
Greedy local improvement and weighted set packing approximationBarun Chandra� Magn�us M. Halld�orssonyAbstractGiven a collection of weighted sets, each containing atmost k elements drawn from a �nite base set, the k-set packing problem is to �nd a maximum weight sub-collection of disjoint sets. A greedy algorithm for thisproblem approximates it to within a factor of k, andnatural local search has been shown to approximate itto within a factor of roughly k � 1. However, neitherparadigm can yield approximations that improve onthis.We present an approximation algorithm for theweighted k-set packing problem that combines the twoparadigms by starting with an initial greedy solutionand then repeatedly choosing the best possible local im-provement. The algorithm has a performance ratio of2(k+1)=3, which we show is asymptotically tight. Thisis the �rst asymptotic improvement over the straight-forward ratio of k.1 IntroductionWe consider the following problem:Weighted k-set packing Given a collection of sets,each of which has an associated real weight andcontains at most k elements drawn from a �nitebase set, �nd a collection of disjoint sets of maxi-mum total weight.Set packing is a fundamental combinatorial problemthat underlies a range of practical and theoreticalproblems. The restriction to sets of size at most kproperly includes multi-dimensional matching, whichis a generalization of the ordinary graph matchingproblem.k-Set Packing can be further generalized to a certainindependent set problem. The intersection graph of aset system of k-sets has the property that no inducedsubgraph contains a k + 1-claw, which is a set of k + 1independent (i.e. mutually non-adjacent) vertices thatshare a common neighbor. A set packing corresponds toan independent set in the intersection graph. The class�University of New Haven, Connecticut, U.S.A.barun@charger.newhaven.eduyScience Institute, University of Iceland, Reykjavik, Iceland.mmh@hi.is

of (k + 1)-claw free graphs, however, properly includesthese intersection graphs.These problems are NP-hard for any k � 3, evenin the unweighted case [3], thus we seek heuristicswith guaranteed solution quality. The most naturalheuristic for the Weighted k-Set Packing problem is thegreedy algorithm: Add to the current solution a set ofmaximum weight, remove it and all sets that intersectit, and repeat until all sets have been removed. It iseasy to see that this solution is within a factor of kfrom optimal: from the sets removed in each iteration,the optimal solution can contain at most k sets (at mostone for each element of our chosen set) all of which areof weight at most that of our chosen set. It is also easyto construct examples that show that this factor of kcannot be improved.Another natural strategy is local search: Attemptto replace a small subset of the solution by somecollection of greater total weight that does not intersectthe remainder of the solution. For such a search to bepolynomially bounded, it has to be restricted in someway, such as that either the number of sets added or thenumber of sets removed should be constant. In the caseof unweighted sets, Hurkens and Schrijver [5] showedthat a local search algorithm leads to an approximationof k=2+�, where � > 0 depends on the size of the changeset. This is the best performance ratio known to datefor the unweighted k-Set Packing problem. A restrictedform of this local search was considered in [4] with thesame performance but decreased complexity.Local search for the weighted case was analyzed byArkin and Hassin [1] and Bafna, Narayan and Ravi[2], independently. They showed that a local searchalgorithm (which bounds the number of sets added)yields an approximation of k � 1 + �, and showed thisto be a tight bound.The results proven for local search apply to a verygeneral situation that contains much non-determinism:any locally optimal solution achieves the given bound,independent of the starting solution or the particularsequence of feasible improvements. It leaves open thequestion if there exist easily computable rules for choos-ing a starting solution and for deciding among candidateimprovements such that the resulting locally optimal so-lutions are guaranteed to be better. In particular, can1

2one get an improved performance ratio by starting witha greedy solution and choosing improvements that yieldbigger gains to the solution? Notice that the latter isnecessary, since it is possible to show that even if start-ing with a greedy solution, indiscriminate choices of im-provements will lead to a solution no better than forpure local search.We answer this question in the positive, and obtainthe �rst asymptotic improvement in the approximabilityof the problem. We present a natural heuristicBestImpthat combines the greedy and local search paradigms bystarting with an initial greedy solution and then repeat-edly choosing the best possible local improvement. Itsperformance ratio is at most 2(k+1)=3, which is asymp-totically tight.In order to further examine the e�ect of the choice ofthe improvement (when more than one local improve-ment applies) on the quality of the solution, we con-sider another algorithm, AnyImp, that also combinesthe greedy and local search paradigms. The di�erenceis thatAnyImp just looks for an improvement that leadsto a gain bigger than a speci�ed threshold, instead oflooking for the best improvement. The proof techniquewe use to obtain upper bounds on performance ratio canbe understood in a simpler setting with AnyImp. Weillustrate it by deriving an asymptotically tight boundon the performance ratio of AnyImp as a function ofthe threshold, which for the best choice of a thresholdis at most (4k+2)=5. It is interesting to �nd that pick-ing the best improvement instead of a good enough im-provement leads to a substantially better performanceratio.The organization of the rest of the paper is asfollows. Section 2 contains formal de�nitions of theproblem, statement of the algorithms, and bounds ontheir time complexity. The key concepts of the analysisare considered in Section 3 along with some of theirproperties. Section 3 also contains the analysis of theupper bound of AnyImp, while the analysis of theupper bound of BestImp is presented in Section 4. Aconstruction is given in Section 5 that establishes a lowerbound on the performance ratio of BestImp. Section 6ends with conclusions and open issues.2 De�nitions, Notation, Problem StatementsThe weighted independent set problem is as follows:Given a vertex-weighted graph G = (V;E), �nd a max-imum weight subset of mutually non-adjacent vertices;i.e. a subset V 0 � V such that vi; vj 2 V 0 implies(vi; vj) 62 E.The intersection graph of a set system contains avertex for each set with edges between vertices whosecorresponding sets intersect. Such graphs have the

property that they contain no k + 1-claw, i.e. a k + 1-independent set in the neighborhood of some vertex. Aset packing of a set system is a collection of mutuallydisjoint sets, and it corresponds to an independent set ofthe associated intersection graph. In the weighted ver-sion, sets in the set system have weights, which translateto vertex weights in the intersection graph. Since theindependent set problem in claw-free graphs generalizesthe set packing problem, we state our algorithms andresults in terms of the former.The approximation ratio �(G) of a heuristic algo-rithm on a given graph G is the ratio between the sizeof the optimal solution and the size of the algorithm'ssolution on G. The performance ratio � of the algorithmis the maximum approximation ratio over all instances.Let G = (V;E) be a graph, U;W � V , x 2 V .The neighborhood of x, N(x), is the set of all verticesfrom V which are adjacent to x. NW (x) is de�nedto be N(x) \ W . These de�nitions are extended toneighborhoods of sets of vertices: N(U) = [u2UN(u),NW (U) = N(U) \W . deg(x) = jN(x)j and degW (x) =jNW (x)j. Note that if G is k + 1-claw free and W is anindependent set, degW (x) � k.The Algorithms AnyImp� and BestImp Greedyis the natural greedy algorithm for the independentset problem which works by repeatedly picking theheaviest vertex from among the remaining vertices andeliminating it and adjacent vertices. Let Gr denote theindependent set selected by Greedy on input graph G.Our algorithms are based on the following type ofa local improvement. Let I be an independent set, xa member of I , and Q � N(x) be an independent set.Form a new independent set I 0 by adding Q to I andremoving those vertices of I which are adjacent to anyvertex of Q: I 0 = (I [Q)�NI(Q).We de�ne the payo� factor of the improvement tobe w(Q)=w(NI (Q)). For � > 1, an �-improvement isan improvement with payo� factor �, and an �-goodimprovement is an improvement with payo� factor atleast �. A solution is �-locally optimal if it has no�-good improvement, and locally optimal if no localimprovement exists.Both of our algorithms, AnyImp� and BestImp,start with the initial greedy independent set Gr, andrepeatedly make local improvements until they reach alocal optima. In each iteration they �nd a improvementI 0 to the current solution I , and then arbitrarily extendit to a maximal solution I 00. The di�erence lies in whichimprovement is made: BestImp makes the improve-ment with the highest payo� factor, while AnyImp�makes any �-good improvement.Let us view the addition of vertices (to a non-

3maximal independent set) as improvements of nearlyin�nite payo� factor, and further ordered according tothe weight of the vertex added. Then, BestImp can bemore succinctly stated as follows:BESTIMP(G)I ;while I is not locally optimal doLet I 0 be improvement of maximum payo� factorI I 0odoutput IComplexity analysis The algorithms as presentedare not polynomially bounded, since the improvementsmade can be arbitrarily small and the length of theimprovement sequence can be exponential in the lengthof the input. In fact, the theory of PLS-completenessindicates that �nding locally optimal solutions to manyweighted problems may be not much easier than �ndingoptimal solutions. We are, however, not interestedin locally optimal solutions per se; rather, they areour vehicle for �nding solutions with good performancebounds.One solution to this problem is to truncate theweight of the vertices to integer multiples of 1n2w(Gr).Since we know that Gr is within a factor k from optimal,this limits the number of improvements to n2k. Thismay underestimate the size of the optimal solution, butonly by an additive w(Gr)=n � OPT=n term which isnegligible.The cost of each improvement step depends on thetime it takes to explore all independent sets withinthe neighborhood of each vertex in the solution. Thisis bounded by O(nk2�k), where � is the maximumdegree of the graph.3 Proof techniqueIn this section we describe the proof technique whichwe use to prove upper bounds on the performance ra-tios of AnyImp and BestImp, and apply it to AnyImp.A central task in the analysis of an approximation al-gorithm is to identify the computational structure thatprovides a bound on the optimal solution and its rela-tionship with the heuristic solution. E.g. Christo�des'TSP heuristic uses both a minimum spanning tree anda minimum weight matching. In some cases, as inChristo�des' heuristic, the structure is a part of theheuristic solution; in other cases, it is an entirely di�er-ent beast, that may not even be polynomial computable,but in terms of which both the optimal and the heuristicsolution can be bounded.

The Projection We introduce the concept of aprojection of the optimal solution OPT to a givensolution I . Each vertex v of the graph is assigned arepresentative, which is the maximum weight vertex inI that is adjacent to v (or identical to v, when v is also inI). Since we may assume I to be maximal, each vertexis assigned a representative. We are only interested inthe representatives of vertices in OPT . The projectionof OPT onto I is the multiset of all the representativesof OPT . We will overload the term to also denote itsweight, i.e. the (weighted) sum of the representatives'weights.The projection is crucial to the analysis, acting as astored potential or unused capability of the algorithm'ssolution. We will show that the projection has certainproperties, which can be intuitively thought of as fol-lows:Property 1: The projection starts high compared tothe optimal solution value.Property 2: If the value of the projection goes down,the weight of the algorithm's current independentset goes up.Property 3: The weight of the locally optimal solution(i.e. the �nal independent set of the algorithm) islarge compared to the projection.We will use these to argue that the weight of thealgorithm's solution is large compared to the optimalsolution. The intuition is that if the projection doesnot decrease much from beginning to end, then byProperty 3 the algorithm's solution is large compared tothe projection which, by Property 1, is large comparedto the optimal solution. On the other hand, if thevalue of the projection decreases a lot as the algorithmprogresses, then by Property 2 the algorithm's solutionimproves a lot. In other words, either the initial greedysolution is already a good one, or the �nal solution willbe a signi�cant improvement on the greedy solution.Let OPT be a particular independent set of max-imum weight. We overload OPT to also refer to theweight of the set. We associate with each maximal in-dependent set I a function fI : OPT ! I which mapselements in OPT to vertices in I . fI(b), the represen-tative of b, is the vertex of maximum weight amongneighbors of b in I , or b itself if b is also in I .For an element v in I , the pre-image of v is the setof elements that map to v.SI(v) = fb 2 OPT : fI(b) = vg:We omit the subscript when I is clear from context.

4Definition 3.1. For an independent set I, the projec-tion of OPT to I is de�ned asproj(I) = Xb2OPT w(fI (b)) =Xv2I jSI(v)jw(v):Properties of the projection If we considerthe greedy solution Gr, we see that the weight ofany element of OPT is at most the weight of itsrepresentative, as otherwise greedy would have chosenit instead of the representative. It follows thatproj(Gr) � OPT:(3.1)Since the graph is k + 1-claw free, any preimagecontains at most k elements, and thus we have for anyI , proj(I) � k � w(I): This combines with (3.1) to yielda simple bound on the greedy solution.w(Gr) � OPT=k:(3.2)Lemma 3.1. Let I 0 be obtained from I via �-good im-provements. Then,k�� 1 � w(I 0) + proj(I 0) � k�� 1 � w(I) + proj(I):Proof. Let us split OPT into OPT0, containing those bsuch that fI(b) 2 I \I 0 (though fI0(b) may not be in I),and the rest OPT1 = OPT � OPT0, of those b wherefI(b) 2 I � I 0.First observe that for b 2 OPT0, w(fI0(b)) �w(fI (b)). We then bound the di�erence in the projec-tions. proj(I)� proj(I 0)(3.3) � Xb2OPT1 w(fI (b))� w(fI0(b))� Xb2OPT1 w(fI (b)) = Xv2I�I0 jSI(v)jw(v)� k � w(I � I 0):(3.4)Since I 0 is obtained from I through �-good improve-ments, I0 = I; I1; : : : ; In = I 0, we have thatw(I 0 � I) = w(In � In�1) + � � �+ w(I1 � I0)� �w(In�1 � In) + � � �+ �w(I0 � I1)= �w(I � I 0):Thus, w(I 0)� w(I) = w(I 0 � I)� w(I � I 0)� (�� 1)w(I � I 0):(3.5)Combining (3.4) with (3.5) establishes the lemma.

Finally, the projection also has a meaning in thecontext of a locally optimal solution.Lemma 3.2. For a �-locally optimal solution I,(k + 1)w(I) � 1�OPT + proj(I):Proof. First note that the set of preimages of elementsof a maximal independent set partitions the optimalsolution. Thus, OPT =Xv2I w(S(v)):(3.6)Since, for any vertex v 2 I , the independent setI [S(v)�N(S(v)) is not an �-improvement over I ,w(S(v)) < � � w(NI (S(v))):Adding over all vertices in I , applying (3.6), we havethat 1�OPT <Xv2I w(NI(S(v))):The right hand side can be rewritten asXv2I jfu : v 2 N(S(u)gjw(v):Each vertex v is adjacent to all of S(v), but at most kvertices in OPT in total, thus it is adjacent to at mostk � jS(v)j vertices in OPT � S(v). It follows that1�OPT < Xv2I;jS(v)j>0w(v) +Xv2I(k � jS(v)j)w(v)� (k + 1)w(I)� proj(I):The AnyImp algorithm Given the tools we haveproved for the projection, we are now ready to prove anupper bound on ��, the performance ratio of AnyImp�.Theorem 3.1. �� � k + 1� 1�1 + 1� � 1�2 . In particular,�2 � 4k + 25 .Any solution I of AnyImp�, whether initial, inter-mediate, or �nal, satis�esk�� 1 � w(I) + proj(I) � ��� 1OPT:(3.7)This is true for the initial greedy solution from (3.1)and (3.2), and follows for the other solutions fromLemmas 3.1.

5The solution ALG of the algorithm AnyImp� satis-�es the conditions of both Lemma 3.2 and (3.7). Com-bining them, we get�k + 1 + k�� 1�w(ALG) � � 1� + ��� 1�OPT;from which Theorem 3.1 follows.4 Performance analysis of the BestImpalgorithmWe start by noting that as BestImp makes successivelocal improvements, the payo� factors of these improve-ments need not be monotonically decreasing. Since thismonotonically decreasing property is needed in our anal-ysis, we simulate it as follows. Among the improvementsmade by the algorithm, let Xi, i = t; t� 1; : : : ; 1, be the�rst improvement where the payo� factor drops to anew low. That is, Xt is the �rst improvement made onthe greedy solution, Xt�1 the �rst improvement whosepayo� factor is less than that of Xt, etc. Let di be thepayo� factor ofXi, and de�ne d0 = 1 and dt+1 = dt. LetIi+1 be the independent set obtained by the algorithmbefore Xi is applied, and let I1 be the �nal solution.We analyze the weight of the sucessively improvedsolutions using the following potential function.Definition 4.1. Let �(I; d) = k + 1d� 1w(I) + proj(I).Applying Lemmas 3.1 and 3.2, and (3.1), we ob-tain the following relationships, for i = 1; : : : ; t, j =1; : : : ; t+ 1.�(Ii; di) � �(Ii+1; di);(4.8) (k + 1)w(Ij) � 1dj�1OPT + proj(Ij);(4.9) proj(It+1) � OPT(4.10)For (4.8), we used, in addition to Lemma 3.1, the factthat all local improvements leading from Ii+1 to Ii aredi-good and that w(Ii) � w(Ii+1).Consider the functionh(i) = t�1Xj=i didj (1dj � 1dj+1) + didt 1dt ; i = 1; : : : ; t:Also, de�ne h(t + 1) = h(t) = 1=dt. Observe that hsatis�es the recurrence relationh(i) = h(i+ 1) didi+1 + 1di � 1di+1 ; i = 1; : : : ; t:Further, we can simplify it using that 1dj � 1x , forx 2 [dj ; dj+1]:h(i) = di 24t�1Xj=i 1dj Z dj+1dj 1x2 dx!+ 1d2t 35

� di "Z dtdi 1x3 dx+ 1d2t # ;= di � 12d2i � 12d2t + 1d2t � > 12di :Lemma 4.1. The following two inequalities hold for i =1; 2; : : : ; t+ 1:�(Ii; di) � di + h(i)di � 1 OPT;(4.11)(k + 1)w(Ii) � �1 + h(i)di + di � 1didi�1 �OPT :(4.12)Proof. The proof proceeds by induction.Consider the base case, i = t + 1. Recall thatdt+1 = dt and h(t+1) = h(t) = 1=dt. Then, by applying(4.9) and (4.10),�(It+1; dt+1) = k + 1dt � 1w(It+1) + proj(It+1)� �1 + 1=dtdt � 1 + 1�OPT = dt+1 + h(t+ 1)dt+1 � 1 OPT:Also, the same equations imply that(k + 1)w(It+1) � (1 + 1dt)OPT= �1 + h(t+ 1)dt+1 + dt+1 � 1dt+1dt �OPT:Suppose the claim holds for i = q + 1. We showthat it then also holds for i = q. From this, the claimfollows by induction. By (4.8),�(Iq ; dq) � �(Iq+1; dq)= �(Iq+1; dq+1) + (k + 1)w(Iq+1)� 1dq � 1 � 1dq+1 � 1� :By applying (4.11) and (4.12) inductively on both termsof the right hand side, we obtain, after considerablealgebraic simpli�cation, (4.11) for the case i = q.Furthermore, using the above, along with (4.9)(with i = q), we have�1 + 1dq � 1� (k+1)w(Iq) � � 1dq�1 + dq + h(q)dq � 1 �OPT;which, when rearranged, establishes (4.12).Theorem 4.1. The performance ratio of BestImp isat most 2(k + 1)=3.Proof. By (4.12), the �nal solution I1 obtained by thealgorithm satis�es(k + 1)w(I1) � �1 + 12d21 + 1d0 � 1d1d0 �OPT= �2� 1d1 + 12d21 �OPT:

6The right hand term is minimized when d1 = 1, for thebound claimed.5 Lower bound constructionsThe focus of this section is on showing the followinglower bound on the performance of BestImp.Theorem 5.1. The performance ratio of BestImp isat least (2=3)k � o(k).We �rst illustrate the idea behind the lower boundby constructing a graph for which the approximationratio ofBestImp is (4=7)k�o(k). The stronger (2=3)k�o(k) lower bound construction is a generalization of thissimpler construction.Simpler construction The intuition behind the con-struction is as follows: the graph is \almost bipartite"with most of the edges being between V , the optimalindependent set, and the other vertices. V has a largenumber of vertices of large weight. The set of othervertices can be partitioned into two subsets: one subset(A0[A1) has a small number of vertices of large weight,while the other subset (B [C) has a large number ofvertices of small weight. The greedy algorithm will �rstpick A0 [A1, which will eliminate V from the greedysolution, and then pick B. Subsequently, when the lo-cal improvements are being made, vertices from V willnot be picked because equally good improvements re-sult in replacing A1 by C. After this replacement, theindependent set A0 [B [C will be locally optimal.More formally, let X be an appropriate large num-ber and Y = 14(k�1)X . The graph G has vertex setsA0; A1; B; C; V , of cardinalities 1kX � Y , Y , (12 + 1k)X ,kY = 14X + Y , and X , respectively. The weight of ver-tices is 1 in A0, A1 and V , 1=k in B, and 2=k in C. SplitV into V0 and V1, of sizes X � kY and kY .Edges are either between A1 and C, or have one endpoint in V . A0 and V0, as well as A1 and V1, form a(k; 1)-regular bipartite graph, A1 and C form a (k; 1)-regular bipartite graph, B and V form a (k; k=2 + 1)-regular bipartite graph, and A0 [C and V form a(k; k=4 + 1)-regular bipartite graph. We additionallyrequire that there be a perfect matching between C andV1. Finally, we require the input graph to contain no 4-cycles, i.e. that any two vertices have at most one com-mon neighbor. This can be achieved by transformingthe graph G into a graph G0, where each vertex in G hasmultiple copies in G0, with edges chosen carefully. Weomit the details here, but refer to the literature [5, 1].This completes the speci�cation of the graph.We �rst verify that the graph constructed is k + 1-claw free. It clearly holds for vertices in A0; B and V ,

since they are of degree at most k. The vertices canbe so ordered that for any vertex x in A1, its neighborsin C have a complete matching with its neighbors inV1. It follows, that the independence number of theneighborhood of any vertex in A1 or C is exactly k.The algorithm initially greedily chooses all of A0and A1, followed by B. We now argue that thealgorithm then repeatedly performs 2-improvementsthat replace a single vertex of A1 of weight 1 by kvertices of C, each of weight 2=k, since at every stagethe best improvement possible is a 2-improvement. Wecan argue this by induction.Suppose I = A0 [B [I 0 is the current independentset, where I 0 � A1 [C. Consider an x 2 I � A1 and aV 0 � NV (x). Any vertex in V 0 has k=2+1 neighbors inB, of which at most one is in common with any othervertex in V 0, since no four-cycles exist. Thus,w(NI (V 0)) � jV 0jk2 � 1k + 1k > 12w(V 0):Thus, the only 2-good improvements are those replacinga node in A1 with a set in C.The resulting solution, A0[B[C, is locally optimal,and of weightALG = jA0j+ jBj1k + jCj2k = � 32k + 14(k � 1)�X;while the optimal solution is V , of weightX . This yieldsan approximation ratio of (4=7)k +O(1) � 0:57k.General construction We indicate how to generalizethe simpler construction to get a stronger lower bound.We would like to reduce the weight of the vertices inC, so that the ratio between the weight of V and thealgorithm's solution becomes bigger. However, if we justreduce the weight of all the vertices in C, then the payo�from replacing the A1 vertices by the C vertices willbecome less than the payo� of bringing in the V vertices.So we instead do this in stages, bringing in successivelysmaller weight vertices from C into the independent set,with smaller payo�s. What will prevent vertices from Vbeing chosen is that at the later stages, the the heaviervertices from the earlier stages of C will also be in theneighborhood of the V vertices.Consider a sequence of breakpoints, �t > �t�1 >� � � > �1 > �0 = 1, to be determined later. Thegraph contains as before: V , A = A0 [A1 [: : : [Atminimally dominating V , and B, an additional set ofgreedy vertices, forming a (k; k=�t)-regular graph withV . The weights of the vertices are unchanged. C isnow partitioned into C1 [C2 [: : : Ct. Each Ci formsa (k; dg(i)ke + 1)-regular graph with V , (which �xes

7jCij = d(g(i)ke+ 1)OPT=k) whereg(i) = 1�i (1�i�1 � 1�i):The weight of a vertex in Ci is �i=k. Also, each Aiand Ci pair forms a (k; 1)-regular graph, which �xesjAij = 1k jCij.We also require that for any vertex x in Ai, itsk neighbors in Ci are perfectly matched with its kneighbors in V . This ensures that the graph contains no(k+1)-claw. Also, we continue to require that the graphcontain no four-cycles. This completes the speci�cationof the graph.The algorithm will greedily choose A followed byB. We claim that it will then make �t-improvements,replacing At with Ct, followed by �t�1-improvements,replacing At�1 with Ct�1, and so on.This can be proved inductively, and holds initiallyfor t by the property of B we have already seen. Supposeit has completed replacing At; : : : ; Aq by Ct; : : : ; Cq , re-spectively, and possibly part of Aq�1 by Cq�1. Con-sider any vertex x outside V and its neighborhoodNV (x) in V . Since the graph contains no 4-cycles, anypair of vertices in NV (x) share only x as a neighbor.Thus, we can partition the remainder of the neighbor-hood N(NV (x)) of NV (x) in the current solution ontothe vertices in NV (x). Each vertex in NV (x) thus getsassigned at least g(i)k vertices in Ci, i = t; : : : ; q andk=�t vertices in B. The sum of the weight of thosevertices is at least1�t + tXi=q g(i)k � �ik = tXi=q (1�i�1 � 1�i) = 1�q�1 :Thus, any improvement involving vertices in NV (x) willbe less pro�table than �q�1. Since replacing vertices inAq�1 by vertices in Cq�1 is an �q�1-improvement, itfollows that all of Aq�1 will be replaced by Cq�1.The resulting solution, ALG = A0[B[C, is locallyoptimal. The optimal solution is given by V , whose sizeand weight we denote by OPT . Observe that jCij �(gi+2=k)OPT , jCij = kjAij, w(Ci) = �iw(Ai) = �ijAij,and jA0j = 1kOPT �Pti=1 jAij. The weight of ALG isthenALG= jA0j+ jBj1k + tXi=1 jAij�i= 1kOPT + jBj1k + tXi=1(�i � 1)jAij� "1 + 1�t + tXi=1(�i � 1)(gi + 2=k)# OPTk

= "1 + 1�t + tXi=1(1�i�1 � 1�i)� tXi=1 1�i (1�i�1 � 1�i)+ tXi=1(�i � 1)2=k# OPTk= "2� tXi=1 1�i (1�i�1 � 1�i) + tXi=1(�i � 1)2=k# OPTk :Let W be bk1=4c and t = W 2. We set �i =(W + i)=W , and note that �i � �i�1 is 1=W . Observethat the second sum is at most 2t2=(kW) � 2=W , whilethe �rst sum simpli�es toW 2 t+WXi=W+1 1i2(i� 1) �W 2 Z t+Wi=W+1 1x3 dx � 12 � 2W :Hence, we have thatALG � (3=2 + 4=W)OPTk ;and the performance ratio is at least (2=3)k �O(k3=4).The AnyImp algorithm We also have a construction(omitted here), parametrized by �, which shows thatour upper bound for AnyImp� is asymptotically tight:Theorem 5.2. The performance ratio of AnyImp� al-gorithm is at least� � k � 11 + 1� � 1�2 + ��2k � 4(k � 1)5 �O(1=k2):6 ConclusionsOur initial success with AnyImp led us to conjecturethat the performance of BestImp matched the boundit achieves on unweighted graphs, (k+1)=2. Instead, itturned out to be halfway between the greedy bound andthe unweighted bound. A logical open issue is whetherthis is a natural separation between the approximabilityof the weighted and the unweighted cases.Considering neighborhoods of sets of vertices in thelocal improvement phase is likely to reduce the additiveterm in the performance ratio. A (2k � 1)=3 + � wouldbe a natural guess, improving the k � 1 + � bound ofpure local search for all k � 3.The time complexity of the algorithms, like theprevious local search algorithms, is O(nk2�k), where� is the maximum degree of the graph. It would beinteresting to determine if similar performance ratio canbe obtained by an algorithm whose time complexitydepends less on k, e.g. 2O(k)nO(1).Finally, it would be interesting to see the prooftechnique applied to other problems.

8References[1] E. Arkin, R. Hassin. Approximating weighted setpacking by local search. ESA '97.[2] V. Bafna, B. Narayan, R. Ravi. Nonoverlapping localalignments (Weighted independent sets of axis-parallelrectangles). To appear in Disc. Appl. Math.[3] M. R. Garey and D. S. Johnson, Computers andIntractability, Freeman, New York, 1979.[4] M. M. Halld�orsson. Approximating discrete collectionsvia local improvements. SODA '95, 160{169.[5] C. A. J. Hurkens and A. Schrijver. On the size ofsystems of sets every t of which have an SDR, withan application to the worst-case ratio of heuristics forpacking problems. SIAM J. Disc. Math., 2(1):68{72,Feb. 1989.

