Approximation Algorithms for Dispersion Problems

Barun Chandra Magnus M. Halldérsson
Department of Computer Science Science Institute
University of New Haven University of Iceland
New Haven, Connecticut Reykjavik, Iceland
barun@charger .newhaven.edu mmh@hi.is
Abstract

Dispersion problems involve arranging a set of points as far away from each other as
possible. They have numerous applications in the location of facilities and in management
decision science. We suggest a simple formalism which lets us describe different dispersal
problems in a uniform way. We present several algorithms and hardness results for dispersion
problems using different natural measures of remoteness, some of which have been studied
previously in the literature and others which we introduce; in particular, we give the first
algorithm with a nontrivial performance guarantee for the problem of locating a set of points
such that the sum of their distances to their nearest neighbor in the set is maximized.

Index Terms: Facility Location, Dispersion Algorithms, Approximation Algorithms.

1 Introduction

As the proud and aggressive owner of the McWoofer burger chain, you are given the opportunity
to build p new franchises to be located at any of n available locations. After ensuring that the
available slots are all attractive in terms of cost, visibility, etc., what would your criteria be for
locating the franchises relative to each other?

Locating two identical burger joints next to each other would not increase the number of
customers, and would thus halve the amount of business that either of them could do if apart.
Noncompetitiveness is a concern here, which can be alleviated by properly dispersing the facili-
ties.

The franchise location example is one of many problems where we seek a subset of points
that are, in some sense, as remote from each other as possible. Dispersion has found appli-
cations in diverse areas: locating undesirable or interfering facilities; aiding decision analysis
with multiple objectives; marketing a set of products with different attributes; providing good
starting solutions for “grand-tour” TSP heuristics. Dispersion is also of combinatorial interest,
as a measure of remote subgraphs.

In this paper, we unify these and the other dispersion problems in the literature by a novel
formalization, where each dispersion problem P corresponds to a certain class of graphs II.
This by itself suggests various interesting new dispersion problems. We then present the first
provably good approximation algorithms for dispersion problems under several of these measures
of remoteness.

Applications. Location theory is a branch of management science/operations research that
deals with the optimal location of facilities. Most of that work deals with desirable facilities,
where nearness to users or each other is preferable. More recently, some papers have considered
the opposite objective of placing the facilities far from each other.

Strategic facilities that are to be protected from simultaneous enemy attacks is one example
suggested by Moon and Chaudhry [11]. This could involve oil tanks [11], missile silos, or am-
munition dumps [4], which should be kept separated from each other to minimize the damage
of a limited attack. Limiting the range and possible spread of fire or accidents at hazardous
installations is also helped by proper spacing [10].

Noncompetition is another motivation for dispersal, as in the burger chain example. This may
apply to other types of franchises such as gasoline stations, or to the location of radio transmitters
with the objective of minimizing interference. Dispersal has also been found desirable to obtain
an effective and/or fair coverage of a region. White [15] cites some example of government
regulations to that effect, including firehouses and ambulance stations in New York City.

Yet another dispersal issue in facility location involves undesirable interaction between all
facilities that grows inversely with distance [4]. This may apply to dormitories at a university,
or chairs during an examination.

The above applications suggest a metric sensitive to the largely two-dimensional nature of
our world. However, this need not be the case for various problems outside the area of facility
location.

White [15] considers dispersion problems motivated by multiple objective analysis in decision
theory. Given a potential set of actions for a decision maker, we are to find a fixed-size subset of
these that are as dispersed as possible, for further consideration by the decision makers. White
lists several studies that have used dispersal to filter the possible choices, e.g. oil drilling, media
selection, and forestry management.

Dispersion also has applications in product development. The marketing of new but related
products is helped by diversity [2]. From parameters including price, quality, shape, packaging
etc., a set of products can be produced, which are likely to gain greater market coverage if easily
distinguishable.

Dispersion Formulations. A considerable body of work has appeared on facility dispersion
problems in the management science and operations research literature [11, 2, 3, 4, 15, 10].
Most previous work has focused on either easily solvable tree networks, or empirical studies of
heuristics. Ounly recently have some of these heuristics been analyzed analytically [13, 15, 16,
12, 6, 1]

We suggest a simple formalism which lets us describe different dispersal problems in a uniform
way and with a more “standardized” terminology. The input is an integer p and a network
G = (V,V x V) with a distance function d on the edges satisfying the triangular inequality
d(u,v) < d(u,z)+d(z,v). The output is a set P of p vertices. The objective is a function of the
subgraph induced by P, and is given by the sum of a certain set of edges within that subgraph,
this edge set being chosen to be the one of minimum weight among all edge subsets satisfying
a graph property II (IT depends on the particular dispersal problem under consideration). In
general, for a property II of graphs, the objective function for the problem Remote-II is the
weight of the minimum-weight subgraph satisfying property II within the induced subgraph on
P. The goal of the algorithm is to pick these p vertices so as to maximize the objective function.

For instance, in the Remote-tree problem, the objective function is a sum of the edge weights
of a minimum-weight spanning tree over the vertex set P. The goal is to pick a subset of p
vertices so as to maximize the minimum-weight spanning tree on these vertices.

We list in Table 1 some problems under different graph properties; most of these have been
studied previously, and some are introduced in this paper. For a set of edges E', wt(E') denotes
the sum of the weights of the edges of E’. For a point set P, P = Py|P,|---|P; denotes a
partition of P into sets P; through FP.

Remote subgraph problems

Remote-edge min, ,ep d(u,v)

Remote-clique > v uep A(u,)

Remote-star minyep Y ,cp d(u, v)

Remote-pseudoforest Y vep Mingep d(u,v)

Remote-tree wt(mst(P))

Remote-cycle ming wt(T'), where T' = tsp(T') is a TSP tour on P

Remote k-trees minp_p,|..|p, Sk wt(mst(P;))

Remote k-cycles minp_p,|..|p, Sk wt(tsp(P;))

Remote-matching minys wt(M), where M is a perfect matching on P

Remote-bipartition ming wt(B), where B is a bipartition of P !
Bottleneck problems

Destruction Radius mingc p|g|—; Maxgep d(z, S),

Destruction Steiner Radius mingcy,|g)—; maxzep d(z, S),

Destruction Diameter Minp_p, |..|p, MaXg ye Py, i=12,...k AT, Y)-

Table 1: Dispersion problems considered

A pseudo-forest is the undirected equivalent of a directed graph where each vertex has out-
degree one and each component contains as many edges as vertices.

Observe the adversarial nature of these problems. The “algorithm” produces a vertex set
P, and implicitly the induced subgraph G[P]. The “adversary” produces a set of edges on G|[P)]
satisfying property II. The problems we look at are max-min problems, i.e. the algorithm tries
to pick P such that the smallest set of edges satisfying IT on P is as large as possible. The value
of the solution is the sum of these edges.

Which measure? Which measure of remoteness should be applied? The proper measure
is very much a question of the problem under study, and several of the applications we have
considered give rise to quite different notions of remoteness.

In various applications the utility of an individual facility is directly related to its (locally
measured) remoteness from the rest of the facilities. In this case, the measure of the global
remoteness is the sum of the utilities of the individual points.

One example is the average distance measure (or clique problem), in which the utility is
the average distance from the other points. Note, however, that this measure is large for very
clustered instances, as long as the clusters are far from each other. In many cases, a more logical
measure of utility would be the minimum distance to the remaining point set, i.e. the nearest
neighbor distance. This gives rise to the Remote-pseudoforest problem.

Another interpretation for a subgraph to be “remote” would be that its
would be high. One common nearness measure is that of a center : the smallest total distance
from all the vertices to a single center vertex. This gives rise to the Remote-star problem.

In the end, the appropriate measure is highly context-sensitive. The intended objective
function is likely to involve more factors than are specified in the combinatorially pure problem

“nearness” measure

specifications, even more so than in many other problem domains. To a large extent, computa-
tional facility dispersion is meant as an aid to decision-making, instead of as a solution provider.
It is therefore valuable to try to understand better the impact of modifying the measure on
the near-optimal computability of the problem. By introducing and examining a wider range
of natural objective measures, unifying them into a consistent whole, and analyzing new and
old practical algorithms on these measures, we hope to obtain a deeper understanding of the
computational issues involved in dispersion.

Terrorism defense/Bottleneck problems. One of the motivations for dispersion problems
is defense against accidents or attacks. The adversary attacks with £k ’explosives’ of a given
destruction radius. Our objective is to select p sites that are dispersed so as to maximize the
difficulty (i.e. force the adversary to use large explosives) of these p sites being destroyed by the
adversary’s explosives.

We can formally define this problem as follows. We are given a graph G, and positive integers
P, k, k < p—1. Weare to findaset P C V of p vertices that maximizes mingc p|5|—; maxgzep d(z,S)

Several similar types of optimization problems arise, depending on which parameter is to be
maximized. These radius problems do not fit in the framework we defined earlier of the weight
of a II-subgraph. However, they can be viewed as the bottleneck versions of such properties, i.e.
the value is the maximum weight edge of a subgraph satisfying the property. For example, the
problem discussed above is the bottleneck version of Remote-star.

Related work. The names used in the literature are quite different and varied. Remote-edge
is known as p-Dispersion [2, 10] and Maz-Min Facility Dispersion [12]; Remote-clique as Mazisum
Dispersion [10] and Maz-Avg Facility Dispersion [12]; Remote-star as MazMinSum dispersion [4];
Remote-pseudoforest as p-Defense [11] and MazSumMin dispersion [4].

Problem u.b. [.b.
Remote-edge 2 [13, 15, 12] 2 [12]
Remote-clique 2 [7] - [12]
Remote-tree 4 16] 2 [6]
Remote-cycle 3 [6] 2 [6]
Remote k-trees 4 2
Remote k-cycles) 2
Remote-pseudoforest O(logn) 2 [6]
Remote-matching O(logn) 2 [6]
Remote-star 2 -
Remote-bipartition 3 -
Destruction Radius 4 -
Destruction Steiner Radius 2 2
Destruction Diameter 2 2

Table 2: New and old upper and lower bounds on the approximability of dispersion problems
considered in this paper.

We list in Table 2 the known upper and lower bounds on approximating the various dispersion
problems. Where no citation occurs, the result is in the current paper. A lower bound of, e.g.
2, means that is it NP-hard to obtain an approximation ratio better than 2. A dash denotes
that the problem is NP-hard, but no nontrivial approximation lower bound is known.

For Remote-edge, Tamir [13], White [15, 16] and Ravi, Rosenkrantz and Tayi [12] (see also
[14]) independently showed that a simple “furthest-point greedy” algorithm is 2-approximate.
This greedy algorithm, henceforth called GREEDY, works by successively selecting the next
vertex so as to maximize the distance to the set of already selected vertices, till p vertices have
been selected. It was shown in [12] that obtaining an approximation strictly less than 2 was NP-
hard. Baur and Fekete [1] have recently given a 3/2-approximation algorithm for a geometric
case where weights correspond to distances between points within a rectilinear polygon, and
showed this problem to be hard to approximate within a factor of less than 14/13.

For Remote-clique, Ravi et al. gave a (different) greedy algorithm that they showed came
within a factor of 4, while Hassin, Rubinstein and Tamir [7] gave elegant proofs of two 2-
approximate algorithms. This problem has also been studied for nonmetric graphs under the
name Dense Subgraph Problem by Kortsarz and Peleg [9], with the current best ratio known
being O(n?), for some constant § < 1/3 [5].

No analytic bounds have been previously given for either Remote-star or Remote-pseudoforest
problems. Moon and Chaudhry [11] suggested the star problem. Erkut and Neuman [4] gave a
branch-and-bound algorithm that solves all four of these problems.

Remote-tree and Remote-cycle were considered by Halldérsson, Iwano, Katoh, and Tokuyama
[6], under the names Remote-MST and Remote-TSP, respectively. They showed that GREEDY
approximates these problems within a factor of 4 and 3, repectively. They also showed that ob-
taining a ratio less than 2 for these problems is NP-hard, and that holds also for Remote-pseudoforest
and Remote-matching. They proposed Remote-matching as an open problem.

All of the problems listed above can be seen to be NP-hard by a reduction from the maximum
clique problem. The same reduction also establishes that Remote-edge cannot be approximated
within a constant smaller than 2 [12]. Further, when the weights are not constrained to be metric,
the problem is as hard to approximate as Max Clique, which implies that n'~¢-approximation
is hard, for any € > 0 [8]. Reductions from MaxClique also yield the same hardness for the
pseudoforest problem [6]. On the other hand, no hardness results are known for Remote-clique
and Remote-star.

Overview of paper. We introduce the notation in Section 2 and describe the concept of an
anticover as computed by a GREEDY algorithm.

In Section 3, we show that GREEDY attains good approximation on a host of remote problem
that involve partitions into independent clusters, with the objective being the sum or maximum
of the objectives on the independent clusters. In section 4 we use the MATCHING algorithm of
[7] to approximate Remote-star, and Remote-bipartition.

We introduce an algorithm, PREFIX, in Section 5. It combines the practicality of the GREEDY
algorithm with the means to avoid falling into the traps that sharply limit the performance of the
GREEDY algorithm. We use it to obtain a 6(logp) performance ratio for the Remote-matching
and Remote-pseudoforest problems, for the first non-trivial approximations for these problems.

In Section 6 we show that GREEDY yields good approximations for the bottleneck/radius
problems for terrorism defense. We match these upper bounds with similar approximation
hardness results. Then, in Section 7, we prove NP-hardness of all remoteness problems, for a
nontrivial graph property II. We also present negative results on the power of the GREEDY
algorithm for a general class of problems. We end with a summary and open problems.

2 Preliminaries

2.1 Notation

For a vertex set X C V, let II(X) (7w (X)) denote the maximum (minimum) weight set of edges in
the induced subgraph G[X] that forms a graph satisfying property II, respectively. In particular,
we consider star(X) (min-weight spanning star), pf(X) (min-weight pseudoforest), tree(X) (min-
weight spanning tree), and MAT(X) and mat(X) (max- and min-weight matching).

For a set of edges E', let wt(E') denote the sum of the weights of the edges of E'. We also
overload E' to stand for wt(E') when used in expressions.

The input is assumed to be a complete graph, with the weight of an edge (v,u), or the
distance between v and u, denoted by d(v,u). For a set X of vertices and a point v, the distance
d(v, X) is the shortest distance from v to some point in X, or min,ex d(v,u).

A p-set refers to a set of p vertices. Let OPT denote the p-set that yields the optimal value.
Let P = Py|Py|---|Px denote that the set P is partitioned into sets P, i.e. UlePi = P and
P;N P; =0, for any 7 # j. Throughout the paper we assume that the triangle inequality holds.

2.2 Anticovers and the GREEDY algorithm

A set X of points is said to be an anticover iff each point outside X is at least as close to X as
the smallest distance between any pair of points in X, i.e.

max d(v,X) < ;réi)r(ld(a;,X \ {z}).
The direct way of producing an anticover is via the GREEDY algorithm. It first selects an
arbitrary vertex and then iteratively selects a vertex of maximum distance from the previously
selected points. We let Y = {y1,v2,...,y,} denote this set of points found by GREEDY. Let Y;
be the prefiz set {yi,y2,...,yi}, for 1 < i < p. Let r; = d(y;+1,Y;) denote the distance of the
1 + 1-th point to the previously selected points.
Observe that every prefix Y; of the greedy solution is also an anticover. Thus, for each i,

d(v,Y;) <r;, for each v eV, and (1)
d($7y) > T, for each T,y € }/;l+1- (2)

GREEDY is simple, efficient, arguably the most natural algorithm for many facilities dispersal
problems, and has been shown to be provably good for many of the problems. In addition, it
is online (i.e. independent of p), allowing for the incremental construction of facilities that is
essential in practice. As such, it warrants special attention, not only in the form of positive
results but negative results as well.

GREEDY has been previously applied with success on the edge problem [13, 15, 16], and the
tree, cycle, and Steiner-tree problems [6]. We show (Sections 3 and 6) that GREEDY performs well
on problems involving multiple spanning trees or tours, and on the terrorism defense problems.
On the other hand, we show (Section 7.1) that GREEDY performs poorly on a large class of
problems which include matching, pseudoforest, clique, and star. 2

2@@@MH4: Reordered, to match the order in the paper

3 Tree and Cycle Problems

In this section, we apply GREEDY to remote problems involving several spanning trees or tours.
The k spanning trees problem is a generalization of the Remote-tree problem, where the adversary
partitions the p vertices into k sets so that the sum of the k& spanning trees is minimized. More
formally, the objective value on a given point set P is given by

k
k-trees(P) = P*gﬂmm Z wt(mst(P;)).
- i=1

Thus, the Remote k-Trees problem is to find a set P of p vertices such that k-trees(P) is maxi-
mized. Similarly, in the k-Steiner trees problem the adversary partitions the p vertices into k sets
so that the sum of the k& Steiner trees is minimized, and in the k-cycles problem the adversary
partitions the p vertices into &k sets so that the sum of the k TSP tours is minimized. We can
generalize the analysis of [6] for the case k = 1.

Proposition 3.1 Anticovers yield a ratio of 4 —2/(p — k + 1) for remote problems of k-trees,
and a ratio of min(5,1 + 2p/(p — k)) for k-Steiner trees and k-cycles.

Proof. Focus first on the k spanning tree problem. Let GR be the greedy point set and OPT
be the point set of the optimal solution. Just as the adversary is allowed to partition the greedy
point set, we can partition the optimal solution knowing that the cost of the corresponding
spanning forest upper bounds the optimal cost.

Let GR1,GRy, ..., GRy be a partition of GR which minimizes the sum of the spanning trees.
We form a partition of OPT into nonempty sets @1, ..., Q such that for any Q; with two or
more vertices, v € (); implies that the nearest neighbor of v in GR is in GR;. That no @Q); is
empty is ensured as follows: if no vertex in OPT happens to be closer to GR; than to any other
G Rj, then we arbitrarily take a vertex from some Q;,|Q;| > 2 and put it in ;. Let ¢; be the
cardinality of @);. The partitioning ensures that for each 7, ¢; > 1, and hence that ¢; <p—k+1
(since each of the other k — 1 classes contain a vertex). Also, each vertex in a @; with ¢; > 2 is
of distance at most 7, from F;, by the anticover property.

For each class @Q; with ¢; > 2, consider the minimum spanning tree of the point set Q; UG R;.
This forms a Steiner tree of ();. The cost of this tree is at most

mst(Q; U GR;) < mst(GR;) + q; - Tp.
We can bound the cost of the spanning tree of Q; by applying the Steiner ratio, obtaining
mst(Q;) < mst(Q; UGR;) - (2 —2/q;) < mst(GR;) - (2 — q;) + 2rp(q; — 1).
Recall that GR = Y-F_ | mst(GR;). Summing up over all values of i gives

k
OPT <> mst(Q;) < GR(2—2/(p—k+1)) + 2ry(p — k).
i=1

Since G'R contains p — k edges and the distance between any pair of points is at least),

GR > (p — k)rp.
Hence OPT
=———<4-2 —k+1).
P="ap S /(p—Fk+1)

We now turn our attention to Steiner trees. We know that since pairwise distances in GR
are at least 7,, the cost of k& Steiner trees in GR is bounded by

GR > p'rp/2,

where p’ is the number of greedy points in partitions with at least 2 greedy points, p’ > p—k+1.
The Steiner forest of GR; U Q;, i = 1,..., k, yields that

OPT < GR + pry, (3)

for a ratio of 1 +2p/(p —k+1) =3+ 2(k —1)/(p — k). Recall that ¢; > 1, for each 7. Observe

that for large values of k, the number of ¢ with ¢; = 1 is at least 2k — p. Those points do not
contribute to the cost of the solution. Thus,

OPT < GR + min(2p — 2k, p)ry,

for a ratio of at most 5.

For k-cycles we obtain the same ratio as for k-Steiner trees. Namely, by similar arguments
we see that GR > (p — k + 1)rp, and by taking an Euler tour of each Steiner tree, the optimal
k-tours cost is at most twice the cost of the k& Steiner trees.]

The upper bound of 4 for k-trees is tight via the matching lower bound for £ = 1 of [6]. The
constructions of [6] for 1-cycle and 1-Steiner trees have the property if OPT has p — k + 1 points
and GR has p points, for ¢ > p/2, we get a matching bound for (3) of

OPT > GR+ (p—k + 1)r, — o(1).

If we thus force GREEDY to assign singletons to k& — 1 of the partitions, while OPT picks
points that are mutually 27, apart in each, we obtain a matching lower bound for k-cycles. For
1-Steiner trees the best lower bound of [6] was 2.46, thus our lower bound for k = p/2 is similarly

4.46 — o(1).

4 Star and Bipartition Problems

Hassin, Rubinstein and Tamir [7] gave the following algorithm MATCHING:

Select the points of a maximum weight p-matching and add an arbitrary vertex if p is
odd.

A mazimum weight p-matching is a maximum-weight set of |p/2| independent edges. It can be
found efficiently via ordinary matching computation by appropriately padding the input graph
[7]. They used it to obtain a 2-approximation of Remote-Clique. In this section, we apply this
algorithm to the Remote-Star and the Remote-bipartition problems.

Recall that in the Remote-Star problem we seek a set of p points P that maximizes min,cp Y, cp d(v, w).
Let HEU be the vertex set found by MATCHING. We first prove a useful lemma.

Lemma 4.1 Let X be a set of p vertices. Let 11y and Il be properties that always have the
same number of edges on X, ey and es, respectively. Then,
n(X) _ wiX) _ Ih(X)

ee — () T e

Proof. Consider any property Il that always has e edges on p points. E.g. star and tree have
p — 1 edges, tour and pseudoforest have p edges, and matching has |[p/2]| edges. Let wt(X)
denote the sum of the weights of edges with both endpoints in X. Since any permutation of
the vertices is possible, each edge appears in equally many Il-structures. In fact, each edge
appears in a e/ (’2’) fraction of all II-structures on X. Thus, the average cost of a II-structure on
X is wt(X)e/(8). A minimum II; structure is therefore of cost at most wt(X) - e;/(5), while a
maximum IIy-structure is of cost at least wt(X)ez/(5). O

Theorem 4.2 The performance ratio of MATCHING for Remote-star is 2.

Proof. Let HEU be the vertex set found by MATCHING, and recall that MAT (X)) represent the
maximum-weight matching on point set X. From the triangular inequality, observe that

starf(HEU) > MAT(HEU).

By the definition of the algorithm, MAT(HEU) > MAT(OPT), and by Lemma 4.1,

2
MAT(OPT) > %ﬂstar(OPT).
p—
Thus, the performance ratio star(OPT)/star(HEU) is always at most 2, and is less when p is
even.

We construct a graph for which this ratio approaches 2. The vertices of the graph are
v1,V2,...,U,. p =mn—11is even, all distances between the vertices are 2 except the distance from
vy to each of vo,v3,...,v,—1 is 1, d(v1,v,) = 2. The optimum choice is to pick the p vertices
V2,03, ...,Up, so star(OPT) = 2(p — 1). MATCHING can pick the vertices vi,vs,v4,...,0p, SO
starf(HEU) = p — 2 + 2 = p. Hence the ratio star(OPT)/starf(HEU) = 2 — %. 3 U

We can also apply the MATCHING algorithm to the problem where II is a bipartition of
G[X], i.e. the minimum-weight cut into two sets of size p/2. Let bp(X) denote a minimum-
weight bipartition of G[X].

Theorem 4.3 The performance ratio of MATCHING for Remote-bipartition is at most 3.
Proof. A bipartition is a union of p/2 matchings. Thus, in particular for OPT,
bp(OPT) < %’MAT(OPT).

By definition, MAT(OPT) < MAT(HEU). It remains to be shown that bp(HEU) > p/6 -
MAT(HEU).

Let (L, R) be a bipartition of HEU of minimum cost, and let M be the edges of a maximum
weight (perfect) matching on HEU. For simplicity, we assume that p is even, so that |L| =
|R| = |M| = p/2. Let My, be the edges in M with both endpoints in L, Mrp those with both
endpoints in R, and My those with endpoints in both L and R. Let P, be the set of vertices
induced by Mp;, UMpgpr and P> be the set of vertices induced by Mpr. Let B be the set of edges
crossing (L, R), and partition them into By, of edges with both endpoints in P;, By with both
endpoints in P, and By with endpoints in both P, and Ps.

3@@@MH4: Placed construction inside the proof.

By the triangle inequality,

Z Z (u,) +w(z,v)] > Z Z = |R|w(MLrL). (4)

wweEMpr TER wwEMrr TER

The LHS counts the edges of Bi1, as well as those edges of By with one endpoint in Mpr. A
similar bound follows for w(Mpggr). Combined,

w(Bi2) +2w(B11) > |R|(w(Mpr) + w(MgRr)). (5)

Also, by the triangle inequality,

Yoo DD [wlua) +wla,y) +wly,0)] > Y Y Y wlu,w) = |L|[Rlw(MLr). (6)

wweEMpr x€L yeR wweEMpr x€L yeR

The middle edge of the LHS above counts all crossing edges |Mpg| times. The first and the last
edge of the LHS together counts the endpoints of edges in P, |R| times, and thus count edges
in By |R| times, and edges in Bgy 2|R| times. Thus,

|Mpg| - bp(HEU) + |R|w(B12) + 2|R|w(Bag) > |R|*w(MpRg). (7)
Adding (7) and |R| times (5), we obtain
(IMLg| +2|R))bp(HEU) > |R|*w(M).

Thus, we have

bp(HEU) > @MAT(HEU) = gMAT(HEU),

as desired.]

It is an open question whether the bound of 3 from Theorem 4.3 is tight.

5 Pseudoforest and Matching Problems

In this section, we introduce an algorithm PREFIX that approximates the Remote-pseudoforest
and Remote-matching problems within a logarithmic factor. As we shall see in Section 7.1, the
GREEDY algorithm alone cannot guarantee any ratio for these problems that is independent of
the weights.

We first consider the problem where we want to select p vertices so as to maximize the
minimum weight pseudoforest (pf). A pseudoforest is a collection of directed edges so that the
outdegree of each vertex is one, and hence pf is the sum of the nearest neighbor distances. More
formally, wt(pf(1/)) is defined to be -y d(z, W — {z}). Each component of a pseudoforest is
a graph with equally many vertices as edges, sometimes called a cactus.

A related concept is that of an edge cover. A set of edges covers the vertices if each vertex is
incident on some edge in the set. A pseudoforest is also an edge cover, while it can be produced
from an edge cover on the same vertex set by counting each edge at most twice. Thus, the values
of these problems differ by a factor of at most two.

10

5.1 Upper Bounds

We present an algorithm for selecting p vertices for Remote-pseudoforest; the same algorithm
(i.e. the same set of vertices) works well for Remote-matching as well.

We take a two step approach to the problem. In the first step we select some number (< p)
of vertices that induce a large pseudoforest. This is done by considering the sequence of vertices
selected by GREEDY, and choosing some prefix of this sequence according to a simple criterion.
In the second step, we choose the remaining vertices so as to avoid overly reducing the weight
of the pseudoforest. This is done by ensuring that the additional vertices selected be close to
only few of the vertices chosen in the first step.

For simplicity, we assume that p < n/2, where n is the total number of vertices. It is easy to
see that the algorithm can be modified when this is not the case. The ratio attained stays the
same within a constant factor as long as p is less than some constant fraction of n. The problem
changes character if n — p is small, which we do not attempt to address here.

The PRrREFIX Algorithm :

Step 1 : Run the GREEDY algorithm, obtaining a set Y = {y1,...,y,}. Let ¢ € {1,2,...,p—1}
be the value which maximizes ¢ - r,. Let Y, be the prefix subsequence of Y of length
g+ 1.

Step 2 : Let S; be the set of vertices of distance at most r,/2 from y;, i =1,...,g+ 1. The S;
are disjoint spheres centered at y;. Points of distance exactly r,/2 from more than one y;
are assigned arbitrarily to one sphere.

Let z = [(¢+1)/2]. Let {S;,,Si,,-..,Si.} be the z sparsest spheres and let Good be the
set of their centers {y;,, Yi, .-, yi. }. Let Rest be any set of p—z vertices from V —U?_, ;..

Output PRE = Good U Rest.

Our main result is a tight bound on PREFIX. Let H; be the harmonic number 2221 1/i <
1+ Inn.

Theorem 5.1 The performance ratio of PREFIX is O(logp) for Remote-pseudoforest.

Proof. First we verify that we can actually find the set Rest of additional vertices. The spheres
contain at most n/(q + 1) vertices on average, so the sparsest z of them contain at most | (¢ +
1)/2|n/(q + 1) < n/2 vertices. Hence, at least n/2 > p vertices can be chosen from outside the
spheres as desired.
We propose that
of(PRE) > tree(Y,)/(4H)). (®)

For any center y; € Good, and node w outside of S;, d(y;, w) > r,/2. Hence,

1
of(PRE) > Y d(@,PRE—{a})> 3 r,/2> 101> T, (9)
2 2 4
zeGood z€Good
Consider the spanning tree 7" on Y, which contains an edge from y;1; to Y; = {y1,...,v;}

of weight r;, for + = 1,...p — 1. Recall that by the choice of ¢, r; < %. Hence,

p—1 p—1

tree(Y,) < wt(T') = Zri < E g _ qrqHp—1. (10)
: —~
1=1 1=1

11

Equation 8 now follows from Equations 9 and 10.
We next show that

tree(Y,) > pf(OPT)/8. (11)

The Remote-tree problem was considered in [6]: Find a set of p points F}, such that tree(F}) is
maximized. It was shown [6, Theorem 3.1] that tree(Y),) > tree(F})/4. By definition tree(F}) >
tree(OPT). Observe that tree(X) > (p — 1)/p - pf(X) > pf(X)/2, for any point set X. From
these inequalities we get (11).

The desired upper bound of 32H,, = O(logp) on the approximation ratio pf(OPT)/pf(PRE)
follows from (11) and (8). U

We now show the same upper bound for Remote-matching from selecting the same set PRE
of vertices. We assume that p is even.

Theorem 5.2 The performance ratio of PREFIX is O(logp) for Remote-matching.

Proof. Observe that for any vertex set X, tree(X) > mat(X). (It is well known that tree(X) >
cycle(X)/2 and since a Hamilton cycle consists of two matchings, cycle(X)/2 > mat(X).) Also,
mat(X) > pf(X)/2, since doubling the edges of a matching yields a pseudoforest. Thus,

tree(OPT) S mat(OPT)
32H, ~— 32H,

mat(PRE) > pf(PRE)/2 >

5.2 Lower Bounds

The performance analysis is tight within a constant factor.

Theorem 5.3 The performance ratio of PREFIX for Remote-pseudoforest and Remote-matching
is Q(logn).

We give the construction for pseudoforest; the one for matching is similar.

Proof. We construct a sequence of graphs G, on O(p®/?) vertices for which the ratio attained
by PREFIX is logp/20 = Q(logn).

Let t be such that p < 1+4+---+4! = (471 —1)/3. Let n be 2¢(4!"! —1)/3. For simplicity,
we assume that p = 1 +4 + .-+ + 4%, for integer t. The vertex set of G, is partitioned into
levels 0,1,...,t, and each level i is partitioned into 4’ blocks. Each block contains 2¢ vertices,
each labeled with a distinct binary string of ¢ bits. The distance between two vertices in the
same block at level i is 1/4'7/, where j is the index of the first character where labels of the
vertices differ. The distance between two vertices in different blocks, either at the same level ¢
or different levels 4, ', i < ', is 1/4%.

We first verify that the triangle inequality is satisfied for the edge weights of this graph. We
consider the different cases:

e One vertex a is in a different block from the other two, and the level 7 of a’s block is at
most that of the other two. Then, d(a,b) = d(a,c) = 1/4" > d(b, c), satisfying the triangle
inequality.

12

e Two vertices b, c are in the same block at level ¢, while a is in a block at level ¢/, 7 < 7.
Then, d(a,b) = d(a,c) = 1/4* > d(b, c), satisfying the triangle inequality.

e All three vertices a, b, ¢ are in the same block at level i. Assume, without loss of generality
that d(b,c) = min{d(a,b),d(b,c),d(a,c)} = 1/471. Let jz, jo < 51, be the first bit where
the label of a differs from the labels of b and c¢. Then, d(a,c) = d(a,b) = 1/4*772 > d(b,c),
and the triangle inequality holds.

The theorem now follows from the following two lemmas.]

Lemma 5.4 pf(OPT) >t+1.

Proof. Consider the solution formed by choosing one vertex from each block. There are 4!

vertices chosen from level 4, i = 0,1,...,¢, and each vertex at level i is at a distance 4% to its
nearest neighbor in this set. Hence, the cost of this solution, and therefore of OPT also, is at
least ¢t + 1. L]

Lemma 5.5 pf(PRE) < 10.

Proof. Consider first the contribution of the greedy prefix Y,. Let a be such that r, = 1/4%.
Then, Y, contains at most one vertex at level higher than a, since after that vertex is selected,
all other such vertices are at distance less than r,. Y, contains vertices from each block of level
at most a — 1. In fact, for each block at level j, it contains at least one vertex for each value
of the first a — 1 — j bits of the vertex label (as otherwise there would be a vertex of distance
1/49+(06173) = 1/4%~1 from other selected vertices). Thus, the nearest neighbor distance of each
vertex is at most 1/4%7!. On the other hand, Y, contains at most one vertex for each value of
the first @ — j bits. Thus, the total number g of selected vertices is at most

a a
L+ > 47200 =14 200 <2.4%

Thus, the total weight of the greedy prefix is at most (1/4%71).2.4% = 8.

In order to bound from above the contribution of Rest, it suffices to show one particular
choice of vertices from outside the sparsest spheres which will make Rest small. Two vertices in
the same block whose labels differ only in the last bit are called buddies. The distance between
buddies is at most 1/4%. It can be easily seen that there are enough buddies outside the sparse
spheres so that Rest can be formed entirely with buddies. Then, the contribution of Rest is at
most (p — q)4~¢ < 4/3. O

We can also show more generally that any performance analysis that is based on comparing
the pf to the tree can at best result in a logarithmic ratio. Namely, we we can construct graphs
for which a large (logarithmic) gap exists between the weight of the tree of the whole graph and
the pf of any subset of vertices.

Theorem 5.6 For infinitely many n, there exist graphs G, such that

tree(Gp)

——=—— > Q(logn).
maxpcy, pf(P) — (logn)

13

Let n = 2!, ¢t > 2. We construct a family of graphs G, = (Vy, E,,) as follows. Each vertex
has a label of the form [e, e, ..., €], where e; € {0,1}. The distance between distinct vertices
e = le1,e2,...,¢e] and f = [f1, fa,..., fi], is 1/2¢, where i be the smallest index such that
e; # fi. Vertices are grouped into metavertices; a metavertex at level i, [e1,eq, ..., e;*] contains
all vertices of the type [e1,ea,..., € Tit1,Tiv2, .., 2], ©; € {0,1}. A metavertex at level ¢
consists of just a single vertex while the metavertex at level O contains all the vertices. The
metavertices [e1, ez, ...,e;—1,0%] and [e1, ez, ..., e;_1, 1*] are called a pair at level 7. It is easy to
verify that the triangle inequality is satisfied.

The theorem follows from the following two lemmas.

Lemma 5.7 tree(V) > t/2.

Proof. Consider the spanning tree formed by connecting the 2¢=! pairs at level ¢ — 1 by edges
of length 1/2¢, 2!=2 pairs at level ¢t — 2 by edges of length 1/2/=1, ..., 2% pairs at level i by edges
of length 1/2+1 ... 2! pairs at level 1 by edges of length 1/22, and a single edge of length 1/2.

To verify that this is a minimum spanning tree, consider the cut (S;, V — S;), where S; is
a metavertex at level 7, and observe that the sole edge in the tree crossing the cut is a lightest
edge across the cut. It is easily verified that the weight of this tree is #/2.]

Lemma 5.8 maxy vy, pf(V') < 1.

Proof. Fix V' C V,,. The value of a metavertex is the sum Y, d(u, V' — {u}), where u ranges
over all the vertices from V' in the metavertex. We say that a metavertex contains a vertex if
the vertex belongs to the intersection of the metavertex and V.

Claim: If a metavertex at level 4 < ¢ — 1 contains at least two vertices, its value is at most 1/2¢.

Proof. By downward induction on . The base case ¢ = t — 1 holds since a metavertex has 2

vertices of distance 2¢. For the inductive step, assume that a metavertex [er,es,...,e; 1% at
level 4 — 1 contains at least two vertices. If either one of the metavertices [e1, e2, ..., e;—1,0%] or
le1,€9,...,€;_1,1x] contains no vertex, we are done by the inductive hypothesis. Otherwise, if

one of them contains only a single vertex, its value is 1/2° (the distance to other metavertex),
and if it contains two or more vertices, then by the inductive hypothesis its value is at most
1/2¢. Hence, the sum of the values of the pair, which equals the value of the metavertex at level
i—1,is at most 1/2¢1, L

The lemma follows by applying the claim to the metavertex at level 0 containing all the
vertices of V'. O

6 Bottleneck Problems

In this section, we examine the problem of maximizing the destruction radius and other related
bottleneck problems. Our objective is to select p sites so as to maximize the difficulty of an
adversary attack with k ’explosives’ causing a complete destruction. Several optimization prob-
lems arise, depending on which parameter is to be maximized. We look at three such problems.
In this section, we analyze the performance of GREEDY on these problems. In subsection 6.1 we
give hardness results.

1. (Radius version) Any facility is a potential explosives site, i.e. a site for the placement of
explosives. The objective is to force the adversary to use large explosives i.e. we pick the
facility sites so as to maximize the destruction radius of the adversary’s explosives.

14

2. (Steiner-radius version) Any vertex is a potential site for the placement of explosives.
Thus, the explosion sites may be “Steiner points”, in that they do not belong to the set
of facility sites.

3. (Diameter version) The objective is the maximum distance between pairs of points in the
same partition.

These radius problems do not fit in the framework we defined earlier of the weight of a
[T-subgraph. However, they can be viewed as the bottleneck versions of such properties, i.e. the
value is the maximum weight edge of a subgraph satisfying the property. Thus, the Radius
version is the bottleneck problem of Remote-star, and Diameter version the bottleneck problem
of a Remote k-Cliques problems.

We can formally define these problems as follows. We are given a graph G, and positive
integers p, k, kK < p—1. We are to find a set P C V of p vertices that maximizes the following
objective function.

Radius: min maxd(zx,S),
SCP|S|=k zeP

Steiner Radius: min maxd(z, S),
SCV,|S|=k zeP

Diameter: min max d(z,y).
P=P|--+| Py z,y€P;,i=1,2,...,

For a point set X, let Radius(X), SteinerRadius(X) and Diameter(X) denote the values of
the three variant problems on X. Observe that these values differ by a factor of at most 2.

SteinerRadius(X) < Radius(X) < Diameter(X) < 2 SteinerRadius(X).
Let GR denote the value of the greedy solution.

Claim 6.1 No matter how the greedy points are split into k parts, there exist two points which
lie in the same parts and which are at a distance at least Ty, apart.

Proof. Consider the first (k + 1) greedy points. By the pigeonhole principle, some two will fall
in the same part. The distance between those two is at least . L]

Theorem 6.2 The performance ratio of GREEDY is 2 for the Steiner-Radius and Diameter
versions, but 4 for the Radius version.

Proof. Claim 6.1 implies that GR is at least ry for the Diameter case, and at least 7 /2 for the
Radius and Steiner-Radius cases. Since each point of the optimal solution is within distance r
from some point in GR, OPT is at most r; for the Steiner-Radius case: this follows from the
fact that we can use the vertices from GR as Steiner vertices. Also, if we partition the vertices
of OPT according to the nearest vertex in GR, vertices in the same part are at most 2r; apart.
Thus, OPT is at most 2r; for the Radius and Diameter cases. Hence the upper bounds claimed.

We show that these bounds are tight for the case ¥ = 1 and p = 4, with other cases an
easy variation. Consider the shortest-path distance graph of the unweighted 10-vertex graph in
Fig. 1. GREEDY may select yi,...,ys4 in sequence, resulting in diameter 2 and radius 1, while
the optimal solution consists of z1,..., 24, with diameter 4, Steiner-radius 2, and radius 4. [

Notice that in the process, we have given a constructive solution of the adversarial problem
of selecting the explosion sites against the optimal solution. For instance, picking the first k
greedy points as the explosion sites in the Steiner-Radius version results in a destruction radius
that is at most twice the best possible of an optimal selection of p sites.

15

Figure 1: Hard instance for GREEDY for radius problems.

Also, note that using the explosion sites of the greedy solution as the sites of the optimal
solution yields a ratio of 3 for the Steiner-Radius problem. This is because the distance of
any optimal point to some greedy point is at most ri, and from that greedy point to a greedy
explosion site is at most GR. This ratio is tight for a basic anticover, as seen by the three points
on a line: 0,1, and 3.

6.1 Hardness of bottleneck problems

The destruction radius problems are bottleneck problems.

e Remote-1-Radius is the bottleneck problem of Remote-star. More generally, Remote-k-Radius
problem is the bottleneck problem of the Remote-II problem that asks if there is a p-set P
such that the size of the minimum dominating set of G[P] is greater than k.

e Remote-k-Diameter is the bottleneck problem of the problem that asks if there is a p-set
P such that G[P] is k + 1-chromatic.

e Remote-k-SteinerRadius is the bottleneck problem of the following one-way domination
problem: Is there a p-set P such that no set of k vertices in G dominates P.

Given these characterizations, we can clarify the complexity of these problems.

Proposition 6.3 Remote-k-Diameter is polynomial solvable for k = 1 or 2. For k > 3, it is
co-NP hard, and hard to approximate within factor less than 2.

Proof. The hardness follows from Theorem 7.4 and the fact that deciding 4-chromaticity is
co-NP-hard.

Notice that any p-set that contains the furthest pairs of points is an optimal solution for
k = 1. For k = 2, the non-k-colorable subgraphs are precisely the odd cycles. Let wg be the
largest w such that T, contains an odd cycle of length at most p. It suffices to choose any p-set
that contains an odd cycle in T}, as an optimal solution. In particular, we can find the smallest
odd cycle in T, by running breadth-first search (for at most p/2 levels) starting from each of
the n nodes. Adding any nodes to the vertices forming the cycle then yields an optimal solution.

O

Proposition 6.4 Remote k-Steiner-Radius is NP-hard, for any k > 1.
Proof. We show this for £ = 1, with other values an easy extension.

Let H be a (1,2)-graph of an unweighted graph G. Suppose a p-set P has a 1-Steiner radius
2 in H. Then, Yv € V,3w € P,d(v,w) = 2. That is, Vv € V,3w € P, (v,w) € E(G). Hence, P

16

is a total dominating set of G, i.e. every vertex in G (including those in P) has a neighbor in P.
On the other hand, if P has a 1-Steiner radius 1, then there exists a vertex v € V of distance
1 from each vertex in P. Then, v is adjacent to each vertex of P, or nonadjacent in G to each
vertex of P. Thus P does not totally dominate G. Hence, the 1-Steiner radius of H is at least
2 iff G contains a totally dominating set of size at most p.

The existence of a total dominating set is NP-hard, for arbitrary p. Hence, so is Remote
1-Steiner Radius. Similarly, obtaining an approximation less than 2 is also hard, as well as
obtaining an approximation within any factor on nonmetric graphs.]

Proposition 6.5 Remote k-Radius is NP-hard, for k > 2, but polynomial solvable for k = 1.

Proof. The case k =1 is equivalent to finding a p-set P in the threshold graph such that each
vertex in G[P] is of degree less than p—1 (or, alternatively, each vertex in the complement graph
G[P] is of positive degree). Such a set can easily be found by a greedy accumulation.

Consider now the case k = 2. Given a (1,2)-graph H of an unweighted graph G, the question
if Remote 2-Radius on H equals 2 is equivalent to asking if there exists a p-set P satisfying the
following property: For any potential center-pair z, y, there is a vertex z of distance 2 from both
z and y. This is equivalent to the following problem on G:

Pairwise-distance-2 Set

Given: Graph G’ = (V', E'), integer p.

Question: Is there a set P C V' of at least p vertices such that for any z,y € P,
there is a z € P such that (z,2) € E' and (y,2) € E'.

We show the Pairwise-distance-2 set problem to be NP-hard by a reduction from Clique.
Given a graph G = (V,E) as input to the k-Clique decision problem, form the graph G’ =
(V',E') as follows. The vertex set consists of C copies of V, for C = n?, called node-vertices
and an edge-verter for each edge of G. The node-vertices are adjacent to the edge-vertices
corresponding to the edges to which they are incident in G. The node-vertices internally form
an independent set, while the edge-vertices form a clique. Formally,

Vi = {vl:i=1,..,|V]j=1,...,C}U{vyy : (z,y) € E}

)

E = {v%va Sryy) e B j=1,...,C U{vgyvaw : (2,y), (2,w) € E}

Let S be a feasible pairwise-distance-2 set. First observe that for any pair vé,vg € S, the
only 2-path from vj to v} is through an edge-vertex to which both vertices are incident, and

this happens ounly if 2 and y are adjacent in G. It follows that
S| < n’ - w(G) + |E(G),

where w(G) is the clique number of G.
In the other direction, let X be a clique of G, and consider the set S = {v’,, V), Vgy Vg, Uy €

X,i,7 =1,...,C}. Then, it is easily verified that S is a pairwise-distance-2 set. Thus,

OPT(G") > n? - w(G) + (w(2G)>

Combined we see that |OPT(G')/n?| = w(G). Thus, even obtaining an n‘-approximate
solution to the pairwise-distance-2 problem is NP-hard, for some € > 0, given the hardness of
approximating w(G). U

17

7 General Hardness Results

We give in this section hardness results that apply to general classes of dispersion problems.

For previously studied problems, NP-hardness has been established: edge [13, 15, 12], clique
[12], tree, cycle, pseudoforest, matching [6]. Further, these reduction showed that for all of the
problems listed above except for clique, 2-approximation is NP-hard for graphs with weights 1
and 2, and n'~“-approximation is hard for nonmetric networks, for every e > 0.

We argue here that all nontrivial remoteness problems are NP-hard. A property of graphs
yields a trivial remoteness problem if it holds for graphs with no edges or fails for all graphs (or
for all but a finite number of graphs).

A (1,2)-graph H of an unweighted graph G is a complete graph on the same vertex set, with
edge weights 1 and 2 such that uv has weight 2 in H iff uv is an edge in G.

Proposition 7.1 The decision problem for Remote-1II is either trivial or NP-hard.

Proof. 'The proof is by reduction from Clique, as in previous papers [12, 6]. Given an unweighted
graph G as an input to Clique, form the corresponding (1,2)-graph H. Then, there exists a p-
subgraph in H where the weight of any pair is 2 iff there exists is a p-clique in G. Let [be the
number of edges in the minimum size structure satisfying II. If there is a p-clique in G, then
there is a subgraph in H where every structure is of weight at least 2[. If there is no p-clique in
G, then every subgraph in H contains an edge of weight 1, and thus every p-subgraph contains
a valid structure of weight at most 2] — 1.]

The decision problem for Remote-II is to determine, given a graph G and integer t, if there
exists a subgraph P with p vertices such that 7(G[P]) > t, where G[P] is the subgraph induced
by P. Thus, if p = n, it reduces to the complement of the II-problem. For some instances it
may be harder than the search problem, which only outputs a set but does not say anything
regarding its value.

Observation 7.2 Let IT be a NP-hard property, i.e. it is NP-hard to decide whether a given
graph G has the property I1. Then, the Remote-11 decision problem is co-NP-hard, and thus hard
for both NP and co-NP.

For an upper bound, we can only argue that the Remote-II problem is at most one level
higher in the polynomial-time hierarchy than the II-decision problem itself. We conjecture that
for any NP-complete graph property, the corresponding remote problem is ¥5-complete.

Conjecture 7.3 Let I be a NP-hard property. Then the problem of deciding whether there
exists a subset S of the input of size p that forms a valid instance where I holds is ¥5-hard.

We may also consider bottleneck problems. The Remote-II-bottleneck decision problem is to
determine, given a graph G and a real value w, whether there exists a set P of p vertices such
that any II-structure on G[P] contains an edge of weight at least w. As an example, Remote-edge
is a bottleneck problem for Remote-clique.

These problems are best observed in terms of related unweighted graphs. Given a weighted
graph G and a weight w, the unweighted threshold graph T;, of G has the same vertex set and
contains an unweighted edge for each edge of weight at least w in G. Note that if we take an
unweighted graph G, form its (1,2)-graph H and take the threshold graph T of H, we obtain
the original graph G.

18

Observe that the II-bottleneck value on P equals the smallest value w such that II holds on
G[P]. Then, we have that Remote-II-bottleneck on G is at least wy iff wy is the smallest value
w such that IT holds on the threshold graph T,, of G[P] for some P. To find wy we can apply
binary search, adding a logn factor to the time complexity. Hence, optimization is polynomial
reducible to the decision problem on the threshold graphs.

Theorem 7.4 Let II be a co-NP-hard property. Then, the Remote-II-bottleneck problem is co-
NP-hard. In fact, it is hard to approzimate it within a factor of less than 2.

Proof. Given a graph G input to the co-NP-hard II-decision problem, form its (1,2)-graph H.
Observe that the II-bottleneck value on H with p = |V(G)| equals 2 iff G satisfies II. Thus,
distinguishing whether the value of the bottleneck problem is 1 or 2 is co-NP-hard.]

The approximation hardness results carry over to the related partition problems, where the
objective function is measured within a fixed number of parts of the subgraph.

Proposition 7.5 Let II be a property where vertices have degree at least one (in a nontrivial
[I-graph). Let Remote-k-II be the remote problem where the objective function is the sum of the
weights of the edges of k disjoint I1-subgraphs. Then Remote-k-I1 (on p—k+1 points) is at least
as hard to approximate as Remote-II (on p points). This also holds for the bottleneck problem,
where the objective is the maximum weight of an edge in any of the k Il-subgraphs.

Proof. Given a hard instance G for Remote-II, form a network G’ by adding k& — 1 vertices to
G and make the weight of their incident edges be (effectively) infinity.

Consider the Remote-£-II solution P’ consisting of the k£ — 1 new nodes along with an optimal
Remote-II set P on p — k + 1 nodes. Then, if the adversary assigns any two of the new nodes in
the same part, the value of the objective function would be infinite; thus, the only reasonable
partitioning is to assign the £ — 1 new nodes to separate parts, with P in the last part. The new
nodes now do not contribute to the objective function, implying that

OPT-n(G") > OPTi(G),

where OPTx denotes the value of the optimal solution for problem X.

On the other hand, no matter what set P’ is chosen by a Remote-k-II algorithm, the adversary
can always partition it so that all but one part contain only single vertices that do not contribute
to the objective value, with the last part containing p — k + 1 nodes from G. Thus,

ALG-n(G") < ALG(G),

that is, the set produced on G’ gives at least as good solution on G (when appropriately restricted
to vertices of G). Hence, approximating Remote-£-II is no easier than Remote-II. This argument
holds equally for the corresponding bottleneck problems. L]

Some examples of II for which the above proposition applies are tree, pseudoforest, cycle, and
clique.

19

7.1 Limitations of GREEDY

Here we give lower bounds on the performance of GREEDY on some general classes of remoteness
problems. It is generally possible to argue similar bounds even if GREEDY tries all n possible
starting points, such as was done in [6] for the Remote-tree problem. This requires some added
technical complications that may be problem specific, thus we do not pursue that here.

Proposition 7.6 The performance ratio of GREEDY on any remote problem is at least 2.

Proof. Consider an instance with two types of points: z-points of distance 1 apart and y-points
of distance 2 apart, with points of different type of distance 1 apart.

GREEDY may start with some z-point, from which all points are of distance 1, and then
continue choosing z-points. That is, the induced subgraph selected is complete with unit-weight
edges. An optimal solution will contain only y-points, inducing a complete graph with all edge
weights 2. Whatever measure used, it will be twice as large in the latter subgraph as in the one
chosen by GREEDY.]

We can show that for a host of problems the performance ratio of GREEDY either grows
linearly with p, or there is no upper bound on it that is independent of the edge weights.

Definition 7.7 The following function counts the number of edges in any p-vertex I1-structure
that must cross an (s,p — s)-cut.

Crossy(Il, s) = Hmnrll Hvivj e E(H) : 1 <i<s,s+1<j<p}
€
V(H)={v1,...,vp}

Let us consider the value of Cross(Il,s) for some of the structures considered here, for
1 < s <p-—s. We can see that Cross,(pf,s) = 0, for any s, and Cross,(mat,s) = 0 when s is
even, since one can form these structures without crossing a particular cut of the subgraph. Also,
Crossp(tree, s) = Crossp(cycle,s) = 1, Crossp(star,s) = s, and Cross,(clique,s) = s- (p — s).

Intuitively, we construct an instance with a “cutting cleavage”, i.e. consisting of two clusters
that are far apart. The distance between the two clusters overwhelms the intracluster distances,
so that the only measure that matters is the number of edges in the minimum II-structure on
the selected point set that cross the cleavage. Cross counts this for different ways of splitting
the p vertices among the two clusters. By adjusting the edge weights, GREEDY can be made
to pick the number of points from one cluster that yields the fewest number of forced crossing
edges, while OPT picks the number that maximizes the number of forced crossing edges.

Proposition 7.8 Let d, = minj<,<,—1 Crossy(Il, s) and D), = max, Cross,(1l,s). The perfor-
mance ratio of GREEDY on Remote-II is at least arbitrarily close to Dp/d, when d, > 0, and
unbounded when d, = 0 and D, > 0. This holds even for the I-dimensional case, where edge
weights correspond to distances on the real line.

Proof. Let t, (T)) be the value of s that minimizes (maximizes) Crossy(1l,s). Without loss of
generality, ¢, T, < p/2.

Let € be a small number and let ¢ = ¢/n. For any n such that n > 2p — t,,, we construct
an instance on n vertices, consisting of two clusters,) with p — ¢, vertices, and @' with the
remaining n — p + ¢, > p vertices. Vertices in () correspond to the points —ei on the real line,
i=1,...,p—t,, while vertices in Q' correspond to the points 1 +i/€e’, i =1,...,n —p+t,.
Observe that all distances between pairs of points in Q' are less than all distances within Q.

20

GREEDY first chooses a vertex from each of Q and @', followed by the rest of @, and finally
selects t, — 1 vertices from @’. Since by definition there exists a II-structure with only d, edges
crossing a (tp,p — tp)-cut, the cost of that structure is the sum of Crossy(Il,t,) = d, crossing
edges of weight 1, along with at most (£) edges of weight € or €. On the other hand, the optimal
solution chooses T), vertices in @ and the rest in Q'. Every II-structure has at least D, edges
crossing a (T, p — Tp)-cut, hence the minimum cost II-structure of OPT is of cost at least D,,.
Since € can be arbitrarily close to 0, the ratio between the cost of the optimal solution to that
of the greedy solution can be arbitrarily close to D, /d,,.]

This shows that the performance ratio of GREEDY on e.g. Remote-matching and Remote-pseudoforest
is unbounded. Also, the performance ratio is at least {2(p) on Remote-clique, and Remote-star.

For an explicit example where GREEDY fails for Remote-pseudoforest, consider the following;:
V = {a1,a2,b1,by,...,b,_2}, d(a;,b;) = 1, d(ai,a2) = 2¢, d(b;,b;) = €, p = 4. An optimal
selection of the vertices is any one of the a;’s and any three of the b;’s giving pf > 1, while
GREEDY selects a1, as and two of the b;’s for pf = 6e.

8 Discussion

We have presented a framework for studying dispersion problems, given approximation algo-
rithms for several natural measures of remoteness, and shown several hardness results as well as
limitations on the ubiquitous greedy approach.

We have also considered a number of extensions of previously studied problems. These
include bottleneck problems — where the objective function is a maximum, rather than the sum,
of the edge weights of a structure and Steiner problems — where the objective function may
include vertices outside the selected set P.

Many threads are left open for further study. Are there constant-factor approximation
algorithms for the remote pseudoforest and matching problems, or can we prove super-constant
hardness results? Can we give an exhaustive classification of the approximability of a large class
of remote problems, and/or can we succinctly describe those problems for which GREEDY will
do well? Is there a parallel algorithm for obtaining an anticover? And finally, a further study
on the applied aspects from the management science viewpoint would be desirable.

References

[1] C. Baur and S. Fekete. Approximation of geometric dispersion problems. Algorithmica, to
appear.

[2] E. Erkut. The discrete p-dispersion problem. Europ. J. Oper. Res, 46:48—-60, 1990.

[3] E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. Europ. J.
Oper. Res, 40:275-291, 1989.

[4] E. Erkut and S. Neuman. Comparison of four models for dispersing facilities. INFOR,
29:68-85, 1990.

[6] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. .J. Algorithms, to
appear.

[6] M. M. Halldé6rsson, K. Iwano, N. Katoh, and T. Tokuyama. Finding subsets maximizing
minimum structures. STAM J. Disc. Math., 12(3):342-359, 1999.

21

[7]

[12]

[13]

[14]

[15]

[16]

R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion.
OR Letters, 21:133-137, 1997.

J. Hastad. Clique is hard to approximate within n!~¢. Acta Mathematica, 182:105-142,
1999.

G. Kortsarz and D. Peleg. On choosing a dense subgraph. In Proc. 34th IEEE Symp. on
Found. of Comp. Sci., pages 692-701, Nov. 1993.

M. J. Kuby. Programming models for facility dispersion: The p-dispersion and maxisum
dispersion problems. Geog. Anal., 19(4):315-329, Oct. 1987.

[. D. Moon and S. S. Chaudhry. An analysis of network location problems with distance
constraints. Management Science, 30(3):290-307, Mar. 1984.

S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for
dispersion problems. Operations Research, 42(2):299-310, 1994.

A. Tamir. Obnoxious facility location on graphs. SIAM J. Disc. Math., 4(4):550-567, Nov.
1991.

A. Tamir. Comments on the paper 'Heuristic and special case algorithms for dispersion
problem’ by S.S. Ravi, D.J. Rosenkrantz and G.K. Tayi. Operations Research, 46:157-158,
1998.

D. J. White. The maximal dispersion problem and the “first point outside the neighbor-
hood” heuristic. Computers Ops. Res., 18(1):43-50, 1991.

D. J. White. The maximal dispersion problem. .J. Applic. Math. in Bus. and Ind., 1992.

22

9 Significant changes made

1.

As suggested by Referee 1, the paper has been substantially reorganized to emphasize
problems instead of algorithms.

. As suggested by Referee 1, the section on Terrorism Defense/Bottleneck problems in the

Introduction has been significantly expanded.

. We have briefly addressed the issue, raised by Referee 1, of considering lower bounds of

the generalized version of Greedy i.e. if different starting points are considered.

. As suggested by both Referees, we have added a table of known results, as well as expanding

the list of dispersion problems in Section 1.

. Figure 1 has been corrected, addressing a point made by Referee 1.

. As suggested by Referee 2, an example for the lower bound of the MATCHING algorithm

for the Remote-Star problem has been added.

. Nearly all the minor comments of both Referees have been addressed.

23

