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Abstract

An algorithm for vertex-coloring graphs is said to be on-line if each vertex is irrevocably

assigned a color before later vertices are considered. We show that for every such algorithm,

there exists a logn-colorable graph for which the algorithm uses at least 2n= logn colors.

This also holds for randomized algorithms, to within a constant factor, against an oblivious

adversary.

We then show that various means of relaxing the constraints of the on-line model do

not reduce these lower bounds. The features include presenting the input in blocks of up

to log

2

n vertices, recoloring any fraction of the vertices, presorting vertices by degree, and

disclosing the adversary's previous coloring.

1 Introduction.

1.1 On-line Computation.

An on-line algorithm answers a sequence of requests under the following, informally speci�ed

constraints:

� A request must be answered before the next request is arrives.

� No information about future requests is available, including the number and the ordering

of the requests.

� Each answer is irrevocable.

Once the questioning is over the answers are compared to the answers given by an o�-line

algorithm, and the algorithm is ranked by the \quality" of his answers relative to an optimal

o�-line answer sequence. The requests can be assumed to originate from an all-knowing, devious

adversary.

There are several important reasons for studying on-line computation. The most commonly

cited reason is that it corresponds naturally to the real world: time is uni-directional, past events

cannot be reversed, the future is uncertain, and Murphy's Law rules.

Another reason is that on-line algorithms nicely complement many well-studied algorithmic

frameworks, such as real-time computation, incremental/dynamic algorithms, pre�x solutions

of discrete structures, highly recursive computation, and single pass, greedy, and �rst-�t algo-

rithms.

A third reason is that on-line computation forms an elegant framework for analyzing algo-

rithms with incomplete information or incomplete access to the input.

1



1.2 Graph coloring

The problem of coloring a graph is that of assigning the vertices to fewest bins possible so that

no two vertices assigned to the same bin are adjacent. In the on-line version of the problem,

a vertex is given along with its edges to the previous vertices; the algorithm must irrevocably

assign the vertex to a bin before proceeding to the next vertex, but we do not impose any

restrictions on the power of the algorithm. The performance ratio of a coloring algorithm is the

maximum ratio of the number of bins used to the chromatic number (the minimum number of

colors required), ranging over all input graphs.

This problem has been much studied, particularly for speci�c classes of graphs [10, 4, 7].

Lov�asz, Saks and Trotter [11] gave an algorithm for general graphs that obtains a performance

ratio of O(n= log

�

n), slightly improving the trivial bound of n. Vishwanathan [15] gave a

randomized algorithm which attains a performance ratio of O(n=

p

log n) against an oblivious

adversary. His algorithm was modi�ed in [5] to improve the performance ratio to O(n= log n).

In this paper, we prove a 2n= log

2

n lower bound for deterministic on-line graph coloring,

which holds to within a constant factor for randomized algorithms. The previous best lower

bounds known were 
(log n) for trees [1, 4, 10], and 
(log

k

n) for k-colorable graphs, where k

is �xed [15].

1.3 Variations of the on-line models.

On-line computing places strong constraints on the algorithm; we would like to extend our lower

bounds to a more general class of algorithms obtained by weakening some of the restrictions. In

the context of the motivating applications, it is in fact natural to relax various conditions.

Take for instance the \answer before next request" condition. The most important property

of a real-time algorithm is the ability to respond within a prescribed delay; such a delay may be

su�cient to allow for some lookahead: the viewing of a few of the subsequent requests. Similarly,

in a system with a two-level store, the input can be expected to appear in blocks rather than

in individual units. And, a single-pass algorithm may have enough memory to keep a limited

number of requests in a queue for later processing, which has, for example, been shown to be

useful in a server problem with excursions [2].

The \irrevocability" condition can also often be made more 
exible. Decisions may be

reversible as long as the changes are infrequent and localized. In the case of the bin packing

problem, fewer bins are needed if constant amount of repacking per item is allowed [3]. It is

also well known that inputs sorted by non-increasing item size { a relaxation of the \unknown

ordering" principle { require signi�cantly fewer bins [8].

We consider the above variations in the context of the graph coloring problem, and show

them all to yield limited or no improvement. Our lower bound holds to within a constant factor

even if the algorithm is given the advantage of log

2

n-size lookahead (or blocked input or input

bu�er), allowed to reassign colors to a constant fraction of the vertices, or allowed to reorder the

input based on vertex degrees. This is optimal in the sense that a greater lookahead/recoloring

would trivialize the problem.

All of our results hold in a model that signi�cantly restricts the power of the adversary. The

adversary must construct her own coloring on-line and reveal it after the algorithm answers. The

results are optimal within that framework. Finally, the constructions also reveal in advance the

input length and the number of colors required, both of which the standard framework speci�es

to be a priori unknown to the algorithm.

The rest of the article is organized as follows. The following section contains de�nitions of our

\transparent" on-line model and related terminology. Section 3 starts with essential properties

of the de�nitions, leading to the main results: lower bounds for deterministic and randomized
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on-line coloring. Section 4 continues with lower bounds for the various relaxations of the on-line

model, and an explanation of the optimality of the basic construction. Some ideas for further

work are suggested at the end.

2 De�nitions

We consider graphs with an imposed ordering on the vertices hv

1

; v

2

; . . . ; v

n

i. A pre-neighbor of a

vertex v

t

is an adjacent vertex that precedes v

t

in the given ordering. The pre-adjacencies of v

t

,

denoted Adj

�

(v

t

), is a list of its pre-neighbors. Note that a sequence of all the pre-adjacencies

fully speci�es the graph. A function f of the vertices is a proper coloring if v

j

2 Adj

�

(v

t

) implies

f(v

j

) 6= f(v

t

), for each v

j

; v

t

.

Transparent on-line coloring is a combinatorial game between two players: the adversary A,

and the algorithm B. The game consists of an undetermined, but �nite, number of request-

answer-reply rounds 1; 2; . . . ; n, where round t is as in �g. 1.

A poses a pair (v

t

; Adj

�

(v

t

)), where Adj

�

(v

t

) � fv

1

; . . . ; v

t�1

g

B answers with an integer Bin(v

t

), a proper coloring of v

t

.

A responds with an integer Col(v

t

), a proper coloring of v

t

.

Figure 1: Transparent On-Line Coloring Game

Without the last step in each round, the game is equivalent to the usual on-line coloring

problem. We say that an adversary is transparent if, as above, it reveals its decisions following

the algorithm. In this paper, we �x in advance the number of rounds n, with the performance

evaluation occurring only at the end. We generally describe only the t-th round, intending the

description to be applicable to each round.

We say that the algorithm colors with bins and the adversary with colors in order to easily

distinguish the two. Both of these are objects from some �nite sets, which we associate with

the positive integers. The term bin will refer both to the cardinal assigned to vertices, as well as

the set of vertices that have been assigned that bin number. For a vertex v

t

, the set Avail(v

t

)

of admissible colors consists of the colors not used by its pre-neighbors.

De�ne the hue of a bin to be the set of colors of the vertices in the bin, Hue(b) = fCol(v

i

) :

Bin(v

i

) = bg. A hue collectionH is a set of all the non-empty hues. Both of these are dependent

on an implicit point in time.

The term k will denote the number of colors su�cient to properly color the graph constructed.

We shall assume in this paper that k is divisible by 16 in order to simplify the presentation.

Let [k] denote the set f1; 2; . . . ; kg, and [k]

(k=2)

the collection of all subsets of [k] of size k=2.

Finally, let Random be a function that gets as input a �nite set, and selects an item with uniform

probability.

3 Main course.

3.1 Preliminaries.

Our task as the adversary is to decide on the adjacencies and the color of each vertex. The

adjacencies are determined by �rst selecting a set of admissible colors, and then applying the

following rule: A vertex v

t

shall be adjacent to a previous vertex v

i

i� the color of v

i

does not

belong to the set of admissible colors. The idea is that if we make the vertex adjacent to any
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previous node of a given color it doesn't hurt to make it adjacent to all nodes of that color.

From this de�nition, we get the following property.

Observation 1 Hue(Bin(v

t

)) � Avail(v

t

).

Our task is to select a set of admissible colors, and to select one of those as the vertex color,

so that the algorithm is bound to introduce many bins. Our measure of progress is the number of

distinct pairs of bin and color values assigned to the vertices, or jf(Bin(v

i

); Col(v

i

)) : 1 � i � tgj.

To see that this number is actually indicative of the progress made, notice that the number

of bins is at least the number of bin/color pairs divided by the maximum number of pairs with

the same bin number. But the latter is bounded by the number of admissible colors for the last

vertex assigned to that bin, by Obs. 1, giving us the following bound.

Observation 2 If m distinct bin/color pairs have been assigned after round t, then at least

m=(max

i�t

jAvail(v

i

)j) bins have been used.

It is useful to note that if the bin hue is a strict subset of the set of admissible colors, then

we are in a situation to make progress, since then the vertex can be assigned a color di�erent

from those of other vertices in the bin.

Observation 3 If Col(v

t

) 2 Avail(v

t

)�Hue(Bin(v

t

)) then progress is made.

3.2 Adversary against deterministic algorithms.

Let k be a positive even number, and n = k=2 �

�

k

k=2

�

be the number of rounds. Let any denote

a non-deterministic selection operator that gets as input a set and returns some member. Fig. 2

gives the adversary's adaptive strategy; set H is the current set of hues.

Avail(v

t

) = any([k]

(k=2)

�H)

Adj

�

(v

t

) = fv

i

: Col(v

i

) 62 Avail(v

t

) and i < tg

Col(v

t

) = any(Avail(v

t

)�Hue(Bin(v

t

)))

Figure 2: Adversary Strategy: Adaptive Construction

Theorem 1 The performance ratio of any deterministic on-line coloring algorithm is at least

2n= log

2

n.

Proof. Each round of the game contributes at most one element to the combined membership

of the hues in H. As a result, as long as the game is played, i.e. as long as t � k=2

�

k

k=2

�

, at

least one of the

�

k

k=2

�

sets of size k=2 is not a member of H, and can therefore be assigned to

Avail(v

t

). Since Avail(v

t

) cannot equal any bin hue (by de�nition) but must include the hue of

the selected bin (by Obs. 1), the inclusion must be strict, and Col(v

t

) is thus well-de�ned. Each

round therefore makes progress (by Obs. 3), and the number of bins must be at least n=(k=2)

(by Obs. 2). Since the number of colors is at most k, the performance ratio is at least 2n=k

2

,

where k = log n(1� o(1)).

To appreciate the simplicity of the construction, the reader is encouraged to work through

an example.

4



3.3 Adversary against randomized algorithms.

Randomized on-line algorithms can be evaluated in at least three di�erent ways, depending on

the power of the adversary in question. The weakest of these, the oblivious adversary, must

construct the whole input in advance before feeding it to the algorithm. It is against this

adversary that the algorithms of [15, 5] are successful.

We show in this section that, for any randomized on-line coloring algorithm there exists a k-

colorable graph on which the algorithm will use at least expected n=k bins, where k = O(log n).

By Yao's lemma [16], it su�ces to show that there exists a distribution of k-colorable graphs for

which the average number of colors used by any deterministic algorithm is at least n=k.

We construct a distribution of k-colorable graphs, in n = 2

k=4

rounds as in �g. 3. Observe

that the construction is oblivious, since decisions made by the algorithm, such as bin assignments,

are never consulted.

Avail(v

t

) = Random([k]

(k=2)

)

Adj

�

(v

t

) = fv

i

: Col(v

i

) 62 Avail(v

t

) and i < tg

Col(v

t

) = Random(Avail(v

t

))

Figure 3: Adversary strategy: Oblivious Construction

Consider a given choice for Avail(v

t

). The probability that the random color assignment

yields a successful round equals

jAvail(v

t

)�Hue(Bin(v

t

))j

jAvail(v

t

)j

:

Since the graphs are constructed in advance, we cannot assume anything about the actual values

of the hues. Instead, we shall show that for a randomly chosen Avail(v

t

) and any �xed collection

H of at most n hues, the di�erence jAvail(v

t

)�hjminimized over all hues h inH, can be expected

to be large. For a k=2-set p, and a collection H of subsets of [k], de�ne

dist(p;H) = min

h2H

jp� hj:

We have that for any hue collection H,

jAvail(v

t

)�Hue(Bin(v

t

))j � dist(Avail(v

t

);H):

If we now let Avail(v

t

) vary, the probability of a successful round is at least

E[dist(Avail(v

t

);H)]

jAvail(v

t

)j

:

The performance ratio lower bound follows easily from the following bound on this distance

function.

Lemma 1 Let H be any collection of subsets of [k], and let p be a randomly chosen subset of

[k] of size k=2. If jHj � 2

k=4

and k is large enough, then

E[dist(p;H)] � k=4: (1)
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Proof. We claim that

Pr[dist(p;H) � s] �

�

k=2+s

s

�

jHj

�

k

k=2

�

: (2)

This implies, using Stirling's approximation, that

Pr[dist(p;H) � 0:28k] � 1:01

�k

for jHj � 2

k=4

. Now,

E[dist(p;H)] � 0:28k � Pr[dist(p;H) � 0:28k] � 0:25k

for k large enough.

To see that Inequality 2 holds, let H

0

contain the sets inH whose size is at least k=2�s. Each

set in H

0

is a subset of at most

�

k=2+s

s

�

sets of size k=2. Therefore, we get Pr[dist(p;H

0

) � s] �

�

k=2+s

s

�

jH

0

j=

�

k

k=2

�

by summing up the probabilities of the sets in H

0

. But none of the elements

of H �H

0

a�ect these probabilities, since they are too far away from p. Hence the claim and

the lemma.

Theorem 2 The performance ratio of any randomized on-line coloring algorithm is at least

n=(16 log

2

n).

Proof. Consider the execution of a �xed deterministic algorithm on the graphs drawn from the

distribution constructed above. The probability that a node makes progress is at least

E[dist(Avail(v

t

);H)]

jAvail(v

t

)j

�

k=4

k=2

= 1=2:

Hence, the expected number of bin/color pairs is at least n=2, by linearity of expectation, and

the expected number of bins at least n=k by Obs. 2. Thus the performance guarantee is at least

n=k

2

, where k = 4 logn.

4 Bells and Whistles.

4.1 Blocked input.

One of the caveats of computing on-line is that an answer is often proved wrong or ine�ective

almost immediately after it's uttered. One hope would be that if just a little bit was known

about what's coming up on the horizon, far better decisions could be made. No such luck. We

can show that even with moderate visibility, the performance would not improve.

We construct the input in an oblivious manner, in blocks of size k

2

=128 organized as a

sequence of k=16 disjoint cliques of size k=8. As before, the vertices are adjacent to vertices in

previous blocks according to a randomly chosen set of admissible colors.

The formal de�nition is given in �g. 4. If vertex v

t

is in the b

th

block and inside this block

is in the c

th

clique, then t = bk

2

=128 + ck=8 + t

0

, where 0 � t

0

< k=8 (blocks and cliques are

counted from 0). The block-number and clique-number of v

t

are blk

t

= b and cliq

t

= c. Let

cc(v

t

) = fCol(v

i

) : i < t and blk

i

= blk

t

and cliq

i

= cliq

t

g represent the colors of the previous

vertices in the same clique. Let n = 2

k=4

be the number of rounds.

Lemma 2 Against any randomized algorithm with blocked input of size up to k

2

=128, an ex-

pected constant fraction of the rounds in �g. 4 will make progress.
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Avail(v

t

) = Random([k]

(k=2)

)

Adj

�

(v

t

) = fv

i

: (blk

i

< blk

t

and Col(v

i

) 62 Avail(v

t

)) or (blk

t

= blk

i

and cliq

t

= cliq

t

)g

Col(v

t

) = Random(Avail(v

t

)� cc(v

t

))

Figure 4: Adversary strategy: Blocked Input

Proof. As before, the probability of success is a function of the di�erence between the set of

admissible colors and the largest valid bin hue. The expected size of the bin hue at the beginning

of the lookahead block is at most k=4, by Lemma 1, and the number of vertices added since then

cannot exceed the independence number of the subgraph in the block, or k=16. The number of

admissible colors is jAvail(v

t

)� cc(v

t

)j and ranges from k=2� (k=8� 1) to k=2. The probability

of success of a random color assignment is thus at least

jAvail(v

t

)� cc(v

t

)j � k=4� k=16

jAvail(v

t

)� cc(v

t

)j

�

k=2� k=4� k=8� k=16

k=2� k=8

= 1=6:

Given the bound on the success probability of the preceding lemma, the following theorem

follows easily. Notice that in our construction k is of order log n, hence the bound holds even if

we measure the block size in terms of n.

Theorem 3 The performance ratio of any randomized algorithm, when the input is presented

in blocks of size O(log

2

n), is 
(n= log

2

n).

This lower bound is the best possible, since there is a simple deterministic method to take

advantage of blocks of larger size. O�-line coloring each block of size ` optimally (possibly using

exponential time) requires at most �(G) � dn=`e colors, where �(G) is the minimum number of

colors required to color G, which implies an n=` performance ratio. Our lower bound matches

this for any ` = 
(log

2

n), to within a constant factor, by padding each input block (adding

` � k

2

=128 dummy vertices). Therefore, in this problem, the e�ect of blocked input on the

performance guarantee is a threshold function.

Similar threshold-like behavior has been shown for the on-line problems of bipartite matching

[9], and coloring inductive graphs [7].

4.2 Lookahead and bu�ering.

We can treat two interesting variations of blocked input similarly. An algorithm is on-line with

lookahead ` if it bases its answer to request t only on the �rst t+ ` requests. And it is on-line

with a bu�er of size ` if at step t+ ` at least t requests have been answered.

It is easy to see that lookahead is more powerful (as an algorithmic feature) than blocked

input, and that an input bu�er is more powerful than lookahead. Also, we can always simulate

lookahead with blocked input of double the block size: follow every block of actual input, with

an equivalent amount of dummy input.

We are also able to deal with bu�ered coloring e�ectively. Construct blocks twice the size

of the bu�er; at least one bu�erful { a half a blockful { must be answered before the end of the

block. By Inequality 2, the probability that every vertex in the block succeeds is high, or at

least

1�

�

k=2+k=16

k=16

�

jHj

�

k

k=2

�

� 1� 1:38

�k
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which is asymptotically 1. Thus, no matter which half of the block the algorithm answers,

the expected amount of success is not decreased, and the bound for lookahead holds also for

bu�ering to within a factor of two.

This result di�ers from results on other problems, such as the problem of balancing vectors

in a metric space, where lookahead is of no help while bu�ering yields dramatic improvements

[14, p.69].

4.3 Recolorings.

One suggested alternative to lookahead is to allow the algorithm to \recolor" a portion of the

nodes, i.e. to independently reassign them bins at some point in the coloring process. This would

be useful if only a few nodes were the cause of a poor coloring while the assignments were overall

reasonable.

We �nd that signi�cant amounts of recolorings are of limited use. The adaptive adversary

in Thm. 1 makes progress in every round, and thus forces the algorithm to use at least r= log

2

r

colors, when counting only the r vertices never recolored. Thus, unless almost all, n � o(n),

of the vertices are recolored, the 
(n= log

2

n) lower bound on the performance ratio still holds.

We note, however, that this claim does not apply to our lower bound argument for randomized

algorithms as stated.

4.4 Preprocessing: sorting vertices by degree.

One hope for a more e�ective on-line algorithm would be to pre-massage the input into a pliable

ordering. The most natural ordering criterias for graphs are those based on the degrees of the

vertices. Such strategies have been extensively evaluated both experimentally and analytically

in association with the ubiquitous, inherently on-line First-Fit coloring algorithm (e.g. [13]).

We can easily circumvent any such attempt by padding the input so that all vertices will be

of the same degree. With n=(k�1) extra vertices for each of the k colors, each original vertex can

then be made adjacent to up to n new vertices without destroying the k-colorability property.

The randomized constructions can do with even less padding, due to the highly convergent

nature of random selection.

4.5 Transparency and optimality.

In the construction of section 3.2, the adversary makes her coloring assignments on-line, and

can without harm reveal those decisions following the algorithm's answers. When given the

advantage of this extra information, there is a simple, e�ective algorithmic strategy: Allocate

bins for every non-empty subset of [k]. Assign the current vertex to the bin whose hue is a

maximal subset of the admissible colors for the vertex. This ensures that no more than 2

k

� 1

bins are used, and in fact k2

k�1

vertices are required for all of them to be used.

This can be matched precisely, obtaining a minimax value for the game, if, in the determinis-

tic construction, the adversary selects any minimal hue (no longer restricting herself to k=2-sets)

unoccupied by a bin. The details can be found in [6].

The strong lower bound obtained here for the transparent model is in stark contrast with its

ine�ectiveness for other problems. For the 3-coloring problem, exactly 7 bins are needed, a far

cry from the (nevertheless weak) 
(log

2

n) lower bound for the standard model [15]. Similarly,

for the k-server problem [12], we can give a simple algorithm with a performance ratio of 3, for

any k � 3, compared to the lower bound and conjectured upper bound of k for the standard

model.
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5 Conclusions.

We have presented strong lower bounds for on-line graph coloring. Chances are that further

lower bounds can be found to bridge the gap that remains in the deterministic case, but not

with the methods of this paper.

We have also given matching bounds for several variants of the standard on-line model.

Fundamental questions about properties and the applicability of these and other variants are

yet to be studied in a general framework. For instance, is the value of lookahead always a

threshold function?
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