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Abstract

Scheduling dependent jobs on multiple machines is modeled by the graph multicoloring
problem. In this paper we consider the problem of minimizing the average completion time
of all jobs. This is formalized as the sum multicoloring problem: Given a graph and the
number of colors required by each vertex, find a multicoloring which minimizes the sum of
the largest colors assigned to the vertices. It reduces to the known sum coloring problem
when each vertex requires exactly one color.

This paper reports a comprehensive study of the sum multicoloring problem, treating
three models: with and without preemptions, as well as co-scheduling where jobs cannot
start while others are running. We establish a linear relation between the approximability
of the maximum independent set problem and the approximability of the sum multicoloring
problem in all three models, via a link to the sum coloring problem. Thus, for classes of graphs
for which the independent set problem is ρ-approximable, we obtain O(ρ)-approximations
for preemptive and co-scheduling sum multicoloring, and O(ρ log n)-approximation for non-
preemptive sum multicoloring. In addition, we give constant ratio approximations for a
number of fundamental classes of graphs, including bipartite, line, bounded degree, and
planar graphs.
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1 Introduction

Any multiprocessor system has certain resources, that can be made available to one job at a
time. A fundamental problem in distributed computing is to efficiently schedule jobs that are
competing for such resources. The scheduler has to satisfy the following two conditions: (i)
mutual exclusion: no two conflicting jobs are executed simultaneously. (ii) no starvation: the
request of any job to run is eventually granted. The problem is well-known in its abstracted
form as the dining/drinking philosophers problem (e.g., [D68, L81, NS95, SP88]).

Scheduling dependent jobs on multiple machines is modeled as a graph coloring problem,
when all jobs have the same (unit) execution times, and as graph multicoloring for arbitrary
execution times. The vertices of the graph represent the jobs and an edge in the graph between
two vertices represents a dependency between the two corresponding jobs, that forbids scheduling
these jobs at the same time. More formally, for a weighted undirected graph G = (V,E) with
n vertices, let the length of a vertex v be a positive integer denoted by x(v). We denote by p
the maximum length in G, that is p = maxv∈V {x(v)}. A multicoloring of the vertices of G is a
mapping into the power set of the positive integers, Ψ : V 7→ 2N . Each vertex v is assigned a
set of x(v) distinct numbers (colors), and adjacent vertices are assigned disjoint sets of colors.

The traditional optimization goal is to minimize the total number of colors assigned to G. In
the setting of a job system, this is equivalent to finding a schedule that minimizes the time for
completing all the jobs. Another important goal is to minimize the average completion time of
the jobs, or equivalently, to minimize the sum of the completion times. In the sum multicoloring
(SMC) problem, we look for a multicoloring Ψ that minimizes

∑
v∈V fΨ(v), where the completion

time fΨ(v) is the maximum color assigned to v by Ψ. We study the sum multicoloring problem
in three models:

• In the Preemption model (pSMC), each vertex may get any set of colors.

• In the No-Preemption (npSMC) model, the set of colors assigned to each vertex has to
be contiguous.

• In the Co-Scheduling model (coSMC), the vertices are colored in rounds: in each round
the scheduler fully colors the vertices of an independent set in the graph. The set of colors
assigned to each vertex has to be contiguous and whenever two vertices use the same color,
their smallest color must also be the same.

The Preemption model corresponds to the scheduling approach commonly used in modern
operating systems [SG98]: jobs may be interrupted during their execution and resumed at later
time. The No-Preemption model captures the execution model adopted in real-time systems,
where scheduled jobs must run to completion. The Co-Scheduling approach is used in some
distributed operating systems [T95]. In such systems, the scheduler identifies subsets of non-
conflicting or cooperating processes, that can benefit from running at the same time interval (e.g.,
since these processes do not use the same resources or communicate frequently with each other).
Then, each subset is executed simultaneously on several processors, until all the processes in
the subset complete.

The SMC problem has many other applications, including traffic intersection control [B92,
BH94], session scheduling in local-area networks [CCO93], compiler design and VLSI rout-
ing [NSS99].
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1.1 The sum coloring problem

When all the lengths are equal to 1, the problem, in all three models, reduces to the previously
studied sum coloring (SC) problem. The first direct study of the problem is in [K89, KS89],
where it is shown to be NP-hard, while a polynomial algorithm is given for the case where G
is a tree. Lower and upper bounds for the color sum of a graph are given in [TEA+89]. A
d/2 + 1-approximation is given in [KKK89] for graphs of average degree d.

We note that coloring the graph with minimum number of colors does not always help in
solving the SC problem. For instance, while bipartite graphs can be colored with two colors,
there exist bipartite graphs (in fact, trees) for which any optimal solution for the sum coloring
problem uses Ω(log n) colors [KS89].

An exact algorithm is given in [J97] for partial k-trees (i.e. graphs of treewidth at most k). It
holds for a more general problem called the Optimum Chromatic Cost Problem (OCCP). Here
a cost function c : Z+ 7→ Z+ is associated with the color classes, and we are to assign a (single)
color f(v) to each vertex v with the objective of minimizing

∑
v∈V c(f(v)). In the SC problem

we have c(f(v)) = f(v). A polynomial algorithm was given for the OCCP on partial k-trees.
Recent papers have focused on finding approximation algorithms. The SC problem is con-

sidered in detail in [BBH+98], including bounds on general graphs, (∆ + 2)/3-approximation
of graphs of maximum degree ∆, and 2-approximation of line graphs. An improved 10/9-
approximation was given in [BK98] for bipartite graphs, and a 2-approximation is given in [NSS99]
for interval graphs.

Intuitively, a good sum coloring would tend to use the smaller colors for as many vertices as
possible. The following natural heuristic was proposed in [BBH+98].

MAXIS: Choose a maximum independent set in the graph, color all of its vertices with the next
available color; iterate until all vertices are colored.

This procedure was shown to yield a 4-approximation. This factor of 4 was shown to be tight
in [BHK99], where a family of graphs was constructed for which the approximation ratio of
MAXIS is asymptotically 4. In the case that the size of a maximum independent set can only
be approximated within a factor of ρ, MAXIS yields a 4ρ-approximation.

Known hardness results for the sum coloring problem carry over to the sum multicoloring
problem. SC cannot be approximated in general within an n1−ε factor, for any ε > 0, unless
NP = ZPP [FK96, BBH+98]. Also, it is NP-hard to approximate within some factor c > 1 on
bipartite graphs [BK98]. Furthermore, the SC problem is NP-hard on interval graphs [S99], and
on planar graphs [HK99].

1.2 Our Results for the Sum Multicoloring problem

This paper reports a comprehensive study of the sum multicoloring problem. We detail below
our results.

General graphs: We first inspect the MAXIS algorithm which is a natural candidate heuristic
also for the SMC problems. We show that MAXIS is only an Ω(

√
p) approximation algorithm for

pSMC (recall that p is the largest length in the graph). For the npSMC problem, its performance
cannot even be bounded in terms of p.

In view of that, we resort to different algorithms. In our central results we establish a linear
relation between the approximability of the weighted maximum independent set problem (WIS)
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and SMC in all three models, via a link to the SC problem and the MAXIS algorithm. The
reductions are universal in that they apply to any hereditary family of graphs. For classes
of graphs where WIS is polynomially solvable, we obtain a 16-approximation to both pSMC
and coSMC, and a O(log min(n, p))-approximation to npSMC. The linearity of the reduction
implies that for classes of graphs where WIS is ρ-approximable, the ratios are O(ρ) for pSMC
and coSMC and O(ρ log min(n, p)) for npSMC.

Applying known results on the solvability and the approximability of WIS, we get for the
pSMC approximation ratio of 16 on perfect graphs [GLS88], O(∆ log log ∆/ log ∆) on bounded-
degree graphs [H99], and O(n/ log2 n) on arbitrary graphs [BH92, H99].

Important special classes of graphs: We further study special classes of graphs. For
pSMC, we describe an algorithm with a ratio of 1.5 for bipartite graphs. We generalize this to
an algorithm with a ratio of (k + 1)/2 on k-colorable graphs, when the coloring is given. This,
for instance, gives a relatively simple and practical algorithm with a ratio of 2.5 for pSMC on
planar graphs. We also present an algorithm with ratios of (∆ + 2)/3 for graphs of maximum
degree ∆, 2 for line graphs, and k for intersection graphs of k-uniform hypergraphs.

For npSMC, we give an algorithm with ratios of 2.796 on bipartite graphs and 1.55k + 1
on k-colorable graphs (with the k-coloring given). These colorings have the advantage of also
approximating comparably the number of colors they use.

Relationships among the multicoloring models: We explore the relationship among the
three models and give a construction that indicates why the npSMC model is “harder”. Namely,
while finding independent sets iteratively suffices to approximate both the pSMC and the coSMC
problems by a constant factor, any such solution must be Ω(log p) off for the npSMC problem.

1.3 Organization of the Paper

In Section 2 we give some definitions and notations. In Section 3 we present the approximation
results for general graphs, in all three models. In Section 4 we deal with bipartite graphs both
for the Preemption and No-Preemption models. These results are generalized to k-colorable
graphs, when the coloring is given. Finally, in Section 5 we address bounded-degree graphs and
line graphs, primarily for the Preemption model.

2 Definitions and notations

When we refer to a graph G = (V,E), we mean a simple, finite, undirected graph, and implicitly
assume an associated length mapping x : V 7→ N . Denote by S(G) =

∑
v x(v) the sum of the

lengths of the vertices in G. An independent set in G is a subset I of V such that any two
vertices in I are nonadjacent. A multicoloring of G is an assignment Ψ : V 7→ 2N , such that
each vertex v ∈ V is assigned x(v) distinct colors and the set of vertices colored by any color i
is independent.

Given a multicoloring Ψ of G, denote by cΨ
1 (v) < · · · < cΨ

x(v)(v) the ordered collection of x(v)

colors assigned to v, and by fΨ(v) = cΨ
x(v)(v) the largest color assigned to v. The multicolor sum

of G with respect to Ψ is
SMCΨ(G) =

∑
v∈V

fΨ(v) .
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Let SMCA(G) denote the multicolor sum of the coloring produced by algorithm A on G.
A multicoloring Ψ is contiguous (nonpreemptive), if for any v ∈ V , the colors assigned

to v satisfy cΨ
i+1(v) = cΨ

i (v) + 1 for 1 ≤ i < x(v). In the context of scheduling, this means
that all the jobs are processed without interruption. A contiguous multicoloring Ψ solves the
Co-Scheduling problem, if the set of vertices can be partitioned into k disjoint independent
sets V = I1 ∪ · · · ∪ Ik with the following two properties: (i) cΨ

1 (v) = cΨ
1 (v′) for any v, v′ ∈ Ij ,

1 ≤ j ≤ k, and (ii) cΨ
x(v)(v) < cΨ

1 (v′) for all v ∈ Ij and v′ ∈ Ij+1, 1 ≤ j < k. In the context of
scheduling, this means scheduling to completion all the jobs corresponding to Ij , and only then
starting to process the jobs in Ij+1, for 1 ≤ j < k.

The minimum multicolor sum of a graph G, denoted by pSMC(G), is the minimum SMCΨ(G)
over all multicolorings Ψ. We denote the minimum contiguous multicolor sum ofG by npSMC(G).
The minimum multicolor sum of G for the Co-Scheduling problem is denoted by coSMC(G).
When the model under investigation is clear from the context, we denote these numbers by
SMC(G). We further omit G when the graph under investigation is clear from the context.

Since in any multicoloring of G, x(v) ≤ fΨ(v) for all vertices, it follows that S(G) ≤
pSMC(G). Since any co-schedule of G is a nonpreemptive coloring of G and any nonpreemptive
coloring of G is also preemptive, it follows that pSMC(G) ≤ npSMC(G) ≤ coSMC(G). Hence,
we get the following proposition.
Proposition 2.1 For any graph G,

S(G) ≤ pSMC(G) ≤ npSMC(G) ≤ coSMC(G) .

Let P be the SMC problem in any of the three models. We say that an algorithm A
approximates P within a ratio of ρ, if for all graphs G (or for all graphs belonging to a specified
family of graphs) we have that

SMCA(G)

SMC(G)
≤ ρ ,

where SMC(G) is the optimal multicolor sum for P on G. We also say then that A gives a ρ-
approximation. This is the traditional performance ratio; we consider also two stricter measures.
An algorithm is said to approximate within an absolute ratio of ρ, if

SMCA(G)

S(G)
≤ ρ .

An algorithm is said to approximate within a service-time ratio of ρ, if

For all v ∈ V, fA(v)

x(v)
≤ ρ ,

that is, the highest color assigned to v is at most ρ x(v). It follows that if an algorithm has a
service-time ratio ρ, then it also has an absolute ratio ρ, and if an algorithm has an absolute
ratio ρ, it also has an approximation ratio ρ.

3 General graphs

In this section we describe a reduction from approximating sum multicoloring in all three models
to the problem of approximating weighted maximum independent sets (WIS). This generalizes
(using different techniques) a relationship derived for the sum coloring problem [BBH+98]. In
this and the following sections, ρ denotes the approximability of WIS on the input graph.
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In Section 3.1 we analyze the MAXIS algorithm. We show that MAXIS performs poorly on
all three SMC problems. We next describe our main approximation technique in Section 3.2
that involves a different objective function, the sum of averages of a multicoloring. We show
that the minimum sum of averages of a given graph can be well approximated using the MAXIS
algorithm on a derived graph. In Section 3.3 we give an O(ρ)-approximation for pSMC; in this
and the following sections, ρ denotes the approximation ratio of WIS on the input graph. In
Sections 3.4 and 3.5 we present and analyze an algorithm that approximates both npSMC and
coSMC — the former within a ratio of O(ρ log min(p, n)) and the latter within O(ρ). We discuss
the time complexity of our algorithms in Section 3.6.

In attempting to explain the logarithmic factor in the approximation of npSMC, we note that
the algorithm described in Section 3.5 constructs a co-schedule which in the analysis is compared
with an optimal preemptive schedule. In Section 3.7, we show that this discrepancy in the
performance is inherent by constructing a graph H for which coSMC(H) = Ω(log p)·npSMC(H).

3.1 The MAXIS heuristic

We consider here the MAXIS heuristic applied to the sum multicoloring in the three models, and
show that its performance is not up to par with the sum coloring case. This leads us to modify
the heuristic in the following section to better take into account the lengths of the jobs.

In the preemptive case there are several possible definitions for MAXIS. One natural definition
for MAXIS is to repeat, as long as needed, the following procedure: color a maximum independent
set with one color, then reduce the lengths of all the vertices in the chosen set by one. The
following example shows that such an algorithm has an approximation ratio of Ω(

√
p).

Let G be the following graph with
√
p + 2 vertices: two nonadjacent vertices with length

p, and a clique of
√
p vertices of length 1. The two special vertices are connected to all the

vertices of the clique. MAXIS colors first the two special vertices with p colors and then colors
in a sequence each vertex in the clique with one color. This yields a multicolor sum of

2p+ (p+ 1) + (p+ 2) + · · ·+ (p+
√
p) = Ω(p

√
p) .

On the other hand, the optimal solution schedules the clique vertices first. This yields a multi-
color sum of

1 + 2 + · · ·+√p+ 2(p+
√
p) = O(p) .

Thus, the approximation ratio is Ω(
√
p).

In the Co-Scheduling model, MAXIS runs its selected jobs to completion before finding
the next set of independent jobs. Consider the tree with vertices vi, 1 ≤ i ≤ 2t+ 1 = n, and the
edges {vivt+i, vnvt+i : i = 1, . . . , t}. All vertices have unit length except vn that requires p colors.
MAXIS first colors v1, v2, . . . , vt and vn. As a result, the first color for vertices vt+1, vt+2, . . . , v2t

is p+1. The cost of this coloring is t·1+p+t·(p+1) ≥ np/2. The optimal solution assigns vertices
v1, v2, . . . , vt color 1, vertices vt+1, vt+2, . . . , v2t color 2, and vertex vn colors 3, 4, . . . , p+ 2. The
cost of that coloring is t · 1 + t · 2 + (p + 2) ≤ 2(n + p). Hence, the approximation ratio is
Ω(min(n, p)).

In the No-Preemption model, the algorithm may do still worse. Whenever the set of
currently colored vertices becomes a non-maximal independent set, a natural MAXIS in this
model would find the largest set of vertices that the solution can be extended with. Consider
the graph G composed of independent sets A, B, and C, each with t = n/3 vertices. The edges
between A and B are given by {aibj : |i− j| > 1}. Vertices of C are connected to all vertices
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of A \ {a1} and B \ {b1}. Vertices of A and B have length 2, while vertices of C have length
1. Observe that, for t > 2, C ∪ {a1, b1} forms the only maximum independent set in the graph,
hence it gets colored in the first iteration of MAXIS. In iteration 2, only a1 and b1 are being
scheduled and the only vertices nonadjacent to both of them are a2 and b2, which are therefore
scheduled at that point. In iteration 3, similarly, a1 and b1 have been completed and a2 and b2
are still being scheduled. Therefore, only a3 and b3 can be added. In general, vertices ai and
bi start to get colored in iteration i. The cost of the schedule is then t + 2

∑t+1
i=2 i = Ω(t2). A

better schedule colors first the vertices of C, then the vertices of A, and finally the vertices of
B. The total cost is then t + 3t + 5t = O(t). Hence, the approximation ratio is Ω(t) = Ω(n),
independent of p.

3.2 The main approximation technique

En route to approximating multicoloring sums, we consider another measure of a multicoloring,
the sum of the average color values assigned to the vertices. We denote by AVΨ(v) the average
color assigned to v by a multicoloring Ψ, namely,

AVΨ(v) =

∑x(v)
i=1 c

Ψ
i (v)

x(v)
.

Let SAΨ(G) =
∑
v AVΨ(v) denote the sum of averages of Ψ, and let SA(G) be the minimum

possible sum of averages. Note that SA(G) ≤ pSMC(G), and equality holds only in the unit-
length case.

We approximate the sum of averages by a reduction to the sum coloring problem on a derived
weighted graph. Recall, that ρ denotes the approximability of WIS on the input graph G.

Lemma 3.1 For any graph G, there exists a polynomially constructible multicoloring Ψ satis-
fying

SAΨ(G) ≤ 4ρ · SA(G) . (1)

Proof. Given a graph G, we construct a derived weighted graph H as follows. The graph has a
clique of x(v) copies of each vertex v, with each copy of v adjacent to all copies of neighbors of
v in G. The weight w(vi) of each copy vi of v is 1/x(v).

There is a one-to-one correspondence between multicolorings Ψ of G and colorings of H, as
the x(v) copies of a vertex v in G all receive different colors. Let Ψ also refer to the corresponding
coloring of H. Observe that

SCΨ(H) =
∑

v∈V (G)

x(v)∑
i=1

w(vi) c
Ψ
i (v) =

∑
v∈V (G)

∑x(v)
i=1 c

Ψ
i (v)

x(v)
= SAΨ(G) .

Using the result of [BBH+98] on the performance of MAXIS, which holds also for the weighted
case, we obtain the same bound on the approximation of the average completion time.

Observe that each iteration of MAXIS can be applied to a subgraph of H that contains only
one copy of each vertex v of G (that has not yet been fully colored), since two copies of the same
vertex cannot participate in the same independent set. This is especially significant when ρ, the
approximability of WIS, is a function of the number of vertices; hence, a ρ(n)-approximation of
WIS implies a 4ρ(n)-approximation of SA.
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3.3 The Preemption model

Our approach for approximating pSMC is to transform multicolorings with small sum of averages
into ones with nearly equally small sum of finish times. Note that this is not always the case,
as a coloring Ψ with a small sum of averages may assign a few high colors to the vertices, thus
resulting in poor finishing times. We resolve this problem by using the vertex sets of the colors
of Ψ twice, which ensures that the finish time of a vertex in the new coloring is at most four
times its average color in Ψ.

Theorem 3.2 pSMC can be approximated within a ratio of 16ρ.

Proof. First, obtain a multicoloring Ψ by applying Lemma 3.1 on the input graph G. Next,
form the multicoloring Ψ′ that “doubles” certain color sets of Ψ:

Ψ′(v) =
{

2i, 2i+ 1 : i = cΨ
t (v), t ≤ dx(v)/2e

}
.

Note that Ψ′(v) may contain x(v) + 2 colors, in which case we assign to v the subset of x(v)
smallest colors.

Let mv = cΨ
dx(v)/2e be the median color assigned to v by Ψ. The largest color used by Ψ′ is

fΨ′(v) = cΨ
dx(v)/2e + cΨ

bx(v)/2c ≤ 2mv. Also mv ≤ 2 · AVΨ(v), since fewer than half the elements

of a set of natural numbers can be larger than twice its average. Thus fΨ′(v) ≤ 4 ·AVΨ(v) and
SMCΨ′(G) ≤ 4 · SAΨ(G). By Lemma 3.1, SAΨ(G) ≤ 4 · SA(G) ≤ 4 · pSMC(G), thus Ψ′ is a
16ρ-approximation for pSMC(G).

3.4 The No-Preemption model

The following algorithm LengthGrouping (LG) approximates solutions to both the npSMC and
coSMC problems. The idea is to separate vertices of roughly the same lengths into groups, and
to ensure that at any given time vertices from only one such group are being colored. Since
coloring vertices with large lengths yields relatively limited progress per time unit, we assign to
such vertices small weights. Specifically, the weight of each vertex is inversely proportional to
its length. Then, we run the MAXIS algorithm on the resulting weighted graph, and for each
independent set found, color the jobs to completion.

LG(G)
Let G′ = (V,E′, x′, w), where

x′(v) = 2dlog x(v)e, for each v ∈ V ,
w(v) = 1/x′(v), the weight of each v ∈ V , and
E′ = E ∪ {(u, v) : x′(u) 6= x′(v)}.

Apply weighted MAXIS to G′, coloring the vertices nonpreemptively in each iteration.

Let Ψ denote the multicoloring produced by LG. Note that Ψ is a co-schedule, since jobs are
colored to completion. Since G′ is a supergraph of G and the lengths in G′ are upper bounds
on the lengths in G, Ψ is also a valid multicoloring of G. By a weight-class (or length-class), we
mean a set of vertices in G′ of the same weight (and length).

Lemma 3.3 SMCΨ(G) ≤ 4ρ · pSMC(G′).

Proof. First, note that for any coloring Ψ, the largest color of a vertex differs from the average
color by at least half the length of the vertex, i.e. fΨ(v) ≥ AVΨ(v) + (x(v)− 1)/2, with equality
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holding when Ψ is contiguous. Thus,

SMCΨ(G′) = SAΨ(G′) +
S(G′)− n

2
. (2)

Also, for a coloring Ψ∗ that minimizes pSMC(G′) it holds that

SA(G′) ≤ SAΨ∗(G
′) ≤ pSMC(G′)− S(G′)− n

2
. (3)

Note that the coloring Ψ produced by LG satisfies Lemma 3.1. Thus, combining (2) and (3)
with (1) we have that

SMCΨ(G′) = SAΨ(G′) +
S(G′)− n

2
≤ 4ρ · SA(G′) +

S(G′)− n
2

≤ 4ρ · pSMC(G′) .

Finally, the cost of Ψ on G is at most its cost on G′, since it assigns 2dx(v)e ≥ x(v) colors to each
vertex.

Lemma 3.4 LG approximates npSMC within a ratio of 8ρ log p.

Proof. We claim that
pSMC(G′) ≤ 2 log p · pSMC(G) .

The lemma then follows from Lemma 3.3.
Consider a multicoloring Ψ of G. Apply it to the vertices of G′, by first repeating each

color twice to account for the rounding up of the lengths. Observe that the vertices of individual
length classes of G′ are properly colored and are pairwise consistent, while vertices from different
length classes may conflict. We can combine the colorings of the individual length classes into
a coloring of G′ by executing one step from each class in turn, in a round-robin fashion. The
coloring of each vertex is slowed down by a factor of log p, the number of length classes. Then,
we have constructed a multicoloring of G′ whose sum is at most 2 log p · pSMC(G).

Let r be the number of different lengths in the graph, and let q be the ratio between the
largest to the smallest length. Using r and q we now derive a tighter performance bound for LG.

Theorem 3.5 LG approximates npSMC within a ratio of O(ρmin{r, log min(q, n)}).
Proof. First, note that the graph can be separated to r length groups; this yields the O(r)-
approximation. We now show, that the O(log p) ratio in Lemma 3.4 can be replaced with
min(log q, log n). The log q ratio is obtained by scaling; the O(log n) bound clearly holds when
p is polynomial in n. When p is superpolynomial, we add to LG an initial phase, in which we
color a subset of the vertices; then, we apply LG on the remaining vertices, which form O(log n)
length groups. More specifically, let Small = {v | x(v) ≤ p/n3}. Consider coloring first the
vertices of Small in an arbitrary order nonpreemptively. The color sum of the vertices in Small
is at most (1 + 2 + . . . + n)p/n3 < p. Also, they use at most n · p/n3 = p/n2 colors; this adds
to the cost of coloring each of the remaining vertices p/n2, i.e., we add to the total cost at most
p/n. Hence, we get an additive term of at most 1/n in the approximation ratio.

Algorithm LG now yields a performance ratioO(log n) for npSMC, since at most log(p/(p/n3)) =
3 log n length-classes remain in the graph.
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3.5 The Co-Scheduling model

We find that LG yields a better approximation of the co-scheduling problem. Recall that G′ is
the derived weighted graph produced by LG.

Theorem 3.6 LG approximates coSMC within a ratio of 16ρ.

The theorem follows by combining Lemma 3.3, the fact that pSMC(G′) ≤ coSMC(G′), and
the following lemma, which shows that the optimal co-schedule of G′ is within a constant factor
of that of the original graph G.

Lemma 3.7 coSMC(G′) ≤ 4 · coSMC(G).

Proof. Call an algorithm proper if the algorithm never gives the same color to vertices from
different weight-classes. For example, LG is proper. Let OPT denote an optimal co-schedule
for G. Let X be the length of the longest job in a given round of OPT. Rounding the length
to a power of two results in a length X ′ = 2dlogXe. Note that in contrast to LG, OPT is not
necessarily proper. However, we can simulate one round of OPT by at most log p rounds of a
proper algorithm, one for each weight-class.

Consider the schedule that breaks a round of OPT into a sequence of rounds, of length
1, 2, 4, . . . , X ′. That is, the algorithm takes the independent set of vertices chosen by OPT and
schedules them properly, one weight-class after the other. This is a valid proper schedule of
G′, where each vertex is delayed by at most a factor of 4, in comparison to OPT. This follows
since 1 + 2 + 4 + . . . + X ′ < 4X. Since any proper algorithm is also a co-schedule algorithm,
coSMC(G′) ≤ 4 · coSMC(G), and the lemma follows.

3.6 Time complexity

When the maximum job length is super-polynomial in the length of the input, the derived
weighted graph G′ to which MAXIS is applied also becomes super-polynomial. It is however not
necessary to construct the whole graph.

At most one copy of any node is selected in an iteration of MAXIS. Thus, before each
iteration we build the weighted graph based on remaining nodes. Without loss of generality,
MAXIS repeats the same independent set as long as none of its nodes are fully colored. We can
therefore handle ri color classes in each iteration i, where ri is the smallest length remaining
in that iteration. After each iteration, a new vertex becomes fully colored. Hence, the number
of iterations is at most n. The time complexity is therefore O(nf(n)), where f(n) is the time
complexity of the maximum independent set algorithm.

It also follows that any coloring output by our algorithms can be represented in O(n2) space.

3.7 A construction separating coSMC and npSMC

We have given O(1)-approximations for both the pSMC and the coSMC problems, while only
a min {O(log p), O(log n)}-approximation for the npSMC problem. Notice that the analysis in
Lemma 3.4 rates LG, that in fact produces a co-schedule, in terms of a stronger adversary that
finds the best possible preemptive schedule. This implies the following inequalities:

pSMC(G) ≤ npSMC(G) ≤ coSMC(G) ≤ O(log min{p, n}) · pSMC(G) . (4)

It would be interesting to know the precise relationships among these three models. We give
a partial answer by constructing a graph H for which coSMC(H) = Ω(log p) · npSMC(H),
matching inequality (4).
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Assume for simplicity that p is a power of 2. The graph H = (V,E) is as follows. The vertex
set is V = {vi,j,k}, for i = 0, 1, . . . , log p, j = 1, 2, 3, . . . , 2(log p)−i, and k = 1, 2, . . . , 2i, where the
length of vi,j,k is 2i. The edge set is E =

{
(vi,j,k, vi′,j′,k′) : i = i′ and k = k′

}
. In other words, the

graph has p vertices of each length ` = 2i, arranged in p/` completely connected independent
sets of size ` each; vertices of different lengths are nonadjacent.

Intuitively, sets containing “short” vertices (i.e. with “small” lengths) are decomposed into a
large collection of independent subsets of vertices. Each such independent subset contains “few”
vertices. On the other hand, each set of vertices with a given “large” length is decomposed
into a “small” collection of independent subsets of vertices, where each independent set contains
“many” vertices.

Now, consider a co-scheduling algorithm. Suppose that the maximum length chosen in some
round is a “large” `. This round delays “many” short vertices which must wait for the ` time
units to pass. For example, there are p/2 size-2 independent sets of length 2. All but one of these
(still remaining) sets is delayed ` time-units. Instead, in the Preemption or No-Preemption
model, we could schedule those p/2 size-2 independent sets one after the other.

Indeed, consider the straightforward nonpreemptive coloring where the different lengths are
processed independently and concurrently. Then, the number of colors used is p, and since the
graph has p log p vertices, the multicoloring sum is O(p2 log p).

On the other hand, any independent set contains at most 2i vertices from length-class ` = 2i.
Hence, in any independent set whose longest task length is `, there are at most 2` vertices. This
follows since vertices with length larger than ` were not chosen into this set, plus, the number of
vertices of length less than ` in the chosen independent set sum to at most `/2+`/4+ · · ·+1 < `.
Thus, at most 2t vertices are completed by step t, for each t = 1, 2, . . . , p log p/2. In particular,
at most half of the vertices are completed by step p log p/4. Thus, the color sum of the remaining
vertices is Ω(p2 log2 p). Hence, an Ω(log p) separation between these models. As n = p log p, this
result also implies an Ω(log n)-separation.

4 Bipartite graphs and k-colorable graphs

In this section, we turn our attention to graphs of small chromatic numbers. Since it is in
general hard to color even 3-colorable graphs efficiently, we assume that we are either given a
particular k-coloring or that a k-coloring is easy to compute for the given graph. In addition,
our results apply to graphs, in which a maximum independent set can be found in polynomial
time. For a given k, let the set of vertices V be partitioned into k disjoint independent sets V =
V1∪· · ·∪Vk. In Section 4.1 we study an algorithm for the Preemption model and in Section 4.2
we study another algorithm for the No-Preemption model and the Co-Scheduling model
using different techniques.

4.1 The Preemption model

First consider the following Round-Robin (RR) algorithm. At round t = kh + i, for 1 ≤ i ≤ k
and h ≥ 0, give color t to all the vertices of Vi that still need a color. Since each vertex v is
colored in every k-th time-slot, fRR(v) ≤ k x(v). Thus, RR has a service-time ratio of k. In
particular, it has service-time ratios of 4 on planar graphs and ∆ + 1 on graphs of maximum
degree ∆. For bipartite graphs, its ratio is 2.

In this subsection we give a nontrivial algorithm with a ratio of (k + 1)/2, for k-colorable
graphs with the coloring given. This gives a ratio of 2.5 for planar graphs, and k/2+1 for partial
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k-trees. In particular, for bipartite graphs the ratio is 1.5− 1/(2n). For simplicity, the result is
described for bipartite graphs only, with the result for general k derived similarly.

We need the following definitions and notations. Denote by α(G) the size of a maximum
independent set in G. Processing an independent set W ⊆ V means assigning the next available
color to each v in W , decreasing x(v) by one, and removing fully colored vertices from the graph.
The resulting graph is called the reduced graph of G. Finally, let γ(n) = 2n2/(3n− 1).

Informally, algorithm BipartiteColor (BC) distinguishes between two cases. When the size
of the maximum independent set in the current reduced graph is “large”, then BC processes a
maximum independent set. Otherwise, BC works in a fashion similar to RR. Once a vertex (or
a collection of vertices) is assigned its required number of colors, the algorithm re-evaluates the
situation.

BC
Let G = (V1, V2, E) be a bipartite graph.
Let n = |V | = |V1|+ |V2|.
while G 6= ∅ do

if α(G) ≤ γ(n)
then

Let m = minv∈V x(v).
Assume without loss of generality that V1 contains at least as many

vertices v with x(v) = m as V2.
Assign the next m colors to the vertices in V1,

and the following m colors to the vertices in V2.
else

Find a maximum independent set I ⊆ V .
Let m = minv∈I x(v).
Assign the next m colors to the vertices in I.

endif
Reduce the graph G, omitting vertices that were fully colored.
Update the value of n.

end while

Algorithm BC runs in polynomial time, since a maximum independent set can be found in a
bipartite graph in polynomial time, using flow techniques (cf., [H69]), and since in each iteration
at least one vertex is deleted.

Before we prove the approximation ratio of BC, we need the following observations.

Observation 4.1 Let H, H ′ be identical graphs with respective length functions x, x′, such that
x′(v) ≥ x(v), for each v ∈ V . Then, pSMC(H ′) ≥ pSMC(H) + (S(H ′)− S(H)).

Proof. First, suppose that H and H ′ differ only in one vertex v and in one unit. Namely,
x′(v) = x(v) + 1, and for any u 6= v, x′(u) = x(u). Construct a multicoloring Ψ for H as follows.
Use an optimal multicoloring of H ′, except remove v from the last independent set in which v
appeared. The coloring Ψ is feasible for H. In this way f(v) is decreased by at least one unit,
and we get that pSMC(H ′) ≥ pSMC(H) + 1. Now, the observation is deduced by repeatedly
applying the above.

For the next observation, let Ψ be some multicoloring and V ′ ⊆ V . Suppose that Ψ assigns
the first i colors only to vertices in V ′ and that x(v) ≥ i, for all v ∈ V ′. Let G′ be the resulting
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reduced graph. Finally, let SMCΨ(G′) be the multicolor sum of Ψ restricted to G′. Namely,
using independent sets i+ 1, i+ 2, . . . of Ψ, relabeled as 1, 2, . . ..

Observation 4.2 SMCΨ(G) = n · i+ SMCΨ(G′).

Proof. The added cost of each vertex in G over that in G′ is exactly i. This holds for vertices
in V ′, since their lengths have reduced by exactly i. It also holds for vertices in V − V ′, since
these were not colored in the first i steps of Ψ, while the color values have decreased by i.

We are now ready to prove the main theorem of this subsection.

Theorem 4.3 BC approximates pSMC on bipartite graphs within a ratio of 1.5− 1/2n.

Proof. We prove the theorem by induction on S(G). The basis of the induction is S(G) = 1.
Since we assume that the lengths are nonnegative integers, S(G) = 1 implies that the graph
contains only a single vertex, whose length is 1. BC is optimal in this case. For S(G) ≥ 2, we
consider separately the two cases in the algorithm.

Case 1: α(G) ≤ γ(n).
Recall that, without loss of generality, BC first colors vertices of V1. Let V1(m) be the subset

of vertices in V1 whose length is m. Let G′ be the reduced graph after the first 2m colors are
assigned. By definition, all lengths decreased by m, and vertices in V1(m) were omitted. That
is, for all v, the residual length is x′(v) = x(v) −m. We can apply Observation 4.2 twice, as
all vertices are delayed by the first m steps, while the vertices of V \ V1(m) are delayed in the
second m steps. Thus, using that |V1(m)| ≥ 1,

SMCBC(G) = (n+ (n− |V1(m)|)m+ SMCBC(G′) ≤ (2n− 1)m+ SMCBC(G′) . (5)

Now, let G∗ be the reduced graph after an optimal multicoloring has assigned m colors, with
reduced lengths x∗(v). Since x(v) ≥ m for all v, we have by Observation 4.2 that

pSMC(G) = mn+ pSMC(G∗) . (6)

Note that for any v ∈ V , x(v) was decreased by at most m, that is, x∗(v) ≥ x(v) −m. Since
in G′ every x(v) was decreased by m, x∗(v) ≥ x′(v). Therefore, by Observation 4.1, S(G∗) ≥
S(G) −mα(G), since S(G) is reduced by at most α(G) in each of the first m colors. On the
other hand, S(G′) = S(G)−mn, since in G′ we have reduced the length of each vertex in G by
m. Thus,

S(G∗)− S(G′) ≥ (n− α(G))m . (7)

Combining Equations (6) and (7) and Observation 4.1, we get that

pSMC(G) ≥ (2n− α)m+ pSMC(G′) . (8)

We now apply the induction hypothesis and get that

SMCBC(G′)

pSMC(G′)
≤ 1.5− 1/(2n) . (9)

By the assumption that α(G) ≤ γ(n), it follows that

(2n− 1)m

(2n− α(G))m
≤ 1.5− 1/(2n) . (10)

Combining Equations (5), (8), (9) and (10), we get that SMCBC(G)/pSMC(G) ≤ 1.5− 1/(2n),
as required.
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Case 2: α(G) > γ(n).
Let G′ be the reduced graph after BC assigns the first m colors to the vertices of a maximum

independent set I. Using Observation 4.2 with V ′ = I we have that

SMCBC(G) = nm+ SMCBC(G′) . (11)

By definition, for every v ∈ V , x(v) ≥ x′(v). Also, since S(G) − S(G′) = α(G)m, we have by
Observation 4.1 that

pSMC(G) ≥ α(G)m+ pSMC(G′) . (12)

Now, by the induction hypothesis, inequality (9) holds for G′. Furthermore, since α(G) > γ(n),

nm

α(G)m
≤ 1.5− 1/(2n) . (13)

Thus, the required ratio follows from Equations (11), (12) and (13). This completes the proof.

4.2 The No-Preemption and Co-Scheduling models

Let Vi[x] denote the set of vertices in Vi of lengths up to bxc.
We illustrate our approach for k-colorable graphs on bipartite graphs. The following algo-

rithm produces a co-scheduling.

• Color all the vertices in V1[1] with the first color, then color all the vertices in V2[2] with
the next 2 colors.

• Color the remaining vertices of V1[4] with the next 4 colors, then color the remaining
vertices of V2[8] with the next 8 colors.

• In general, for i = 0, 1, . . ., color the remaining vertices of V1[22i] with the next 22i colors,
then color the remaining vertices of V2[22i+1] with the next 22i+1 colors.

For a given vertex v ∈ V1, the worst case occurs when x(v) = 22i + 1, for some i. Then, v is
finished in step x(v) +

∑i
j=0(22j + 22j+1) = x(v) + 22i+2 − 1 = 5x(v) − 5. The same can be

argued for any u ∈ V2. Thus, the worst case completion time of any vertex is bounded by a
factor of 5, giving a service-time ratio of 5.

We can improve this by examining two schedules: in the first we start with V1[1] and then
alternate between V2 and V1, and in the second we start with V2[1] and then alternate between
V1 and V2. It follows that each vertex v is completed within 3x(v) steps in one schedule and
within 5x(v) in the other, or at most 4x(v) steps on the average. Hence, the sum of the better
of the two schedules is at most 4S(G). Note that this improves the absolute ratio to 4 but not
the service-time ratio.

We now generalize this algorithm, both to general k, as well as to a more refined schedule
based on randomly selected starting point. Let α be a constant to be optimized, and let d = αk.
Our algorithm is as follows.

Steps(G,α)
Let X be a random number uniformly chosen from [0, 1).
Let d = αk.
Let Y = dX .
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for i = 0 to logd p do
for j = 1 to k do

Let Aij = di−1αj Y .
Color the remaining vertices of Vj [Aij ],

using the next bAijc colors.

Clearly, the output is a co-schedule. The bipartite graphs case corresponds to Steps(G,2).

Remark: The algorithm can be derandomized, by examining a set of evenly spaced candidates
for the random number X. The additive error term will be inversely proportional to the number
of schedules evaluated.

Lemma 4.4 Let X be a uniform random variable on [0, 1). Let d > 1 and let Y = dX be a
random variable. Then,

E[Y ] =
d− 1

ln d
.

Proof. The distribution function of Y is given by

FY (y) = P [Y ≤ y] = P [dX ≤ y] = P [X ≤ logd y] = logd y .

Thus, the expected value of Y is

E[Y ] =

∫ d

1
yF ′Y (y) dy =

∫ d

1
y

1

y ln d
dy =

d− 1

ln d
.

Theorem 4.5 The expected multicolor sum of Steps is at most (1.544k+1)S(G) on a k-colorable
graph G, and at most 2.796S(G) on a bipartite graph G.

Proof. Let v be a vertex. We bound the expected delay until v gets colored. Let τ be the color
class of v, i.e. such that v ∈ Vτ . Let Av = min{Ai,τ : Ai,τ ≥ x(v)}, representing the length of
the interval in which v was colored.

Let Xv = logdAv − logd x(v). Thus, Av = dXv x(v). Note that Xv is a uniform random
variable on [0, 1). This is easy to see when x(v) = di−1ατ for some integer i, since then Xv is
identical to the X in the pseudocode. On the other hand, the fact that logdA1,τ , logdA2,τ , . . .
is an arithmetic sequence with unit separation implies that the value of x(v) does not affect the
distribution of Xv. Thus by Lemma 4.4,

E[Av] = E[dXv ]x(v) =
d− 1

ln d
x(v) .

Note that the lengths Aij are increased by a factor of α in each iteration of the inner loop
of Steps. Therefore, the delay time dv of v, or the time until v starts to get colored, is at most

dv ≤
∞∑
i=1

Av
αi

= Av
1

α− 1
. (14)

Thus,

E[dv] ≤
d− 1

ln d
· 1

d1/k − 1
x(v) . (15)
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For bipartite graphs, this implies that

E[dv] ≤
α2 − 1

2 lnα
· 1

α− 1
x(v) =

α+ 1

2 lnα
x(v) .

The function f(x) = x+1
ln(x) is minimized when x = 3.5911, which results in the bound E[dv] ≤

1.796x(v). The expected cost of the coloring is thus

E[SMCΨ(G)] =
∑
v

E[dv] + S(G) ≤ 2.796S(G) .

where Ψ is the (probabilistic) coloring output of Steps(G, 3.5911).
For k-colorable graphs, we use the inequality 1 + x ≤ ex to bound d1/k − 1 ≥ (ln d)/k,

obtaining from (15) that

E[dv] ≤
d− 1

ln d
· k

ln d
x(v) .

The function g(x) = x−1
ln2 x

takes a minimum at x = 4.9215, resulting in E[dv] ≤ 1.544k x(v).
Hence,

E[SMCΨ(G)] ≤ (1.544k + 1)S(G) .

where Ψ is the coloring output of Steps(G, 4.92151/k).

We can also bound the service-time ratio of k-colorable graphs. For each vertex v, it holds
that Av ≤ d x(v), since Ai+1,j/Aij = d. Using that ex ≥ 1 + x+ x2/2, it follows from (14) that

dv ≤
d

d1/k − 1
x(v) ≤ dk

(ln d)(1 + ln d/2k)
x(v) .

Let d = e, the base of the natural logarithm, we obtain a worst-case bound on the finish time
of v of

fΨ(v) ≤
(

ek

1 + 1/2k
+ 1

)
x(v) ≤ ek + e/2

1 + 1/2k
x(v) = ek x(v) .

We summarize the results of this section in the following theorem.
Theorem 4.6 Steps approximates coSMC (and thus also npSMC) for bipartite graphs with an
absolute ratio of 2.796 and a service-time ratio of 5. For k-colorable graphs, it gives an absolute
ratio of 1.544k + 1 and a service-time ratio of ek.

5 Bounded degree graphs and line graphs

In this section we consider two families of graphs for which a variation of the greedy coloring
achieves “good” approximation factors. In Subsection 5.1 we consider bounded degree graphs
with maximum degree ∆. In Subsection 5.2 we consider line graphs.

The first-fit greedy algorithm gets the vertices of the graph in some order and colors each
vertex with the first available colors. It is a reasonable candidate algorithm for the Preemption
and the No-Preemption models but not for the Co-Scheduling problem. For bounded-degree
graphs, first-fit greedy achieves absolute ratios of ∆ + 1 for pSMC and 2∆ + 1 for npSMC. For
line graphs, it can be shown to achieve an approximation factor of Ω(

√
p).

In this section we consider a modified first-fit greedy algorithm, Sorted Greedy (SG), which
orders the vertices in a nondecreasing order of lengths, before coloring the vertices in a first-fit
manner. We show that SG improves the approximation ratios for bounded degree graphs to
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(∆ + 2)/3 and ∆ + 1 for pSMC and npSMC respectively. For line graphs the improvement is
more impressive – SG obtains a ratio of 2. In addition, we also bound the service-time ratio of
SG, whereas the service-time ratio of first-fit is unbounded.

In the rest of this section, let Ψ denote the multicoloring produced by SG. Let Q(G) denote
the quantity

∑
uv∈E min(x(u), x(v)). Observe that

Q(G) ≤
∑
uv∈E

x(u) + x(v)

2
=

1

2

∑
v∈V

d(v)x(v) ≤ ∆

2
S(G) . (16)

5.1 Bounded degree graphs

In the first two theorems we state the approximation ratio of SG for pSMC and npSMC. We
then present a third theorem that states the service-time ratio in both models.

Theorem 5.1 SG approximates pSMC within a ratio of (∆ + 2)/3, and this is tight.

Proof. First observe that each edge can delay only the incident vertex that is colored later. For
SG, this delay amounts to the minimum of the lengths of the endpoints. Thus, the multicolor
sum of SG is bounded by

SMCΨ(G) ≤ S(G) +Q(G) . (17)

For uv ∈ E, denote by Du(v) the number of colors given to u, that are smaller than fΨ(v).
Clearly,

pSMC(G) ≥ S(G) +
∑
v∈V

max
u∈N(v)

{Du(v)} ≥ S(G) +
∑
v∈V

∑
u∈N(v)Du(v)

∆
.

In the above, each edge uv contributes (Du(v) +Dv(u))/∆ to the sum. Since Du(v) +Dv(u) ≥
min{x(u), x(v)}, it follows that

pSMC(G) ≥ S(G) +
Q(G)

∆
. (18)

Let d = 2Q(G)/S(G). Then, from (17) and (18),

SMCΨ(G)

pSMC(G)
≤ g(d) ≡ 1 + d/2

1 + d/(2∆)
.

Since d ≤ ∆ by (16), and g(d) is monotonically increasing, we have that

g(d) ≤ g(∆) =
1 + ∆/2

3/2
=

2 + ∆

3
.

A matching lower bound was shown in [BBH+98] for the sum coloring problem, thus it also
applies to pSMC.

Theorem 5.2 SG approximates npSMC within a ratio of ∆ + 1.

Proof. In the No-Preemption model, a vertex v can be delayed not only by the lengths of
its neighbors but also by gaps in the set of available colors that are too small for coloring v
contiguously. There can be as many gaps as neighbors, and each gap can be of length x(v)− 1.
Hence,

SMCΨ(G) ≤ S(G) +
∑
uv∈E

(x(u) + x(v)) ≤ (∆ + 1)S(G) +Q(G) . (19)

By inequalities (19) and (18), the approximation ratio is then at most ∆ + 1.
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With similar arguments we can prove weaker bounds for absolute and service-time ratios of
SG.

Theorem 5.3 SG has absolute ratios of ∆/2 + 1 for pSMC and 3∆/2 + 1 for npSMC. It has
service-time ratios of ∆ + 1 for pSMC and 2∆ + 1 for npSMC.

Proof. The absolute ratios follow directly from Inequalities (16), (17), and (19).
Consider now the service-time. In the preemptive model, each vertex v is delayed only by the

lengths of those of its neighbors that appear earlier in the sequence. There are at most ∆ such
neighbors, each with no greater length, hence v is delayed at most ∆x(v). In the nonpreemptive
model, each neighbor can additionally cause a gap of up to x(v) − 1 colors that v cannot use,
adding at most another ∆ factor.

5.2 Line graphs and intersection graphs of hypergraphs

The line graph LG of a graph G = (V,E) is the intersection graph of E — the vertices in LG
are the edges of G and two vertices in LG are adjacent whenever the corresponding edges in G
are. Note that a multicoloring of LG corresponds to an edge multicoloring of G.

A property of a line graph LG is that its edges can be partitioned into cliques, such that each
vertex belongs to at most two cliques [H69]. The following theorem capitalizes on this property
to achieve a constant approximation factor for this family of graphs.

Theorem 5.4 SG approximates pSMC of line graphs within a ratio of 2− 4/(∆ + 4), and this
is tight.

Proof. Given a line graph LG of a graph G, form another line graph H as follows. For each
vertex v in G, H contains a vertex for each of the d(v) edges incident on v in G. That is, H is a
disjoint collection of the maximal cliques in LG. Each vertex in LG corresponds to exactly two
vertices in H. Further, all the edges in LG have corresponding edges in H.

The minimum multicolor sum of a clique C is found by ordering the vertices by nondecreasing
length, giving a contiguous coloring. Each vertex is delayed by the sum of the lengths of earlier
vertices, or in other words, each edge uv causes a delay of min(x(u), x(v)). Thus,

pSMC(C) =
∑
v∈C

x(v) +
∑

uv∈E(C)

min(x(u), x(v)) = S(C) +Q(C) .

Since the cliques of H are disjoint, the multicolor sum of H is the sum of the multicolor sums
of the cliques, or

pSMC(H) = S(H) +Q(H) .

Observe that since each vertex in LG appears twice in H, S(H) = 2S(LG), and any multicoloring
of LG corresponds to a multicoloring of H of double the weight, pSMC(H) ≤ 2 · pSMC(LG).
Further, there is a one to one correspondence between the edges of LG and H, thus Q(H) =
Q(LG). Hence, we have

pSMC(LG) ≥ S(LG) +
1

2
Q(LG) . (20)

As before, let d = 2Q(LG)/S(LG). Then, from (17) and (20), we bound the approximation ratio
by

SMCSG(LG)

pSMC(LG)
≤ g(d) ≡ 1 + d/2

1 + d/4
.
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Since g(d) is monotone increasing and d ≤ ∆, we have

g(d) ≤ g(∆) = 2− 4/(∆ + 4) .

This matches the bound proved for the sum coloring of regular edge graphs [BBH+98].

Intersection graphs of set systems: We can generalize the argument for line graphs to
intersection graphs of set systems where each set is of size at most k, e.g. k-uniform hypergraphs.
In the context of resource allocation, these graphs correspond to the case where each job requires
the use of up to k resources to execute.

Theorem 5.5 Let LH be an intersection graph of a hypergraph H, where each edge is of cardi-
nality at most k. Then, SG approximates pSMC(LH) by a factor of k.

Proof. Recall, that each edge ei in H is represented by a vertex ei in LH , and all the edges
containing some vertex v in H form a clique in LH . As the maximal cardinality of any edge in
H is k, each vertex in LH belongs to at most k maximal cliques. An argument similar to the
one we used for line graphs, shows that

pSMC(LH) ≥ S(LH) +
1

k
Q(LH) . (21)

Thus, using (17), we have

SMCΨ(LH) ≤ k
(

1− 2(k − 1)

∆ + 2k

)
pSMC(LH) .

6 Discussion

Extensions to vertex-weighted graphs: In the weighted SMC problem, each vertex v is
associated with a weight w(v) and the goal is to minimize

∑
v∈V w(v) fΨ(v). All of the results

in this paper apply also to this optimization goal without any overhead. We have chosen to give
the results for the unweighted case in order to simplify the presentation.

We indicate briefly the modifications needed for some of the results. In Lemma 3.1, if
G is the weighted input graphs, we define the weights of the derived graph H by wH(vi) =
wG(v)/x(v). Other arguments of that section follow directly, if we replace n by W =

∑
v w(v),

and redefine S(G) as
∑
v x(v)w(v). In Section 4.1, we redefine γ(n) as 2W 2/(3W − 1) and

α(G) as the maximum weight of an independent set in G. Results of Section 4.2 need no
modifications. Finally, in Section 5, redefine SG to order the vertices in a nondecreasing order
of the w(v)/x(v) values. Let the value of Q(G) be

∑
uv∈E min(w(v)x(u), w(u)x(v)) and replace

Du(v) by w(v)Du(v).

Waiting time: Another measure of a multicoloring of interest is the total waiting time, or
the sum of the finishing times less the sum of the lengths. Also, the average waiting time is
the total waiting time divided by the number of jobs. In the unit-weight case, this corresponds
to numbering the colors starting from 0 instead of 1. In general, the total waiting time of a
multicoloring Ψ is equal to its multicolor sum, SMCΨ(G), less the sum of the lengths, S(G).

19



This measure is harder to approximate than SMC. We can observe from the proof of The-
orem 5.4 that SG approximates the average waiting time of a preemptive multicoloring of line
graphs within a ratio of 2. Also, by subtracting S(G) from the right hand sides of (17) and (21),
it approximates intersection graphs of hypergraphs within a ratio of k. Obtaining nontrivial
approximations of other graph classes is an open problem.

New developments: In [HKP+99], efficient polynomial time algorithms were given for the
npSMC problem on trees and paths, while an efficient polynomial time approximation scheme
(PTAS) was given for pSMC on trees. Shortly after, PTASs were given in [HK99] for both
npSMC and pSMC on both partial k-trees and planar graphs.

Open problems: One important issue is to reduce the logarithmic approximation factor in
the nonpreemptive case. This appears to be hard in general, but we may at least expect progress
on special classes of graphs.

Interval graphs are an important class of graphs, for which our problems have numerous
applications. Since WIS is polynomially solvable on this class, we have from our general argu-
ments ratios of 16 for pSMC and O(log n) for npSMC, as well as 4 for SC from the results of
[BBH+98]. All of these ratios can certainly be improved by a MAXIS-like algorithm.

In the preemptive case, we know few cases of polynomially solvable classes of graphs. Re-
solving the case of trees, or even the case of paths, would be interesting.
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