Greedy local improvement and weighted set packing approximation

Barun Chandra*

Abstract

Given a collection of weighted sets, each containing at
most k elements drawn from a finite base set, the k-
set packing problem is to find a maximum weight sub-
collection of disjoint sets. A greedy algorithm for this
problem approximates it to within a factor of k, and
natural local search has been shown to approximate it
to within a factor of roughly & — 1. However, neither
paradigm can yield approximations that improve on
this.

We present an approximation algorithm for the
weighted k-set packing problem that combines the two
paradigms by starting with an initial greedy solution
and then repeatedly choosing the best possible local im-
provement. The algorithm has a performance ratio of
2(k+1)/3, which we show is asymptotically tight. This
is the first asymptotic improvement over the straight-
forward ratio of k.

1 Introduction

We consider the following problem:

Weighted k-set packing Given a collection of sets,
each of which has an associated real weight and
contains at most k elements drawn from a finite
base set, find a collection of disjoint sets of maxi-
mum total weight.

Set packing is a fundamental combinatorial problem
that underlies a range of practical and theoretical
problems. The restriction to sets of size at most k
properly includes multi-dimensional matching, which
is a generalization of the ordinary graph matching
problem.

k-Set Packing can be further generalized to a certain
independent set problem. The intersection graph of a
set system of k-sets has the property that no induced
subgraph contains a k + 1-claw, which is a set of k + 1
independent (i.e. mutually non-adjacent) vertices that
share a common neighbor. A set packing corresponds to
an independent set in the intersection graph. The class

¥University of New

barun@charger.newhaven.edu
tScience Institute, University of Iceland, Reykjavik, Iceland.
mmh@hi.is

Haven, Connecticut, U.S.A.

Magnts M. Halldérssont

of (k + 1)-claw free graphs, however, properly includes
these intersection graphs.

These problems are NP-hard for any & > 3, even
in the unweighted case [3], thus we seek heuristics
with guaranteed solution quality. The most natural
heuristic for the Weighted k-Set Packing problem is the
greedy algorithm: Add to the current solution a set of
maximum weight, remove it and all sets that intersect
it, and repeat until all sets have been removed. It is
easy to see that this solution is within a factor of k
from optimal: from the sets removed in each iteration,
the optimal solution can contain at most k sets (at most
one for each element of our chosen set) all of which are
of weight at most that of our chosen set. It is also easy
to construct examples that show that this factor of k
cannot be improved.

Another natural strategy is local search: Attempt
to replace a small subset of the solution by some
collection of greater total weight that does not intersect
the remainder of the solution. For such a search to be
polynomially bounded, it has to be restricted in some
way, such as that either the number of sets added or the
number of sets removed should be constant. In the case
of unweighted sets, Hurkens and Schrijver [5] showed
that a local search algorithm leads to an approximation
of k/2+¢, where € > 0 depends on the size of the change
set. This is the best performance ratio known to date
for the unweighted k-Set Packing problem. A restricted
form of this local search was considered in [4] with the
same performance but decreased complexity.

Local search for the weighted case was analyzed by
Arkin and Hassin [1] and Bafna, Narayan and Ravi
[2], independently. They showed that a local search
algorithm (which bounds the number of sets added)
yields an approximation of £k — 1 + ¢, and showed this
to be a tight bound.

The results proven for local search apply to a very
general situation that contains much non-determinism:
any locally optimal solution achieves the given bound,
independent of the starting solution or the particular
sequence of feasible improvements. It leaves open the
question if there exist easily computable rules for choos-
ing a starting solution and for deciding among candidate
improvements such that the resulting locally optimal so-
lutions are guaranteed to be better. In particular, can

one get an improved performance ratio by starting with
a greedy solution and choosing improvements that yield
bigger gains to the solution? Notice that the latter is
necessary, since it is possible to show that even if start-
ing with a greedy solution, indiscriminate choices of im-
provements will lead to a solution no better than for
pure local search.

We answer this question in the positive, and obtain
the first asymptotic improvement in the approximability
of the problem. We present a natural heuristic BESTIMP
that combines the greedy and local search paradigms by
starting with an initial greedy solution and then repeat-
edly choosing the best possible local improvement. Its
performance ratio is at most 2(k+1)/3, which is asymp-
totically tight.

In order to further examine the effect of the choice of
the improvement (when more than one local improve-
ment applies) on the quality of the solution, we con-
sider another algorithm, ANyImPp, that also combines
the greedy and local search paradigms. The difference
is that ANYIMP just looks for an improvement that leads
to a gain bigger than a specified threshold, instead of
looking for the best improvement. The proof technique
we use to obtain upper bounds on performance ratio can
be understood in a simpler setting with ANyImp. We
illustrate it by deriving an asymptotically tight bound
on the performance ratio of ANYIMP as a function of
the threshold, which for the best choice of a threshold
is at most (4k +2)/5. It is interesting to find that pick-
ing the best improvement instead of a good enough im-
provement leads to a substantially better performance
ratio.

The organization of the rest of the paper is as
follows. Section 2 contains formal definitions of the
problem, statement of the algorithms, and bounds on
their time complexity. The key concepts of the analysis
are considered in Section 3 along with some of their
properties. Section 3 also contains the analysis of the
upper bound of ANYIMP, while the analysis of the
upper bound of BESTIMP is presented in Section 4. A
construction is given in Section 5 that establishes a lower
bound on the performance ratio of BESTIMP. Section 6
ends with conclusions and open issues.

2 Definitions, Notation, Problem Statements

The weighted independent set problem is as follows:
Given a vertex-weighted graph G = (V, E), find a max-
imum weight subset of mutually non-adjacent vertices;
i.e. a subset V! C V such that v;,v; € V' implies
(’U,‘, Uj) g E.

The intersection graph of a set system contains a
vertex for each set with edges between vertices whose
corresponding sets intersect. Such graphs have the

property that they contain no k + 1-claw, i.e. a k + 1-
independent set in the neighborhood of some vertex. A
set packing of a set system is a collection of mutually
disjoint sets, and it corresponds to an independent set of
the associated intersection graph. In the weighted ver-
sion, sets in the set system have weights, which translate
to vertex weights in the intersection graph. Since the
independent set problem in claw-free graphs generalizes
the set packing problem, we state our algorithms and
results in terms of the former.

The approximation ratio p(G) of a heuristic algo-
rithm on a given graph G is the ratio between the size
of the optimal solution and the size of the algorithm’s
solution on G. The performance ratio p of the algorithm
is the maximum approximation ratio over all instances.

Let G = (V,E) be a graph, UW C V, z € V.
The neighborhood of =, N(z), is the set of all vertices
from V which are adjacent to x. Ny (z) is defined
to be N(x) N W. These definitions are extended to
neighborhoods of sets of vertices: N(U) = UucuN(u),
Nw(U)=NU)NW. deg(z) = |[N(z)| and degw (z) =
|[Nw (z)|. Note that if G is k + 1-claw free and W is an
independent set, degw (z) < k.

The Algorithms ANnyImpP, and BEsTIMP GREEDY
is the natural greedy algorithm for the independent
set problem which works by repeatedly picking the
heaviest vertex from among the remaining vertices and
eliminating it and adjacent vertices. Let Gr denote the
independent set selected by GREEDY on input graph G.

Our algorithms are based on the following type of
a local improvement. Let I be an independent set, x
a member of I, and) C N(z) be an independent set.
Form a new independent set I’ by adding @ to I and
removing those vertices of I which are adjacent to any
vertex of Q: I' = (I U Q) — N1 (Q).

We define the payoff factor of the improvement to
be w(Q)/w(Ni(Q)). For a > 1, an a-improvement is
an improvement with payoff factor «, and an a-good
improvement is an improvement with payoff factor at
least a. A solution is a-locally optimal if it has no
a-good improvement, and locally optimal if no local
improvement exists.

Both of our algorithms, ANYIMP, and BESTIMP,
start with the initial greedy independent set Gr, and
repeatedly make local improvements until they reach a
local optima. In each iteration they find a improvement
I' to the current solution I, and then arbitrarily extend
it to a maximal solution I"”. The difference lies in which
improvement is made: BESTIMP makes the improve-
ment with the highest payoff factor, while ANYIMP,
makes any a-good improvement.

Let us view the addition of vertices (to a non-

maximal independent set) as improvements of nearly
infinite payoff factor, and further ordered according to
the weight of the vertex added. Then, BESTIMP can be
more succinctly stated as follows:

BESTIMP(G)
I <0
while I is not locally optimal do
Let I' be improvement of maximum payoff factor
I « I
od
output [

Complexity analysis The algorithms as presented
are not polynomially bounded, since the improvements
made can be arbitrarily small and the length of the
improvement sequence can be exponential in the length
of the input. In fact, the theory of PLS-completeness
indicates that finding locally optimal solutions to many
weighted problems may be not much easier than finding
optimal solutions. We are, however, not interested
in locally optimal solutions per se; rather, they are
our vehicle for finding solutions with good performance
bounds.

One solution to this problem is to truncate the
weight of the vertices to integer multiples of —zw(Gr).
Since we know that Gr is within a factor k from optimal,
this limits the number of improvements to n?k. This
may underestimate the size of the optimal solution, but
only by an additive w(Gr)/n < OPT/n term which is
negligible.

The cost of each improvement step depends on the
time it takes to explore all independent sets within
the neighborhood of each vertex in the solution. This
is bounded by O(nk?AF), where A is the maximum
degree of the graph.

3 Proof technique

In this section we describe the proof technique which
we use to prove upper bounds on the performance ra-
tios of ANYIMP and BESTIMP, and apply it to ANYIMP.
A central task in the analysis of an approximation al-
gorithm is to identify the computational structure that
provides a bound on the optimal solution and its rela-
tionship with the heuristic solution. E.g. Christofides’
TSP heuristic uses both a minimum spanning tree and
a minimum weight matching. In some cases, as in
Christofides’ heuristic, the structure is a part of the
heuristic solution; in other cases, it is an entirely differ-
ent beast, that may not even be polynomial computable,
but in terms of which both the optimal and the heuristic
solution can be bounded.

The Projection We introduce the concept of a
projection of the optimal solution OPT to a given
solution I. Each vertex v of the graph is assigned a
representative, which is the maximum weight vertex in
I that is adjacent to v (or identical to v, when v is also in
I). Since we may assume I to be maximal, each vertex
is assigned a representative. We are only interested in
the representatives of vertices in OPT'. The projection
of OPT onto I is the multiset of all the representatives
of OPT. We will overload the term to also denote its
weight, i.e. the (weighted) sum of the representatives’
weights.

The projection is crucial to the analysis, acting as a
stored potential or unused capability of the algorithm’s
solution. We will show that the projection has certain
properties, which can be intuitively thought of as fol-
lows:

Property 1: The projection starts high compared to
the optimal solution value.

Property 2: If the value of the projection goes down,
the weight of the algorithm’s current independent
set goes up.

Property 3: The weight of the locally optimal solution
(i.e. the final independent set of the algorithm) is
large compared to the projection.

We will use these to argue that the weight of the
algorithm’s solution is large compared to the optimal
solution. The intuition is that if the projection does
not decrease much from beginning to end, then by
Property 3 the algorithm’s solution is large compared to
the projection which, by Property 1, is large compared
to the optimal solution. On the other hand, if the
value of the projection decreases a lot as the algorithm
progresses, then by Property 2 the algorithm’s solution
improves a lot. In other words, either the initial greedy
solution is already a good one, or the final solution will
be a significant improvement on the greedy solution.

Let OPT be a particular independent set of max-
imum weight. We overload OPT to also refer to the
weight of the set. We associate with each maximal in-
dependent set I a function fy : OPT — I which maps
elements in OPT to vertices in I. fr(b), the represen-
tative of b, is the vertex of maximum weight among
neighbors of b in I, or b itself if b is also in I.

For an element v in I, the pre-image of v is the set
of elements that map to v.

Sr(v) = {b € OPT : f1(b) = v}.

We omit the subscript when I is clear from context.

DEFINITION 3.1. For an independent set I, the projec-
tion of OPT to I is defined as

proj(I) = Y w(fi(b)) =D |Si(v)|w(v).

beOPT vel

Properties of the projection If we consider
the greedy solution Gr, we see that the weight of
any element of OPT is at most the weight of its
representative, as otherwise greedy would have chosen
it instead of the representative. It follows that

(3.1) proj(Gr) > OPT.

Since the graph is k + 1-claw free, any preimage
contains at most k elements, and thus we have for any
I, proj(I) < k-w(I). This combines with (3.1) to yield
a simple bound on the greedy solution.

(3.2) w(Gr) > OPT /k.

LEMMA 3.1. Let I' be obtained from I via a-good im-

provements. Then,

k
a—1

> w1 + proj().

w(I') + proj(I') > ——

Proof. Let us split OPT into OPTy, containing those b
such that fr(b) € INI' (though fr(b) may not be in I),
and the rest OPT, = OPT — OPTy, of those b where
frbyel-1TI.

First observe that for b € OPTy, w(fr (b)) >
w(fr(b)). We then bound the difference in the projec-
tions.

(3.3) proj(I) —proj(I')
< > w(fi(b) — w(fr (b))

beOPTy
< D w®) = Y 1Si(w)|w(v)
beOPT, vel-1'
(34) < k-wI-1).

Since I' is obtained from I through a-good improve-
ments, Iy =1I,1;,...,I, = I', we have that

wI'—=1) = w(ly—Ii1)+-+w(ly —I)
> aw(lp-1 —Ip)+ - +aw(ly— 1)
= aw(l -1
Thus,
wIY—w(I) = wI'-I)—wd -1
(3.5) > (a—Nw(-T1').

Combining (3.4) with (3.5) establishes the lemma.

Finally, the projection also has a meaning in the
context of a locally optimal solution.

LeMMA 3.2. For a a-locally optimal solution I,

(k + V(D) > éop:r + proj(I).

Proof. First note that the set of preimages of elements
of a maximal independent set partitions the optimal
solution. Thus,

(3.6) OPT = w(S(v)).

vel

Since, for any vertex v € I, the independent set
I'uS(v) — N(S(v)) is not an a-improvement over I,

w(S(v)) < a-w(N(S(v))).
Adding over all vertices in I, applying (3.6), we have

that 1
~OPT < > w(Ni(S())).

vel

The right hand side can be rewritten as

Z {u:ve N(S(u)}Hw(v).

vel

Each vertex v is adjacent to all of S(v), but at most k
vertices in OPT in total, thus it is adjacent to at most
k —|S(v)| vertices in OPT — S(v). It follows that

>

vel,|S(v)|>0
< (k4 Dw(I) - proj().

éopT < w(v) + Z(k —|S())w(v)

vel

The AnvImP algorithm Given the tools we have
proved for the projection, we are now ready to prove an
upper bound on p,, the performance ratio of ANYIMP,,.

k+1-1 .
THEOREM 3.1. po < ———5- In particular,
1+3 -
4k + 2
p2 < 5

Any solution I of ANYIMP,, whether initial, inter-
mediate, or final, satisfies

k

a—1

(3.7) w(I) + proj(I) > %OPT.

This is true for the initial greedy solution from (3.1)
and (3.2), and follows for the other solutions from
Lemmas 3.1.

The solution ALG of the algorithm ANYIMP,, satis-
fies the conditions of both Lemma 3.2 and (3.7). Com-
bining them, we get

1 o'

k
E+14+ —) w(ALG) > | —+ —— | OPT,
a—1 a a-—1
from which Theorem 3.1 follows.

4 Performance the BEsTIMP

algorithm

analysis of

We start by noting that as BESTIMP makes successive
local improvements, the payoff factors of these improve-
ments need not be monotonically decreasing. Since this
monotonically decreasing property is needed in our anal-
ysis, we simulate it as follows. Among the improvements
made by the algorithm, let X;, ¢ =¢,t—1,...,1, be the
first improvement where the payoff factor drops to a
new low. That is, X; is the first improvement made on
the greedy solution, X;_; the first improvement whose
payoff factor is less than that of X;, etc. Let d; be the
payoff factor of X;, and define dy = 1 and d¢; = d;. Let
I; 1, be the independent set obtained by the algorithm
before X; is applied, and let I; be the final solution.
We analyze the weight of the sucessively improved
solutions using the following potential function.

FE L) + proj(D).

DEFINITION 4.1. Let ®(1,d) = 71
Applying Lemmas 3.1 and 3.2, and (3.1), we ob-

tain the following relationships, for ¢ = 1,...,t, j =
1,...,t+1.

(4.8) o(1;,d;) > ®Liy1,d),

(49) (k+Du(f) > djllop:m proj (L),

(4.10) proj(lz+1) > OPT

For (4.8), we used, in addition to Lemma 3.1, the fact
that all local improvements leading from I;;1 to I; are
d;-good and that w(I;) > w(l;t1).

Consider the function

a1 1

di 1
d, dy’

h(i) = i=1,... L
i dj din

Also, define h(t + 1) = h(t) = 1/d;. Observe that h
satisfies the recurrence relation
d; 1 1

+ -
dir1 d;

h(i) = h(i + 1) L oi=1,..t

diy1
Further, we can simplify it using that d% > %, for
€ [dj,dji]:

t—1 d;
. 1 i1 1

Vv

&
| — |
——
- &
8|

u

=

|
& —

IS U S NS
oo \ed? 247 & 2d;’
LEMMA 4.1. The following two inequalities hold for i =
1,2,...,t+1:
di + h(i)
d; —1
h(i) d; —1
1+ +
[d; didi—
Proof. The proof proceeds by induction.
Consider the base case, i = t + 1. Recall that
di+1 = dy and h(t+1) = h(t) = 1/d;. Then, by applying
(4.9) and (4.10),

kE+1)
S(Ip1,de1) = mw([tﬂ) +proj(Ie41)

1+ 1/d, da +h(t+1)
<dt_1 +1>OPT_ o

Also, the same equations imply that

(4.11) ®(I;, dy)

v

OPT,

(4.12)(k + Dw(I;)

v

] OPT.

OPT.

1
(k+Dw(lep) > 1+ d—)OPT

t

dt+1 -1

h(t + 1)
= 1
{ - dit1ds

dty1
Suppose the claim holds for i = ¢ + 1. We show
that it then also holds for i = ¢. From this, the claim
follows by induction. By (4.8),

<I>(Iq, dq) > (I>(Iq+1>dq)

= By dyer) + (b Dw(p) (

] OPT.

1 1
d, —1 qu—l)'
By applying (4.11) and (4.12) inductively on both terms
of the right hand side, we obtain, after considerable
algebraic simplification, (4.11) for the case i = q.
Furthermore, using the above, along with (4.9)
(with 7 = ¢), we have

<1+dq1_1> (k+1)w(I,) > dl AU

d, — 1

OPT,

qg—1
which, when rearranged, establishes (4.12).

THEOREM 4.1. The performance ratio of BESTIMP is
at most 2(k +1)/3.

Proof. By (4.12), the final solution I; obtained by the
algorithm satisfies

11
242 dy didy
1 1

= |2——+ — | OPT.
{ a 2d%} X

(k+Dw() > {1 + } OPT

The right hand term is minimized when d; = 1, for the
bound claimed.

5 Lower bound constructions

The focus of this section is on showing the following
lower bound on the performance of BESTIMP.

THEOREM 5.1. The performance ratio of BESTIMP is
at least (2/3)k — o(k).

We first illustrate the idea behind the lower bound
by constructing a graph for which the approximation
ratio of BESTIMP is (4/7)k—o(k). The stronger (2/3)k—
o(k) lower bound construction is a generalization of this
simpler construction.

Simpler construction The intuition behind the con-
struction is as follows: the graph is “almost bipartite”
with most of the edges being between V', the optimal
independent set, and the other vertices. V has a large
number of vertices of large weight. The set of other
vertices can be partitioned into two subsets: one subset
(ApUA;) has a small number of vertices of large weight,
while the other subset (B U C) has a large number of
vertices of small weight. The greedy algorithm will first
pick Ap U A1, which will eliminate V' from the greedy
solution, and then pick B. Subsequently, when the lo-
cal improvements are being made, vertices from V will
not be picked because equally good improvements re-
sult in replacing A; by C. After this replacement, the
independent set Ag U B U C will be locally optimal.

More formally, let X be an appropriate large num-
ber and YV = mX. The graph G has vertex sets
Ao, A1, B,C,V, of cardinalities X =Y, Y, (5 + 1)X,
kY = %X +Y, and X, respectively. The weight of ver-
tices is 1in Ag, 41 and V', 1/kin B, and 2/k in C. Split
V into V4 and Vi, of sizes X — kY and kY.

Edges are either between A; and C, or have one end
point in V. Ay and Vj, as well as A; and Vi, form a
(k,1)-regular bipartite graph, A; and C form a (k,1)-
regular bipartite graph, B and V form a (k,k/2 + 1)-
regular bipartite graph, and A4y U C and V form a
(k,k/4 + 1)-regular bipartite graph. We additionally
require that there be a perfect matching between C' and
.

Finally, we require the input graph to contain no 4-
cycles, i.e. that any two vertices have at most one com-
mon neighbor. This can be achieved by transforming
the graph G into a graph G’, where each vertex in G has
multiple copies in G', with edges chosen carefully. We
omit the details here, but refer to the literature [5, 1].
This completes the specification of the graph.

We first verify that the graph constructed is k + 1-
claw free. It clearly holds for vertices in Ag, B and V,

since they are of degree at most k. The vertices can
be so ordered that for any vertex x in Ay, its neighbors
in C have a complete matching with its neighbors in
V1. It follows, that the independence number of the
neighborhood of any vertex in A; or C' is exactly k.

The algorithm initially greedily chooses all of Ay
and A;, followed by B. We now argue that the
algorithm then repeatedly performs 2-improvements
that replace a single vertex of A; of weight 1 by k
vertices of C, each of weight 2/k, since at every stage
the best improvement possible is a 2-improvement. We
can argue this by induction.

Suppose I = Ag UBUI' is the current independent
set, where I' C A; UC. Consider an z € [— A; and a
V' C Ny(z). Any vertex in V' has k/2 + 1 neighbors in
B, of which at most one is in common with any other
vertex in V', since no four-cycles exist. Thus,

1 1
+—>-w(V').

k1
2 kK k2

w(N; (V) = [V']

Thus, the only 2-good improvements are those replacing
a node in A; with a set in C.

The resulting solution, AgUBUC, is locally optimal,
and of weight

1 2 3 1
ALG - |A0| + |B|E + |C|E - (% + m) X,

while the optimal solution is V', of weight X . This yields
an approximation ratio of (4/7)k + O(1) ~ 0.57k.

General construction We indicate how to generalize
the simpler construction to get a stronger lower bound.
We would like to reduce the weight of the vertices in
C, so that the ratio between the weight of V' and the
algorithm’s solution becomes bigger. However, if we just
reduce the weight of all the vertices in C, then the payoff
from replacing the A; vertices by the C' vertices will
become less than the payoff of bringing in the V' vertices.
So we instead do this in stages, bringing in successively
smaller weight vertices from C' into the independent set,
with smaller payoffs. What will prevent vertices from V'
being chosen is that at the later stages, the the heavier
vertices from the earlier stages of C' will also be in the
neighborhood of the V' vertices.
Consider a sequence of breakpoints, a; > a;_1 >
- > a1 > a9 = 1, to be determined later. The
graph contains as before: V, A = AgU A; U...U A,
minimally dominating V', and B, an additional set of
greedy vertices, forming a (k, k/a)-regular graph with
V. The weights of the vertices are unchanged. C is
now partitioned into C; U Cy U ...C;. Each C; forms
a (k,[g(i)k] + 1)-regular graph with V, (which fixes

|Ci| = [(g(d)k] + 1)OPT /k) where

1. 1 1

g(t) = —
() Qi Qi1 aj

The weight of a vertex in C; is «;/k. Also, each A;
and C; pair forms a (k,1)-regular graph, which fixes
44| = L[Cil.

We also require that for any vertex z in A;, its
k neighbors in C; are perfectly matched with its &
neighbors in V. This ensures that the graph contains no
(k+1)-claw. Also, we continue to require that the graph
contain no four-cycles. This completes the specification
of the graph.

The algorithm will greedily choose A followed by
B. We claim that it will then make a;-improvements,
replacing A; with Cy, followed by «;_i-improvements,
replacing A; 1 with C¢_1, and so on.

This can be proved inductively, and holds initially
for t by the property of B we have already seen. Suppose
it has completed replacing A;,..., 4, by Cy,...,Cy, re-
spectively, and possibly part of 4,_1 by Cy—1. Con-
sider any vertex z outside V and its neighborhood
Ny(z) in V. Since the graph contains no 4-cycles, any
pair of vertices in Ny (z) share only z as a neighbor.
Thus, we can partition the remainder of the neighbor-
hood N(Ny(x)) of Ny (z) in the current solution onto
the vertices in Ny (z). Each vertex in Ny (z) thus gets
assigned at least g(i)k vertices in C;, ¢ = t,...,q and
k/a; vertices in B. The sum of the weight of those
vertices is at least

TR

i=q i=

Thus, any improvement involving vertices in Ny () will
be less profitable than «,_;. Since replacing vertices in
Ay—1 by vertices in Cy_; is an a,_i-improvement, it
follows that all of A,_; will be replaced by Cy_;.

The resulting solution, ALG = AgUBUC, is locally
optimal. The optimal solution is given by V', whose size
and weight we denote by OPT. Observe that |C;| <
(9:+2/K)OPT, |Ci| = k|Ail, w(Ci) = asw(4i) = ai| 4],
and |Ao| = $OPT — Zl 1 14;]. The weight of ALG is
then

ALG
1 t
= |A0|+|B|E+;|Ai|ai
= —OPT+|B| +Z 1)] 4|
i=1

OPT
< 1+ — i +2/k)| ——
< +at+2 (g +2/k) | —

=1

t

1 1 1 1
S Xt

i=1 v

t
1+a—t+§; —
t
+> (e —1)2/k —
i=1

t1
:l zlala +Z

Let W be |kY/*] and t = W2, We set o =
(W +1i)/W, and note that a; — a;—1 is 1/W. Observe
that the second sum is at most 2t>/ (kW) < 2/W, while
the first sum simplifies to

OPT

OPT

i —1)2/k

w? 7>W2/ —dr > = — —.
i:;rl #(i-1) = i=w1 27 et w

Hence, we have that
PT
ALG < (3/2+ 4yw) LT
and the performance ratio is at least (2/3)k — O(k%/4).

The AnYIMP algorithm We also have a construction
(omitted here), parametrized by «, which shows that
our upper bound for ANYIMP,, is asymptotically tight:

THEOREM 5.2. The performance ratio of ANYIMP,, al-
gorithm is at least

k-1

— O(1/k?).

6 Conclusions

Our initial success with ANYIMP led us to conjecture
that the performance of BEsTIMP matched the bound
it achieves on unweighted graphs, (k + 1)/2. Instead, it
turned out to be halfway between the greedy bound and
the unweighted bound. A logical open issue is whether
this is a natural separation between the approximability
of the weighted and the unweighted cases.

Considering neighborhoods of sets of vertices in the
local improvement phase is likely to reduce the additive
term in the performance ratio. A (2k —1)/3 + € would
be a natural guess, improving the k£ — 1 + € bound of
pure local search for all £ > 3.

The time complexity of the algorithms, like the
previous local search algorithms, is O(nk2A*), where
A is the maximum degree of the graph. It would be
interesting to determine if similar performance ratio can
be obtained by an algorithm whose time complexity
depends less on k, e.g. 290 p01)

Finally, it would be interesting to see the proof
technique applied to other problems.

References

[1]

E. Arkin, R. Hassin. Approximating weighted set
packing by local search. ESA ’97.

V. Bafna, B. Narayan, R. Ravi. Nonoverlapping local
alignments (Weighted independent sets of axis-parallel
rectangles). To appear in Disc. Appl. Math.

M. R. Garey and D. S. Johnson, Computers and
Intractability, Freeman, New York, 1979.

M. M. Halldérsson. Approximating discrete collections
via local improvements. SODA ’95, 160-169.

C. A. J. Hurkens and A. Schrijver. On the size of
systems of sets every t of which have an SDR, with
an application to the worst-case ratio of heuristics for
packing problems. SIAM J. Disc. Math., 2(1):68-72,
Feb. 1989.

