
Approximating Steiner trees in graphs with restricted weightsMagn�us M. Halld�orsson� Shuichi Uenoy Hiroshi Nakaoy Yoji KajitaniyAbstractWe analyze the approximation ratio of the average distance heuristic for the Steiner treeproblem on graphs, and prove nearly tight bounds for the cases of complete graphs with binaryweights f1; dg, or weights in the interval [1; d], where d � 2. The improvement over other analyzedalgorithms is a factor of about e � 2:718.1 IntroductionGiven a graph with real-valued edge weights, and a subset of the vertices distinguished as terminals,the Steiner tree problem involves �nding a tree of minimum weight that spans all terminal vertices.It has attracted a great deal of attention in recent decades, partly due to its natural application tominimizing the lengths of communication paths, for example in VLSI layout and telephone switchingnetworks.In this paper we consider a restriction of the problem when the network is a complete graphand the ratio between the smallest and the largest edge weight is small. We distinguish betweentwo cases: binary weights, when the graph contains only two weights 1 and d, and the more generalinterval weights, when the edge weights fall in the interval [1; d]. For both types, we restrict ourattention in this paper to those cases where d � 2. These restricted problems are likely to occurin the construction of communication networks when the cost per link is largely independent of itslength. The binary weights may then correspond to whether link contains some existing partialinstallation.The algorithm that we shall consider for approximately solving the Steiner problem is knownas the Average Distance Heuristic (ADH), and was introduced by Rayward-Smith in [6]. It wasshown by Waxman and Imase [8] that the performance ratio of the algorithm, or the worst-caseratio between the length of the solution it generates to the length of the optimal Steiner tree, isasymptotically two. Empirical and average case results [7, 9] also indicate excellent performance inpractice. Our line of work was started by Bern and Plassman [3] who considered the performance ofADH on complete graphs with binary weights 1 and 2, and proved a ratio of 4/3. They also showedthat no polynomial time approximation scheme existed for this problem; namely, they showed theexistence of a constant c > 1 such that it is NP-hard to approximate the problem within a ratio ofc. We describe the Steiner tree problem and the Average Distance Heuristic in the next sectionalong with attendant notation. We then proceed in Section 3 to derive a sequence of bounds on theperformance of ADH on graphs with binary weights, and do the same for interval weights in Section4. In both cases the precise bounds are shown to be of the form 1 + 1ek + O( 1k2 ), where k is suchthat d = 1 + 1k , and e is the basis of the natural logarithm. The constants behind the lower order�Corresponding author. Science Institute, University of Iceland, IS-107 Reykjavik, Iceland. mmh@rhi.hi.isyDepartment of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro-ku, 152 Tokyo, Japan.1



term are small. This improves on the 1 + 1k performance of other analyzed methods. Comparisonand evaluation of the function describing the performance ratio is given in Section 5. Finally, wecomplement the analysis of ADH by showing, in Section 6, the binary weighted Steiner tree problemto be NP-hard to approximate within a factor of c, for some �xed constant c > 1. The paper closeso� with a discussion of related problems and methods.2 The Steiner tree problem and the Average Distance HeuristicThe Steiner tree problem on graphs is de�ned as follows.Given: A graph G = (V; S;E; d), where V is a set of vertices, containing a subset S � Vof terminals, E = V � V is the set of edges, and d is a weight function d : E 7! R.Find: A set of edges T � E that connects together the elements of S (and possibly someof V � S) into a tree, such that the cost of T , Pe2T d(e), is minimized.The elements of V � S will be referred to as optional vertices.Average Distance Heuristic The objective of the Steiner tree problem is to connect the terminalsusing minimum total sum of edge weights. Like many Steiner tree heuristics, the ADH attacks theproblem by performing a sequence of reductions, each contributing a small set of edges to the resultingtree and slightly reducing the size of the instance. In each step, it chooses a subset X of terminalsand a vertex v, adds the edges from v to the elements of X to the solution, and merges v with thevertices of X to a single new terminal. As with most of the studied heuristics, ADH selects the setto be reduced according to a greedy rule. The characterizing feature of ADH is that it considers allsets of terminals as candidates, independent of their cardinality, whereas other heuristics [9, 10, 2]consider only constant-sized sets of terminals.The algorithm chooses a set of terminals X and a vertex v that minimizes the quantityAvgDist(v;X) := Px2X d(v; x)jXj � 1referred to as the average distance of v to X. The reduction replaces the terminals in X by a singleterminal, thus reducing the number of terminals by jXj � 1 at the cost of adding the edges from v toX, or Px2X d(v; x). AvgDist(v;X) thus represents the average cost spent per terminal eliminated.The algorithm is given in Figure 1. For details of implementation and time complexity, refer to [6, 9].The vertex v can either be a terminal in X, or an optional vertex. In the former case, we mayassume without loss of generality that two vertices are reduced at a time. In the latter case, theedges added to the tree induce a star centered at v.Notation Let n denote jSj. Let d(u; v) denote d(e) where e = (u; v). We assume that the weightsin the input have been scaled so that the minimum weight is 1. Let d denote the maximum weight,k denote the real value such that d = 1 + 1=k, and K = bkc. Let p denote the number of optionalnodes in an optimum Steiner tree. Let Hz denote the z-th harmonic number, Pzi=1 1=i.Let HEU(G) denote the cost of the solution found by the algorithm (ADH) on instance G,maximized over all possible tie-breaks. OPT(G) denotes the cost of an optimal Steiner tree for G.Let rk(G) denote the ratio of HEU(G) to OPT(G), and rk denote the minimum such ratio over allgraphs under consideration. We are interested only in the asymptotic ratios, as the size of the inputgrows, although the di�erences are minor. Hence, we ignore all terms that do not grow linearly withthe size of the input. 2



ADH(G)T  ;while jSj > 1 doChoose X � S and v � V that minimizes AvgDist(v;X)S  (S �X) [ fvgV  (V �X) [ fvgfor each w 2 V �Xd(v; w) minx2X[fvg d(x;w)T  T [ f(x; v) : x 2 Xgodoutput T Figure 1: The Average Distance Heuristic3 Binary weightsWhen considering binary weights, we change our perspective of weighted graphs to that of relatedunweighted, not-complete graphs. For an instance G = (V; S;E; d), the related unweighted graphG0 = (V; S;E0) is de�ned on the same vertex set such thatd(u; v) = 1 () (u; v) 2 E0; d(u; v) = d () (u; v) 62 E0:We shall only speak of these unweighted graphs for the remainder of this section.We say that the graph contains a t-star, if it contains an optional vertex adjacent to t or moreterminals. One useful observation is that no terminal vertices are adjacent in a worst-case instance.The heuristic therefore performs only star-reductions { represented by a particular optional node andall adjacent terminals { and heavy reductions that merges two terminals of distance d together. Onceit starts performing heavy reductions, we may assume that it does so throughout.In what follows, we start by generalizing both the upper and lower bound of [3] to arbitrary k.These bounds have been included here primarily for the basis they provide for further intuition, aswell as for their simplicity. We then improve both bounds to functions that converge as k grows.3.1 Simple boundsFor each positive integer t, we consider the following graph which we name t-rake: Rt = Rt;p: Asequence of p optional vertices are linked in a path, with t terminals hanging o� each optional vertexas leaf nodes. A 3-rake is shown in Figure 2.
Figure 2: A short 3-rake3



Theorem 1 For k integral, rk � 1 + 1k(k + 2)Proof. In a t-rake, the average distance of any node to any subset of terminals is at least (t+ 1)=t.Thus, when t � K +1 = bkc+1, the heuristic may simply reduce the terminals in heavy reductions,for a cost of HEU(Rt) = d(n� 1) = k + 1k (n� 1): (1)On the other hand, when t � K + 1, OPT(Rt) = t+ 1t � nIn particular, in the case of k + 1-rake with k integral,HEU(Rk+1)OPT(Rk+1) = dnn(k + 2)=(k + 1) = k + 1k k + 1k + 2 = 1 + 1k(k + 2) :We generalize some observations of [3].Observation 1 1. If G contains a (t + 1)-star, then the algorithm makes progress towards t+1tratio. More precisely, it will add a set of edges to the solution of cost c, obtaining a new graphH with the property that HEU(G) = HEU(H) + c and OPT(G) � OPT(H) + c t+1t .2. OPT(G) � n+ p� 1, where p is the number of optional vertices in the optimal solution.3. If G contains no (t+ 1)-star, then p � dn=te.4. If the minimum tree contains q disjoint t-stars, then at least 2q nodes will be covered in t-reductions by the heuristic.A simple application of Observation 1 parts 1-3 yields the following upper bound.Lemma 1 rk � 1 + 1d2keProof. Let t = d2ke. The proof is by induction on the size of G. The statement holds trivially forthe single-node graph.Assume G contains no (t+ 1)-star. Then OPT(G) � n+ p� 1 � n+ n=t� 1, while HEU(G) �d(n� 1). Hence, rk(G) � 1 + 1=k1 + 1=d2ke = 1 + d2ke � kk(d2ke + 1) � 1 + 1d2ke + 1 :On the other hand, if G does contain a (t + 1)-star, by Obs. 1.1, ADH performs a reduction ofcost c and obtains a new graph H with the property that HEU(G) = HEU(H) + c and OPT(G) �OPT(H) + c t+1t . By the induction hypothesis, HEU(H) � (1 + 1t )OPT(H), soHEU(G) = (1 + 1t )(OPT(H) + ct+ 1t ) � (1 + 1t )OPT(G):By counting just how many (t + 1)-stars the graph contains, and showing that the adversarymaximizes the ratio when that number is zero, we can strike a better balance between the twooptions of the previous proof. 4



Theorem 2 rk � 1 + 1d2ke + 1Proof. Let t = d2ke + 1. If there is a (t + 1)-star, then by Obs. 1.1) we make progress towards a1 + 1=t ratio. Thus, assume that the graph contains no (t+ 1)-stars.Let q denote the number of (disjoint) t-stars in an optimal solution. Then n � qt+(p�q)(t�1) =p(t� 1) + q, and thus p � n�qt�1 .From the above, and Observation 1.2,OPT(G) � n+ p � n+ n� qt� 1 = tt� 1(n� qt )Let m be the number of reductions with t or more terminals, and let s be the number of terminalsparticipating in them. Then m � s=t. Moreover, since at least 2 nodes from a given star must bereduced in order to decrease the star, we have that s � 2q (see Observation 1.4).HEU(G) � d(n� (s�m)) + s= k + 1k (n+m� s(1� kk + 1))� k + 1k (n+ st � sk + 1)� k + 1k (n� 2q( 1k + 1 � 1t ))We have that the ratio between the two is at most k+1k � t�1t , as long as 2q( 1k+1 � 1t ) � qt , whichis satis�ed when t � 32 (k + 1).Using that t = d2ke+ 1, the ratio is bounded by k+1k d2ked2ke+1 = 1 + d2ke�kk(d2ke+1) � 1 + 12k+1 .3.2 Asymptotically tight boundsWe now derive a new lower and an upper bound on the performance ratio of ADH, which areasymptotically tight as k grows.Theorem 3 rk � 1 +maxR2N (HR �Hbkc) + 1R(R�1) + Kk � 1R+ 1 (2)Proof. Let R be an integer and let p be a multiple of (R � 1)!=K! We construct a family ofgraph fGR;k;pg parameterized by R, representing the sizes of stars in the instance, p, representingthe number of optional nodes in the optimal solution, and k, the weight factor. The graphs area modi�cation of the R-star, arranged so that the algorithm will reduce the degree of all optionalvertices by one at a time, until it reaches K + 1, at which point heavy-reductions take over. In theproper context, we shall simply refer to an instance of the family as G.De�ne f(i; z) = � di=(z � 1)e; when z = Rdi=ze otherwise.The sets of terminals and optional nodes of G are given byS(G) = fTi;j : i = 1; : : : ; p; j = 1; : : : ; Rg [ f!gV (G)� S(G) = fsi : i = 1; : : : ; pg [ fxzy : z = K + 1; : : : R; y = 1; : : : ; f(p; z)g:5



The edges of G are given byE(G) = f(si; Ti;j); (xzf(i;z); Ti;z) : i = 1; : : : ; p; j = 1; : : : ; R; z = K + 1; : : : ; Rg[f(si; si+1) : i = 1; : : : ; p� 1g[f(xzy; !) : z = K + 1; : : : ; R; y = 1; : : : ; f(p; z)g:Observe that each xzy vertex is adjacent to j + 1 terminals (including !) when j < R, but to jterminals when j = R.The key to analyzing the worst-case cost of the Steiner tree computed by the algorithm is to �xa particular sequence of reductions.Claim 1 One possible sequence of reductions that the algorithm may perform is:xR1 ; xR2 ; : : : ; xRp=(R�1); xR�11 ; xR�12 ; : : : ; xR�1p=(R�1); : : : ; xK+11 ; xK+12 ; : : : ; xK+1p=(K+1)followed by heavy reductions.Initially, all nodes are adjacent to at most R terminals. This includes the xRy nodes. Observethat since the x-nodes are not adjacent to each other or to any other optional node, no sequence ofx-node reductions can increase the number of terminals adjacent to any given node. Thus, we mayassume that the xRy nodes, y = 1; 2; : : : are all reduced in the �rst round. Call the resulting networkHK;p;R�1.After this round, all Ti;R nodes, i = 1; : : : ; p, have been merged into the single terminal !. Theoptional nodes si, i = 1; : : : ; p are still adjacent to R terminals, and so are the xR�1y optional nodes,y = 1; : : : ; p=(R � 1). Thus, we may assume that the xR�1y nodes are reduced in sequence. Now,observe that this results in the network HK;p;R�2. Since the above argument holds independent of R,for integer R, R � K + 1, we have that, by induction, the reduction sequence continues as claimed:the xR�2y nodes, xR�3y nodes, down to the xK+1y nodes.The network HK;p;K consists of the K-rake along with an additional terminal ! adjacent to allthe optional nodes si, i = 1; : : : ; p.. Each optional node is then adjacent to at most K +1 terminals.Then, we may assume that the remainder is reduced by heavy reductions, for a cost of dn = dpK(see (1)).If we sum up the costs of the reductions in each round, we obtainHEU(G) � R pR� 1 +R pR� 1 + (R� 1) pR � 2 + � � � + (K + 1) pK +HEU(HK;p;K):Simplify the sum using the harmonic function Ht,HEU(Gk;p;R) � p[(R�K) + 1R� 1 + 1R� 1 + 1R� 2 + � � �+ 1K + 1] + k + 1k pK= p[R+ 1R(R � 1) +HR �HK +K=k]: (3)The optimal solution reduces the si vertices, i = 1; : : : ; p, for a cost ofOPT(G) = (R+ 1)p� 1: (4)The ratio of (3) to (4), maximized over all values of R yields (2) and the theorem.Following the pattern in the above argument, we are led to a similar argument for the upperbound on the performance ratio. 6



Theorem 4 rk � 1 +maxR2N (HR�1 �HK) + K+1�kkR+ 1 (5)Proof. If p is the size of the minimum dominating set, at most (k + 1)p nodes will remain forheavy-edge reductions, and the rest must be reduced by star reductions. The size of a star reductionis the size of the largest star available, or at least R = dn=pe. Since each t-reduction decreases thecount of terminals by t� 1, in order to decrease dn=pe by one, the p terminals must be reduced in atmost p � t=(t� 1) reductions.HEU(G) � pRR� 1 + p(R� 1)R� 2 + � � �+ p(K + 2)K + 1 + dp(K + 1)= p[(R� (K + 1)) + 1R� 1 + 1R� 2 + � � �+ 1k + 1] + (1 + 1=k)(K + 1)p= p[(R+ 1) + (HR�1 �HK) + K + 1� kk ]From Observation 1 (part 2 and 3), OPT(G) � n(1+1=R) � p(R+1). The performance ratio of thealgorithm is at most the ratio between these two values, maximized over the possible values of R.Combining Theorems 3 and 4, we obtain a characterization of the performance ratio that is tightasymptotic with k.Corollary 1 rk = 1 + 1ek +O( 1k2 )Proof. Observe that the di�erence between the bounds of the two ratios is 1k � 1R � 1R(R�1) = O( 1k2 ).Recall the approximation of Ht as ln t+ 
 + O(1=t), where 
 is a constant. Denote x = (R + 1)=k.Then, we have that rk = 1 +maxx Hxk �Hk +O(1=k)xk= 1 +maxx lnxk � lnk +O(1=k)xk= 1 + 1k (maxx lnxx ) +O( 1k2 )= 1 + 1ek +O( 1k2 )4 Interval weightsWe now turn our attention to graphs for which the only restriction is on the ratio between the largestand the smallest edge weight. We obtain an exact, albeit non-trivial, bound for the approximationratio for these graphs. To distinguish it from the ratio for binary weighted graphs, we refer to theperformance ratio as r0k.Theorem 5 r0k = 1 + maxx;��0Gk(x; �)where Gk(x; �) = (1 + �)(Hx�1 �Hb(1+�)kc) + b(1+�)kc�(1+�)k+1kx+ 1 + �7



We generalize the notion of a t-star to a set of terminals of an average distance at most t=(t� 1)from an optional vertex.We spend the remainder of this section proving Theorem 5, delaying further evaluation of theapproximation to the next section.The lower bound For an integer R and a real value � � 0, we construct a graph Zk;R;�. The graphis a long R-rake with slightly modi�ed weights on edges between vertices in the same star. If eachstar consists of terminals t1; : : : ; tR and an internal vertex v, the weights of the edges are given by:d(v; ti) = � 1 + �=b(1 + �)kc i = 1; : : : ; b(1 + �)kc1 i = b(1 + �)kc+ 1; : : : ; Rd(ti; tj) = � i+1+�i j = i+ 1; i = b(1 + �)kc; : : : ; Rd otherwiseFigure 3 gives an example of a modi�cation of a 3-rake without � weights, which, in fact, yieldsa lower bound of 1.375 for the case k = 1, i.e. weights in the interval [1; 2].
1.51.51.5

Figure 3: The graph Z1;3;0.The construction ensures that the terminals will be reduced �rst, in inverse order of their intro-duction. The weight of an added edge (ti; ti�1) will be equal to the average distance at the optionalvertex at the time when the edge is reduced.Let w denote the largest value of i for which i+�i�1 � d, or 1+�i�1 � 1k , or w = 1 + b(1 + �)kc.If we now focus only on the cost of each star, we have thatHEU(Zk;R;�) = RXi=w+1d(ti; ti�1) + dw= RXi=w+1 i+ �i� 1 + (1 + 1k )w= R+ (1 + �)R�1Xi=w 1i + wk= R+ (1 + �)(HR�1 �Hw�1) + wkOn the other hand, OPT(Zk;R;�) = R+ 1 + �. Hence,r(Zk;R;�) = 1 + (1 + �)(HR�1 �Hb(1+�)kc) + b(1+�)kc+1�(1+�)kkR+ 1 + �Thus, r0k � 1 +maxR r(Zk;R;�) = 1 + gk(�), for any � � 0.8



The upper bound To observe that the above bound is tight, we �rst make the crucial observationthat on some worst-case instance the heuristic will reduce only pair of terminals. The idea is thatif some star has a low average cost, we can pass it on to the edges between those terminals withouta�ecting the heuristic or optimal costs adversely.Lemma 2 For any instance to our problem, there is another instance with identical optimal andheuristic values, for which the heuristic reduces only pairs of terminals.Proof. Take a star of minimum average weight, and reset the weight of the edges between theterminals to the average distance of the star (see de�nitions). That value can be no less than theoriginal edge weight, hence the heuristic cost is not a�ected and the optimal cost not increased. Eachof these edges will now be terminal pairs of minimum weight, hence the order of reduction remainsthe same. Apply this argument recursively to obtain the claimed instance.Lemma 3 For any instance to our problem, there is another instance with identical optimal andheuristic values, in which edges of cost less than d that are incident on optional vertices induce aforest with terminals as leaves.Proof. Apply the transformation of the previous lemma, to ensure that the heuristic only reducespairs of terminals. Now set the weight of all edges neither in the optimal nor heuristic solution asd. This a�ects neither the optimal nor the heuristic solutions. The only remaining edges incident onoptional vertices of cost less than d are those from the optimal solution, thus necessarily forming aforest (possibly a tree).This implies that we can assume that the stars of the optimal Steiner tree are disjoint, and thusconsider each separately. Note that it is important here to allow for continuous weights { the binarycase is actually more complicated for this reason.From now focus on a given star, which we assume has R terminals, sum W of weights of edgesfrom terminals to the internal node, additional weight �, and average distance ai (at the optionalvertex) before the i-th terminal (of this star) is reduced (to another terminal in this star). Denotethe cost of the i-th reduction by ci.Some straightforward relationships are W = R + �, and ci � ai. The crucial observation is thatin a given reduction, the sum of weights to the internal node must decrease by at least 1, while thenumber of terminals decreases by at most one. Hence, the average cost of the i-th reduction isai � W � (i� 1)R� iwhich simpli�es to ai � 1 + 1+�R�i .Let w be the number of heavy reductions are performed. Now everything falls in place.HEU(G) � R�w�1Xi=0 ci + dw� (T � w) + R�w�1Xi=0 1 + �R� 1� i + k + 1k w= R+ (1 + �)(HR�1 �Hw�1) + wkAnd, OPT(G) =W + 1 = R+ �+ 1. 9



We know that w is the largest integer for which the average distance of the remaining w terminalsexceeds d. That is, w+�w�1 = 1 + 1+�w�1 � 1 + 1k . Hence, w � (1 + �)k + 1, and since w is the largestintegral value satisfying that bound, we have thatw = b(1 + �)kc + 1:Thus, r0k � 1 +max�maxRGk(R; �), completing the proof of Theorem 5.5 EvaluationAsymptotic evaluationTheorem 6 The performance ratio of ADH complete graphs with weights in the interval [1; 1+1=k]is 1 + 1=(ek) +O(1=k2), for any k � 1.Let us �rst consider the case of interval weights. A simple approximation of the harmonic numberHz is ln z + 
 +O(1=z), where 
 is a constant. This gives usGk(x; �) = (1 + �)(ln(x� 1)� ln(1 + �)k +O( 1k ))x+ 1 + �The additive terms can be conveniently hidden in the lower order term, and the term involving �eventually factored out.maxx;� Gk(x; �) = maxx;� (1 + �) ln x(1+�)kx+ 1 + � +O( 1k2 )= max�;y=x=[k(1+�)] (1 + �) ln yy(1 + �)k + (1 + �) +O( 1k2 )= maxy ln yyk +O( 1k2 )= 1ek +O( 1k2 )Hence, r0k = 1 + 1ek +O( 1k2 ).Empirical observations The function G(x; �) we have obtained is not a simple one, and, inparticular, it depends on the maximization of two parameters, x and �. The following results havebeen observed experimentally. De�ne gk(�) = maxxGk(x; �).We found that gk is monotone decreasing for � in the interval [dke=k�1;1). In fact, the maximaof gk(�) occurs at one of two speci�c values of �.Claim 2 max� gk(�) = max(gk(0); gk( dkek � 1))Thus when k is an integer, gk assumes a maximum when � = 0. The actual winner of the twodepends subtly on the size of the fractional part of k, with the exact tradeo� being a slowly decreasingfunction approaching e�1e .Claim 3 1. gk(0) > gk( dkek � 1) when k � bkc � e�1e � 0:62.2. gk(0) < gk( dkek � 1) when k � bkc � 2=3 = 0:66.10



3. The di�erence between gk( dkek � 1) and gk(0) amounts to less than 0:5% of the relative value ofr0k, and for k � 52, it is less than 0:001%.Note that gk(0) is exactly the upper bound we obtained in the binary case. Even for that specialcase of gk, we have been unable to obtain a closed form expression. By experimentation, we �nd thatgk(0) is maximized when x = round(e(k � :5)). Note gk(0) has only a single maxima for x in [k;1),and is therefore easily computable.Current bounds for speci�c cases Table 1 lists the current best bounds for some speci�c valuesof k, along with the relative improvement over minimum spanning tree based methods.Binary weights Interval weightsk Upper bnd Lower bnd MST�1ADHlb�1 MST r0k MST�1ADH�11 1:3 1:3 3 2:0 1:375 2:62 1:183 1:15(�) 3:3 1:5 1:183333 2:727273 1:121786 1:100952 3:302 1:3 1:121786 2:737054 1:0913029 1:0790349 3:163 1:25 1:0913029 2:7381410 1:0366375 1:0344664 2:901 1:1 1:0366375 2:72944100 1:003677 1:0036539 2:737 1:01 1:003677 2:71966Table 1: Some bounds on the performance ratio.We should note that the construction that yielded the lower bound for k = 2 in the binary casewas obtained from a construction not given in this paper.6 HardnessTheorem 7 There exists a constant c > 1, such that the Steiner Tree problem on a complete graphwith distinct binary weights NP-hard to approximate within a factor of c.Proof. Assume without loss of generality that the edge weights are either 1 or d. For d � 2, hardnesshas already been established by the hardness proof of [3] for the case d = 2. We shall prove it herefor the remaining values of d. Let � be the least integer such that d > 1 + 1=(�=2).The proof is by a reduction from �-Set Packing. Given an set system (Y; C), consisting of a basisset Y , and collection C of subsets of Y of size � each, the problem asks if there exists a subcollectionC0 of C of mutually disjoint sets whose union is the basis set Y . From an instance (Y; C) to �-SetPacking we construct a network G = (V;E; S) as follows.The graph contains a terminal vertex for each element of the basis set, and an optional vertexfor each set in C, with the vertices labelled accordingly. Edges between optional vertices are givena unit weight, while those between terminal vertices are assigned weight d. For edges between anoptional vertex v and a terminal vertex u, the weight assigned will be 1 if the label of u is containedin the label of v, and d otherwise. In other words, unit weight is assigned if the basis element (in Y )associated with u is a member of the subset (in C) associated with v.The weight of the optimal Steiner tree of the graph is strongly related to the question whetherthe set system has an exact cover, or a perfect set packing. Namely, it is easy to verify thatOPT(G) = n+ n=�� 1 i� (C; Y ) has a packing of n=� sets (6)11



In this case, the average cost per terminal is 1 + 1=�.On the other hand, suppose the set system does not contain a packing of more than n� (1� �) sets.Then, any Steiner tree has at most that many internal nodes that cover � terminals. The remaining�n nodes must be covered by internal nodes covering � � 1 or fewer nodes, or by edges of weight d.In either case, the average cost for each of the �n nodes is at least 1 + 1=(� � 1), and the total costof the tree is at least(1� �)n(1 + 1�) + �n(1 + 1(�� 1)� )� 1 = n[1 + 1� + ��(�� 1) ]� 1It is known that there is a �xed � > 0, such that it is NP-hard to decide whether a k-Set Packinginstance has an exact cover, or if it contains no packing of (1 � �)n=� sets [5]. It follows for eachbinary weighted Steiner problem, it is NP-hard to decide whether there is a Steiner tree of costn(1+1=�)�1, or if every Steiner tree has cost at least n(1+1=�+�=�(��1))�1. The ratio betweenthe two values is 1 + 1=�+ �=�(� � 1)1 + 1=� = 1 + �(�� 1)(� + 1) :Thus, for every �xed d, there exists a constant �0 > 0, such that it is hard to approximate the binaryweighted Steiner tree problem within a factor of 1 + �0.In particular, this shows that our problem is hard to approximate within a factor or 1 +
(k�2).It is known that, for some � > 0, k� approximation of k-Set Packing is hard [1], which implies thatour Steiner problem is hard within 1 + 
(k�2+�). The hardness of the general Set Packing problem[4] indicate that k-Set-Packing is even hard to approximate within k1��, for any � > 0. That wouldwould imply a 1 + 
(k�1��) hardness for our problem, suggesting that our bounds are close to thebest possible.7 DiscussionComparison with other heuristics The binary weighted network corresponding to the graphconsisting of a single, huge star shows that the performance of the Minimum Spanning Tree heuristicis d, for d � 2. It is well-known that this ratio never exceeds 2, and until recently, that was the bestresult known. Most other methods with a comparable performance ratio have been found to simulatethe MST construction either directly or indirectly.A breakthrough by Zelikovsky [10] improved this ratio to 11=6. His method �nds optimal Steinertrees of all 3-element subsets of S, greedily adding them the solution. This was further generalizedby Berman and Ramaiyer [2] to t-element sets of terminals. They obtained a ratio of 16=9 for t = 4,and improvements with every increase in t. Nevertheless, the limiting ratio is still above 5=3, andthe time complexity grows at least as fast as nt.It turns out that these advanced techniques yield little improvement over MST on the restrictionof the Steiner problem considered in this paper. For instance, Zelikovsky's method performs nobetter than MST-based methods on graphs with d � 4=3. More generally, we state the followingobservation.Observation 2 If a heuristic considers sets of terminals of size at most k, then on binary weightedgraphs with d � 1 + 1=k, its performance ratio is at least d.Thus ADH yields a \relative" factor of e improvement over known algorithms whose polynomialitydoes not depend on k 1.1Partly because of comparisons like these, the performance ratio measure is often de�ned as one less than ourde�nition. 12
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