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Abstract

We consider the problem of finding a set of k vertices in a graph that are in some sense
remote, stated more formally: “Given a graph G and an integer k, find a set P of k vertices
for which the total weight of a minimum structure on P is mazimized.”

In particular, we are interested in three problems of this type, where the structure to be
minimized is a Spanning Tree (REMOTE-MST), Steiner Tree (REMOTE-ST), or Traveling
Salesperson tour (REMOTE-TSP).

We give a natural greedy approximation algorithm that simultaneously approximates all
three problems on metric graphs. For instance, its performance ratio for REMOTE-MST is
exactly 4, while it is /VP-hard to approximate within a factor of less than 2. We also show
a better approximation for graphs induced by Euclidean points in the plane, give an exact
algorithm for graphs whose distances correspond to shortest-path distances in a tree, and

give hardness and approximability results for general non-metric graphs.

Abbreviated title: Subsets maximizing minimum structures
Key words: Maximum Spanning Tree, Traveling Salesperson, Steiner tree, Dispersion.
Subject classification: 58Q25, 05C85, 05C05.

1 Introduction

Let G[P] denote the subgraph of a graph G induced by a vertex subset P. We are interested in
the following problem:

REMOTE-MST: Given a complete edge-weighted graph G = (V, E) and integer k,
find a subset P of V of cardinality £ such that the cost of the minimum weight

spanning tree on G[P] is maximized.

We also study REMOTE-TSP and REMOTE-ST, where the objective is to maximize the minimum
traveling salesman tour and the minimum Steiner tree of the induced subgraph, respectively.

These problems are illustrated in Figure 1.

*Earlier version of this paper appeared in Proc. 6th Symp. on Discrete Algorithms, 1995.
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Figure 1: Remote planar point sets.

The problems of finding a minimum weight spanning tree (MST, in short), minimum weight
Steiner tree, and minimum weight tour (TSP, or traveling salesperson tour) are fundamental
combinatorial structures, which are not only useful in applications but also a rich source of
research on exact and approximate algorithms. All of these problems consist of finding a subset
mazximizing the total weight of edges of minimum combinatorial structures constructed from the
subsets. Except for REMOTE-ST, these structures are contained in the subgraph induced by the
subset.

From a practical point of view, the REMOTE-MST (or REMOTE-ST) k-set of a network can
be viewed as the set of kK nodes among which communicating information is most expensive.
Thus, the remote subsets can be applied to the evaluation of the communication performance
of networks.

They can also be applied to clustering problems. Indeed, we originally faced these problems
when trying to find a good “starting tour” of a large TSP instance (a circuit board drilling
problem [18] that occurred at a manufacturing plant) with more than 10,000 non-uniformly
distributed cities. To obtain a short approximate TSP tour by construction heuristics, it is
effective to start with a subtour (starting tour) consisting of a relatively small number of sample
cities capturing the global structure of the point distribution [19]. For this purpose, random
sampling is not suitable, since it may miss some critical cities, and approximate TSP tours
constructed from the associated starting tour often respond poorly to improvements by local
search heuristics. The exact or approximate REMOTE-MST and/or REMOTE-TSP solutions

seem to give better starting tours.

General framework The problems under study can be generalized to the following frame-
work. Let II be a minimization problem whose solution is a subset of the edge set satisfying a
particular property with respect to a given subset P of vertices. Let the cost of a solution be
the sum of the weight of the edges in the solution. Let 7(P) denote the minimum cost value for

a nodeset P. We are interesting in the following problem:

REMOTE-II: Given a graph G = (V,E) and integer k, find a subset P of V of

cardinality k& such that m(P) is maximized.



Our results.

We present approximation algorithms in Section 2: in metric graphs, general graph, Euclidean
graphs and tree graphs.

Metric graphs are graphs with weights that satisfy the triangular inequality: for any three
nodes u,v,w, d(u,v) + d(v,w) > d(u,w). The distance of the edge e(u,v), denoted d(u,v), is
the weight of the edge. One example of a metric graph is the shortest-path distance graph D(G)
of an non-complete graph G, where the edge weight of e(u, v) is defined to be the weight of the
minimum weight path between v and v of G.

We apply in Section 2.1 the ’greedy furthest-point’ algorithm, to obtain simultaneous ap-
proximations of all three problems in metric graphs. We obtain performance ratios of 4 for
REMOTE-MST, and 3 for REMOTE-TSP, both of which are tight for this algorithm. For the
REMOTE-ST problem, the greedy algorithm attains a ratio of 3.

For REMOTE-MST in general graphs, we give in Section 2.2 an algorithm that finds a solution
within a factor of £ — 1 from optimal.

Euclidean graphs are a special class of metric graphs, where the vertices correspond to points
in the plane and the weight of an edge is the Euclidean distance between the points. The results
obtained for the metric case, in combination with results on the Steiner ratio in the plane, yield
asymptotic ratios of 2.31 (2.16) for the REMOTE-MST (REMOTE-ST) problems, respectively.

Finally, in Section 2.4, we give a linear time algorithm for computing REMOTE-ST when the

set of edges with non-infinity weights forms a tree in G.

In Section 3, we prove approximation hardness results for the three problems. REMOTE-
MST and REMOTE-TSP of general graphs cannot be approximated within a factor of Q(n!~¢),
unless NP C ZPP. Here, n is the number of vertices in the input graph. We generalize
the proofs to the remoteness versions of degree-constrained subgraph problems, with or without
connectivity requirement. These problems include MST, TSP, minimum weight matching, cycle
cover, degree-constrained spanning tree, and a number of other well-studied problems. On metric
graphs, these problems are also N P-hard to approximate within a factor less than 2.

The REMOTE-ST problem effectively always works on a metric graphs, by using the shortest-
distance graph of the input graph; we show it to be hard to approximate within a ratio less than
4/3.

We summarize the main approximability results of the paper in the following table. It lists
the results obtained for each of the MST, TSP, and ST remote problems, with lower and upper
bounds for approximability in general graphs, metric graphs, and Euclidean graphs.

II General Metric R?

L.b. u.b. | Lb. uwb. | u.b.

MST | n'™¢ k—1| 2 4 |225
TSP |n'™¢ k—1| 2 3

ST 4/3 3 4/3 3 | 2.16



Related work.

Problems of maximizing minimum structures have applications to the location of undesirable
facilities. For instance, hazardous facilities like nuclear plants or ammunition dumps should be
located as far from each other as possible to minimize vulnerability. A not insubstantial body of
literature has developed on the subject — see [10] for a survey, primarily from the management
science viewpoint. The focus has been on two structures not specifically dealt with in this paper:
the minimum weight of any edge in the k-set, and the average, or equivalently the sum, of the
weights of edges between pairs in the k-set. For the former problem, known as the k-Dispersion
problem, Ravi, Rosenkrantz and Tayi [24]| showed that the ’greedy furthest-point’ algorithm
obtains a performance ratio of 2 on metric graphs, improving on a weaker bound of |28]. They
also showed that approximating within a factor of less than 2 is NP-hard. Independently,
Tamir [26] proved the same upper bound for the same algorithm (see also [27]).

A dispersion problem with the criteria of maximizing the average distance between vertices in
the k-set was also considered in |24], and they gave a different greedy algorithm with a ratio of 4.
Hassin [14] gave an algorithm with a performance ratio of 2. Kortsarz and Peleg [16] considered
this latter problem on general weighted graphs, under the name Heavy Subgraph Problem, and
gave a sequence of algorithms that converges with a performance ratio of O(n3-8%%). While
different minimum structures have been proposed in the location theory literature, we are not

aware of work analyzing algorithms for such problems.

If the input is a complete graph with nodes corresponding to a set of points in Euclidean
space and edge weights corresponding to the Euclidean distance between the pairs of points,
the problems can be regarded as belonging to computational geometry. The problem of finding
a subset with cardinality £ of a planar point set maximizing the perimeter or area of convex
hull (minimum perimeter enclosing polygon) of the subset has been studied in the literature
[2, 3, 6]. However, the authors know no previous results on computing subsets maximizing other
minimum structures.

Problems of finding subsets minimizing the minimum weight of a combinatorial structure
are more common [1, 9, 23, 13|. In particular, the problem of finding the k-set minimizing the
weight of the minimum MST was recently studied by Ravi et al. [23], who proved N P-hardness
and gave the first approximations. The performance ratios have recently been improved to the
best possible 3 for general graphs [13] and 1 + € for Euclidean graphs [20].

Chandra and Halldérsson |7] have continued the work started in this paper, and analyzed a
number of other remote problems. In particular, they gave a O(log k)-approximate algorithm
for two problems suggested in a previous version of the current paper: computing a k-set maxi-

mizing the minimum weight matching, and the k-defense problem, where the objective 7(P) is
> vep Mingep d(u,v).
Notation

A spanning tree of a node set P is a subtree of G whose node set is P. A Steiner tree of P is a

spanning tree of a superset of P. A tour of P is a cycle that contains all the vertices of P. The



weight of a tree or a tour is the sum of the edges in it.

We denote the minimum spanning tree, minimum Steiner tree, and TSP tour of P by
MST(P), ST(P), and TSP(P), respectively. The weights of these minimum solutions are
denoted by mst(P), st(P), and tsp(P). For a graph H, the maximum cost of M ST (P) over all
k-node sets P is denoted by r-mst(H). In general, for a problem IT and nodeset P, the min-
imum structure and the minimum value are denoted by II(P) and m(P), respectively, and the
optimal value of REMOTE-II (i.e. the maximum weight of the minimum II-structure) is denoted
by r-m(H).

The approximation ratio of an algorithm for REMOTE-MST on a given input graph G is the
ratio of the largest MST weight of a set of k points to the MST weight of the k-set output by the
algorithm. The same holds for other problems. The performance ratio p of the algorithm is the
maximum approximation ratio over all instances. A problem is approzimable within a factor of
t if there exists a polynomial time algorithm for the problem with a performance ratio at most
t. A problem II; is as hard to approrimate as problem Il if, an approximation of IIs within a
factor of f(n) implies an approximation of II; within a factor of O(f(n)).

Given a graph G and value 7, the bi-valued network Hg ., is a complete graph on the
same vertex set as G, where the weight of an edge is 1 if the edge is in G, and v otherwise.
Let G[P] denote the subgraph of G induced by a vertex subset P. Namely, P C V(G) and
E(G[P)]) = {(v,u) | (v,u) € E(G) and v,u € P C V(G)}. The distance graph D(G) of a graph
G has the weight of an edge (u,v) equal to the length of the shortest path from u to v in G.

2 Algorithms

2.1 Metric graphs

In this section, we assume that G = (V, E) is metric unless otherwise stated. Let the distance
between a node u and a set of nodes be the minimum distance between u and any node in the
set, d(v, P) = minyep d(v, p).

Central to our approach is the concept of an anticover.

Definition 2.1 A set P of vertices p1,po, ... is an r-anticover of a graph if,

1. d(pi,p;) 2 r fori# j, and
2. min;{d(v,p;)} < r for any node v € V.

The radius of P is the largest value v for which P is an r-anticover. The size of an anticover is

its number of vertices.

An anticover is illustrated in Figure 2.

”

An anticover can be constructed efficiently by the following “greedy furthest-point” algo-

rithm.



Figure 2: Anticover (black points) of size 7 of a Euclidean graph.

Greedy(G)
pick an arbitrary node v
P « {v}
fori < 2tok
v 4 node in V — P furthest from P
P« P U {v}
end

It is easy to see that the nodeset found by Greedy is an anticover of size k, and that its radius
is the distance between the node v chosen last and P — {v}.

We apply Greedy to obtain simultaneous constant-factor approximations of the remote MST,
TSP and STEINER problems. The same algorithm was also applied to approximate the k-
Dispersion problem [24], as well as the Euclidean k-clustering problem [11], indicating a level of

universality of this approach and an applicability to multi-objective computing.

Theorem 2.1 An anticover is a 4-approzimation of REMOTE-MST, and a 3-approzimation of
REMOTE-ST and REMOTE-TSP.

Proof. Let P be an anticover of G, and let r denote its radius. Let () be any set of k£ points.

Any pair of points in P is of distance at least r, so
mst(P) > (k—1)r. (1)

Each point ¢ in @ is of distance at most r from P, thus the tree obtained by connecting @ to
MST(P) via the shortest edge is of weight at most mst(P) + kr. That is,

st(Q) < st(PUQ) < mst(P) + kr.

The ratio (Steiner ratio) of the weight of an MST of a set of k points to that of its Steiner tree
is at most 2(k — 1)/k. It follows that,

mst(Q) < kE—1 kr
mst(P) — k




Similarly,

st(P) > =r

| F

because of the Steiner ratio, and
st(Q) < st(PUQ) < st(P) + kr.

Hence, a performance ratio of 3 follows.
Furthermore,
tsp(P) > kr.

Connecting each point of @ to its nearest point in P by a pair of directed edges (with different
directions), we can form a tour of P U @ of length at most tsp(P) + 2kr. Thus,

tsp(Q) < tsp(P U Q) < tsp(P) + 2kr < 3 - tsp(P).

|
The Steiner ratio 2(k — 1)/k holds even if the tree is restricted to be a path, thus the results

hold equally for degree-constrained versions of the problems.

While the analysis of the approximation ratio in Theorem 2.1 obtained by Greedy appears
loose, it is actually asymptotically optimal for both REMOTE-MST and REMOTE-TSP. We
give lower bounds on the performance of Greedy that holds for any choice of the initial starting

vertex.

Theorem 2.2 The performance ratio of Greedy for REMOTE-MST on metric graphs is asymp-
totically 4.

Proof. We construct a family of instances, for which Greedy is destined to perform poorly

independent of its choice of a starting vertex.

Let G¢ be an unweighted (i.e. unit-weighted) graph, with vertex set {c, p1,p2,...,Pt,q1,92,- -, Gt }-

Let p1,...,ps, ¢ be connected into a path, and let each ¢; be connected to both p; and ps. Gy
contains no further edges.

Let G;,Z be the graph formed by taking z copies of G, with a single ¢ vertex common to all
copies (Figure 3). Thus, we have a connected graph on 2tz 4+ 1 nodes. For convenience, we use
notations such as p;-vertex, p-vertex, g-vertex, and c-vertex. In order to force the algorithm to
prefer the p-vertices, we perturb the distances between vertices as follows: the lengths d(c,p;)
are stretched to 1 + 2¢, and the lengths d(p;, p;+1) to 1 + € for 7 > 1.

The hard instance is the distance graph D( ;,Z), with z sufficiently large. Observe that the
distance between g-vertices in different copies is 2¢, while the distances between p; vertices is
2t(1 4 €). Thus, a p; vertex is the furthest vertex from any set of at most z — 1 vertices.

Let k = tz. The set of the first z vertices selected by Greedy contains at least (z — 1) pi-
vertices. Thus, Greedy cannot select a g-vertex adjacent to a selected pi-vertex. Consequently,
the number of g-vertices which Greedy can select is at most ¢. Also, Greedy must select the vertex
¢, whose neighbors are all of distance at least 1 4+ 2e. Thus, ignoring the € terms, mst(P) <
zt + 2(t — 1) for any set P of k points selected by Greedy.



O p-vertex @ g-vertex

Figure 3: Lower bound example for Greedy.

Let @ consist of the ¢z different g-vertices. Let ¢; and ¢} be vertices in different copies of G;.
Then,

mst(Q) = z(t —1)d(g,qi+1) + (z — 1)d(q, q})
= 2z(t—1)+ (z —1)(2¢)
= 4zt — 2z — 2t.

If z = ¢, we have that

mst(@ o1

|

Although the above lower bound is applicable only to the solution generated by Greedy, we
conjecture that 4, rather than lower bound of 2 obtained in Theorem 3.1, is the best possible
performance ratio for the problem.

One plausible approach for improving on the approximation produced by Greedy is to post-
process the greedy solution with local improvement changes. Having obtained an r-anticover
P, it may be possible to move individual points further away from the other points. That
is, for a point v € P with d = d(v, P — {v}), there may exist a point u € V — P such that
d(u, P — {v}) > d. This would improve the bounds, using a strengthening of (1) to mst(P) >
Soep d(v, P — {v})(k = 1)/k.

The hard instances constructed above demolish that hope, since no single point can be moved

further away. These instances can also be easily modified to ensure that no b points can be moved



further away, for any fixed b.

Theorem 2.3 The performance ratio of Greedy for REMOTE-TSP is asymptotically 3.

Proof.  Our construction is based on the graphs G;yz of the preceding theorem. Assume z is
even, and consider an arbitrary matching of z copies of G; into z/2 pairs. Assign each edge
between each pair G; and Gy the weight @ = v/t. Among these, we add an additional e weight

to the edges incident on p;-vertices, to ensure they will always be favored.

Our graph G, is the graph obtained by adding the above edges to the original G} ,. Then,
Greedy selects the same set P as in Theorem 3.2, and there is a tour of P using edges from
MST(P) as well as z/2 matching edges between p; vertices. Thus, tsp(P) = zt + o(zt). On the

other hand, tsp(Q) > 3zt for the set ) consisting of the g-vertices. |

Theorem 2.4 The performance ratio of Greedy for the REMOTE-ST problem is at least 2.4.

Proof. Let H be an edge-weighted graph with V(H) = {¢,p1,p2,q1,92,7}. Let d(p1,q1) =
d(p1,q2) = 2, d(p1,7) = 1.5, and d(c,r) = d(r,p2) = 0.5, and let the distance between other
pairs of vertices be the shortest distance within this tree. The hard instances H, we construct,
consist of z copies of H sharing the same ¢ vertex, with distance between vertices of different
copies determined by shortest distance.

Let k = 2z. Let P (Q) be the set of p; (g;) vertices, respectively. We may assume Greedy
selects all the p; vertices, followed by the po vertices, for a cost of st(P) = (2+1/2)k/2 = 5/4k.
On the other hand, st(Q) = 6/2k = 3k. Hence, p > st(Q)/st(P) = 2.4. n

The best construction we have for REMOTE-ST (omitted) has approximation ratio of Greedy
is 38/15 =~ 2.533. Thus, the precise determination of the performance ratio of Greedy for
REMOTE-ST remains an open problem.

2.2 General graphs

We give an approximation algorithm for REMOTE-MST on general graphs, with a performance
ratio of k& — 1.
For a graph G and a positive weight «, define G, to be the subgraph of G on V(G) with

edges whose weight is at most a.

HeavyEdge(G)
Determine the largest « such that
G, is not (n — k)-vertex-connected.
Let C be a cutset of G, of size n — k.
Output P = V —C.

end

The desired « can be found by binary search on the at most (5) different edge-weights. Since

the subgraph induced P is not connected in G, an MST of P must contain an edge of weight at



least . On the other hand, if edges of weight « are added to G, any k-set must be connected.
Thus,
r-mst(G) < (k — 1)a < (k — 1)mst(P).

Corollary 2.5 HeavyEdge has performance ratio of k — 1 for REMOTE-MST.

For the Steiner tree problem, it suffices to consider the distance graph of the input graph,

which satisfies the triangular inequality. Thus, we obtain the following corollary of Theorem 2.1.

Corollary 2.6 REMOTE-ST of a general graph can be approzimated within a factor of 3.

2.3 Euclidean graphs

Let P be a set of n points {p1,...,p,} in the plane. The Euclidean graph of P is the complete
graph on the nodeset P where the weight of an edge (p;,p;) is the Euclidean distance d(p;,p;).
We consider algorithms for approximating REMOTE-MST and REMOTE-ST of this graph.
The anticover defined in the previous section gives a geometric covering of P by k circles
of radius r, each of which is centered by a point in P. Since st(P) > v/3mst(P)/2 [8] in the

Euclidean case, we immediately obtain the following.

-approzimation of REMOTE-MST and a %—

4k—2
V3(k—1)
approzimation of REMOTE-ST in Euclidean graphs.

Corollary 2.7 An anticover is a

Thus, the approximation ratios are asymptotically at most 4/v/3 ~ 2.309 for REMOTE-MST,
and (2 +v/3)/v/3 ~ 2.155 for the REMOTE-ST.

@ (AP

The worst anticover |eads G eedy gives a
us to a 2.448 approxi mtion better solution

Figure 4: Approximation by circle covers.

Unlike in the metric case, it seems that the approximation ratio depends on the choice of
the anticover. For the example in Figure 4, the worst anticover has a (2v/3 + 4)/3) ~ 2.448
approximation ratio, which is near to the upper bound 14/3\/§ ~ 2.694 for the REMOTE-MST
4-set.

Note: If we consider the anticover created by Greedy, we can obtain a slightly better analysis
than Corollary 2.7. A key difference from the metric case is that the length of a minimum Steiner

tree of m points in a unit circle must be less than m —0.1(m —3) if m > 3 for the Euclidean case
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(we omit the proof). We can further squeeze the approximation ratio to (1.95)(2/v/3) = 2.2517
for the REMOTE-MST problem by modifying the algorithm itself; indeed, this can be attained
by modifying the output of Greedy. Unfortunately, the current proof requires a lengthy and ugly

case-study, and we do not include it in this paper.

2.4 Tree networks

In this section, we consider graphs in which the set of edges with finite weights forms a tree.
Let T be a weighted tree on n nodes. We assign oo to each edge of the complement graph T
of T in the complete graph of order n, and define G(T') = T'UT*°. We first give an O(n) time
algorithm for the REMOTE-ST k-set of G(T').

Theorem 2.8 The REMOTE-ST k-set of G(T') can be computed in O(n) time.

Proof.  Clearly, we should select k leaves. If k exceeds the number of leaves of T, every set
of k nodes containing all leaves forms the (unique) optimal REMOTE-ST k-set. If k& = 2, the
problem is the diameter path problem on a tree, and can be solved in linear time. We can apply
the incremental strategy developed by Peng et al. [22] for computing a k-tree core. A key fact is
that any optimal REMOTE-ST (k — 1)-set must be contained in an optimal REMOTE-ST k-set.
A direct modification of the algorithm of Peng et al. [22] runs in O(min{kn,nlogn}) time, and

the one of the improved algorithm of Shioura and Uno [25] runs in O(n) time. n

REMOTE-MST of G(T') is not a well-defined problem, since we can almost always find a
subset P whose MST has infinity weight. If we modify the definition of the remote k-set P so
that mst(P) is maximized on the condition that mst(P) # oo (we call it connectivity condition),
M ST(P) must be an induced subtree of P in T'; thus, the problem becomes a special case (where
all edge weights are non-positive) of the weighted (k — 1)-cardinality tree problem defined by
Fischetti et al. [12] if we reverse the sign of all weights of 7. We can thus apply Fischetti et al’s

O(k?n) time dynamic programming algorithm. Moreover, we can improve it to O(kn).

Theorem 2.9 The weighted (k—1)-cardinality tree of a weighted tree can be computed in O(kn)
time. Hence, the REMOTE-MST k-set of G(T') under the connectivity condition can be computed
in O(kn) time.

Proof. We only give a proof for the computation of optimal REMOTE-MST k-set. For simplicity,
we assume that 7' is a rooted binary tree (we can easily modify the algorithm for non-binary
trees). We cut a rooted tree 7" at the nearest branch v to the root r, and obtain two subtrees
Ty and Ty. Ty UT) =T and Ty N1y = {r}. Suppose we have the optimal REMOTE-MST k-set
and the optimal REMOTE-MST j-sets containing v, for 7 = 1,2,...,k of each of 77 and T5.
Then, the optimal REMOTE-MST k-set of T', together with the optimal REMOTE-MST j-set
containing r for j = 1,2,...,k, can be computed in O(k?) time, by combining those of T} and
Ts.

We improve this time complexity as follows: We say that a node u of T' is heavy if both

of its descendent trees have at least k/2 nodes, and light otherwise. The number of heavy

11



nodes is at most n/k. We separately charge the cost of the operations at the heavy nodes,
which is O(kn) in total. Let f(n) be the cost for operations at all light nodes of T'. At
a light node, suppose that the size of T; is n;. Then, the computing time at the node is
O(min(ny, k) min(ng, k)). Thus, the cost function f(n) (up to a constant factor) follows the
formula f(n) < f(n1) + f(n2) + min(n, k) min(ne, k).

We can see that g(n) = min{2kn,n?} satisfies g(n) > g(n1) + g(n2) + min(ny, k) min(ng, k).

Case 1: If 2k > n, the formula follows from n? > n? + n3 + nyn,.

Case 2: If n > 2k > ny > k > no, 2kn > n% + n% + kng easily follows.

Case 3: If ny > 2k and k > ng, 2kn > 2kng + n3 + kna = 2k(ny + ng) — na(k — n?).

Hence, f(n) < cg(n) for some constant ¢, thus is O(kn). n

The same algorithm can compute REMOTE-MST k-sets (with connectivity condition) of

decomposable graphs, such as series-parallel graphs, in O(kn) time.

3 Hardness

The decision version of REMOTE-MST (to decide whether there exists a set of k vertices whose
MST weight is more than a given threshold) is obviously in NP. Instead of showing N P-
hardness, we show approximation-hardness for both general and metric graphs.

We shall be primarily interested in approximating the remote problems within a function
independent of k. Thus, we ask about the worst-case performance ratio as k ranges from 1

through n.

Theorem 3.1 Approzimating REMOTE-MST is as hard as approzimating INDEPENDENT SET.

Proof. Let g be the gap in the approximability of INDEPENDENT SET. Thus, for some value R,
determining if «(G) = R or a(G) < R/g is hard.

Let k be R, and let -y be a value greater than k. We construct a bi-valued graph H = Hg , on
the same vertex set as G, with the weight of an edge being 1 if contained in G and <y otherwise.
Refer to Figure 5.

If there is an independent set of size k in G, then that set has a value r-mst = (k — 1)y. On
the other hand, suppose r-mst(H) > (k—1)vy/g. Notice that this is at least (k/g—1)y+(k—k/qg),
since v > k. Then, there is a subset P of k vertices such that M ST'(P) contains at least k/g — 1
edges of weight . Let G[P] be the the subgraph in G induced by P. It follows that G[P] must
contain at least k/g connected components. Hence, a(G) > a(G[P]) > k/g.

It follows that

a(G) =k = rmst(H)=(k—1)y
a(G) <k/g = r-mst(H)<(k—1)y/g.

Thus, a gap in the approximation of INDEPENDENT SET carries over to REMOTE-MST. |
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Figure 5: Graphs in Theorem 3.1.

Hastad has recently strengthened the approximation hardness of INDEPENDENT SET to n'~¢,
for any € > 0. This assumes that NP ¢ ZPP, or that polynomial-time zero-error randomized
algorithms do not exist for NP.

We now generalize the hardness proof for REMOTE-MST to other problems. Given a graph
and integers ¢, u, the degree-constrained subgraph problem (DCS) is to find a subgraph of mini-
mum weight such that the degree of each vertex is between ¢ and u. Note that u could possibly
be trivially bounded by n. This minimization problem can be solved via a reduction to non-
bipartite matching [17], and it subsumes the assignment problem, and the problems of covering
the vertices with cycles or with paths. If the subgraph must additionally be connected, we have a
Connected-DCS (CDCS) problem, which includes TSP, MST, and the Degree-Constrained MST
problems as special cases.

Assume from now that II is any such DCS problem, with degree lower bound 4. For a given
v > 1, let H = Hg, be the bi-valued network on G, that has the weight of an edge being 1 if
the edge is in G, and 7 otherwise. Fix some optimal II-solution to H, and let II(H) denote its
set of edges. We sometimes abuse notations by denoting IT for II(H).

Lemma 3.2 Let G be a graph, and y > 1. Let Heavy denote the set of y-weight edges in I1(H).

Then,

|Heavy|
>
(@) = 2 +1

Proof.  We can assume |Heavy| > ¢ + 1 without loss of generality. Also, the number % of

vertices in II(H) is greater than any constant power of /.
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We start with some definitions. If Il is a problem requiring connectivity, let Conn denote
some minimal set of edges from Heavy such that Conn U (II(H) — Heavy) is connected and
spans H; otherwise, let Conn be the emptyset. Let Slack denote the set of vertices incident
on edges in Heavy — Conn. Recall that G[Slack] is the subgraph of G induced by the vertices
Slack.

We first observe that

a(G) > |Conn| +1 (2)

since G must contain that many connected components. Thus, we may assume that Heavy —

Conn contains at least £? edges.
Claim 1 Fach vertex is incident on at most £ edges in Heavy — Conn.

Suppose on the contrary that a vertex x was incident on £+1 or more edges in Heavy—Conn.
All of its neighbors must be of degree £, as otherwise an edge would be redundant. Thus, there
exist two non-adjacent neighbors y and z (along heavy edges). Notice that z is additionally
incident on at least one edge in II(H) — (Heavy — Conn), thus its degree is at least £ + 2. Let
' = (II(H) — {(z,y), (z,2)}) U{(y, 2)} and observe that IT" is a valid solution to the IT-problem
on H: the degree condition of the vertices holds, and connectivity is not affected, since the
removed edges are from Heavy — Conn. Since I is of less cost, this contradicts the assumption

that II is a minimum cost II-structure on H.
Claim 2 E(G|[Slack]) CII(H)

Suppose on the contrary that there were vertices z,y in Slack such that (z,y) € G but
(z,y) & II(H). Let (z,2'), (y,y’) be edges from Heavy — Conn (where z’ and y’ are not
necessarily distinct).

We consider three cases depending on the degrees of 2’ and 3'. If 2’ and 3’ are distinct and
both of degree greater than ¢, then let II' = (II — {(z,2'), (v,¢'), }) U{(z,y)}. If one of z’ and ¢/,
say z', is of degree greater than ¢, then let II' = (II — {(z, z'), (v,¥'), }) U{(z,y), (v, z)}, where
z is some vertex of degree £ non-adjacent to 3’ (and such a vertex must exist since there must
be at least £ + 1 vertex of degree /).

Otherwise, the number of heavy edges to which both z’ and 4y’ are incident or adjacent
is at most ¢2. Thus, there must exist a third edge (z",y") from Heavy — Conn such that
z' and z” are non-adjacent, as well as ¢’ and y”. Let II' = (IT — {(z,2), (y,y'), (z",y")}) U
{(z,y), (@, 2"), (', y") }-

In all cases, the edges removed from II are from Heavy — Conn, and thus II' is connected.
Also, the degree constraints are preserved. Hence, II' is a valid solution of lesser cost, contra-
dicting the minimality of I[I. The claim then follows.

From these claims, we have that the neighborhood of each vertex in Slack is incident on
at most #2 edges from Heavy — Conn. Thus, a greedy creation of a maximal independent set

eliminates at most ¢ edges in each step.

(@) > a(G[Slack]) > ey = Connl (3)

14



Combining (2) and (3) , we have that

|Heavy — Conn|
Iz

|Heavy|

>
a(G)_max( T 1

,|Conn|> >

Theorem 3.3 Approzimating REMOTE-DCS and REMOTE-CONNECTED-DCS problems is as
hard as approximating INDEPENDENT SET, for any fized value of £.

Proof. Let v be a number greater than uk, and H = Hg .

If there is an independent set of size k in G, then r-n(H) > %ky.

On the other hand, suppose r-m(H) > gky/g. Then, there is a subset P of k vertices such
that II(P) contains at least z > gk/g edges of weight 7. By Lemma 3.2, a(G[P]) > z/(£(£+1)) >
K/2(C+ 1)g) = Lhy/g, where g/ = g/(¢(0 +1)).

It follows that

a(G) =k = rn(H)= %ky
o(G) <klg = ra(H)< y/d.

Similarly, these problems are also hard to approximate in metric graphs within a factor of
2 — ¢, for any 0 > 0. We prove this here only for properties for which all feasible solutions
have the same number of edges; the general case is quite tedious, especially for other connected

properties.

Theorem 3.4 Let II be a DCS problem with £ = u, or a connected property with £ = 1 (i.e.
DEGREE-CONSTRAINED MST ). Then, is hard to approzimate within a factor of 2 —o(1) in the

metric space with distances 1 and 2.

Proof. Let v =2, H = Hg,. Observe that any feasible solution to II has the same number e
of edges: ¢k/2 in the former case, and k — 1 in the latter case

If there is an independent set of size k in G, then r-w(H) = 2e. On the other hand, suppose
r-m(H) > e(l 4+ §). Then, there is a subset P of k vertices such that 7(P) > e(l + ¢). Thus,
II(P) contains at least ed edges of weight 2. By Lemma 3.2,

@)z 3y

Let &' = ok /[(k — 1)¢(¢ + 1)]. Then,

a(G) =k = r-n(H)=2e,
a(G) < d'k = r-n(H) <e(l+9)

Hence, the problem is hard to approximate within 2 —1/f(n), where f(n) is a function growing
with n. n
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Theorem 3.3 can also be extended to problems involving t-connectivity (for + = k°()). It
can also be extended to other remote-II problems that satisfy the following property: If F'is a
feasible solution to II and (v,u) and (z,y) are edges in that solution, then F' — {(v,u), (z,y)} U
{(v,z), (u,y)} is also a feasible solution to II.

One example is when 7(P) = Y, cp mingecp d(u,v). The corresponding remote problem, that
of finding a k-vertex set P maximizing this quantity, was considered by Moon and Chaudhry [21]
under the name k-Defense problem. The above reduction shows that approximating it within
n'~¢ in general graphs is hard.

For REMOTE-ST, one can always assume that graph G is metric, since the minimum Steiner

tree of a node set P in G can be realized in the shortest-path distance graph D(G).

Theorem 3.5 Approzimating REMOTE-ST within a factor of 4/3—0 is N P-hard for any § > 0.

Proof. Given graph G = (V, E), we construct a graph H as follows. Replace each edge of G by a
path with two-edges, and connect the middle vertices of the paths into a clique. More formally,
H contains a vertex for each vertex v; in V' as well as each edge e; in E. A vertex v; is adjacent
only to those vertices e; for which v; intersects e; in G. Vertices e; are completely connected
into a clique.

The input to REMOTE-ST is the distance graph D(H) of H. If we consider two vertices in
G, they will be of distance 2 in H if they are adjacent in G, and of distance 3 in H if they are
non-adjacent in G.

An independent set in G corresponds to a set of vertices in H that have no neighbors in
common. Hence, the cost of the minimum Steiner tree of that set in D(H) is 2(k — 1).

A loner in a Steiner tree is a leaf whose neighbor is not adjacent to another leaf. Suppose
there are two loners in a Steiner tree of D(G) that were adjacent in G. Then, the four edges
connecting them to the remaining tree could be replaced by three edges all incident on the
corresponding edge-vertex in D(G). Hence, given a k-set P, we can easily find a Steiner tree of
P where loners form an independent set in G. If p is the number of loners, then the cost of the
Steiner tree constructed will be at most 3(k —p—1) +2p = 3(k — 1) + 3p.

If, now, we could guarantee finding a k-set where the minimum Steiner tree is of size at least
%kz + %p, it follows that the independence number of G is at least p. By the hardness of the
independent set problem, it is hard to decide whether r-st(G) is 2 or 2 + o(1). |

4 Concluding remarks

If we remove the cardinality condition from the REMOTE-MST problem, we have the following

problem:

REMOTE-MST SUBSET problem: Find a subset @ of V such that mst(Q) is maxi-

mized.
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The REMOTE-MST subset problem can be considered to be an inverse problem to the Steiner
problem. Whereas the Steiner problem asks for a superset Q' of P minimizing M ST(Q’), the
REMOTE-MST subset problem calls for a subset @) of V' maximizing M ST (Q).

In the metric case, returning V' as the solution trivially gives an approximation equal to
the Steiner ratio, or 2 for general metric graphs and 2/ V3 for Euclidean graphs. We pose the
question of improved ratios as an open problem.

Another open problem concerns the complexity classification of REMOTE-ST and REMOTE-
TSP. They are in 212,, at the second level of the polynomial time hierarchy, and are N P-hard,
from our results. We conjecture that they are also hard for 212,.

Other open problems include: proving N P-hardness of REMOTE-MST (and perhaps MAX-
SNP-hardness) in the Euclidean plane, and giving better bounds for the approximation ratios
for each problem. In particular, a good approximation algorithm for REMOTE-ST will be very
useful in applications. Also, a fast algorithm would be needed; when we apply approximate

REMOTE-TSP k-sets to large-scale TSP heuristics, sub-quadratic time algorithm is essential.
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