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Abstract. Finding maximum independent sets in graphs with bounded maxi-

mum degree � is a well-studied NP -complete problem. We introduce an algorithm

schema for improving the approximation of algorithms for this problem, which is

based on preprocessing the input by removing cliques.

We give an implementation of a theorem on the independence number of clique-

free graphs, and use it to obtain an O(�= log log�) performance ratio with our

schema. This is the �rst o(�) ratio for the independent set problem. We also

obtain an e�cient method with a �=6(1 + o(1)) performance ratio, improving on

the best performance ratio known for intermediate values of �.
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1. Introduction

An independent set in a graph is a set of vertices in which no two are adjacent.

The problem of �nding an independent set of maximum cardinality is of

central importance in graph theory and combinatorial optimization. It is

however NP -hard; thus no e�cient algorithms can be expected.

A promising approach for dealing with intractability is in developing heuris-

tics that �nd quality approximate solutions. The performance ratio of such

an algorithm is de�ned to be the worst-case ratio of the size of the opti-

mal solution to the size of the algorithm's solution. However, in spite of

considerable e�ort, no algorithm is known for the independent set problem

with a performance ratio less than �(n= log

2

n) [8], where n is the number

of vertices in the input graph. Results in recent years on interactive proof
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systems, culminating in the celebrated paper of Arora et al. [5], show that

no constant-factor approximation can be expected, and in fact, an n

1=4

ratio

appears out of reach [6].

Given this apparent hardness of the general problem, it is natural to ask

what restrictions on the input lead to better approximations. Perhaps the

most natural and frequently occurring case is when the maximum vertex de-

gree is bounded above by a constant. Just as the independent set (or clique)

problem occurs in various contexts when modeling pairwise conicts among

elements, the bounded-degree variant occurs naturally when key parameters

are �xed.

The independent set problem remains NP -complete on graphs of bounded

maximum degree �, but approximation becomes considerably easier. In

fact, any algorithm that �nds a maximal independent set has a performance

ratio of �. On the other hand, for any �xed � � 3, there is a �xed con-

stant � > 1 for which 1 + �-approximation becomes NP -hard [5, 20]. These

hardness results can be ampli�ed via so-called randomized graph products,

which have been derandomized by Alon et al. [3], and by additional analysis

it can be shown that there is a � > 0 for which O(�

�

) approximation is NP -

hard [11]. This naturally brings up the issue of the exact approximability

of the problem; the current paper narrows the gap somewhat.

We present an algorithm schema that involves removing small cliques from

the graph. The idea { which originates in [8], with traces back to Erd}os

[10] { is rooted in results of graph theory that state that graphs without

small cliques as induced subgraphs must contain larger independent sets

than do general graphs, and moreover, these larger solutions can be found

e�ectively. For graphs with few disjoint cliques, we can manually remove

all the cliques and �nd the promised improved solution on the remainder.

On the other hand, graphs with many disjoint cliques cannot contain very

large independent sets, providing an upper bound on the optimal solution.

In either case, our performance ratio will be improved.

We use this schema to give a positive answer to a tantalizing question:

Given that all approximation algorithms for the bounded-degree indepen-

dent set problem have so far merely improved the coe�cient in front of �,

is a o(�) performance ratio possible? We present an algorithm with an

O(�= log log�) performance ratio. An essential component is a determin-

istic implementation of an existential theorem of Ajtai, Erd}os, Koml�os, and

Szemer�edi [1] on the independence number of sparse graphs containing no

small cliques.

We also analyze the schema in combination with two practical algorithms:

a simple local search algorithm of Khanna, Motwani, Sudan and Vazi-

rani [17], and an algorithm of Shearer [22] for triangle-free graphs. We

obtain a �=6(1+ o(1)) ratio for this combination that improves on previous

results for intermediate to large values of �.

The results reported here previously appeared in abstracted form as a part

of [15], and to a lesser extent in [13].
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1.1 Related results

Several papers deal with the approximation of independent sets in bounded

degree graphs [16, 7, 17, 13, 15]. Hochbaum [16] gave an algorithm with

a �=2 performance ratio, which remained unchallenged for over a decade.

Her algorithm also applies to node-weighted graphs.

More recently, Berman and F�urer [7] gave a type of a local search algorithm

that attains a greatly improved (�+3)=5+1=� performance ratio. Fujito [12]

eliminated a small additive term in the performance ratio of [7] for odd

values of �. The disadvantage of their method is extreme time complexity:

although improved analysis yields some reduction [15], the time complexity

starts at roughly n

50

and becomes signi�cantly greater if � is desired to be

small. Khanna et al. [17] independently obtained an improvement over the

ratio of [16], using a simpler local search method.

Our other work on this problem includes a (�+2)=3 bound on the greedy

algorithm [13], and a (�+3)=4 bound on an e�cient variant of the Berman-

F�urer algorithm [15]. A parallel algorithm attaining the former bound is

also given in [13].

1.2 Notation

We use fairly standard graph terminology. For the graph in question, usu-

ally denoted by G, n denotes the number of vertices, � maximum degree,

d average degree, � independence number (or size of the maximum inde-

pendent set), and � independence fraction (or the ratio of the independence

number to the number of vertices). For a vertex v, d(v) denotes the degree

of v, and N(v) the set of neighbors of v. For a vertex set S � V , G � S

denotes the graph induced by vertices in V � S. K

`

denotes the complete

graph (i.e. clique) on ` vertices.

For an independent set algorithm Alg, Alg(G) is the size of the solution

obtained on graph G. The performance ratio of the algorithm in question

is de�ned by

� = max

G

�(G)

Alg(G)

:

We consider � to be a function of �, in which case we can assume the

maximum to be taken over graphs with that maximum degree.

2. Subgraph Removal Approach

We present a method for improving the performance ratio of independent

set approximation algorithms. Any algorithm whose performance ratio de-

creases as the independence fraction of the graph decreases can be enhanced

using this approach, with greater improvements as the maximum degree gets

larger.

The idea is based on the following fact: graphs without dense subgraphs,

particularly cliques, contain larger independent sets than graphs do in gen-
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eral, and moreover these larger solutions can be found e�ectively. We remove

all cliques of certain size from the input graph and apply the improved al-

gorithms on the remaining graph. This will be advantageous as long as

the input graph contains few disjoint cliques; if it contains many disjoint

cliques, the independence number must be low; in either case, the resulting

performance ratio will improve.

This schema uses as subroutine two types of algorithms: an approximation

algorithm for general graphs, and algorithms that �nd large independent

sets in `-clique-free graphs with possibly di�erent algorithms for di�erent

values of `. Better algorithms of either type translate immediately to better

performance ratios.

We �rst illustrate this technique in its simplest form, when removing dis-

joint 2-cliques (i.e. a matching). We then give the structure of the general

schema. Next, via a constructive proof of a graph theorem, we obtain an

asymptotically improved O(�= log log�) performance ratio. We then intro-

duce two practical algorithms from the literature and use them to obtain

improved bounds for graphs of intermediate maximum degree. The proof of

the graph theorem is deferred to Section 3.

2.1 Removing edges

The following simple idea was used by [21] and [7] to obtain a fair perfor-

mance ratio in linear time. We use it here to obtain a quick approximation

in terms of average degree that is close to the best ratio known. It can

also be implemented in parallel, improving the best such performance ratios

known.

We apply two di�erent strategies to �nd an independent set, and retain

the larger result. One is to use the complement of some maximal matching,

i.e. the vertices not appearing in the matching. It contains n� 2m vertices,

where m is the number of matched edges, while the independence number

is at most n�m. Thus, the size of the solution found is at least 2�� n, for

a performance ratio of �=(2� � 1).

The other is the Greedy algorithm, which iteratively selects a vertex of

minimum degree and removes it and its neighbors from the graph. The size

of the solution it �nds satis�es:

Fact 1. ([13]) Greedy(G) �

1 + �

2

d+ 1 + �

n;

for an approximation ratio of (d+ 1 + �)�=(1 + �

2

).

Observe that the former ratio is monotone decreasing with � (� > 1=2),

while the latter ratio is monotone increasing. A close study shows that the

value of � for which the ratios agree is at most

1

2

+

5=4

2d+2

. If we plug that

into the higher ratio, that of the maximal-matching complement, this yields

a performance ratio of (2d+ 4:5)=5. Thus, in linear time, independent of d,

we come within an additive 0:3 of the (2d+ 3)=5 performance ratio of [13]

that requires 
(dn

3=2

) time.
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E�cient parallel algorithms are also known for �nding both a solution

satisfying Fact 1 [14] as well as a maximal matching. This combination

therefore improves on the previous (d+2)=2 performance ratio of the former

algorithm [14].

The idea of using a maximal matching to upper-bound the optimal solution

can be generalized naturally if we think of an edge as a clique on 2 vertices.

After removing a maximal collection of disjoint `-cliques, the remaining

graph will not be independent, yet will be more amenable to the discovery

of large independent subgraphs.

2.2 Generic Clique Removal Schema

We present an algorithm schema, indexed by a cardinal k and a collection

of subordinate procedures. One is algorithm General-BDIS-Algorithm for

�nding independent sets in graphs of bounded-degree that are otherwise

unrestricted. The other algorithms are for �nding independent sets in `-

clique-free graphs, possibly one for each value of `, 2 � ` � k.

CliqueRemoval

k

(G)

I  General-BDIS-Algorithm(G)

for `  k downto 2 do

S  CliqueCollection(G,`)

G G � S

I

`

 K

`

-free-BDIS-Algorithm(G)

I  max (I; I

`

)

od

return I

end

The algorithm CliqueCollection �nds in G a maximal collection of disjoint

cliques of size `; in other words, S is a set of mutually non-intersecting

cliques of size ` such that the graph G � S contains no `-cliques. Such

a collection can be found in O(�

`�1

n) time by searching exhaustively for

an (` � 1)-clique in the neighborhood of each vertex. That is polynomial

whenever ` = O(log

�

n).

When k is 2 and Greedy is used as the general algorithm, the result is

the previous edge-removal algorithm. We shall present here two further

instances of this schema.

2.3 Asymptotic Improvement

Asymptotically larger independent sets are known to exist in K

`

-free graphs.

Theorem 1. (Ajtai et al. [1]) There exists an absolute constant c

1

such

that for any K

`

-free graph G,

�(G) � c

1

log((log d)=`)

d

n:
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By derandomizing the parts of the proof of [1] where probabilistic existence

arguments are used, we have obtained an algorithm AEKS that constructs

the promised independent set in polynomial time. It, and its analysis, are

presented in Section 3.

To obtain improved approximations, it su�ces to use the following simpli-

�ed algorithm to approximate independent sets. An independent set is said

to be maximal (MIS) if adding any further vertices to the set violates inde-

pendence. An MIS is easy to �nd and provides a su�cient, general upper

bound of n=(� + 1).

AEKS-CR(G)

G

0

 G � CliqueCollection(G, c

1

log log�)

return max(AEKS(G

0

), MIS(G))

end

Theorem 2. The performance ratio of AEKS-CR is O(�= log log�).

Proof. Let z denote c

1

log log�, and let n

0

denote the size of V (G

0

). The

independence number collects at most one from each z-clique, yielding

� � n=z + n

0

� 2max(n=z; n

0

);

while the size of the solution found by AEKS-CR is at least

AEKS-CR(G) � max(

1

� + 1

n;

c

1

2

log log�

�

n

0

) �

z=2

�+ 1

max(n=z; n

0

):

The ratio between the two satis�es the claim.

2

Observe that the combined method runs in polynomial time for � as large

as n

1= log log n

.

2.4 E�ective method for moderately large maximum degree

We now turn our attention to practical methods that can bene�t from the

clique removal schema. This involves an algorithm of Shearer [22] for 3-

clique-free graphs, and a simple local search algorithm for other `-clique-free

graphs as well as for otherwise unrestricted graphs of bounded-degree. The

performance ratio of the resulting algorithm is asymptotically �=6(1+o(1))

and improves the best ratios known for moderate to large values of �. In

order to improve the approximation for small values of �, we replace edge-

removal by a preprocessing technique of Hochbaum [16].
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2.4.1 Preprocessing

Based on a theorem of Nemhauser and Trotter [19] on solutions of the linear

programming formulation of the independent set problem, Hochbaum [16]

introduced a preprocessing method to improve the performance of approx-

imation algorithms for the problem. The theorem of [19] states that in the

time taken to compute a bipartite matching, the vertices of the graph can

be partitioned into three sets P , Q, and R with the properties that: i) the

vertices in P are not adjacent to any vertex in either P or Q, and ii) the size

of the optimal solution is at most jP j+

1

2

jQj. As a result, we can restrict our

attention to the graph induced by Q, and attach the set P to the solution

found by the approximation algorithm on that graph. The corollary of this

is that in a worst case instance, the independence number is at most half

the number of vertices.

2.4.2 2-opt

Khanna et al. [17] studied a simple local search algorithm that we have

named 2-opt. Starting with an initial maximal independent set (MIS), it

tries all possible ways of increasing the independent set solution by adding

two vertices while removing only one. Given an independent set I , and ver-

tices v

1

; v

2

2 V �I , u 2 I , the triple hv

1

; v

2

; ui is said to be a 2-improvement

of I if the symmetric di�erence I � fv

1

; v

2

; ug = (I � fug) [ fv

1

; v

2

g is in-

dependent. Since I can be assumed to be a maximal independent set, it

su�ces to look at pairs adjacent to a common vertex in I .

2-opt(G)

I  MIS(G)

while (9 2-improvement hv

1

; v

2

; ui of I)

I  I [ fv

1

; v

2

g � fug

return I

end

The algorithm clearly runs in polynomial time, and can be implemented in

linear time for graphs of constant degree. We can use it to obtain good

bounds on graphs with high independence fraction.

Lemma 1. (Khanna et al. [17]) 2-opt(G) �

1 + �

�+ 2

n:

Proof. Consider any independent set I for which no 2-improvement exists.

Let B be some maximum independent set of G, and C be the intersection

of B and I . Since I is maximal, each vertex in V � I must be adjacent to at

least one vertex in I . If two vertices in B�C are adjacent to the same vertex

in I�C and neither is adjacent to any other vertex in I�C, then the three

vertices form a 2-improvement of I . Hence, at least jB�Cj�jI�Cj = jBj�jIj

vertices are adjacent to two vertices in I . Considering that the degree of
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vertices in I is at most �, we have that jI j� � jV �I j+jBj�jI j = n+��2jI j,

which yields the the lemma.

2

A �=2:44(1+o(1)) performance ratio for the combination of this algorithm

with Greedy was proved in [17]. An improved bound of (� + 2)=3 can be

obtained via the � � 1=2 promise of the preprocessing technique of [16].

We can obtain improved bounds for `-clique-free graphs.

Lemma 2. On a `-clique-free graph G, 2-opt(G) �

2

�+ `

n:

Proof. If some `� 1 vertices are adjacent to any given vertex u 2 I and

no other vertex in I , then either they form a `-clique with u or they include

a non-adjacent pair, which with u forms a 2-improvement of I. It therefore

follows that at most (`� 2)jI j vertices are adjacent to exactly one vertex in

I . Also, since I is maximal, all vertices outside of I must be adjacent to at

least one vertex in I . Summing up the number of edges incident on I, we

have that jI j� � jV � I j + (jV � Ij � (` � 2)jI j) = 2n � `jI j, which yields

the lemma.

2

The above lemma appears also in [9] with a similar proof as a bound on

the independence number in terms of maximum degree, clique number, and

vertex number.

2.4.3 Shearer

A classical theorem of graph theory due to Tur�an states that the indepen-

dence number of a graph is at least n=(d+1). In fact, this bound is attained

by the Greedy algorithm mentioned earlier (see [16, 14]). Ajtai, Koml�os, and

Szemer�edi [2] obtained the �rst asymptotically improved bound for graphs

no cliques on three vertices. (Note that Theorem 1 is a generalization to

larger forbidden cliques, albeit with weaker conclusion.) It was improved by

Shearer to the following theorem.

Theorem 3. (Shearer [22]) Let f

s

(d) = (d ln d�d+1)=(d� 1)

2

, f

s

(0) =

1, f

s

(1) =

1

2

. For a triangle-free graph G, �(G) � f

s

(d)n.

Moreover, he gave the following algorithm that attains the claimed bound.

Let f

0

s

denote the derivative of f

s

.

Shearer(G)

I  ;

H  G

while H 6= ; do

Pick a vertex v of degree d

v

such that

(d

v

+1)f

s

(d(H)) � 1+(dd

v

+d�2

P

w2N(v)

d(w))f

0

s

(d(H))

I  I [ fvg

H  H � (N(v) [ fvg)
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od

return I

end

In fact, the claim is also satis�ed in linear time, independent of �, by

a simple randomized greedy algorithm, if we modify the above algorithm

to select a random vertex in each step [22]. Shearer later gave a slightly

improved function [23].

2.4.4 Analysis

We now analyze the algorithm that results from instantiating the clique

removal schema with 2-opt and Shearer, and additionally applying prepro-

cessing on the triangle-free graphs. We obtain the following explicit, if less

than compact, bound on the performance ratio. Let H

k

denote the k-th

Harmonic number

P

k

i=1

1=i.

Theorem 4. CliqueRemoval

k

, using 2-opt, Shearer, and preprocessing, at-

tains a performance ratio of at most

�

�

2

+ 2 +

k

2

�

H

k�1

+

1

3f

s

(�)

�

3

2

+

�

3

��

=(k + 1)

for graphs of maximum degree � � 5.

Proof. Let n

`

denote the number of vertices in the `-clique-free graph,

3 � ` � k. Let n

2

denote the size of the set P found by preprocessing. Thus,

n � n

k

� . . . � n

3

� n

2

� 0.

The size of the optimal solution is �n, which can be bounded by

�n � n

2

+

1

2

(n

3

� n

2

) + � � �+

1

k

(n� n

k

) =

k

X

`=2

1

`(`� 1)

n

`

+

1

k

n: (1)

By Lemmas 1 and 2, Theorem 3, and the property of preprocessing, our

algorithm is guaranteed to output a solution of size at least

max

�

1 + �

�+ 2

n; max

4�`�k

2

�+ `

n

`

; n

2

+ f

s

(�)n

3

�

;

and its performance ratio is therefore bounded by

� � min

"

�n

1+�

�+2

n

; min

4�`�k

�n

2

�+`

n

`

;

�n

n

2

+ f

s

(�)n

3

#

:

From this we derive, respectively, that

� �

�

�+ 2� �

; (2)

n

`

�

�

�

�+ `

2

n; ` = 4; 5; . . . ; k (3)

n

2

+ n

3

�

�

�

1

f

s

(�)

n: (4)
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Combining (1), (4) and (3), we �nd that

� �

�

�

s

�;k

+

1

k

; (5)

where

s

�;k

=

1

6f

s

(�)

+

k

X

i=4

�+ i

2i(i� 1)

=

1

2

�

1

3f

s

(�)

+ (H

k�1

�

3

2

) + �(

1

3

�

1

k

)

�

:

Multiplying (5) by �=� , and bounding � by (2), we obtain

� � s

�;k

+

�

�k

� s

�;k

+

�+ 2� �

k

which, when rearranged, yields the desired

� �

�+ 2 + ks

�;k

k + 1

.

2

We can from this compute the ratio for particular values of �. It is also

easy to see that if � and k are large, then the �=3 term in s

�;k

will dominate

for a �=6 asymptotic ratio.

2.4.5 Comparison

We compare the ratios guaranteed by CliqueRemoval to those of recently

analyzed algorithms in Table 1. Its strengths are in the higher values of �,

surpassing the best ratio of a low-polynomial time algorithm for � � 33,

and the best ratio for any polynomial time algorithm [7] for � � 613.

� CliqRem Berman-F�urer [7] 2�-opt[15] Greedy [13]

10 3:54 2:60 3:25 4:00

33 8:92 7:25 9:00 11:66

100 23:01 20:60 25:75 34:00

1024 201:57 205:40 256:75 342:00

8192 1535:20 1639:00 2048:75 2731:33

Table I: Performance ratios of recent independent set algorithms.

3. Constructive Proof of Combinatorial Theorem

In this section, we give an algorithm that attains Theorem 1, restated here

for convenience.

Theorem. (Ajtai et al. [1]) There exists an absolute constant c

1

such

that any graph on n vertices not containing an induced K

`

has an indepen-

dent set of size at least c

1

(n=d) logA, where A = (log d)=`.
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Notation

We use the following additional graph notation. For a graph H, let n(H),

e(H), and h(H) denote the number of vertices, edges, and triangles, respec-

tively, and let d(H) denote the average degree of H. Let deg

3

(v) denote the

triangle degree of a vertex v, i.e. the number of mutually adjacent vertex

triples that include v.

3.1 Few Triangles

As an intermediate step in the proof we need to consider graphs with few

triangles.

In [2], Ajtai, Koml�os, and Szemer�edi extend their theorem for triangle-

free graphs to the case where the graph has few triangles. This result is

used later in [1] to obtain the result for K

`

-free graphs. In this section, we

describe how one can e�ciently obtain an independent set of size promised

by the following theorem.

Theorem 5. (Ajtai et al. [2]) If the number h of triangles in a graph G

is less than �nd

2

, where � > 1= ln d, then (for c

2

= 0:001)

�(G) > c

2

(n=d) ln(1=�):

In [2], the following procedure is used to establish Theorem 5. (Shearer [22]

also proves a version of Theorem 5, but we were unable to extract an e�cient

algorithm from his proof.)

Set p = 1=(

p

12� � d). Assume that n(G)p � 20.

AKS(G)

Obtain an induced subgraph G

0

with n

0

= n(G

0

) > np=2,

h

0

= h(G

0

) < 3hp

3

, and e

0

= e(G

0

) < 3e(G)p

2

.

G

00

 G

0

for each triangle in G

00

do

delete one vertex of that triangle

return Shearer(G

00

)

end

Note that G

00

has at least n

0

� h

0

> np=4 vertices and at most e

0

edges;

thus d(G

00

) � 12d(G)p. Observe that Shearer(G

00

) yields an independent set

of size at least

n(G

00

)

ln 12d(G)p

24d(G)p

� c

2

(n=d(G)) ln(1=�);

for c

2

chosen su�ciently small.

In the original proof, the subgraph G

0

in was obtained using a probabilistic

existential argument. We now show how it can be implemented e�ciently.

First, we describe the probabilistic method.
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Let G

0

be obtained by putting each v 2 V (G) in V (G

0

) with probability

p, these events being 3-wise independent. Then

E[h(G

0

)] = h(G)p

3

; E[e(G

0

)] = e(G)p

2

E[n(G

0

)] = n(G)p; var[n(G

0

)] = n(G)p(1� p):

Then, we have using Chebyshev's inequality that

Pr[n(G

0

) < n(G)p=2] <

4(1� p)

np

�

1

5

;

and, using Markov's inequality, that

Pr[e(G

0

) � 3e(G)p

2

] �

1

3

;

and

Pr[h(G

0

) � 3h(G)p

3

] �

1

3

:

Since these probabilities add up to less than 1, the required subgraph does

exist. To obtain this subgraph, we shall construct a set of sequences of

choices so that the events v 2 V (G

0

) are 3-wise independent. Thus one of

the sequences in the set will correspond to the required graph G

0

. We will

then be able to obtain the graph explicitly by trying all sequences. This is

reasonable because the size of the set needed for this will be small.

Identify the vertex set of G with f0; 1; . . . ; n�1g and let q be a prime such

that n � q � 2n. Let D be a subset of f0; 1; . . . ; q � 1g of size dpqe. For

a; b; c 2 f0; 1; . . . ; q � 1g de�ne the subgraph G

0

(a; b; c) by letting

v 2 V (G

0

(a; b; c)) i� av

2

+ bv + c (mod q) 2 D:

For a; b; c chosen independently and uniformly from f0; 1; . . . ; q � 1g, it can

be shown that

p

0

:

= Pr[v 2 V (G

0

)] =

jDj

q

=

dpqe

q

;

and that the events fv 2 V (G

0

(a; b; c))g

v2V (G)

are 3-wise independent [18,

p. 200]. Note that p � p

0

� p(1+1=q). Arguing as above, we can show that

Pr[n(G

0

(a; b; c)) < n(G)p=2] <

4(1� p

0

)

np

0

�

1

5

;

Pr[e(G

0

(a; b; c)) � 3e(G)p

2

] �

p

02

3p

2

�

1

3

�

1 +

1

pq

�

2

� 0:3675;

and

Pr[h(G

0

(a; b; c)) � 3h(G)p

3

] �

p

03

3p

3

�

1

3

�

1 +

1

pq

�

3

� 0:385875:

Note that these probabilities add up to less than 1. To construct the graphG

0

we check for all possible triples (a; b; c) 2 f0; 1; . . . ; q�1g

3

whether G

0

(a; b; c)

has the required properties. The discussion above shows that there exists a

choice of (a; b; c) such that the graph G

0

(a; b; c) has the desired properties.
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3.2 Graphs with no K

`

We are now ready to present the method to produce an independent set in

K

`

-free graphs of size promised by Theorem 1.

Lemma 3. Let ` � 2, 0 < � < 1=2 be arbitrary. If a graph H contains no

K

`

, then it contains a (spanned) subgraph H

0

with

n(H

0

) � (2�)

`�2

n(H); e(H

0

) < �(n(H

0

))

2

:

It is shown in [1] that the following procedure constructs the desired sub-

graph H

0

.

SparseSubgraph(H; `; �)

if ` = 2 return H

if e(H

0

) < �(n(H

0

))

2

then return H

0

choose v 2 V (H) with d(v) > 2�n(H)

return SparseSubgraph(N(v); `� 1; �)

end

Lemma 4. If H contains no K

`

, then it can be partitioned into H = H

0

[

H

1

[H

2

[ . . . in such a way that

n(H

i

) =

j

�

`�1

n(H)

k

; e(H

i

) < �(n(H

i

))

2

; i = 1; 2; . . . ;

and for the leftover H

0

, n(H

0

) < �n(H).

The proof of this lemma given in [1] uses the following procedure.

Partition(H; �)

i 1

H

�

 H

while n(H

�

) � �n(H) do

H

0

 SparseSubgraph(H; `; �=2)

H

i

 subgraph of H

0

such that

n(H

i

) =

j

�

`�1

n(H)

k

and e(H

i

) < �(n(H

i

))

2

H

�

 H

�

�H

i

i i+ 1

od

H

0

 H

�

return (H

0

;H

1

; . . .)

end

The description given above is incomplete because we have not described

how the subgraph H

i

can be obtained. In the original proof this was ob-

tained using a straightforward application of the probabilistic method. This
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approach can be derandomized using the method of conditional expecta-

tion [4]. We defer the details until later, for we shall soon use this method

for another somewhat complicated instance.

And now, �nally, we have the procedure for constructing an independent

set of the size promised by Theorem 1. The proof in [1] uses the following

procedure.

Let A = (log d)=` as in the statement of the theorem. De�ne � = A

�3c

1

=c

2

,

and � = �=10.

InitialPartition(G)

m bn=�c

for i 1 to m do

v  vertex of largest triangle degree deg

3

(v) in G

V

i

 fvg [N(v)[fsome �� (d(v) + 1) additional verticesg

G G� V

i

od

V

m+1

 V (G)

return (V

1

; V

2

; . . . ; V

m

; V

m+1

)

end

Let d

0

be the smallest degree for which Theorem 1 improves on Tur�an's

bound, i.e. roughly exp(exp(1=c

1

)).

AEKS(G)

if d � d

0

then return Tur�an(G)

if � > d+ 10d=(log d) then

let v be a vertex of degree �

return AEKS(G� fvg)

(V

1

; V

2

; . . . ; V

m

; V

m+1

) InitialPartition(G)

G

0

 subgraph induced by V

m=2+1

[ V

m=2+2

[ . . . [ V

m

if (deg

3

(G) < ��

2

) then return AKS(G

0

)

for i 1 to m do

G

i

 subgraph induced by V

i

(V

i0

; V

i1

; . . . ; V

it

i

) Partition(G

i

; �)

od

e

�

 the number of edges with ends in di�erent V

i

j

i

 a choice in f1; 2; . . . ; t

i

g s.t. the number of edges between

the subclasses fV

ij

i

g

m

i=1

is at most e

�

�

2`�2

=(1� �)

2

.

G

00

 the subgraph induced by

S

i

V

ij

i

return AEKS(G

00

)

end
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3.3 Obtaining the choice function

It remains to describe how the choice function j

i

used above can be obtained.

We wish to present a derandomized version of the averaging argument used

in the original proof. To make the presentation simple we �rst consider the

following problem, whose solution we shall use later to obtain the choice

function.

Suppose we have a graph G with V (G) partitioned as V

1

[ V

2

[ . . . [ V

m

,

such that no edge has both its ends in any V

i

. Further assume that each

edge e has an integer weight wt(e) and each vertex has weight p(v) 2 [0; 1],

such that, for each i,

P

v2V

i

p(v) = 1. For i = 1; 2; . . . ;m, let X

i

be the

random variable de�ned by

Pr[X

i

= v] = p(v); for v 2 V

i

;

the X

i

's being mutually independent. Let G

0

be the (random) subgraph of

G induced by fX

1

;X

2

; . . . ;X

m

g. LetW (G

0

) be the sum of the weight of the

edges of G

0

. Then, we have

E[W ] =

X

fv;wg2E(G)

wt(fv; wg) Pr[fv; wg 2 E(G

0

)]

=

X

fv;wg2E(G)

wt(fv; wg)p(v)p(w):

Clearly, then, there exists a subgraph G

�

of G consisting of exactly one

vertex from each V

i

, such that W (G

�

) � E[W ]. We now show that such a

graph G

�

can be constructed, provided wt(�) and p(�) are given.

The following de�nition will play a central role in our algorithm. Let

1 � r � m and v

i

2 V

i

, for i = 1; 2; . . . ; r. Then

E[W j (v

1

; v

2

; . . . ; v

r

)]

:

= E[W j

r

^

i=1

X

i

= v

i

]

=

X

e2E(G)

wt(e) Pr[e 2 E(G

0

) j

r

^

i=1

X

i

= v

i

]:

For e = fv; wg 2 E(G), observe that

Pr[e 2 E(G

0

) j

r

^

i=1

X

i

= v

i

]

=

8

>

>

<

>

>

:

1 if v; w 2 fv

1

; v

2

; . . . ; v

r

g

p(w) if v 2 fv

1

; v

2

; . . . ; v

r

g and w 2

S

m

i=r+1

V

i

p(v)p(w) if v; w 2

S

m

i=r+1

V

i

0 otherwise.

It follows, then, that if we are given v

1

; v

2

; . . . ; v

r

then we can easily compute

E[W j (v

1

; v

2

; . . . ; v

r

)]: Further, for r < m,

E[W j (v

1

; v

2

; . . . ; v

r

)] =

X

v2V

r+1

p(v)E[W j (v

1

; v

2

; . . . ; v

r

; v)]: (6)
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We now present the algorithm to �nd the graph G

�

.

ChoiceGraph(G)

for i 1 to m do

v

i

 v 2 V

i

minimizing E[W j (v

1

; v

2

; . . . ; v

i�1

; v)]

return the subgraph G

�

induced by (v

1

; v

2

; . . . ; v

m

)

end

It follows by an easy induction on i, using (6), that E[W j (v

1

; v

2

; . . . ; v

i

)] �

E[W ], and, in particular, E[G

0

] � E[W ].

3.3.1 The choice function

To obtain the choice function used in the procedure AEKS we consider the

graph

^

G with the vertex sets V

i

de�ned by

V

i

= f(i; j) : j = 1; 2; . . . ; t

i

g;

the weight of edge f(i

1

; j

1

); (i

2

; j

2

)g set to be the number of edges between

vertex sets V

i

1

j

1

and V

i

2

j

2

, and

p((i; j)) =

1

t

i

:

Consider the invocation of Partition(G

i

; �) in the procedure AEKS. We have

(Lemma 4) jV

i0

j � jV

i

j and, for j � 1, jV

ij

� �

l�1

jV

i

j. Thus, t

i

� (1��)=�

`�1

,

and hence p(v) � �

`�1

=(1� �) for all v 2 V (

^

G). Using the procedure above

we may obtain vertices f(i; j

i

)g

m

i=1

such that the sum of the weights of edges

in the graph induced by them is at most

E[W ] �

�

2`�2

(1� �)

2

e

�

:

This gives us the required choice function.

3.4 Obtaining the Sparse Subgraph

Now we return to the application of the probabilistic method in the proce-

dure Partition. This time we have a graph G on n vertices, and we consider

the random subgraph H induced by a random subset of V (G) of size k.

Then,

E[e(H)] =

X

e2E(G)

k(k � 1)

n(n� 1)

= e(G)

k(k � 1)

n(n� 1)

< (k

2

=n

2

)e(G):

Clearly, there exists a subgraph

^

H with k vertices and at most E[e(H)]

edges. We show now how such a subgraph can be obtained e�ciently.
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Let S � V (G) and jSj = s � k. Then

E[e(H) jS � V (H)] =

X

e2E(G)

Pr[e 2 E(H) jS � V (H)]:

Note that

Pr[e 2 E(H) jS � V (H)] =

8

>

<

>

:

1 if je \ Sj = 2

k�s

n�s

if je \ Sj = 1

(k�s)(k�s�1)

(n�s)(n�s�1)

if je \ Sj = 0:

Thus, for any set S we can easily compute E[e(H) jS � V (H)]: Also,

E[e(H) jS � V (H)] =

X

v2V (G)�S

1

n� s

E[e(H) jS [ fvg � V (H)] (7)

We then have the following algorithm for �nding the subgraph

^

H.

FindSubgraph(H)

S

0

 ;

for i 1 to k do

v

i

 v 2 V � S

i�1

minimizing E[e(H) jS

i�1

[ fvg � V (H)]

S

i

 S

i�1

[ fv

i

g

od

return the subgraph

^

H induced by S

k

end

It follows by a routine induction, using (7), that E[e(H) jS

i

� V (H)] �

E[e(H)], and, in particular, that

^

H has the required properties.

Let us apply this method to the step in the procedure Partition. For

our application there, we take G to be H

0

and k to be

j

�

`�1

n(H)

k

. This

completes our treatment of the proof of Theorem 1.

4. Discussion

The clique removal schema links further improvements in approximation to

open questions in graph theory. If an 
(n(log�)=�)-independent set can be

found in (log�)-clique-free graphs, as has been conjectured, a performance

ratio of O(�= log�) would ensue. On the other hand, this appears to be the

limit of a direct application of this technique. A related question is whether

`-clique-free graphs can be colored with o(�) colors; an a�rmative resolution

would assist in approximating independent sets in weighted graphs.

For small values of �, various improvements are plausible with improved

component algorithms. A stronger bound for Shearerwhen the independence

number is large { similar to what we obtained for Greedy [13] { would be

particularly useful.
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