greedy algorithms with more goal-directed selection rules. The algorithmsalways choose minimum-degree vertices, but with di�erent rules to decide among candidatevertices. Typically, the algorithms attempt to eliminate more than the minimum number ofedges in each reduction, or prefer reductions that compare well with the optimal solution. Insummary, our results are as follows:1. The basic greedy algorithm attains a performance ratio of 3=2 on cubic graphs. Furtherrestricting the input to graphs of high odd girth yields no further improvements.2. A modi�ed greedy algorithm is presented that attains a ratio of 3=2 on (general) degree-three graphs. The ratio improves to a ratio that approaches 4=3 on cubic graphs with highodd girth.3. A second modi�ed greedy algorithm is presented that attains a ratio of 9=7 � 1:28 ondegree-three graphs.4. Any greedy algorithm is shown to have a performance ratio at least 1:25 on degree-threegraphs. Thus, the whole family has limitations which are nearly matched by our secondalgorithm.The paper is organized into sections following the above list.2 Preliminaries2.1 NotationWe use standard symbols and notations. The input graph G = (V;E) is assumed to be ofmaximum degree three, with further restrictions explicitly stated when in place. Let n denotethe number of vertices, m the number of edges, � the independence number (i.e. size of the2



optimal independent set). For a vertex v, N(v) denotes the neighborhood of v, or the set ofadjacent vertices.For an algorithm A for Max Independent Set, the size of the solution produced on G isdenoted by A(G), and the approximation ratio �A(G) is de�ned as �A(G) def= �(G)=A(G). Theperformance ratio of A is de�ned as the maximum approximation ratio over all input graphs, or�A def= maxG �A(G). We are primarily interested in the limit of this value as n goes to in�nity.We let I denote a �xed but arbitrary maximum independent set in G. Let Out denote thenumber of edges with both endpoints in V � I.2.2 Upper bounding the optimal solutionIn order to analyze the relative value of a heuristic solution compared with an optimal solution,it is essential to have at ones disposal a good upper bound of the optimal solution. The numberOut of edges outside some maximum cardinality solution I plays a crucial role.Lemma 2.1 For a degree-three graph G,�(G) � n�m=3�Out=3: (1)Proof. Each edge has either one endpoint in I or both endpoints in V � I. The total numberof endpoints in V � I is at most 3(n� jIj). Thus,m � 3(n� jIj) �Out;which, when rearranged, yields the claim.In a cubic graph, m = 3n=2, and the inequality becomes � � n=2�Out=3.3 Greedy Algorithm on Cubic GraphsWe �rst consider the well-known Greedy algorithm, which we label here as Greedy. The algorithmproceeds along a sequence of iterations or reductions, each of which consists of the following twosteps: some vertex of minimumdegree is added to the solution, and the vertex, its neighbors, andall incident edges are removed from the graph. The algorithm terminates when the all verticeshave been deleted from the graph. Since neighbors of a selected vertex are immediately deleted,the solution consisting of the selected vertices form a proper independent set. By maintainingtrack of the degrees of the vertices, the algorithm can be implemented in O(n+m) time.Greedy was analyzed for bounded-degree graphs in [6], where its approximation performanceon degree-three graphs was shown to be 5=3 � 1:66. A better ratio is possible in the case ofcubic graphs.Theorem 3.1 The performance ratio of Greedy on cubic graphs is 3=2.We �rst argue the upper bound. Assume without loss of generality that the graph is con-nected. Observe that Greedy picks a vertex of maximum degree at most once, since no properinduced subgraph can be regular. Thus, at most three vertices are deleted in all but the �rststep. That is, Min0 � (n� 1)=3:3



Consider the last reduction made. The deleted vertices must form a clique on 1 to 4 vertices.If 1 or 2, then Greedy � n=3; if 3 or 4, then � � n=2 � 1=3 by Lemma 2.1. In either case, theperformance ratio is at most 3=2.Remark. It can be argued that Greedy �nds an optimal solution in regular bipartite graphs.By applying Lemma 2.1, that implies a performance ratio of at most (n=2� 1=3)=((n� 1)=3) =3=2 � 3=(2n � 2).We now construct a hard graph for Greedy that shows that the above ratio is tight. Thegraph is constructed from three units: front unit, back unit, and multiple copies of repetitionunits. The repetition units are in the form of a 12-cycle with three cords, and are connected ina chain with three edges between adjacent copies. The chain is �anked on the ends by the frontand rear units, both in the form of a complete bipartite graphK2;3, with the three vertices in onepartition connected to the ends of the repetition unit chain. The graph, G0, is best describedby picture, in Figure 1.
repetition unit

front unit
back unit

uF

vF

1

2

3

4

Figure 1: A hard graph for Greedy.We indicate the worst-case behavior of Greedy by presenting a particular sequence of symmetry-breaking choices. The algorithm starts by choosing vF and uF of the front unit. On the �rstrepetition unit it chooses vertices 1 through 4 in that order. This leaves an identical graph lessa single repetition unit. Hence, the algorithm picks the four shaded vertices of each repetitionunit, ending with three vertices from the rear unit.If ` is the number of repetition units, the algorithm �nds 4` + 5 vertices while the optimalsolution contains 6` + 4. The total number of vertices is 12` + 10. Hence, the approximationratio of Greedy on G0 is: �0(G0) = 6`+ 44`+ 5 = 32 � 212(n+ 5) :We conclude that the performance ratio of Greedy on cubic graphs asymptotically equals3=2. Observe that the same holds even if the graphs are required to be triangle-free.4 A Modi�ed Greedy AlgorithmThe worst case behavior of Greedy, as seen when applied to the hard graphs G0 in the previoussection, suggests a direction for modifying the strategy of the algorithm. A situation whereGreedy appears to be weak is when there are many vertices of minimum degree. In this section,we propose a modi�ed version of Greedy, named MoreEdges, which considers the degrees ofvertices adjacent to a vertex as a criteria for selecting the vertices. The criteria is:When minimum degree is two, select � whenever possible � a vertex with a neighborof degree three. 4



If no such vertex exists and the minimum degree is two, then we can show that the graph iscomposed of several disjoint cycles. On that remaining portion, MoreEdges obtains an optimalsolution.We �nd that this modi�ed algorithm yields an improvement over the 5=3 ratio of Greedy ondegree-three graphs.Theorem 4.1 The performance ratio of MoreEdges on degree-three graphs is 3=2.Upper boundThe operation of the algorithm can be broken up into reductions, each of which consists ofthe addition of a single vertex to the current solution and the deletion of this and neighboringvertices along with the incident edges. If the recursive description of the algorithm is madeiterative, a reduction corresponds to a single iteration. An (i; j)-reduction refers to one wherei� 1 vertices and j edges are deleted.
1,2

2,52,4

1,3

2,6

1,1

3,9

0,0

2,5

Incident

3,7

Deleted

Selected

3,6 3,8

2,42,3

Figure 2: The forms of the various reductions.The form of the possible reductions are given in Figure 2. The selected vertices are in black,their neighbors (which are also deleted) are in grey, and other incident vertices are in white.(2; 4) and (2; 5) reductions appear in two di�erent guises.We consider the following measures of each reduction r. Here, we �x some maximum cardi-nality independent set I for comparison.n(r) Number of vertices deletede(r) Number of edges deleted�(r) Number of the deleted vertices that belong to IOut(r) Number of deleted edges with both endpoints in V � I.Our primary cost measure of each reduction r is given by:f(r) = 3n(r)� e(r)�Out(r) + �(r):Table 1 gives conservative bounds for these measures on each type of reduction. The valuesfor Out(r), e(r) are lower bounds, while �(r) and f(r) are upper bounds.5



r n(r) e(r) Out(r) �(r) f(r)(0; 0) 1 0 0 1 4(1; x) 2 1 0 1 6(2; 3) 3 3 1 1 6(2; 4) 3 4 0 1y 6(2; 5+) 3 5 1 2 6(3; 6) 4 6 3 1 4(3; 7) 4 7 1 2 6(3; 8) 4 8 1 2 5(3; 9) 4 9 0 3 6Table 1: Bounds on measures of the reductions performed by MoreEdgesThe values in Table 1 are easily veri�ed from Figure 2, with the exception of the � valueof (2; 4). When a (2; 4)-reduction occurs, the graph necessarily consists of disjoint cycles. Thealgorithm will add the same number of vertices to the solution from a given cycle, no matterwhich vertex it starts with. Thus, it causes no harm if we assume that it chooses a vertex forwhich at most one neighbor belongs to a given maximum independent set.The claim of the upper bound now follows easily from the f -values of Table 1, and Lemma 2.1:6t = Xr 6 � Xr fr = 3n� e�Out+ � � 4�:Lower boundWe construct a hard graph for MoreEdges as in Figure 3. It is a chain of simple units withsix vertices each. Each unit forms a six-cycle with one cord between the third and the �fthvertex. The last vertex in each unit is also adjacent to the �rst vertex in the subsequent unit.Formally, we construct a family of graphs Gq, with vertices vertices vi;1; : : : ; vi;6 and edges(vi;j ; vi;j+1); (vi;3; vi;5); (vi0;6; vi0+1;1), where i = 1; : : : q, j = 1; : : : 6 and i0 = 1; : : : q � 1.
Figure 3: Initial portion of a hard graph for MoreEdges.MoreEdges may be assumed to select the �rst and the third vertex of each unit, while theoptimal solution will contain the second, fourth and sixth. Only on the last unit will MoreEdgesalso �nd three vertices. Hence, the performance ratio ofMoreEdges is no better than 3q=(2q+1) =3=2 � �(1=n).Further resultsWe have further analyzed the algorithm for classes of cubic graphs. In particular, the algorithmattains performance ratios of 17=12 � 1:42 on cubic graphs, 29=21 � 1:38 on cubic triangle-freegraphs, and in general 4=3 + 1=(9k + 3) on cubic graphs of odd girth 2k + 1. Those values aretight as there are graphs where these ratios occur. We omit the descriptions for reasons of space.6



5 A Second Improved AlgorithmWe consider in this section a still stronger member of the greedy paradigm. In particular, thealgorithm performs the following two types of transformations whenever possible.Branchy reduction When two vertices v and u of degree two are adjacent, some optimalsolution will contain exactly one of these vertices. We can transform the graph into agraph G0 that contains all vertices but v and u and has the other neighbors of v and uadjacent. To ensure that multi-edges do not appear, we insist that no third vertex beadjacent to both v and u. The solution of the heuristic will contain the heuristic solutionon G0 along with one of v and u. This is a case of a delayed-commitment reduction, whosee�ect is optimal.Simplicial reduction A simplicial vertex is one whose neighborhood forms a clique. An opti-mal solution can contain at most one vertex from this open neighborhood, hence selectinga simplicial vertex is always optimal. In particular, when minimumdegree is two, we selectone whose two neighbors are adjacent, whenever possible.Simplicial reductions appear as (1; 1�3), (2; 3�5) and (3; 6)-reductions. Branchy reductionsappear as (1; 2)-reductions. These tricks have earlier been used in [2].Simplicial(G)repeatperform reductions in the following order of preference:1. branchy, simplicial, (2; 6)2. (3; 8)3. (3; 9)until doneendBy keeping track of the shape of the neighborhood of each vertex in the current graph, thealgorithm can be implemented in linear time.This algorithm attains a ratio of 9=7 � 1:28 on degree-three graphs. In comparison, theprevious best ratio claimed for an algorithm with low-polynomial time complexity [6, 7, 5] was4=3 + 1=� [5]. Further, by using this algorithm as the subroutine for degree three graphs inthe schema of [7] (originating in [3]), we obtain similar improvements for the independent setproblem in other classes of bounded-degree graphs.We devote the rest of this section for proving our main result.Theorem 5.1 The performance ratio of Simplicial on graphs of maximum degree three is exactly9=7.We �rst give a simple construction for the lower bound in Figure 4. First build a unit withseven vertices, v1; : : : v7 forming a cycle with chords between second and fourth, third and sixth,and �fth and seventh. All vertices are of degree three, except v1. The hard graph is obtainedby adding one vertex u connected to the v1's of three units.For the initial choice, the algorithm will prefer a (3; 8)-reduction over a (3; 9)-reduction, andmay choose any vertex but u and v1 vertices. One tie-breaking choice is to select v2, followed byv7, u, and two vertices from each of the two remaining units, for a total of seven. On the otherhand, the optimal solution consists of the �rst, third and �fth vertex of each unit, for a total ofnine. 7



54v

v3 v6

v

u

6v3v

v

v2 v7

v54v

v3 v6

v1

4 5v

7v2v

1 v1

v2 v7

v

Figure 4: A hard graph for Simplicial.5.1 Upper boundUsing the same measures of the reductions as for MoreEdges, our cost measure for this algorithmis given by: g(r) = 6n(r)� 2e(r) � 2Out(r) + �(r):Unfortunately, this measure is too large on (1; 1) and (2; 3) reductions. We alleviate thisproblem by considering short sequences of reductions, or idioms as we call them, and showingthat the cost measure on these combinations behave as desired.Let us view the execution of the algorithm as a string of reductions. We argue that that thisstring can be lexically partitioned into strings from a restricted class.Claim 5.2 The following is an alphabet for the reduction sequence of the algorithm:f(0; 0), (1; 2), (1; 3), (2; 4), (2; 5), (2; 6), (3; 8), (3; 9),[f(2; 6); (3; 8); (3; 9)gf(1; 2); (2; 4)g�(1; 1)], [f(1; 3); (2; 5); (2; 6); (3; 9)gf(1; 2); (2; 4)g� (2; 3)],[(3; 8)f(1; 2); (2; 4)g�(2; 3); f(2; 5); (2; 6)g].The following observations have bearing on Claim 5.2.1. A (3; 7)-reduction is impossible, since some two of the vertices in the reduction would giverise to a (3; 8)-reduction.2. The possibility of the idiom [(3; 9); (2; 3); (2; 3)] is eliminated by the third case of thealgorithm.3. The only reductions that can precede a (2; 3) reduction are: (1; 3), (2; 5), (2; 6), or (3; 9).This ignores (1; 2) and (2; 4)-reductions which may be interspersed in various ways.4. Following the sequence [(3; 8); (2; 3)], the remaining graph will be cubic except for asingle vertex. Hence only (2; 5) or (2; 6) reductions can immediately follow. Further,[(3; 8); (2; 3); (2; 5); (2; 3)] is not possible.We generalize the measures of reductions to measures of idioms, by taking the sum of themeasure of each reduction in the idiom. Further, for an idiom �, let t(�) denote the number ofreductions within �.Table 2 gives lists lower bounds for Out(�) and upper bounds for �(�) and g(�) for thefundamental idioms � in the alphabet. For the idioms that include (2; 3), we have omitted theinterspersed (1; 2) and (2; 4) reductions, and counted them as individual idioms. The idiomsinvolving (1; 1) have also been compacted.The following values are di�erent from Table 1 or are di�erent from the sums of the valuesof the individual reductions in the idiom. 8



� n(�) e(�) Out(�) �(�) g(�) g(�)=t(�)(0; 0) 1 0 0 1 7 7(1; 1) 2 1 1 1 9 9(1; 2) 2 2 0 1 9 9(1; 3) 2 3 0 1 7 7(2; 4) 3 4 1 1 9 9(2; 5) 3 5 1 1 7 7(2; 6) 3 6 0 2 8 8(3; 8) 4 8 1 2 8 8(3; 9) 4 9 0 3 9 9f(2; 6); (2; 3)g 6 9 2 2 16 8f(3; 9); (2; 3)g 7 12 2 3 17 8:5f(1; 3); (2; 3)g 5 6 1 2 18 9f(2; 5); (2; 3)g 6 8 2 2 18 9f(3; 8); (2; 3); (2; 5)g 10 16 3 4 26 8:66f(3; 8); (2; 3); (2; 6)g 10 17 2 5 27 9Table 2: Bounds on measures of the reductions performed by Simplicial1. � and Out for (2; 4) and �(2; 5): Notice that only the latter form of these reductions inFigure 2 can now appear due to the preference to the delayed-commitment reduction.2. Out for (1; 1): Whichever idiom a (1; 1)-reduction appears in, an additional edge must beoutside of I.3. The Out values of (2; 5)(2; 3) and (3; 9)(2; 3) and � values of (2; 6)(2; 3) and (3; 9)(2; 3):The reasons are clear when we look at the subgraphs induced by these pairs of reductions.(1; 2) and (2; 4)-reductions yield optimal results on the subgraph induced by the deletedvertices, thus, having interspersed within an idiom does not a�ect any argument aboutthe independence number or outside edges in the subgraph induced by the idiom.The theorem now follows from Lemma 2.1 along with the fact that g(�)=t(�) in Table 2 isalways at most 9.9t = 9X� t(�) � X� g(�) � 6n� 2e� 2Out+ � � 7�:6 Algorithm with Advice, UltimateIn the previous sections, we considered the performance ratios of three greedy algorithms:Greedy, MoreEdges and Simplicial. These two algorithms have a common basic strategy of re-moving a vertex with the minimum degree in a current graph at each stage. We can easily seeby their hard graphs that the weaknesses of the greedy algorithms appear when they have sev-eral ways of choosing a minimum-degree vertex. If we could give these algorithms some advicesuch that they could proceed optimally whenever they face a branch road, how much would thealgorithms improve? Or would an algorithm that was given perfect advice necessarily �nd anoptimal solution? 9



In this section, we study the power of algorithms that are given the additional bene�t of anoracle for selecting among alternatives. The only requirement is that the algorithm must chooseone of the minimumdegree vertices at any step. We refer to this ultimate algorithm as Ultimate,indicating that the algorithm has in�nite �visibility� (or arbitrary distance from the given node)for choosing among minimum degree vertices.We shall show that even by employing Ultimate, there remains graphs for which Ultimatecannot �nd an optimal solution. In fact, it cannot guarantee a much better performance ratiothan the algorithm of the previous section. This reveals a limitation on the power of the familyof greedy algorithms.
H4

H6

H4 H4 H4 H4

root

root
H2qH2qFigure 5: Construction of H4, H6, and G1.We �rst form a subgraphH4 as on the left of Figure 5. The size of the maximum independentset of H4 is six, whereas Ultimate �nds only �ve vertices. One optimal solution consists of theshaded vertices in Figure 5. We construct a pseudo binary tree H6 with four H4's as leaves. Itis illustrated in the center of Figure 5. We form a pseudo binary tree H2q with 2q(q � 2) levelsby repeating the same operation q � 2 times.The size of the solution found by the algorithm is:HEU(H2q) = 1 + 4 �HEU(H2(q�1)) = 1 + 4 + 42 + � � �+ 4q�2 + 4q�15 = 4q�116=3 � 1=3;while the size of the optimal solution is:OPT (H2q) = 2 + 4 �OPT (H2(q�1)) = 2(1 + 4 + 42 + � � �+ 4q�2) + 4q�16 = 4q�120=3 � 2=3:As q grows, the ratio of HEU to OPT approaches 5=4.We can also obtain a hardness result for regular (i.e. cubic) graphs. Join two H2qs as on theright of Figure 5 in order to make the entire graph cubic, and call the resulting graph G1.An optimal solution of G1 contains all vertices on the even levels of each H2q. Suppose thatUltimate picks any vertex in a H2q at the �rst step. It is easy to verify that Min1 then proceedsoptimally on that half of the graph. That leaves the other H2q left, for which the algorithm will,by induction, be non-optimal.Thus, �1(G1) = 2 � OPT (H2q)OPT (H2q) +HEU(H2q) = 20 + 2020 + 16 = 109 = 1:1:We can obtain similar hardness results for triangle-free graphs (or more generally graphs ofhigh odd girth), by replacing the triangles at the bottom ofH5 by a �ve-cycle (or an appropriatelylarge odd cycle) and connecting the pairs together as needed.Theorem 6.1 Any greedy algorithm that selects vertices of minimum degree must have per-formance ratios at least: 1:25, for degree-three; 1:11, for cubic graphs; and 16=15 � 1:06, fortriangle-free cubic graphs. 10



AcknowledgmentsWe are much indebted to Professor Osamu Watanabe and Professor Jaikumar Radhakrishnanfor informative comments and discussions.References[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and hardnessof approximation problems. FOCS 1992.[2] P. Berman and T. Fujito. On the approximation properties of independent set problem indegree 3 graphs. WADS 1995.[3] P. Berman and M. Fürer. Approximating maximum independent set in bounded degreegraphs. SODA 1994.[4] M. R. Garey and D. S. Johnson. Computers and Intractibility: A Guide to the Theory ofNP-completeness. Freeman, 1979.[5] M. M. Halldórsson. Approximating discrete collections via local improvements. SODA 1995.[6] M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent setsin sparse and bounded-degree graphs. STOC 1994. To appear in Algorithmica.[7] M. M. Halldórsson and J. Radhakrishnan. Improved approximations of independent sets inbounded-degree graphs. SWAT 1994.[8] M. M. Halldórsson and J. Radhakrishnan. Improved approximations of independent sets inbounded-degree via subgraph removal. Nordic J. Computing, 1(4):475�492, 1994.[9] D. S. Hochbaum. E�cient bounds for the stable set, vertex cover, and set packing problems.Disc. Applied Math., 6:243�254, 1983.

11


