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ut Reykjavik, I
elandbarun�
harger.newhaven.edu mmh�hi.isAbstra
tDispersion problems involve arranging a set of points as far away from ea
h other aspossible. They have numerous appli
ations in the lo
ation of fa
ilities and in managementde
ision s
ien
e. We suggest a simple formalism whi
h lets us des
ribe di�erent dispersalproblems in a uniform way. We present several algorithms and hardness results for dispersionproblems using di�erent natural measures of remoteness, some of whi
h have been studiedpreviously in the literature and others whi
h we introdu
e; in parti
ular, we give the �rstalgorithm with a nontrivial performan
e guarantee for the problem of lo
ating a set of pointssu
h that the sum of their distan
es to their nearest neighbor in the set is maximized.Index Terms: Fa
ility Lo
ation, Dispersion Algorithms, Approximation Algorithms.1 Introdu
tionAs the proud and aggressive owner of the M
Woofer burger 
hain, you are given the opportunityto build p new fran
hises to be lo
ated at any of n available lo
ations. After ensuring that theavailable slots are all attra
tive in terms of 
ost, visibility, et
., what would your 
riteria be forlo
ating the fran
hises relative to ea
h other?Lo
ating two identi
al burger joints next to ea
h other would not in
rease the number of
ustomers, and would thus halve the amount of business that either of them 
ould do if apart.Non
ompetitiveness is a 
on
ern here, whi
h 
an be alleviated by properly dispersing the fa
ili-ties.The fran
hise lo
ation example is one of many problems where we seek a subset of pointsthat are, in some sense, as remote from ea
h other as possible. Dispersion has found appli-
ations in diverse areas: lo
ating undesirable or interfering fa
ilities; aiding de
ision analysiswith multiple obje
tives; marketing a set of produ
ts with di�erent attributes; providing goodstarting solutions for \grand-tour" TSP heuristi
s. Dispersion is also of 
ombinatorial interest,as a measure of remote subgraphs.In this paper, we unify these and the other dispersion problems in the literature by a novelformalization, where ea
h dispersion problem P 
orresponds to a 
ertain 
lass of graphs �.This by itself suggests various interesting new dispersion problems. We then present the �rstprovably good approximation algorithms for dispersion problems under several of these measuresof remoteness.
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Appli
ations. Lo
ation theory is a bran
h of management s
ien
e/operations resear
h thatdeals with the optimal lo
ation of fa
ilities. Most of that work deals with desirable fa
ilities,where nearness to users or ea
h other is preferable. More re
ently, some papers have 
onsideredthe opposite obje
tive of pla
ing the fa
ilities far from ea
h other.Strategi
 fa
ilities that are to be prote
ted from simultaneous enemy atta
ks is one examplesuggested by Moon and Chaudhry [11℄. This 
ould involve oil tanks [11℄, missile silos, or am-munition dumps [4℄, whi
h should be kept separated from ea
h other to minimize the damageof a limited atta
k. Limiting the range and possible spread of �re or a

idents at hazardousinstallations is also helped by proper spa
ing [10℄.Non
ompetition is another motivation for dispersal, as in the burger 
hain example. This mayapply to other types of fran
hises su
h as gasoline stations, or to the lo
ation of radio transmitterswith the obje
tive of minimizing interferen
e. Dispersal has also been found desirable to obtainan e�e
tive and/or fair 
overage of a region. White [15℄ 
ites some example of governmentregulations to that e�e
t, in
luding �rehouses and ambulan
e stations in New York City.Yet another dispersal issue in fa
ility lo
ation involves undesirable intera
tion between allfa
ilities that grows inversely with distan
e [4℄. This may apply to dormitories at a university,or 
hairs during an examination.The above appli
ations suggest a metri
 sensitive to the largely two-dimensional nature ofour world. However, this need not be the 
ase for various problems outside the area of fa
ilitylo
ation.White [15℄ 
onsiders dispersion problems motivated by multiple obje
tive analysis in de
isiontheory. Given a potential set of a
tions for a de
ision maker, we are to �nd a �xed-size subset ofthese that are as dispersed as possible, for further 
onsideration by the de
ision makers. Whitelists several studies that have used dispersal to �lter the possible 
hoi
es, e.g. oil drilling, mediasele
tion, and forestry management.Dispersion also has appli
ations in produ
t development. The marketing of new but relatedprodu
ts is helped by diversity [2℄. From parameters in
luding pri
e, quality, shape, pa
kaginget
., a set of produ
ts 
an be produ
ed, whi
h are likely to gain greater market 
overage if easilydistinguishable.Dispersion Formulations. A 
onsiderable body of work has appeared on fa
ility dispersionproblems in the management s
ien
e and operations resear
h literature [11, 2, 3, 4, 15, 10℄.Most previous work has fo
used on either easily solvable tree networks, or empiri
al studies ofheuristi
s. Only re
ently have some of these heuristi
s been analyzed analyti
ally [13, 15, 16,12, 6, 1℄We suggest a simple formalism whi
h lets us des
ribe di�erent dispersal problems in a uniformway and with a more \standardized" terminology. The input is an integer p and a networkG = (V; V � V ) with a distan
e fun
tion d on the edges satisfying the triangular inequalityd(u; v) � d(u; z)+ d(z; v). The output is a set P of p verti
es. The obje
tive is a fun
tion of thesubgraph indu
ed by P , and is given by the sum of a 
ertain set of edges within that subgraph,this edge set being 
hosen to be the one of minimum weight among all edge subsets satisfyinga graph property � (� depends on the parti
ular dispersal problem under 
onsideration). Ingeneral, for a property � of graphs, the obje
tive fun
tion for the problem Remote-� is theweight of the minimum-weight subgraph satisfying property � within the indu
ed subgraph onP . The goal of the algorithm is to pi
k these p verti
es so as to maximize the obje
tive fun
tion.For instan
e, in the Remote-tree problem, the obje
tive fun
tion is a sum of the edge weightsof a minimum-weight spanning tree over the vertex set P . The goal is to pi
k a subset of pverti
es so as to maximize the minimum-weight spanning tree on these verti
es.2



We list in Table 1 some problems under di�erent graph properties; most of these have beenstudied previously, and some are introdu
ed in this paper. For a set of edges E0, wt(E0) denotesthe sum of the weights of the edges of E0. For a point set P , P = P1jP2j � � � jPk denotes apartition of P into sets P1 through Pk.Remote subgraph problemsRemote-edge minv;u2P d(u; v)Remote-
lique Pv;u2P d(u; v)Remote-star minv2P Pu2P d(u; v)Remote-pseudoforest Pv2P minu2P d(u; v)Remote-tree wt(mst(P ))Remote-
y
le minT wt(T ), where T = tsp(T ) is a TSP tour on PRemote k-trees minP=P1j���jPkPki=1wt(mst(Pi))Remote k-
y
les minP=P1j���jPkPki=1wt(tsp(Pi))Remote-mat
hing minM wt(M), where M is a perfe
t mat
hing on PRemote-bipartition minB wt(B), where B is a bipartition of P 1Bottlene
k problemsDestru
tion Radius minS�P;jSj=kmaxx2P d(x; S),Destru
tion Steiner Radius minS�V;jSj=kmaxx2P d(x; S),Destru
tion Diameter minP=P1j���jPk maxx;y2Pi; i=1;2;:::;k d(x; y).Table 1: Dispersion problems 
onsideredA pseudo-forest is the undire
ted equivalent of a dire
ted graph where ea
h vertex has out-degree one and ea
h 
omponent 
ontains as many edges as verti
es.Observe the adversarial nature of these problems. The \algorithm" produ
es a vertex setP , and impli
itly the indu
ed subgraph G[P ℄. The \adversary" produ
es a set of edges on G[P ℄satisfying property �. The problems we look at are max-min problems, i.e. the algorithm triesto pi
k P su
h that the smallest set of edges satisfying � on P is as large as possible. The valueof the solution is the sum of these edges.Whi
h measure? Whi
h measure of remoteness should be applied? The proper measureis very mu
h a question of the problem under study, and several of the appli
ations we have
onsidered give rise to quite di�erent notions of remoteness.In various appli
ations the utility of an individual fa
ility is dire
tly related to its (lo
allymeasured) remoteness from the rest of the fa
ilities. In this 
ase, the measure of the globalremoteness is the sum of the utilities of the individual points.One example is the average distan
e measure (or 
lique problem), in whi
h the utility isthe average distan
e from the other points. Note, however, that this measure is large for very
lustered instan
es, as long as the 
lusters are far from ea
h other. In many 
ases, a more logi
almeasure of utility would be the minimum distan
e to the remaining point set, i.e. the nearestneighbor distan
e. This gives rise to the Remote-pseudoforest problem.Another interpretation for a subgraph to be \remote" would be that its \nearness" measurewould be high. One 
ommon nearness measure is that of a 
enter : the smallest total distan
efrom all the verti
es to a single 
enter vertex. This gives rise to the Remote-star problem.In the end, the appropriate measure is highly 
ontext-sensitive. The intended obje
tivefun
tion is likely to involve more fa
tors than are spe
i�ed in the 
ombinatorially pure problem3



spe
i�
ations, even more so than in many other problem domains. To a large extent, 
omputa-tional fa
ility dispersion is meant as an aid to de
ision-making, instead of as a solution provider.It is therefore valuable to try to understand better the impa
t of modifying the measure onthe near-optimal 
omputability of the problem. By introdu
ing and examining a wider rangeof natural obje
tive measures, unifying them into a 
onsistent whole, and analyzing new andold pra
ti
al algorithms on these measures, we hope to obtain a deeper understanding of the
omputational issues involved in dispersion.Terrorism defense/Bottlene
k problems. One of the motivations for dispersion problemsis defense against a

idents or atta
ks. The adversary atta
ks with k 'explosives' of a givendestru
tion radius. Our obje
tive is to sele
t p sites that are dispersed so as to maximize thediÆ
ulty (i.e. for
e the adversary to use large explosives) of these p sites being destroyed by theadversary's explosives.We 
an formally de�ne this problem as follows. We are given a graph G, and positive integersp; k; k � p�1. We are to �nd a set P � V of p verti
es that maximizes minS�P;jSj=kmaxx2P d(x; S)Several similar types of optimization problems arise, depending on whi
h parameter is to bemaximized. These radius problems do not �t in the framework we de�ned earlier of the weightof a �-subgraph. However, they 
an be viewed as the bottlene
k versions of su
h properties, i.e.the value is the maximum weight edge of a subgraph satisfying the property. For example, theproblem dis
ussed above is the bottlene
k version of Remote-star.Related work. The names used in the literature are quite di�erent and varied. Remote-edgeis known as p-Dispersion [2, 10℄ andMax-Min Fa
ility Dispersion [12℄; Remote-
lique asMaxisumDispersion [10℄ andMax-Avg Fa
ility Dispersion [12℄; Remote-star as MaxMinSum dispersion [4℄;Remote-pseudoforest as p-Defense [11℄ and MaxSumMin dispersion [4℄.Problem u.b. l.b.Remote-edge 2 [13, 15, 12℄ 2 [12℄Remote-
lique 2 [7℄ - [12℄Remote-tree 4 [6℄ 2 [6℄Remote-
y
le 3 [6℄ 2 [6℄Remote k-trees 4 2Remote k-
y
les 5 2Remote-pseudoforest O(log n) 2 [6℄Remote-mat
hing O(log n) 2 [6℄Remote-star 2 -Remote-bipartition 3 -Destru
tion Radius 4 -Destru
tion Steiner Radius 2 2Destru
tion Diameter 2 2Table 2: New and old upper and lower bounds on the approximability of dispersion problems
onsidered in this paper.We list in Table 2 the known upper and lower bounds on approximating the various dispersionproblems. Where no 
itation o

urs, the result is in the 
urrent paper. A lower bound of, e.g.2, means that is it NP-hard to obtain an approximation ratio better than 2. A dash denotesthat the problem is NP-hard, but no nontrivial approximation lower bound is known.4



For Remote-edge, Tamir [13℄, White [15, 16℄ and Ravi, Rosenkrantz and Tayi [12℄ (see also[14℄) independently showed that a simple \furthest-point greedy" algorithm is 2-approximate.This greedy algorithm, hen
eforth 
alled Greedy, works by su

essively sele
ting the nextvertex so as to maximize the distan
e to the set of already sele
ted verti
es, till p verti
es havebeen sele
ted. It was shown in [12℄ that obtaining an approximation stri
tly less than 2 was NP-hard. Baur and Fekete [1℄ have re
ently given a 3/2-approximation algorithm for a geometri

ase where weights 
orrespond to distan
es between points within a re
tilinear polygon, andshowed this problem to be hard to approximate within a fa
tor of less than 14=13.For Remote-
lique, Ravi et al. gave a (di�erent) greedy algorithm that they showed 
amewithin a fa
tor of 4, while Hassin, Rubinstein and Tamir [7℄ gave elegant proofs of two 2-approximate algorithms. This problem has also been studied for nonmetri
 graphs under thename Dense Subgraph Problem by Kortsarz and Peleg [9℄, with the 
urrent best ratio knownbeing O(nÆ), for some 
onstant Æ < 1=3 [5℄.No analyti
 bounds have been previously given for either Remote-star or Remote-pseudoforestproblems. Moon and Chaudhry [11℄ suggested the star problem. Erkut and Neuman [4℄ gave abran
h-and-bound algorithm that solves all four of these problems.Remote-tree and Remote-
y
le were 
onsidered by Halld�orsson, Iwano, Katoh, and Tokuyama[6℄, under the names Remote-MST and Remote-TSP, respe
tively. They showed that Greedyapproximates these problems within a fa
tor of 4 and 3, repe
tively. They also showed that ob-taining a ratio less than 2 for these problems is NP-hard, and that holds also for Remote-pseudoforestand Remote-mat
hing. They proposed Remote-mat
hing as an open problem.All of the problems listed above 
an be seen to be NP-hard by a redu
tion from the maximum
lique problem. The same redu
tion also establishes that Remote-edge 
annot be approximatedwithin a 
onstant smaller than 2 [12℄. Further, when the weights are not 
onstrained to be metri
,the problem is as hard to approximate as Max Clique, whi
h implies that n1��-approximationis hard, for any � > 0 [8℄. Redu
tions from MaxClique also yield the same hardness for thepseudoforest problem [6℄. On the other hand, no hardness results are known for Remote-
liqueand Remote-star.Overview of paper. We introdu
e the notation in Se
tion 2 and des
ribe the 
on
ept of ananti
over as 
omputed by a Greedy algorithm.In Se
tion 3, we show that Greedy attains good approximation on a host of remote problemthat involve partitions into independent 
lusters, with the obje
tive being the sum or maximumof the obje
tives on the independent 
lusters. In se
tion 4 we use the Mat
hing algorithm of[7℄ to approximate Remote-star, and Remote-bipartition.We introdu
e an algorithm, Prefix, in Se
tion 5. It 
ombines the pra
ti
ality of theGreedyalgorithm with the means to avoid falling into the traps that sharply limit the performan
e of theGreedy algorithm. We use it to obtain a �(log p) performan
e ratio for the Remote-mat
hingand Remote-pseudoforest problems, for the �rst non-trivial approximations for these problems.In Se
tion 6 we show that Greedy yields good approximations for the bottlene
k/radiusproblems for terrorism defense. We mat
h these upper bounds with similar approximationhardness results. Then, in Se
tion 7, we prove NP-hardness of all remoteness problems, for anontrivial graph property �. We also present negative results on the power of the Greedyalgorithm for a general 
lass of problems. We end with a summary and open problems.
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2 Preliminaries2.1 NotationFor a vertex set X � V , let �(X) (�(X)) denote the maximum (minimum) weight set of edges inthe indu
ed subgraph G[X℄ that forms a graph satisfying property �, respe
tively. In parti
ular,we 
onsider star(X) (min-weight spanning star), pf(X) (min-weight pseudoforest), tree(X) (min-weight spanning tree), and MAT(X) and mat(X) (max- and min-weight mat
hing).For a set of edges E0, let wt(E0) denote the sum of the weights of the edges of E0. We alsooverload E0 to stand for wt(E0) when used in expressions.The input is assumed to be a 
omplete graph, with the weight of an edge (v; u), or thedistan
e between v and u, denoted by d(v; u). For a set X of verti
es and a point v, the distan
ed(v;X) is the shortest distan
e from v to some point in X, or minu2X d(v; u).A p-set refers to a set of p verti
es. Let OPT denote the p-set that yields the optimal value.Let P = P1jP2j � � � jPk denote that the set P is partitioned into sets Pi, i.e. [ki=1Pi = P andPi \ Pj = ;, for any i 6= j. Throughout the paper we assume that the triangle inequality holds.2.2 Anti
overs and the Greedy algorithmA set X of points is said to be an anti
over i� ea
h point outside X is at least as 
lose to X asthe smallest distan
e between any pair of points in X, i.e.maxv2V �X d(v;X) � minx2X d(x;X n fxg):The dire
t way of produ
ing an anti
over is via the Greedy algorithm. It �rst sele
ts anarbitrary vertex and then iteratively sele
ts a vertex of maximum distan
e from the previouslysele
ted points. We let Y = fy1; y2; : : : ; ypg denote this set of points found by Greedy. Let Yibe the pre�x set fy1; y2; : : : ; yig, for 1 � i � p. Let ri = d(yi+1; Yi) denote the distan
e of thei+ 1-th point to the previously sele
ted points.Observe that every pre�x Yi of the greedy solution is also an anti
over. Thus, for ea
h i,1 � i � p� 1, d(v; Yi) � ri; for ea
h v 2 V , and (1)d(x; y) � ri; for ea
h x; y 2 Yi+1. (2)Greedy is simple, eÆ
ient, arguably the most natural algorithm for many fa
ilities dispersalproblems, and has been shown to be provably good for many of the problems. In addition, itis online (i.e. independent of p), allowing for the in
remental 
onstru
tion of fa
ilities that isessential in pra
ti
e. As su
h, it warrants spe
ial attention, not only in the form of positiveresults but negative results as well.Greedy has been previously applied with su

ess on the edge problem [13, 15, 16℄, and thetree, 
y
le, and Steiner-tree problems [6℄. We show (Se
tions 3 and 6) thatGreedy performs wellon problems involving multiple spanning trees or tours, and on the terrorism defense problems.On the other hand, we show (Se
tion 7.1) that Greedy performs poorly on a large 
lass ofproblems whi
h in
lude mat
hing, pseudoforest, 
lique, and star. 22���MH4: Reordered, to mat
h the order in the paper
6



3 Tree and Cy
le ProblemsIn this se
tion, we apply Greedy to remote problems involving several spanning trees or tours.The k spanning trees problem is a generalization of the Remote-tree problem, where the adversarypartitions the p verti
es into k sets so that the sum of the k spanning trees is minimized. Moreformally, the obje
tive value on a given point set P is given byk-trees(P ) = minP=P1j���jPk kXi=1wt(mst(Pi)):Thus, the Remote k-Trees problem is to �nd a set P of p verti
es su
h that k-trees(P ) is maxi-mized. Similarly, in the k-Steiner trees problem the adversary partitions the p verti
es into k setsso that the sum of the k Steiner trees is minimized, and in the k-
y
les problem the adversarypartitions the p verti
es into k sets so that the sum of the k TSP tours is minimized. We 
angeneralize the analysis of [6℄ for the 
ase k = 1.Proposition 3.1 Anti
overs yield a ratio of 4 � 2=(p � k + 1) for remote problems of k-trees,and a ratio of min(5; 1 + 2p=(p� k)) for k-Steiner trees and k-
y
les.Proof. Fo
us �rst on the k spanning tree problem. Let GR be the greedy point set and OPTbe the point set of the optimal solution. Just as the adversary is allowed to partition the greedypoint set, we 
an partition the optimal solution knowing that the 
ost of the 
orrespondingspanning forest upper bounds the optimal 
ost.Let GR1; GR2; : : : ; GRk be a partition of GR whi
h minimizes the sum of the spanning trees.We form a partition of OPT into nonempty sets Q1; : : : ; Qk su
h that for any Qi with two ormore verti
es, v 2 Qi implies that the nearest neighbor of v in GR is in GRi. That no Qi isempty is ensured as follows: if no vertex in OPT happens to be 
loser to GRi than to any otherGRj, then we arbitrarily take a vertex from some Qj; jQj j � 2 and put it in Qi. Let qi be the
ardinality of Qi. The partitioning ensures that for ea
h i, qi � 1, and hen
e that qi � p� k+1(sin
e ea
h of the other k � 1 
lasses 
ontain a vertex). Also, ea
h vertex in a Qi with qi � 2 isof distan
e at most rp from Pi, by the anti
over property.For ea
h 
lass Qi with qi � 2, 
onsider the minimum spanning tree of the point set Qi[GRi.This forms a Steiner tree of Qi. The 
ost of this tree is at mostmst(Qi [GRi) � mst(GRi) + qi � rp:We 
an bound the 
ost of the spanning tree of Qi by applying the Steiner ratio, obtainingmst(Qi) � mst(Qi [GRi) � (2� 2=qi) � mst(GRi) � (2� qi) + 2rp(qi � 1):Re
all that GR =Pki=1mst(GRi). Summing up over all values of i givesOPT � kXi=1mst(Qi) � GR(2� 2=(p� k + 1)) + 2rp(p� k):Sin
e GR 
ontains p� k edges and the distan
e between any pair of points is at least rp,GR � (p� k)rp:Hen
e � = OPTGR � 4� 2=(p� k + 1):7



We now turn our attention to Steiner trees. We know that sin
e pairwise distan
es in GRare at least rp, the 
ost of k Steiner trees in GR is bounded byGR � p0rp=2;where p0 is the number of greedy points in partitions with at least 2 greedy points, p0 � p�k+1.The Steiner forest of GRi [Qi, i = 1; : : : ; k, yields thatOPT � GR+ prp; (3)for a ratio of 1 + 2p=(p� k + 1) = 3 + 2(k � 1)=(p� k). Re
all that qi � 1, for ea
h i. Observethat for large values of k, the number of i with qi = 1 is at least 2k � p. Those points do not
ontribute to the 
ost of the solution. Thus,OPT � GR+min(2p� 2k; p)rp;for a ratio of at most 5.For k-
y
les we obtain the same ratio as for k-Steiner trees. Namely, by similar argumentswe see that GR � (p � k + 1)rp, and by taking an Euler tour of ea
h Steiner tree, the optimalk-tours 
ost is at most twi
e the 
ost of the k Steiner trees.The upper bound of 4 for k-trees is tight via the mat
hing lower bound for k = 1 of [6℄. The
onstru
tions of [6℄ for 1-
y
le and 1-Steiner trees have the property if OPT has p� k+1 pointsand GR has p points, for t � p=2, we get a mat
hing bound for (3) ofOPT � GR+ (p� k + 1)rp � o(1):If we thus for
e Greedy to assign singletons to k � 1 of the partitions, while OPT pi
kspoints that are mutually 2rp apart in ea
h, we obtain a mat
hing lower bound for k-
y
les. For1-Steiner trees the best lower bound of [6℄ was 2.46, thus our lower bound for k = p=2 is similarly4:46 � o(1).4 Star and Bipartition ProblemsHassin, Rubinstein and Tamir [7℄ gave the following algorithm Mat
hing:Sele
t the points of a maximum weight p-mat
hing and add an arbitrary vertex if p isodd.A maximum weight p-mat
hing is a maximum-weight set of bp=2
 independent edges. It 
an befound eÆ
iently via ordinary mat
hing 
omputation by appropriately padding the input graph[7℄. They used it to obtain a 2-approximation of Remote-Clique. In this se
tion, we apply thisalgorithm to the Remote-Star and the Remote-bipartition problems.Re
all that in the Remote-Star problem we seek a set of p points P that maximizes minv2P Pw2P d(v; w):Let HEU be the vertex set found by Mat
hing. We �rst prove a useful lemma.Lemma 4.1 Let X be a set of p verti
es. Let �1 and �2 be properties that always have thesame number of edges on X, e1 and e2, respe
tively. Then,�1(X)e1 � wt(X)�p2� � �2(X)e2 :8



Proof. Consider any property � that always has e edges on p points. E.g. star and tree havep � 1 edges, tour and pseudoforest have p edges, and mat
hing has bp=2
 edges. Let wt(X)denote the sum of the weights of edges with both endpoints in X. Sin
e any permutation ofthe verti
es is possible, ea
h edge appears in equally many �-stru
tures. In fa
t, ea
h edgeappears in a e=�p2� fra
tion of all �-stru
tures on X. Thus, the average 
ost of a �-stru
ture onX is wt(X)e=�p2�. A minimum �1 stru
ture is therefore of 
ost at most wt(X) � e1=�p2�, while amaximum �2-stru
ture is of 
ost at least wt(X)e2=�p2�.Theorem 4.2 The performan
e ratio of Mat
hing for Remote-star is 2.Proof. Let HEU be the vertex set found by Mat
hing, and re
all that MAT(X) represent themaximum-weight mat
hing on point set X. From the triangular inequality, observe thatstar(HEU) �MAT(HEU):By the de�nition of the algorithm, MAT(HEU) � MAT(OPT ), and by Lemma 4.1,MAT(OPT ) � bp=2
p� 1 star(OPT ):Thus, the performan
e ratio star(OPT )=star(HEU) is always at most 2, and is less when p iseven.We 
onstru
t a graph for whi
h this ratio approa
hes 2. The verti
es of the graph arev1; v2; : : : ; vn. p = n�1 is even, all distan
es between the verti
es are 2 ex
ept the distan
e fromv1 to ea
h of v2; v3; : : : ; vn�1 is 1, d(v1; vn) = 2. The optimum 
hoi
e is to pi
k the p verti
esv2; v3; : : : ; vn, so star(OPT ) = 2(p � 1). Mat
hing 
an pi
k the verti
es v1; v3; v4; : : : ; vn, sostar(HEU) = p� 2 + 2 = p. Hen
e the ratio star(OPT )=star(HEU) = 2� 2p . 3We 
an also apply the Mat
hing algorithm to the problem where � is a bipartition ofG[X℄, i.e. the minimum-weight 
ut into two sets of size p=2. Let bp(X) denote a minimum-weight bipartition of G[X℄.Theorem 4.3 The performan
e ratio of Mat
hing for Remote-bipartition is at most 3.Proof. A bipartition is a union of p=2 mat
hings. Thus, in parti
ular for OPT ,bp(OPT ) � p2MAT(OPT ):By de�nition, MAT(OPT ) � MAT(HEU). It remains to be shown that bp(HEU) � p=6 �MAT(HEU).Let (L;R) be a bipartition of HEU of minimum 
ost, and let M be the edges of a maximumweight (perfe
t) mat
hing on HEU . For simpli
ity, we assume that p is even, so that jLj =jRj = jM j = p=2. Let MLL be the edges in M with both endpoints in L, MRR those with bothendpoints in R, and MLR those with endpoints in both L and R. Let P1 be the set of verti
esindu
ed byMLL[MRR and P2 be the set of verti
es indu
ed byMLR. Let B be the set of edges
rossing (L;R), and partition them into B11, of edges with both endpoints in P1, B22 with bothendpoints in P2, and B12 with endpoints in both P1 and P2.3���MH4: Pla
ed 
onstru
tion inside the proof. 9



By the triangle inequality,Xuv2MLL Xx2R[w(u; x) + w(x; v)℄ � Xuv2MLL Xx2Rw(u; v) = jRjw(MLL): (4)The LHS 
ounts the edges of B11, as well as those edges of B12 with one endpoint in MLL. Asimilar bound follows for w(MRR). Combined,w(B12) + 2w(B11) � jRj(w(MLL) + w(MRR)): (5)Also, by the triangle inequality,Xuv2MLR Xx2LXy2R[w(u; x) + w(x; y) + w(y; v)℄ � Xuv2MLR Xx2LXy2Rw(u; v) = jLj jRjw(MLR): (6)The middle edge of the LHS above 
ounts all 
rossing edges jMLRj times. The �rst and the lastedge of the LHS together 
ounts the endpoints of edges in P1 jRj times, and thus 
ount edgesin B12 jRj times, and edges in B22 2jRj times. Thus,jMLRj � bp(HEU) + jRjw(B12) + 2jRjw(B22) � jRj2w(MLR): (7)Adding (7) and jRj times (5), we obtain(jMLRj+ 2jRj)bp(HEU) � jRj2w(M):Thus, we have bp(HEU) � jRj3 MAT(HEU) = p6MAT(HEU);as desired.It is an open question whether the bound of 3 from Theorem 4.3 is tight.5 Pseudoforest and Mat
hing ProblemsIn this se
tion, we introdu
e an algorithm Prefix that approximates the Remote-pseudoforestand Remote-mat
hing problems within a logarithmi
 fa
tor. As we shall see in Se
tion 7.1, theGreedy algorithm alone 
annot guarantee any ratio for these problems that is independent ofthe weights.We �rst 
onsider the problem where we want to sele
t p verti
es so as to maximize theminimum weight pseudoforest (pf). A pseudoforest is a 
olle
tion of dire
ted edges so that theoutdegree of ea
h vertex is one, and hen
e pf is the sum of the nearest neighbor distan
es. Moreformally, wt(pf(W )) is de�ned to be Px2W d(x;W �fxg). Ea
h 
omponent of a pseudoforest isa graph with equally many verti
es as edges, sometimes 
alled a 
a
tus.A related 
on
ept is that of an edge 
over. A set of edges 
overs the verti
es if ea
h vertex isin
ident on some edge in the set. A pseudoforest is also an edge 
over, while it 
an be produ
edfrom an edge 
over on the same vertex set by 
ounting ea
h edge at most twi
e. Thus, the valuesof these problems di�er by a fa
tor of at most two.
10



5.1 Upper BoundsWe present an algorithm for sele
ting p verti
es for Remote-pseudoforest; the same algorithm(i.e. the same set of verti
es) works well for Remote-mat
hing as well.We take a two step approa
h to the problem. In the �rst step we sele
t some number (� p)of verti
es that indu
e a large pseudoforest. This is done by 
onsidering the sequen
e of verti
essele
ted by Greedy, and 
hoosing some pre�x of this sequen
e a

ording to a simple 
riterion.In the se
ond step, we 
hoose the remaining verti
es so as to avoid overly redu
ing the weightof the pseudoforest. This is done by ensuring that the additional verti
es sele
ted be 
lose toonly few of the verti
es 
hosen in the �rst step.For simpli
ity, we assume that p � n=2, where n is the total number of verti
es. It is easy tosee that the algorithm 
an be modi�ed when this is not the 
ase. The ratio attained stays thesame within a 
onstant fa
tor as long as p is less than some 
onstant fra
tion of n. The problem
hanges 
hara
ter if n� p is small, whi
h we do not attempt to address here.The Prefix Algorithm :Step 1 : Run the Greedy algorithm, obtaining a set Y = fy1; : : : ; ypg. Let q 2 f1; 2; : : : ; p�1gbe the value whi
h maximizes q � rq. Let Yq+1 be the pre�x subsequen
e of Y of lengthq + 1.Step 2 : Let Si be the set of verti
es of distan
e at most rq=2 from yi, i = 1; : : : ; q+1. The Siare disjoint spheres 
entered at yi. Points of distan
e exa
tly rq=2 from more than one yiare assigned arbitrarily to one sphere.Let z = b(q + 1)=2
. Let fSi1 ; Si2 ; : : : ; Sizg be the z sparsest spheres and let Good be theset of their 
enters fyi1 ; yi2 ; : : : ; yizg. Let Rest be any set of p�z verti
es from V �[zj=1Sij .Output PRE = Good [Rest.Our main result is a tight bound on Prefix. Let Ht be the harmoni
 number Pti=1 1=i �1 + lnn.Theorem 5.1 The performan
e ratio of Prefix is O(log p) for Remote-pseudoforest.Proof. First we verify that we 
an a
tually �nd the set Rest of additional verti
es. The spheres
ontain at most n=(q + 1) verti
es on average, so the sparsest z of them 
ontain at most b(q +1)=2
n=(q + 1) � n=2 verti
es. Hen
e, at least n=2 � p verti
es 
an be 
hosen from outside thespheres as desired.We propose that pf(PRE) � tree(Yp)=(4Hp): (8)For any 
enter yi 2 Good, and node w outside of Si, d(yi; w) � rq=2. Hen
e,pf(PRE) � Xx2Good d(x; PRE � fxg) � Xx2Good rq=2 � bq + 12 
rq2 � qrq4 : (9)Consider the spanning tree T 0 on Yp whi
h 
ontains an edge from yi+1 to Yi = fy1; : : : ; yigof weight ri, for i = 1; : : : p� 1. Re
all that by the 
hoi
e of q, ri � qrqi . Hen
e,tree(Yp) � wt(T 0) = p�1Xi=1 ri � p�1Xi=1 qrqi = qrqHp�1: (10)11



Equation 8 now follows from Equations 9 and 10.We next show that tree(Yp) � pf(OPT )=8: (11)The Remote-tree problem was 
onsidered in [6℄: Find a set of p points Fp su
h that tree(Fp) ismaximized. It was shown [6, Theorem 3.1℄ that tree(Yp) � tree(Fp)=4. By de�nition tree(Fp) �tree(OPT ). Observe that tree(X) � (p � 1)=p � pf(X) � pf(X)=2, for any point set X. Fromthese inequalities we get (11).The desired upper bound of 32Hp = O(log p) on the approximation ratio pf(OPT )=pf(PRE)follows from (11) and (8).We now show the same upper bound for Remote-mat
hing from sele
ting the same set PREof verti
es. We assume that p is even.Theorem 5.2 The performan
e ratio of Prefix is O(log p) for Remote-mat
hing.Proof. Observe that for any vertex set X, tree(X) � mat(X). (It is well known that tree(X) �
y
le(X)=2 and sin
e a Hamilton 
y
le 
onsists of two mat
hings, 
y
le(X)=2 � mat(X).) Also,mat(X) � pf(X)=2, sin
e doubling the edges of a mat
hing yields a pseudoforest. Thus,mat(PRE) � pf(PRE)=2 � tree(OPT )32Hp � mat(OPT )32Hp :
5.2 Lower BoundsThe performan
e analysis is tight within a 
onstant fa
tor.Theorem 5.3 The performan
e ratio of Prefix for Remote-pseudoforest and Remote-mat
hingis 
(logn).We give the 
onstru
tion for pseudoforest; the one for mat
hing is similar.Proof. We 
onstru
t a sequen
e of graphs Gp on O(p3=2) verti
es for whi
h the ratio attainedby Prefix is log p=20 = 
(logn).Let t be su
h that p � 1+4+ � � �+4t = (4t+1�1)=3. Let n be 2t(4t+1�1)=3. For simpli
ity,we assume that p = 1 + 4 + � � � + 4t, for integer t. The vertex set of Gp is partitioned intolevels 0; 1; : : : ; t, and ea
h level i is partitioned into 4i blo
ks. Ea
h blo
k 
ontains 2t verti
es,ea
h labeled with a distin
t binary string of t bits. The distan
e between two verti
es in thesame blo
k at level i is 1=4i+j , where j is the index of the �rst 
hara
ter where labels of theverti
es di�er. The distan
e between two verti
es in di�erent blo
ks, either at the same level ior di�erent levels i, i0, i � i0, is 1=4i.We �rst verify that the triangle inequality is satis�ed for the edge weights of this graph. We
onsider the di�erent 
ases:� One vertex a is in a di�erent blo
k from the other two, and the level i of a's blo
k is atmost that of the other two. Then, d(a; b) = d(a; 
) = 1=4i � d(b; 
), satisfying the triangleinequality. 12



� Two verti
es b; 
 are in the same blo
k at level i, while a is in a blo
k at level i0, i < i0.Then, d(a; b) = d(a; 
) = 1=4i � d(b; 
), satisfying the triangle inequality.� All three verti
es a; b; 
 are in the same blo
k at level i. Assume, without loss of generalitythat d(b; 
) = minfd(a; b); d(b; 
); d(a; 
)g = 1=4i+j1 . Let j2, j2 < j1, be the �rst bit wherethe label of a di�ers from the labels of b and 
. Then, d(a; 
) = d(a; b) = 1=4i+j2 � d(b; 
),and the triangle inequality holds.The theorem now follows from the following two lemmas.Lemma 5.4 pf(OPT ) � t+ 1.Proof. Consider the solution formed by 
hoosing one vertex from ea
h blo
k. There are 4iverti
es 
hosen from level i, i = 0; 1; : : : ; t; and ea
h vertex at level i is at a distan
e 4�i to itsnearest neighbor in this set. Hen
e, the 
ost of this solution, and therefore of OPT also, is atleast t+ 1.Lemma 5.5 pf(PRE) � 10.Proof. Consider �rst the 
ontribution of the greedy pre�x Yq. Let a be su
h that rq = 1=4a.Then, Yq 
ontains at most one vertex at level higher than a, sin
e after that vertex is sele
ted,all other su
h verti
es are at distan
e less than rq. Yq 
ontains verti
es from ea
h blo
k of levelat most a � 1. In fa
t, for ea
h blo
k at level j, it 
ontains at least one vertex for ea
h valueof the �rst a � 1 � j bits of the vertex label (as otherwise there would be a vertex of distan
e1=4j+(a�1�j) = 1=4a�1 from other sele
ted verti
es). Thus, the nearest neighbor distan
e of ea
hvertex is at most 1=4a�1. On the other hand, Yq 
ontains at most one vertex for ea
h value ofthe �rst a� j bits. Thus, the total number q of sele
ted verti
es is at most1 + aXj=0 4j � 2a�j = 1 + aXj=0 2a+j � 2 � 4a:Thus, the total weight of the greedy pre�x is at most (1=4a�1) � 2 � 4a = 8:In order to bound from above the 
ontribution of Rest, it suÆ
es to show one parti
ular
hoi
e of verti
es from outside the sparsest spheres whi
h will make Rest small. Two verti
es inthe same blo
k whose labels di�er only in the last bit are 
alled buddies. The distan
e betweenbuddies is at most 1=4t. It 
an be easily seen that there are enough buddies outside the sparsespheres so that Rest 
an be formed entirely with buddies. Then, the 
ontribution of Rest is atmost (p� q)4�t � 4=3.We 
an also show more generally that any performan
e analysis that is based on 
omparingthe pf to the tree 
an at best result in a logarithmi
 ratio. Namely, we we 
an 
onstru
t graphsfor whi
h a large (logarithmi
) gap exists between the weight of the tree of the whole graph andthe pf of any subset of verti
es.Theorem 5.6 For in�nitely many n, there exist graphs Gn su
h thattree(Gn)maxP�Vn pf(P ) � 
(log n):13



Let n = 2t, t � 2. We 
onstru
t a family of graphs Gn = (Vn; En) as follows. Ea
h vertexhas a label of the form [e1; e2; : : : ; et℄, where ej 2 f0; 1g. The distan
e between distin
t verti
ese = [e1; e2; : : : ; et℄ and f = [f1; f2; : : : ; ft℄, is 1=2i, where i be the smallest index su
h thatei 6= fi. Verti
es are grouped into metaverti
es; a metavertex at level i, [e1; e2; : : : ; ei�℄ 
ontainsall verti
es of the type [e1; e2; : : : ; ei; xi+1; xi+2; : : : ; xt℄, xj 2 f0; 1g. A metavertex at level t
onsists of just a single vertex while the metavertex at level 0 
ontains all the verti
es. Themetaverti
es [e1; e2; : : : ; ei�1; 0�℄ and [e1; e2; : : : ; ei�1; 1�℄ are 
alled a pair at level i. It is easy toverify that the triangle inequality is satis�ed.The theorem follows from the following two lemmas.Lemma 5.7 tree(V ) � t=2.Proof. Consider the spanning tree formed by 
onne
ting the 2t�1 pairs at level t� 1 by edgesof length 1=2t, 2t�2 pairs at level t� 2 by edges of length 1=2t�1, : : :, 2i pairs at level i by edgesof length 1=2i+1, : : :, 21 pairs at level 1 by edges of length 1=22, and a single edge of length 1=2.To verify that this is a minimum spanning tree, 
onsider the 
ut (Si; V � Si), where Si isa metavertex at level i, and observe that the sole edge in the tree 
rossing the 
ut is a lightestedge a
ross the 
ut. It is easily veri�ed that the weight of this tree is t=2.Lemma 5.8 maxV 0�Vn pf(V 0) � 1.Proof. Fix V 0 � Vn. The value of a metavertex is the sum Pu d(u; V 0 � fug), where u rangesover all the verti
es from V 0 in the metavertex. We say that a metavertex 
ontains a vertex ifthe vertex belongs to the interse
tion of the metavertex and V 0.Claim: If a metavertex at level i � t�1 
ontains at least two verti
es, its value is at most 1=2i.Proof. By downward indu
tion on i. The base 
ase i = t � 1 holds sin
e a metavertex has 2verti
es of distan
e 2i. For the indu
tive step, assume that a metavertex [e1; e2; : : : ; ei�1�℄ atlevel i� 1 
ontains at least two verti
es. If either one of the metaverti
es [e1; e2; : : : ; ei�1; 0�℄ or[e1; e2; : : : ; ei�1; 1�℄ 
ontains no vertex, we are done by the indu
tive hypothesis. Otherwise, ifone of them 
ontains only a single vertex, its value is 1=2i (the distan
e to other metavertex),and if it 
ontains two or more verti
es, then by the indu
tive hypothesis its value is at most1=2i. Hen
e, the sum of the values of the pair, whi
h equals the value of the metavertex at leveli� 1, is at most 1=2i�1.The lemma follows by applying the 
laim to the metavertex at level 0 
ontaining all theverti
es of V 0.6 Bottlene
k ProblemsIn this se
tion, we examine the problem of maximizing the destru
tion radius and other relatedbottlene
k problems. Our obje
tive is to sele
t p sites so as to maximize the diÆ
ulty of anadversary atta
k with k 'explosives' 
ausing a 
omplete destru
tion. Several optimization prob-lems arise, depending on whi
h parameter is to be maximized. We look at three su
h problems.In this se
tion, we analyze the performan
e of Greedy on these problems. In subse
tion 6.1 wegive hardness results.1. (Radius version) Any fa
ility is a potential explosives site, i.e. a site for the pla
ement ofexplosives. The obje
tive is to for
e the adversary to use large explosives i.e. we pi
k thefa
ility sites so as to maximize the destru
tion radius of the adversary's explosives.14



2. (Steiner-radius version) Any vertex is a potential site for the pla
ement of explosives.Thus, the explosion sites may be \Steiner points", in that they do not belong to the setof fa
ility sites.3. (Diameter version) The obje
tive is the maximum distan
e between pairs of points in thesame partition.These radius problems do not �t in the framework we de�ned earlier of the weight of a�-subgraph. However, they 
an be viewed as the bottlene
k versions of su
h properties, i.e. thevalue is the maximum weight edge of a subgraph satisfying the property. Thus, the Radiusversion is the bottlene
k problem of Remote-star, and Diameter version the bottlene
k problemof a Remote k-Cliques problems.We 
an formally de�ne these problems as follows. We are given a graph G, and positiveintegers p; k; k � p� 1. We are to �nd a set P � V of p verti
es that maximizes the followingobje
tive fun
tion.Radius: minS�P;jSj=kmaxx2P d(x; S),Steiner Radius: minS�V;jSj=kmaxx2P d(x; S),Diameter: minP=P1j���jPk maxx;y2Pi; i=1;2;:::;k d(x; y).For a point set X, let Radius(X), SteinerRadius(X) and Diameter(X) denote the values ofthe three variant problems on X. Observe that these values di�er by a fa
tor of at most 2.SteinerRadius(X) � Radius(X) � Diameter(X) � 2 SteinerRadius(X):Let GR denote the value of the greedy solution.Claim 6.1 No matter how the greedy points are split into k parts, there exist two points whi
hlie in the same parts and whi
h are at a distan
e at least rk apart.Proof. Consider the �rst (k + 1) greedy points. By the pigeonhole prin
iple, some two will fallin the same part. The distan
e between those two is at least rk.Theorem 6.2 The performan
e ratio of Greedy is 2 for the Steiner-Radius and Diameterversions, but 4 for the Radius version.Proof. Claim 6.1 implies that GR is at least rk for the Diameter 
ase, and at least rk=2 for theRadius and Steiner-Radius 
ases. Sin
e ea
h point of the optimal solution is within distan
e rkfrom some point in GR, OPT is at most rk for the Steiner-Radius 
ase: this follows from thefa
t that we 
an use the verti
es from GR as Steiner verti
es. Also, if we partition the verti
esof OPT a

ording to the nearest vertex in GR, verti
es in the same part are at most 2rk apart.Thus, OPT is at most 2rk for the Radius and Diameter 
ases. Hen
e the upper bounds 
laimed.We show that these bounds are tight for the 
ase k = 1 and p = 4, with other 
ases aneasy variation. Consider the shortest-path distan
e graph of the unweighted 10-vertex graph inFig. 1. Greedy may sele
t y1; : : : ; y4 in sequen
e, resulting in diameter 2 and radius 1, whilethe optimal solution 
onsists of x1; : : : ; x4, with diameter 4, Steiner-radius 2, and radius 4.Noti
e that in the pro
ess, we have given a 
onstru
tive solution of the adversarial problemof sele
ting the explosion sites against the optimal solution. For instan
e, pi
king the �rst kgreedy points as the explosion sites in the Steiner-Radius version results in a destru
tion radiusthat is at most twi
e the best possible of an optimal sele
tion of p sites.15
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2Figure 1: Hard instan
e for Greedy for radius problems.Also, note that using the explosion sites of the greedy solution as the sites of the optimalsolution yields a ratio of 3 for the Steiner-Radius problem. This is be
ause the distan
e ofany optimal point to some greedy point is at most rk, and from that greedy point to a greedyexplosion site is at most GR. This ratio is tight for a basi
 anti
over, as seen by the three pointson a line: 0; 1, and 3.6.1 Hardness of bottlene
k problemsThe destru
tion radius problems are bottlene
k problems.� Remote-1-Radius is the bottlene
k problem of Remote-star. More generally, Remote-k-Radiusproblem is the bottlene
k problem of the Remote-� problem that asks if there is a p-set Psu
h that the size of the minimum dominating set of G[P ℄ is greater than k.� Remote-k-Diameter is the bottlene
k problem of the problem that asks if there is a p-setP su
h that G[P ℄ is k + 1-
hromati
.� Remote-k-SteinerRadius is the bottlene
k problem of the following one-way dominationproblem: Is there a p-set P su
h that no set of k verti
es in G dominates P .Given these 
hara
terizations, we 
an 
larify the 
omplexity of these problems.Proposition 6.3 Remote-k-Diameter is polynomial solvable for k = 1 or 2. For k � 3, it is
o-NP hard, and hard to approximate within fa
tor less than 2.Proof. The hardness follows from Theorem 7.4 and the fa
t that de
iding 4-
hromati
ity is
o-NP-hard.Noti
e that any p-set that 
ontains the furthest pairs of points is an optimal solution fork = 1. For k = 2, the non-k-
olorable subgraphs are pre
isely the odd 
y
les. Let w0 be thelargest w su
h that Tw 
ontains an odd 
y
le of length at most p. It suÆ
es to 
hoose any p-setthat 
ontains an odd 
y
le in Tw0 as an optimal solution. In parti
ular, we 
an �nd the smallestodd 
y
le in Tw0 by running breadth-�rst sear
h (for at most p=2 levels) starting from ea
h ofthe n nodes. Adding any nodes to the verti
es forming the 
y
le then yields an optimal solution.Proposition 6.4 Remote k-Steiner-Radius is NP-hard, for any k � 1.Proof. We show this for k = 1, with other values an easy extension.Let H be a (1; 2)-graph of an unweighted graph G. Suppose a p-set P has a 1-Steiner radius2 in H. Then, 8v 2 V;9w 2 P; d(v; w) = 2. That is, 8v 2 V;9w 2 P; (v; w) 2 E(G). Hen
e, P16



is a total dominating set of G, i.e. every vertex in G (in
luding those in P ) has a neighbor in P .On the other hand, if P has a 1-Steiner radius 1, then there exists a vertex v 2 V of distan
e1 from ea
h vertex in P . Then, v is adja
ent to ea
h vertex of P , or nonadja
ent in G to ea
hvertex of P . Thus P does not totally dominate G. Hen
e, the 1-Steiner radius of H is at least2 i� G 
ontains a totally dominating set of size at most p.The existen
e of a total dominating set is NP-hard, for arbitrary p. Hen
e, so is Remote1-Steiner Radius. Similarly, obtaining an approximation less than 2 is also hard, as well asobtaining an approximation within any fa
tor on nonmetri
 graphs.Proposition 6.5 Remote k-Radius is NP-hard, for k � 2, but polynomial solvable for k = 1.Proof. The 
ase k = 1 is equivalent to �nding a p-set P in the threshold graph su
h that ea
hvertex in G[P ℄ is of degree less than p�1 (or, alternatively, ea
h vertex in the 
omplement graphG[P ℄ is of positive degree). Su
h a set 
an easily be found by a greedy a

umulation.Consider now the 
ase k = 2. Given a (1; 2)-graph H of an unweighted graph G, the questionif Remote 2-Radius on H equals 2 is equivalent to asking if there exists a p-set P satisfying thefollowing property: For any potential 
enter-pair x; y, there is a vertex z of distan
e 2 from bothx and y. This is equivalent to the following problem on G:Pairwise-distan
e-2 SetGiven: Graph G0 = (V 0; E0), integer p.Question: Is there a set P � V 0 of at least p verti
es su
h that for any x; y 2 P ,there is a z 2 P su
h that (x; z) 2 E0 and (y; z) 2 E0.We show the Pairwise-distan
e-2 set problem to be NP-hard by a redu
tion from Clique.Given a graph G = (V;E) as input to the k-Clique de
ision problem, form the graph G0 =(V 0; E0) as follows. The vertex set 
onsists of C 
opies of V , for C = n2, 
alled node-verti
esand an edge-vertex for ea
h edge of G. The node-verti
es are adja
ent to the edge-verti
es
orresponding to the edges to whi
h they are in
ident in G. The node-verti
es internally forman independent set, while the edge-verti
es form a 
lique. Formally,V 0 = fvji : i = 1; : : : ; jV j; j = 1; : : : ; Cg [ fvxy : (x; y) 2 EgE0 = fvjxvxy : (x; y) 2 E; j = 1; : : : ; Cg [ fvxyvzw : (x; y); (z; w) 2 EgLet S be a feasible pairwise-distan
e-2 set. First observe that for any pair vix; vjy 2 S, theonly 2-path from vix to vjy is through an edge-vertex to whi
h both verti
es are in
ident, andthis happens only if x and y are adja
ent in G. It follows thatjSj � n2 � !(G) + jE(G)j;where !(G) is the 
lique number of G.In the other dire
tion, let X be a 
lique of G, and 
onsider the set S = fvix; vjy; vxy : vx; vy 2X; i; j = 1; : : : ; Cg. Then, it is easily veri�ed that S is a pairwise-distan
e-2 set. Thus,OPT (G0) � n2 � !(G) + !(G)2 !:Combined we see that bOPT (G0)=n2
 = !(G). Thus, even obtaining an n�-approximatesolution to the pairwise-distan
e-2 problem is NP-hard, for some � > 0, given the hardness ofapproximating !(G). 17



7 General Hardness ResultsWe give in this se
tion hardness results that apply to general 
lasses of dispersion problems.For previously studied problems, NP-hardness has been established: edge [13, 15, 12℄, 
lique[12℄, tree, 
y
le, pseudoforest, mat
hing [6℄. Further, these redu
tion showed that for all of theproblems listed above ex
ept for 
lique, 2-approximation is NP-hard for graphs with weights 1and 2, and n1��-approximation is hard for nonmetri
 networks, for every � > 0.We argue here that all nontrivial remoteness problems are NP-hard. A property of graphsyields a trivial remoteness problem if it holds for graphs with no edges or fails for all graphs (orfor all but a �nite number of graphs).A (1; 2)-graph H of an unweighted graph G is a 
omplete graph on the same vertex set, withedge weights 1 and 2 su
h that uv has weight 2 in H i� uv is an edge in G.Proposition 7.1 The de
ision problem for Remote-� is either trivial or NP-hard.Proof. The proof is by redu
tion from Clique, as in previous papers [12, 6℄. Given an unweightedgraph G as an input to Clique, form the 
orresponding (1; 2)-graph H. Then, there exists a p-subgraph in H where the weight of any pair is 2 i� there exists is a p-
lique in G. Let l be thenumber of edges in the minimum size stru
ture satisfying �. If there is a p-
lique in G, thenthere is a subgraph in H where every stru
ture is of weight at least 2l. If there is no p-
lique inG, then every subgraph in H 
ontains an edge of weight 1, and thus every p-subgraph 
ontainsa valid stru
ture of weight at most 2l � 1.The de
ision problem for Remote-� is to determine, given a graph G and integer t, if thereexists a subgraph P with p verti
es su
h that �(G[P ℄) � t, where G[P ℄ is the subgraph indu
edby P . Thus, if p = n, it redu
es to the 
omplement of the �-problem. For some instan
es itmay be harder than the sear
h problem, whi
h only outputs a set but does not say anythingregarding its value.Observation 7.2 Let � be a NP-hard property, i.e. it is NP-hard to de
ide whether a givengraph G has the property �. Then, the Remote-� de
ision problem is 
o-NP-hard, and thus hardfor both NP and 
o-NP.For an upper bound, we 
an only argue that the Remote-� problem is at most one levelhigher in the polynomial-time hierar
hy than the �-de
ision problem itself. We 
onje
ture thatfor any NP-
omplete graph property, the 
orresponding remote problem is �p2-
omplete.Conje
ture 7.3 Let � be a NP-hard property. Then the problem of de
iding whether thereexists a subset S of the input of size p that forms a valid instan
e where � holds is �p2-hard.We may also 
onsider bottlene
k problems. The Remote-�-bottlene
k de
ision problem is todetermine, given a graph G and a real value w, whether there exists a set P of p verti
es su
hthat any �-stru
ture on G[P ℄ 
ontains an edge of weight at least w. As an example, Remote-edgeis a bottlene
k problem for Remote-
lique.These problems are best observed in terms of related unweighted graphs. Given a weightedgraph G and a weight w, the unweighted threshold graph Tw of G has the same vertex set and
ontains an unweighted edge for ea
h edge of weight at least w in G. Note that if we take anunweighted graph G, form its (1; 2)-graph H and take the threshold graph T2 of H, we obtainthe original graph G. 18



Observe that the �-bottlene
k value on P equals the smallest value w su
h that � holds onG[P ℄. Then, we have that Remote-�-bottlene
k on G is at least w0 i� w0 is the smallest valuew su
h that � holds on the threshold graph Tw of G[P ℄ for some P . To �nd w0 we 
an applybinary sear
h, adding a log n fa
tor to the time 
omplexity. Hen
e, optimization is polynomialredu
ible to the de
ision problem on the threshold graphs.Theorem 7.4 Let � be a 
o-NP-hard property. Then, the Remote-�-bottlene
k problem is 
o-NP-hard. In fa
t, it is hard to approximate it within a fa
tor of less than 2.Proof. Given a graph G input to the 
o-NP-hard �-de
ision problem, form its (1; 2)-graph H.Observe that the �-bottlene
k value on H with p = jV (G)j equals 2 i� G satis�es �. Thus,distinguishing whether the value of the bottlene
k problem is 1 or 2 is 
o-NP-hard.The approximation hardness results 
arry over to the related partition problems, where theobje
tive fun
tion is measured within a �xed number of parts of the subgraph.Proposition 7.5 Let � be a property where verti
es have degree at least one (in a nontrivial�-graph). Let Remote-k-� be the remote problem where the obje
tive fun
tion is the sum of theweights of the edges of k disjoint �-subgraphs. Then Remote-k-� (on p�k+1 points) is at leastas hard to approximate as Remote-� (on p points). This also holds for the bottlene
k problem,where the obje
tive is the maximum weight of an edge in any of the k �-subgraphs.Proof. Given a hard instan
e G for Remote-�, form a network G0 by adding k � 1 verti
es toG and make the weight of their in
ident edges be (e�e
tively) in�nity.Consider the Remote-k-� solution P 0 
onsisting of the k�1 new nodes along with an optimalRemote-� set P on p� k+1 nodes. Then, if the adversary assigns any two of the new nodes inthe same part, the value of the obje
tive fun
tion would be in�nite; thus, the only reasonablepartitioning is to assign the k�1 new nodes to separate parts, with P in the last part. The newnodes now do not 
ontribute to the obje
tive fun
tion, implying thatOPTk-�(G0) � OPT�(G);where OPTX denotes the value of the optimal solution for problem X.On the other hand, no matter what set P 0 is 
hosen by a Remote-k-� algorithm, the adversary
an always partition it so that all but one part 
ontain only single verti
es that do not 
ontributeto the obje
tive value, with the last part 
ontaining p� k + 1 nodes from G. Thus,ALGk-�(G0) � ALG�(G);that is, the set produ
ed onG0 gives at least as good solution onG (when appropriately restri
tedto verti
es of G). Hen
e, approximating Remote-k-� is no easier than Remote-�. This argumentholds equally for the 
orresponding bottlene
k problems.Some examples of � for whi
h the above proposition applies are tree, pseudoforest, 
y
le, and
lique.
19



7.1 Limitations of GreedyHere we give lower bounds on the performan
e of Greedy on some general 
lasses of remotenessproblems. It is generally possible to argue similar bounds even if Greedy tries all n possiblestarting points, su
h as was done in [6℄ for the Remote-tree problem. This requires some addedte
hni
al 
ompli
ations that may be problem spe
i�
, thus we do not pursue that here.Proposition 7.6 The performan
e ratio of Greedy on any remote problem is at least 2.Proof. Consider an instan
e with two types of points: x-points of distan
e 1 apart and y-pointsof distan
e 2 apart, with points of di�erent type of distan
e 1 apart.Greedy may start with some x-point, from whi
h all points are of distan
e 1, and then
ontinue 
hoosing x-points. That is, the indu
ed subgraph sele
ted is 
omplete with unit-weightedges. An optimal solution will 
ontain only y-points, indu
ing a 
omplete graph with all edgeweights 2. Whatever measure used, it will be twi
e as large in the latter subgraph as in the one
hosen by Greedy.We 
an show that for a host of problems the performan
e ratio of Greedy either growslinearly with p, or there is no upper bound on it that is independent of the edge weights.De�nition 7.7 The following fun
tion 
ounts the number of edges in any p-vertex �-stru
turethat must 
ross an (s; p� s)-
ut.Crossp(�; s) = minH2�V (H)=fv1 ;:::;vpg jfvivj 2 E(H) : 1 � i � s; s+ 1 � j � pgjLet us 
onsider the value of Cross(�; s) for some of the stru
tures 
onsidered here, for1 � s � p� s. We 
an see that Crossp(pf; s) = 0, for any s, and Crossp(mat; s) = 0 when s iseven, sin
e one 
an form these stru
tures without 
rossing a parti
ular 
ut of the subgraph. Also,Crossp(tree; s) = Crossp(
y
le; s) = 1, Crossp(star; s) = s, and Crossp(
lique; s) = s � (p� s).Intuitively, we 
onstru
t an instan
e with a \
utting 
leavage", i.e. 
onsisting of two 
lustersthat are far apart. The distan
e between the two 
lusters overwhelms the intra
luster distan
es,so that the only measure that matters is the number of edges in the minimum �-stru
ture onthe sele
ted point set that 
ross the 
leavage. Cross 
ounts this for di�erent ways of splittingthe p verti
es among the two 
lusters. By adjusting the edge weights, Greedy 
an be madeto pi
k the number of points from one 
luster that yields the fewest number of for
ed 
rossingedges, while OPT pi
ks the number that maximizes the number of for
ed 
rossing edges.Proposition 7.8 Let dp = min1�s�p�1Crossp(�; s) and Dp = maxsCrossp(�; s). The perfor-man
e ratio of Greedy on Remote-� is at least arbitrarily 
lose to Dp=dp when dp > 0, andunbounded when dp = 0 and Dp > 0. This holds even for the 1-dimensional 
ase, where edgeweights 
orrespond to distan
es on the real line.Proof. Let tp (Tp) be the value of s that minimizes (maximizes) Crossp(�; s). Without loss ofgenerality, tp; Tp � p=2.Let � be a small number and let �0 = �=n. For any n su
h that n � 2p � tp, we 
onstru
tan instan
e on n verti
es, 
onsisting of two 
lusters, Q with p � tp verti
es, and Q0 with theremaining n� p+ tp � p verti
es. Verti
es in Q 
orrespond to the points ��i on the real line,i = 1; : : : ; p � tp, while verti
es in Q0 
orrespond to the points 1 + i=�0, i = 1; : : : ; n � p + tp.Observe that all distan
es between pairs of points in Q0 are less than all distan
es within Q.20



Greedy �rst 
hooses a vertex from ea
h of Q and Q0, followed by the rest of Q, and �nallysele
ts tp� 1 verti
es from Q0. Sin
e by de�nition there exists a �-stru
ture with only dp edges
rossing a (tp; p � tp)-
ut, the 
ost of that stru
ture is the sum of Crossp(�; tp) = dp 
rossingedges of weight 1, along with at most �p2� edges of weight � or �0. On the other hand, the optimalsolution 
hooses Tp verti
es in Q and the rest in Q0. Every �-stru
ture has at least Dp edges
rossing a (Tp; p � Tp)-
ut, hen
e the minimum 
ost �-stru
ture of OPT is of 
ost at least Dp.Sin
e � 
an be arbitrarily 
lose to 0, the ratio between the 
ost of the optimal solution to thatof the greedy solution 
an be arbitrarily 
lose to Dp=dp.This shows that the performan
e ratio ofGreedy on e.g. Remote-mat
hing and Remote-pseudoforestis unbounded. Also, the performan
e ratio is at least 
(p) on Remote-
lique, and Remote-star.For an expli
it example where Greedy fails for Remote-pseudoforest, 
onsider the following:V = fa1; a2; b1; b2; : : : ; bn�2g, d(ai; bj) = 1, d(a1; a2) = 2�, d(bi; bj) = �, p = 4. An optimalsele
tion of the verti
es is any one of the ai's and any three of the bi's giving pf > 1, whileGreedy sele
ts a1; a2 and two of the bi's for pf = 6�.8 Dis
ussionWe have presented a framework for studying dispersion problems, given approximation algo-rithms for several natural measures of remoteness, and shown several hardness results as well aslimitations on the ubiquitous greedy approa
h.We have also 
onsidered a number of extensions of previously studied problems. Thesein
lude bottlene
k problems { where the obje
tive fun
tion is a maximum, rather than the sum,of the edge weights of a stru
ture and Steiner problems { where the obje
tive fun
tion mayin
lude verti
es outside the sele
ted set P .Many threads are left open for further study. Are there 
onstant-fa
tor approximationalgorithms for the remote pseudoforest and mat
hing problems, or 
an we prove super-
onstanthardness results? Can we give an exhaustive 
lassi�
ation of the approximability of a large 
lassof remote problems, and/or 
an we su

in
tly des
ribe those problems for whi
h Greedy willdo well? Is there a parallel algorithm for obtaining an anti
over? And �nally, a further studyon the applied aspe
ts from the management s
ien
e viewpoint would be desirable.Referen
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9 Signi�
ant 
hanges made1. As suggested by Referee 1, the paper has been substantially reorganized to emphasizeproblems instead of algorithms.2. As suggested by Referee 1, the se
tion on Terrorism Defense/Bottlene
k problems in theIntrodu
tion has been signi�
antly expanded.3. We have brie
y addressed the issue, raised by Referee 1, of 
onsidering lower bounds ofthe generalized version of Greedy i.e. if di�erent starting points are 
onsidered.4. As suggested by both Referees, we have added a table of known results, as well as expandingthe list of dispersion problems in Se
tion 1.5. Figure 1 has been 
orre
ted, addressing a point made by Referee 1.6. As suggested by Referee 2, an example for the lower bound of the Mat
hing algorithmfor the Remote-Star problem has been added.7. Nearly all the minor 
omments of both Referees have been addressed.
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