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  TSP-remote 4-set 
  and its TSP tourFigure 1: Remote planar point sets.The problems of �nding a minimumweight spanning tree (MST, in short), minimumweightSteiner tree, and minimum weight tour (TSP, or traveling salesperson tour) are fundamentalcombinatorial structures, which are not only useful in applications but also a rich source ofresearch on exact and approximate algorithms. All of these problems consist of �nding a subsetmaximizing the total weight of edges of minimum combinatorial structures constructed from thesubsets. Except for Remote-ST, these structures are contained in the subgraph induced by thesubset.From a practical point of view, the Remote-MST (or Remote-ST) k-set of a network canbe viewed as the set of k nodes among which communicating information is most expensive.Thus, the remote subsets can be applied to the evaluation of the communication performanceof networks.They can also be applied to clustering problems. Indeed, we originally faced these problemswhen trying to �nd a good �starting tour� of a large TSP instance (a circuit board drillingproblem [18] that occurred at a manufacturing plant) with more than 10,000 non-uniformlydistributed cities. To obtain a short approximate TSP tour by construction heuristics, it ise�ective to start with a subtour (starting tour) consisting of a relatively small number of samplecities capturing the global structure of the point distribution [19]. For this purpose, randomsampling is not suitable, since it may miss some critical cities, and approximate TSP toursconstructed from the associated starting tour often respond poorly to improvements by localsearch heuristics. The exact or approximate Remote-MST and/or Remote-TSP solutionsseem to give better starting tours.General framework The problems under study can be generalized to the following frame-work. Let � be a minimization problem whose solution is a subset of the edge set satisfying aparticular property with respect to a given subset P of vertices. Let the cost of a solution bethe sum of the weight of the edges in the solution. Let �(P ) denote the minimum cost value fora nodeset P . We are interesting in the following problem:Remote-�: Given a graph G = (V;E) and integer k, �nd a subset P of V ofcardinality k such that �(P ) is maximized.2



Our results.We present approximation algorithms in Section 2: in metric graphs, general graph, Euclideangraphs and tree graphs.Metric graphs are graphs with weights that satisfy the triangular inequality: for any threenodes u; v; w, d(u; v) + d(v; w) � d(u;w). The distance of the edge e(u; v), denoted d(u; v), isthe weight of the edge. One example of a metric graph is the shortest-path distance graph D(G)of an non-complete graph G, where the edge weight of e(u; v) is de�ned to be the weight of theminimum weight path between u and v of G.We apply in Section 2.1 the 'greedy furthest-point' algorithm, to obtain simultaneous ap-proximations of all three problems in metric graphs. We obtain performance ratios of 4 forRemote-MST, and 3 for Remote-TSP, both of which are tight for this algorithm. For theRemote-ST problem, the greedy algorithm attains a ratio of 3.For Remote-MST in general graphs, we give in Section 2.2 an algorithm that �nds a solutionwithin a factor of k � 1 from optimal.Euclidean graphs are a special class of metric graphs, where the vertices correspond to pointsin the plane and the weight of an edge is the Euclidean distance between the points. The resultsobtained for the metric case, in combination with results on the Steiner ratio in the plane, yieldasymptotic ratios of 2.31 (2.16) for the Remote-MST (Remote-ST) problems, respectively.Finally, in Section 2.4, we give a linear time algorithm for computing Remote-ST when theset of edges with non-in�nity weights forms a tree in G.In Section 3, we prove approximation hardness results for the three problems. Remote-MST and Remote-TSP of general graphs cannot be approximated within a factor of 
(n1��),unless NP � ZPP . Here, n is the number of vertices in the input graph. We generalizethe proofs to the remoteness versions of degree-constrained subgraph problems, with or withoutconnectivity requirement. These problems include MST, TSP, minimumweight matching, cyclecover, degree-constrained spanning tree, and a number of other well-studied problems. On metricgraphs, these problems are also NP -hard to approximate within a factor less than 2.The Remote-ST problem e�ectively always works on a metric graphs, by using the shortest-distance graph of the input graph; we show it to be hard to approximate within a ratio less than4=3.We summarize the main approximability results of the paper in the following table. It liststhe results obtained for each of theMST, TSP, and ST remote problems, with lower and upperbounds for approximability in general graphs, metric graphs, and Euclidean graphs.� General Metric R2l.b. u.b. l.b. u.b. u.b.MST n1�� k � 1 2 4 2.25TSP n1�� k � 1 2 3ST 4/3 3 4/3 3 2.16
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Related work.Problems of maximizing minimum structures have applications to the location of undesirablefacilities. For instance, hazardous facilities like nuclear plants or ammunition dumps should belocated as far from each other as possible to minimize vulnerability. A not insubstantial body ofliterature has developed on the subject � see [10] for a survey, primarily from the managementscience viewpoint. The focus has been on two structures not speci�cally dealt with in this paper:the minimum weight of any edge in the k-set, and the average, or equivalently the sum, of theweights of edges between pairs in the k-set. For the former problem, known as the k-Dispersionproblem, Ravi, Rosenkrantz and Tayi [24] showed that the 'greedy furthest-point' algorithmobtains a performance ratio of 2 on metric graphs, improving on a weaker bound of [28]. Theyalso showed that approximating within a factor of less than 2 is NP -hard. Independently,Tamir [26] proved the same upper bound for the same algorithm (see also [27]).A dispersion problem with the criteria of maximizing the average distance between vertices inthe k-set was also considered in [24], and they gave a di�erent greedy algorithm with a ratio of 4.Hassin [14] gave an algorithm with a performance ratio of 2. Kortsarz and Peleg [16] consideredthis latter problem on general weighted graphs, under the name Heavy Subgraph Problem, andgave a sequence of algorithms that converges with a performance ratio of O(n3:885). Whiledi�erent minimum structures have been proposed in the location theory literature, we are notaware of work analyzing algorithms for such problems.If the input is a complete graph with nodes corresponding to a set of points in Euclideanspace and edge weights corresponding to the Euclidean distance between the pairs of points,the problems can be regarded as belonging to computational geometry. The problem of �ndinga subset with cardinality k of a planar point set maximizing the perimeter or area of convexhull (minimum perimeter enclosing polygon) of the subset has been studied in the literature[2, 3, 6]. However, the authors know no previous results on computing subsets maximizing otherminimum structures.Problems of �nding subsets minimizing the minimum weight of a combinatorial structureare more common [1, 9, 23, 13]. In particular, the problem of �nding the k-set minimizing theweight of the minimumMST was recently studied by Ravi et al. [23], who proved NP -hardnessand gave the �rst approximations. The performance ratios have recently been improved to thebest possible 3 for general graphs [13] and 1 + � for Euclidean graphs [20].Chandra and Halldórsson [7] have continued the work started in this paper, and analyzed anumber of other remote problems. In particular, they gave a O(log k)-approximate algorithmfor two problems suggested in a previous version of the current paper: computing a k-set maxi-mizing the minimum weight matching, and the k-defense problem, where the objective �(P ) isPv2P minu2P d(u; v).NotationA spanning tree of a node set P is a subtree of G whose node set is P . A Steiner tree of P is aspanning tree of a superset of P . A tour of P is a cycle that contains all the vertices of P . The4



weight of a tree or a tour is the sum of the edges in it.We denote the minimum spanning tree, minimum Steiner tree, and TSP tour of P byMST (P ), ST (P ), and TSP (P ), respectively. The weights of these minimum solutions aredenoted by mst(P ), st(P ), and tsp(P ). For a graph H, the maximum cost of MST (P ) over allk-node sets P is denoted by r-mst(H). In general, for a problem � and nodeset P , the min-imum structure and the minimum value are denoted by �(P ) and �(P ), respectively, and theoptimal value of Remote-� (i.e. the maximum weight of the minimum�-structure) is denotedby r-�(H).The approximation ratio of an algorithm for Remote-MST on a given input graph G is theratio of the largest MST weight of a set of k points to the MST weight of the k-set output by thealgorithm. The same holds for other problems. The performance ratio � of the algorithm is themaximum approximation ratio over all instances. A problem is approximable within a factor oft if there exists a polynomial time algorithm for the problem with a performance ratio at mostt. A problem �1 is as hard to approximate as problem �2 if, an approximation of �2 within afactor of f(n) implies an approximation of �1 within a factor of O(f(n)).Given a graph G and value 
, the bi-valued network HG;
 is a complete graph on thesame vertex set as G, where the weight of an edge is 1 if the edge is in G, and 
 otherwise.Let G[P ] denote the subgraph of G induced by a vertex subset P . Namely, P � V (G) andE(G[P ]) = f(v; u) j (v; u) 2 E(G) and v; u 2 P � V (G)g. The distance graph D(G) of a graphG has the weight of an edge (u; v) equal to the length of the shortest path from u to v in G.2 Algorithms2.1 Metric graphsIn this section, we assume that G = (V;E) is metric unless otherwise stated. Let the distancebetween a node u and a set of nodes be the minimum distance between u and any node in theset, d(v; P ) = minp2P d(v; p).Central to our approach is the concept of an anticover.De�nition 2.1 A set P of vertices p1; p2; : : : is an r-anticover of a graph if,1. d(pi; pj) � r for i 6= j, and2. minifd(v; pi)g � r for any node v 2 V .The radius of P is the largest value r for which P is an r-anticover. The size of an anticover isits number of vertices.An anticover is illustrated in Figure 2.An anticover can be constructed e�ciently by the following �greedy furthest-point� algo-rithm.
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Figure 2: Anticover (black points) of size 7 of a Euclidean graph.Greedy(G)pick an arbitrary node vP  fvgfor i  2 to kv  node in V � P furthest from PP  P [ fvgendIt is easy to see that the nodeset found by Greedy is an anticover of size k, and that its radiusis the distance between the node v chosen last and P � fvg.We apply Greedy to obtain simultaneous constant-factor approximations of the remoteMST,TSP and Steiner problems. The same algorithm was also applied to approximate the k-Dispersion problem [24], as well as the Euclidean k-clustering problem [11], indicating a level ofuniversality of this approach and an applicability to multi-objective computing.Theorem 2.1 An anticover is a 4-approximation of Remote-MST, and a 3-approximation ofRemote-ST and Remote-TSP.Proof. Let P be an anticover of G, and let r denote its radius. Let Q be any set of k points.Any pair of points in P is of distance at least r, somst(P ) � (k � 1)r: (1)Each point q in Q is of distance at most r from P , thus the tree obtained by connecting Q toMST (P ) via the shortest edge is of weight at most mst(P ) + kr. That is,st(Q) � st(P [Q) � mst(P ) + kr:The ratio (Steiner ratio) of the weight of an MST of a set of k points to that of its Steiner treeis at most 2(k � 1)=k. It follows that,mst(Q)mst(P ) � 2k � 1k (1 + kr(k � 1)r ) � 4� 2k :6



Similarly, st(P ) � k2 rbecause of the Steiner ratio, andst(Q) � st(P [Q) � st(P ) + kr:Hence, a performance ratio of 3 follows.Furthermore, tsp(P ) � kr:Connecting each point of Q to its nearest point in P by a pair of directed edges (with di�erentdirections), we can form a tour of P [Q of length at most tsp(P ) + 2kr. Thus,tsp(Q) � tsp(P [Q) � tsp(P ) + 2kr � 3 � tsp(P ):The Steiner ratio 2(k� 1)=k holds even if the tree is restricted to be a path, thus the resultshold equally for degree-constrained versions of the problems.While the analysis of the approximation ratio in Theorem 2.1 obtained by Greedy appearsloose, it is actually asymptotically optimal for both Remote-MST and Remote-TSP. Wegive lower bounds on the performance of Greedy that holds for any choice of the initial startingvertex.Theorem 2.2 The performance ratio of Greedy for Remote-MST on metric graphs is asymp-totically 4.Proof. We construct a family of instances, for which Greedy is destined to perform poorlyindependent of its choice of a starting vertex.LetGt be an unweighted (i.e. unit-weighted) graph, with vertex set fc; p1; p2; : : : ; pt; q1; q2; : : : ; qtg.Let p1; : : : ; pt; c be connected into a path, and let each qi be connected to both p1 and p2. Gtcontains no further edges.Let G0t;z be the graph formed by taking z copies of Gt, with a single c vertex common to allcopies (Figure 3). Thus, we have a connected graph on 2tz + 1 nodes. For convenience, we usenotations such as p1-vertex, p-vertex, q-vertex, and c-vertex. In order to force the algorithm toprefer the p-vertices, we perturb the distances between vertices as follows: the lengths d(c; pt)are stretched to 1 + 2�, and the lengths d(pi; pi+1) to 1 + � for i � 1.The hard instance is the distance graph D(G0t;z), with z su�ciently large. Observe that thedistance between q-vertices in di�erent copies is 2t, while the distances between p1 vertices is2t(1 + �). Thus, a p1 vertex is the furthest vertex from any set of at most z � 1 vertices.Let k = tz. The set of the �rst z vertices selected by Greedy contains at least (z � 1) p1-vertices. Thus, Greedy cannot select a q-vertex adjacent to a selected p1-vertex. Consequently,the number of q-vertices which Greedy can select is at most t. Also, Greedy must select the vertexc, whose neighbors are all of distance at least 1 + 2�. Thus, ignoring the � terms, mst(P ) �zt+ 2(t� 1) for any set P of k points selected by Greedy.7
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Figure 3: Lower bound example for Greedy.Let Q consist of the tz di�erent q-vertices. Let qi and q0i be vertices in di�erent copies of Gt.Then, mst(Q) = z(t� 1)d(qi; qi+1) + (z � 1)d(qt; q01)= 2z(t� 1) + (z � 1)(2t)= 4zt� 2z � 2t:If z = t, we have that � � mst(Q)mst(P ) = 4�O( 1pk ):Although the above lower bound is applicable only to the solution generated by Greedy, weconjecture that 4, rather than lower bound of 2 obtained in Theorem 3.1, is the best possibleperformance ratio for the problem.One plausible approach for improving on the approximation produced by Greedy is to post-process the greedy solution with local improvement changes. Having obtained an r-anticoverP , it may be possible to move individual points further away from the other points. Thatis, for a point v 2 P with d = d(v; P � fvg), there may exist a point u 2 V � P such thatd(u; P � fvg) > d. This would improve the bounds, using a strengthening of (1) to mst(P ) �Pv2P d(v; P � fvg)(k � 1)=k.The hard instances constructed above demolish that hope, since no single point can be movedfurther away. These instances can also be easily modi�ed to ensure that no b points can be moved8



further away, for any �xed b.Theorem 2.3 The performance ratio of Greedy for Remote-TSP is asymptotically 3.Proof. Our construction is based on the graphs G0t;z of the preceding theorem. Assume z iseven, and consider an arbitrary matching of z copies of Gt into z=2 pairs. Assign each edgebetween each pair Gt and Gt0 the weight � = pt. Among these, we add an additional � weightto the edges incident on p1-vertices, to ensure they will always be favored.Our graph G00t;z is the graph obtained by adding the above edges to the original G0t;z. Then,Greedy selects the same set P as in Theorem 3.2, and there is a tour of P using edges fromMST (P ) as well as z=2 matching edges between p1 vertices. Thus, tsp(P ) = zt+ o(zt). On theother hand, tsp(Q) � 3zt for the set Q consisting of the q-vertices.Theorem 2.4 The performance ratio of Greedy for the Remote-ST problem is at least 2:4.Proof. Let H be an edge-weighted graph with V (H) = fc; p1; p2; q1; q2; rg. Let d(p1; q1) =d(p1; q2) = 2, d(p1; r) = 1:5, and d(c; r) = d(r; p2) = 0:5, and let the distance between otherpairs of vertices be the shortest distance within this tree. The hard instances Hz we construct,consist of z copies of H sharing the same c vertex, with distance between vertices of di�erentcopies determined by shortest distance.Let k = 2z. Let P (Q) be the set of pi (qi) vertices, respectively. We may assume Greedyselects all the p1 vertices, followed by the p2 vertices, for a cost of st(P ) = (2+1=2)k=2 = 5=4k.On the other hand, st(Q) = 6=2k = 3k. Hence, � � st(Q)=st(P ) = 2:4.The best construction we have for Remote-ST (omitted) has approximation ratio of Greedyis 38=15 � 2:533. Thus, the precise determination of the performance ratio of Greedy forRemote-ST remains an open problem.2.2 General graphsWe give an approximation algorithm for Remote-MST on general graphs, with a performanceratio of k � 1.For a graph G and a positive weight �, de�ne G� to be the subgraph of G on V (G) withedges whose weight is at most �.HeavyEdge(G)Determine the largest � such thatG� is not (n� k)-vertex-connected.Let C be a cutset of G� of size n� k.Output P = V � C.endThe desired � can be found by binary search on the at most �n2� di�erent edge-weights. Sincethe subgraph induced P is not connected in G�, an MST of P must contain an edge of weight at9



least �. On the other hand, if edges of weight � are added to G�, any k-set must be connected.Thus, r-mst(G) � (k � 1)� � (k � 1)mst(P ):Corollary 2.5 HeavyEdge has performance ratio of k � 1 for Remote-MST.For the Steiner tree problem, it su�ces to consider the distance graph of the input graph,which satis�es the triangular inequality. Thus, we obtain the following corollary of Theorem 2.1.Corollary 2.6 Remote-ST of a general graph can be approximated within a factor of 3.2.3 Euclidean graphsLet P be a set of n points fp1; : : : ; png in the plane. The Euclidean graph of P is the completegraph on the nodeset P where the weight of an edge (pi; pj) is the Euclidean distance d(pi; pj).We consider algorithms for approximating Remote-MST and Remote-ST of this graph.The anticover de�ned in the previous section gives a geometric covering of P by k circlesof radius r, each of which is centered by a point in P . Since st(P ) � p3mst(P )=2 [8] in theEuclidean case, we immediately obtain the following.Corollary 2.7 An anticover is a 4k�2p3(k�1) -approximation of Remote-MST and a 2k+p3(k�1)p3(k�1) -approximation of Remote-ST in Euclidean graphs.Thus, the approximation ratios are asymptotically at most 4=p3 � 2:309 for Remote-MST,and (2 +p3)=p3 � 2:155 for the Remote-ST.
The worst anticover leads
us to a 2.448 approximation 

Greedy gives a 
better solutionFigure 4: Approximation by circle covers.Unlike in the metric case, it seems that the approximation ratio depends on the choice ofthe anticover. For the example in Figure 4, the worst anticover has a (2p3 + 4)=3) � 2:448approximation ratio, which is near to the upper bound 14=3p3 � 2:694 for the Remote-MST4-set.Note: If we consider the anticover created by Greedy, we can obtain a slightly better analysisthan Corollary 2.7. A key di�erence from the metric case is that the length of a minimumSteinertree of m points in a unit circle must be less than m�0:1(m�3) if m > 3 for the Euclidean case10



(we omit the proof). We can further squeeze the approximation ratio to (1:95)(2=p3) � 2:2517for the Remote-MST problem by modifying the algorithm itself; indeed, this can be attainedby modifying the output of Greedy. Unfortunately, the current proof requires a lengthy and uglycase-study, and we do not include it in this paper.2.4 Tree networksIn this section, we consider graphs in which the set of edges with �nite weights forms a tree.Let T be a weighted tree on n nodes. We assign 1 to each edge of the complement graph T cof T in the complete graph of order n, and de�ne G(T ) = T [ T c. We �rst give an O(n) timealgorithm for the Remote-ST k-set of G(T ).Theorem 2.8 The Remote-ST k-set of G(T ) can be computed in O(n) time.Proof. Clearly, we should select k leaves. If k exceeds the number of leaves of T , every setof k nodes containing all leaves forms the (unique) optimal Remote-ST k-set. If k = 2, theproblem is the diameter path problem on a tree, and can be solved in linear time. We can applythe incremental strategy developed by Peng et al. [22] for computing a k-tree core. A key fact isthat any optimal Remote-ST (k � 1)-set must be contained in an optimal Remote-ST k-set.A direct modi�cation of the algorithm of Peng et al. [22] runs in O(minfkn; n log ng) time, andthe one of the improved algorithm of Shioura and Uno [25] runs in O(n) time.Remote-MST of G(T ) is not a well-de�ned problem, since we can almost always �nd asubset P whose MST has in�nity weight. If we modify the de�nition of the remote k-set P sothat mst(P ) is maximized on the condition that mst(P ) 6=1 (we call it connectivity condition),MST (P ) must be an induced subtree of P in T ; thus, the problem becomes a special case (whereall edge weights are non-positive) of the weighted (k � 1)-cardinality tree problem de�ned byFischetti et al. [12] if we reverse the sign of all weights of T . We can thus apply Fischetti et al'sO(k2n) time dynamic programming algorithm. Moreover, we can improve it to O(kn).Theorem 2.9 The weighted (k�1)-cardinality tree of a weighted tree can be computed in O(kn)time. Hence, the Remote-MST k-set of G(T ) under the connectivity condition can be computedin O(kn) time.Proof. We only give a proof for the computation of optimalRemote-MST k-set. For simplicity,we assume that T is a rooted binary tree (we can easily modify the algorithm for non-binarytrees). We cut a rooted tree T at the nearest branch v to the root r, and obtain two subtreesT1 and T2. T1 [ T1 = T and T1 \ T2 = frg. Suppose we have the optimal Remote-MST k-setand the optimal Remote-MST j-sets containing v, for j = 1; 2; : : : ; k of each of T1 and T2.Then, the optimal Remote-MST k-set of T , together with the optimal Remote-MST j-setcontaining r for j = 1; 2; : : : ; k, can be computed in O(k2) time, by combining those of T1 andT2. We improve this time complexity as follows: We say that a node u of T is heavy if bothof its descendent trees have at least k=2 nodes, and light otherwise. The number of heavy11



nodes is at most n=k. We separately charge the cost of the operations at the heavy nodes,which is O(kn) in total. Let f(n) be the cost for operations at all light nodes of T . Ata light node, suppose that the size of Ti is ni. Then, the computing time at the node isO(min(n1; k)min(n2; k)). Thus, the cost function f(n) (up to a constant factor) follows theformula f(n) � f(n1) + f(n2) + min(n1; k)min(n2; k).We can see that g(n) = minf2kn; n2g satis�es g(n) � g(n1) + g(n2) +min(n1; k)min(n2; k).Case 1: If 2k � n, the formula follows from n2 � n21 + n22 + n1n2.Case 2: If n � 2k � n1 � k > n2, 2kn � n21 + n22 + kn2 easily follows.Case 3: If n1 � 2k and k > n2, 2kn � 2kn1 + n22 + kn2 = 2k(n1 + n2)� n2(k � n2).Hence, f(n) < cg(n) for some constant c, thus is O(kn).The same algorithm can compute Remote-MST k-sets (with connectivity condition) ofdecomposable graphs, such as series-parallel graphs, in O(kn) time.3 HardnessThe decision version of Remote-MST (to decide whether there exists a set of k vertices whoseMST weight is more than a given threshold) is obviously in NP . Instead of showing NP -hardness, we show approximation-hardness for both general and metric graphs.We shall be primarily interested in approximating the remote problems within a functionindependent of k. Thus, we ask about the worst-case performance ratio as k ranges from 1through n.Theorem 3.1 Approximating Remote-MST is as hard as approximating Independent Set.Proof. Let g be the gap in the approximability of Independent Set. Thus, for some value R,determining if �(G) = R or �(G) � R=g is hard.Let k be R, and let 
 be a value greater than k. We construct a bi-valued graph H = HG;
 onthe same vertex set as G, with the weight of an edge being 1 if contained in G and 
 otherwise.Refer to Figure 5.If there is an independent set of size k in G, then that set has a value r-mst = (k � 1)
. Onthe other hand, suppose r-mst(H) � (k�1)
=g. Notice that this is at least (k=g�1)
+(k�k=g),since 
 � k. Then, there is a subset P of k vertices such that MST (P ) contains at least k=g� 1edges of weight 
. Let G[P ] be the the subgraph in G induced by P . It follows that G[P ] mustcontain at least k=g connected components. Hence, �(G) � �(G[P ]) � k=g.It follows that �(G) = k ) r-mst(H) = (k � 1)
�(G) � k=g ) r-mst(H) � (k � 1)
=g:Thus, a gap in the approximation of Independent Set carries over to Remote-MST.12
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Figure 5: Graphs in Theorem 3.1.Håstad has recently strengthened the approximation hardness of Independent Set to n1��,for any � > 0. This assumes that NP 6� ZPP , or that polynomial-time zero-error randomizedalgorithms do not exist for NP.We now generalize the hardness proof for Remote-MST to other problems. Given a graphand integers `, u, the degree-constrained subgraph problem (DCS) is to �nd a subgraph of mini-mum weight such that the degree of each vertex is between ` and u. Note that u could possiblybe trivially bounded by n. This minimization problem can be solved via a reduction to non-bipartite matching [17], and it subsumes the assignment problem, and the problems of coveringthe vertices with cycles or with paths. If the subgraph must additionally be connected, we have aConnected-DCS (CDCS) problem, which includes TSP, MST, and the Degree-Constrained MSTproblems as special cases.Assume from now that � is any such DCS problem, with degree lower bound `. For a given
 > 1, let H = HG;
 be the bi-valued network on G, that has the weight of an edge being 1 ifthe edge is in G, and 
 otherwise. Fix some optimal �-solution to H, and let �(H) denote itsset of edges. We sometimes abuse notations by denoting � for �(H).Lemma 3.2 Let G be a graph, and 
 � 1. Let Heavy denote the set of 
-weight edges in �(H).Then, �(G) � jHeavyj`2 + 1 :Proof. We can assume jHeavyj > `2 + 1 without loss of generality. Also, the number k ofvertices in �(H) is greater than any constant power of `.13



We start with some de�nitions. If � is a problem requiring connectivity, let Conn denotesome minimal set of edges from Heavy such that Conn [ (�(H) � Heavy) is connected andspans H; otherwise, let Conn be the emptyset. Let Slack denote the set of vertices incidenton edges in Heavy � Conn. Recall that G[Slack] is the subgraph of G induced by the verticesSlack.We �rst observe that �(G) � jConnj+ 1 (2)since G must contain that many connected components. Thus, we may assume that Heavy �Conn contains at least `2 edges.Claim 1 Each vertex is incident on at most ` edges in Heavy � Conn.Suppose on the contrary that a vertex x was incident on `+1 or more edges inHeavy�Conn.All of its neighbors must be of degree `, as otherwise an edge would be redundant. Thus, thereexist two non-adjacent neighbors y and z (along heavy edges). Notice that x is additionallyincident on at least one edge in �(H) � (Heavy � Conn), thus its degree is at least `+ 2. Let�0 = (�(H)�f(x; y); (x; z)g)[f(y; z)g and observe that �0 is a valid solution to the �-problemon H: the degree condition of the vertices holds, and connectivity is not a�ected, since theremoved edges are from Heavy�Conn. Since �0 is of less cost, this contradicts the assumptionthat � is a minimum cost �-structure on H.Claim 2 E(G[Slack]) � �(H)Suppose on the contrary that there were vertices x; y in Slack such that (x; y) 2 G but(x; y) 62 �(H). Let (x; x0), (y; y0) be edges from Heavy � Conn (where x0 and y0 are notnecessarily distinct).We consider three cases depending on the degrees of x0 and y0. If x0 and y0 are distinct andboth of degree greater than `, then let �0 = (��f(x; x0); (y; y0); g)[f(x; y)g. If one of x0 and y0,say x0, is of degree greater than `, then let �0 = (�� f(x; x0); (y; y0); g) [ f(x; y); (y0; z)g, wherez is some vertex of degree ` non-adjacent to y0 (and such a vertex must exist since there mustbe at least `+ 1 vertex of degree `).Otherwise, the number of heavy edges to which both x0 and y0 are incident or adjacentis at most `2. Thus, there must exist a third edge (x00; y00) from Heavy � Conn such thatx0 and x00 are non-adjacent, as well as y0 and y00. Let �0 = (� � f(x; x0); (y; y0); (x00; y00)g) [f(x; y); (x0; x00); (y0; y00)g.In all cases, the edges removed from � are from Heavy � Conn, and thus �0 is connected.Also, the degree constraints are preserved. Hence, �0 is a valid solution of lesser cost, contra-dicting the minimality of �. The claim then follows.From these claims, we have that the neighborhood of each vertex in Slack is incident onat most `2 edges from Heavy � Conn. Thus, a greedy creation of a maximal independent seteliminates at most `2 edges in each step.�(G) � �(G[Slack]) � jHeavy � Connj`2 (3)14



Combining (2) and (3) , we have that�(G) � max� jHeavy � Connj`2 ; jConnj� � jHeavyj`+ 1 :Theorem 3.3 Approximating Remote-DCS and Remote-Connected-DCS problems is ashard as approximating Independent Set, for any �xed value of `.Proof. Let 
 be a number greater than uk, and H = HG;
 .If there is an independent set of size k in G, then r-�(H) � 2̀k
.On the other hand, suppose r-�(H) � 2̀k
=g. Then, there is a subset P of k vertices suchthat �(P ) contains at least z � 2̀k=g edges of weight 
. By Lemma 3.2, �(G[P ]) � z=(`(`+1)) �k=(2(` + 1)g) = 2̀k
=g0, where g0 = g=(`(` + 1)).It follows that �(G) = k ) r-�(H) = 2̀k
�(G) � k=g ) r-�(H) � 2̀k
=g0:Similarly, these problems are also hard to approximate in metric graphs within a factor of2 � �, for any � > 0. We prove this here only for properties for which all feasible solutionshave the same number of edges; the general case is quite tedious, especially for other connectedproperties.Theorem 3.4 Let � be a DCS problem with ` = u, or a connected property with ` = 1 (i.e.Degree-Constrained MST). Then, is hard to approximate within a factor of 2� o(1) in themetric space with distances 1 and 2.Proof. Let 
 = 2, H = HG;
. Observe that any feasible solution to � has the same number eof edges: `k=2 in the former case, and k � 1 in the latter caseIf there is an independent set of size k in G, then r-�(H) = 2e. On the other hand, supposer-�(H) � e(1 + �). Then, there is a subset P of k vertices such that �(P ) � e(1 + �). Thus,�(P ) contains at least e� edges of weight 2. By Lemma 3.2,�(G) � e�`(`+ 1) :Let �0 = �k=[(k � 1)`(`+ 1)]. Then,�(G) = k ) r-�(H) = 2e;�(G) < �0k ) r-�(H) < e(1 + �)Hence, the problem is hard to approximate within 2� 1=f(n), where f(n) is a function growingwith n. 15



Theorem 3.3 can also be extended to problems involving t-connectivity (for t = ko(1)). Itcan also be extended to other remote-� problems that satisfy the following property: If F is afeasible solution to � and (v; u) and (x; y) are edges in that solution, then F � f(v; u); (x; y)g [f(v; x); (u; y)g is also a feasible solution to �.One example is when �(P ) =Pv2P minu2P d(u; v). The corresponding remote problem, thatof �nding a k-vertex set P maximizing this quantity, was considered by Moon and Chaudhry [21]under the name k-Defense problem. The above reduction shows that approximating it withinn1�� in general graphs is hard.For Remote-ST, one can always assume that graph G is metric, since the minimum Steinertree of a node set P in G can be realized in the shortest-path distance graph D(G).Theorem 3.5 Approximating Remote-ST within a factor of 4=3�� is NP -hard for any � > 0.Proof. Given graph G = (V;E), we construct a graph H as follows. Replace each edge of G by apath with two-edges, and connect the middle vertices of the paths into a clique. More formally,H contains a vertex for each vertex vi in V as well as each edge ej in E. A vertex vi is adjacentonly to those vertices ej for which vi intersects ej in G. Vertices ej are completely connectedinto a clique.The input to Remote-ST is the distance graph D(H) of H. If we consider two vertices inG, they will be of distance 2 in H if they are adjacent in G, and of distance 3 in H if they arenon-adjacent in G.An independent set in G corresponds to a set of vertices in H that have no neighbors incommon. Hence, the cost of the minimum Steiner tree of that set in D(H) is 2(k � 1).A loner in a Steiner tree is a leaf whose neighbor is not adjacent to another leaf. Supposethere are two loners in a Steiner tree of D(G) that were adjacent in G. Then, the four edgesconnecting them to the remaining tree could be replaced by three edges all incident on thecorresponding edge-vertex in D(G). Hence, given a k-set P , we can easily �nd a Steiner tree ofP where loners form an independent set in G. If p is the number of loners, then the cost of theSteiner tree constructed will be at most 32(k � p� 1) + 2p = 32(k � 1) + 12p.If, now, we could guarantee �nding a k-set where the minimum Steiner tree is of size at least32k + 12p, it follows that the independence number of G is at least p. By the hardness of theindependent set problem, it is hard to decide whether r-st(G) is 2 or 32 + o(1).4 Concluding remarksIf we remove the cardinality condition from the Remote-MST problem, we have the followingproblem:Remote-MST subset problem: Find a subset Q of V such that mst(Q) is maxi-mized. 16
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