
Parallel and On-line Graph ColoringMagnús M. HalldórssonScience InstituteUniversity of IcelandIS-107 Reykjavik, Iceland�AbstractWe discover a surprising connection between graph coloring in two orthogonal paradigms:parallel and on-line computing. We present a randomized on-line coloring algorithm witha performance ratio of O(n= logn), an improvement of plogn factor over the previous bestknown algorithm of Vishwanathan. Also, from the same principles, we construct a parallelcoloring algorithm with the same performance ratio, for the �rst such result. As a byproduct,we obtain a parallel approximation for the independent set problem.1 Introduction.At the heart of most partition and allocation problems is a graph coloring question. The graphcoloring problem involves assigning values (or colors) to the vertices of a graph so that adjacentvertices are assigned distinct colors, with the objective of minimizing the number of colors used.We seek graph coloring algorithms that are both e�ective and e�cient. E�ciency means,among other things, using computation time bounded by a polynomial in the size of the input.E�ectiveness means that the quality of the coloring is never much worse than the optimalcoloring; it is measured in terms of the performance ratio of the algorithm, de�ned as the ratioof the number of colors used to the minimum number of colors needed, maximized over allinputs. In this paper we present a reasonably e�ective and e�cient graph coloring algorithmthat yields both parallel and on-line algorithms.A parallel algorithm is said to be e�cient if it uses time polylogarithmic and processorspolynomial in the size of the input. The coloring problem is of central importance in parallel anddistributed computation, as a means of scheduling non-con�icting concurrent tasks. Previousparallel algorithm have attained the degree bound of Brooks's theorem [9], 5-coloring of planargraphs [6], and some other special cases, but no non-trivial performance guarantee on generalgraph was known. We present a parallel algorithm that uses at most 3n(k�2)=(k�1) colors onk-colorable graphs, for a performance ratio of O(n= log n), where n is the number of vertices.An algorithm is said to be on-line if the color assigned to vertex i is independent of ver-tices with index greater than i. This corresponds to various dynamic situations, such as theassignments of frequencies to mobile users. The on-line graph coloring problem has been widelystudied [1, 8, 14] and for various other reasons as well. In particular, an algorithm that improvesthe trivial performance ratio to O(n= log� n) was given by Lovász, Saks, and Trotter [15], anda randomized algorithm with ratio of O(pn) on 3-colorable graph and O(n=plog n) ratio on�email: mmh@rhi.hi.is. Research partly performed at Rutgers University, Tokyo Institute of Technology, andJapan Advanced Institute of Science and Technology � Hokuriku, and supported there by a DIMACS GraduateFellowship, a Toshiba Endowed Chair, and a PFU Endowed Chair, respectively.1

general graphs was given by Vishwanathan [17]. We improve here the randomized algorithm of[17], for a performance ratio of O(n= log n).We �rst present in Section 2 a sequential graph coloring algorithm with a performance ratioof O(n= log n), and use it to derive both a parallel algorithm (in Section 3) and a randomized on-line algorithm (in Section 4) with the same performance ratio. The randomized algorithm is animprovement of an algorithm of Vishwanathan [17], and the performance ratio of O(n=plog n)compares favorably with the lower bound for randomized on-line coloring of
(n= log2 n) [11].The performance ratio of the parallel algorithm is the �rst of its kind. It also compares favor-ably with the best performance ratio known for sequential coloring of O(n(log log n)2= log3 n)[10], and the best announced lower bound known for that quantity (assuming P 6= NP) ofn1��, for each � > 0 [5]. Finally, using the parallel coloring algorithm, we obtain in Section 5 aO(n(log logn= log n)2) performance ratio for parallel independent set problem. This also com-pares favorably to the sequential upper bound of O(n= log2 n) [3] and the announced lower boundof n1��, for each � > 0 [12]. See Table 1 for comparisons.On-line Parallel SequentialDeterministic RandomizedKnown upper bound O(n= log� n) [15] O(n=plog n) [17] O(n(lg lgn)2= log3 n) [10]Here O(n= log n) O(n= log n)Known lower bounds (
(n= log2 n))
(n= log2 n) [11] (
(n1��))
(n1��) [5]Table 1: New and known results on approximate graph coloringThis connection between apparently unrelated algorithmic paradigms is quite surprising, asthe two paradigms we study are seemingly orthogonal and incompatible. Parallel computationis inherently o�-line, and on-line computation inherently sequential. Nevertheless, there arecertain strong similarities, in particular, both require a loose coupling among subproblems.Parallel algorithms bene�t greatly from locality, which can be thought of as a case of limitedinformation similar to the on-line regime. On-line algorithms know more about certain othersubproblems, but with less control over what they learn.2 Approximate Coloring AlgorithmsIn this section, we present and analyze the underlying sequential, o�-line coloring algorithm thatforms the basis of the parallel and on-line variants.Let us �rst review what we have learned from previous methods. First, consider an algorithmdue to Wigderson [19]. Given a three-colorable graph on n vertices, we look for a vertex of degreeat least pn. The neighborhood of that vertex must be two-colorable, so we color these neighborswith two fresh new colors in linear time and remove them from the graph. We repeat this untilmaximum degree falls below pn, for at most pn iterations. The remaining graph can easily becolored using (max degree) + 1 � pn colors, for a combined total of 3pn colors. This principlecan be generalized to graphs of larger chromatic number, where the key observation is that theneighborhood of any node in a k-colorable graph must be k � 1 colorable. This allows us thebreak the problem into a collection of somewhat easier subproblems.The problem with this approach is that it �lls the color classes in sequence. We need amethod that accumulates many color classes concurrently, rather than searching for individualindependent sets. We extract an idea from the on-line algorithm of Vishwanathan [17].A simple greedy algorithm, sometimes referred to as First Fit, works as follows. The verticesare processed in sequence, according to some (arbitrary) order, and a vertex is assigned to the2

�rst color to which none of the preceding neighbors of the vertex have been assigned. If we aregiven a limited number of colors, it may not be possible to color all the vertices. The resultingcoloring of a subset of the vertices is called a maximal partial coloring of the graph.A maximal partial coloring is an assignment of some of the nodes into �xed number of�greedy� color classes so that each remaining node is adjacent to some node in each greedyclass. The important point is that each color class partitions the remaining nodes into subsetsof the neighborhoods of the nodes in the color class. If we choose a small class, the remaininguncolored nodes induce relatively few subproblems. The total number of colors used is then thenumber of greedy color classes, plus the sum of the number of colors used in the subproblems.Such a maximal partial coloring is easy to achieve sequentially, via the First Fit algorithm whichassigns a vertex to the �rst compatible color class (if one exists).K-Color(G,k)beginif (k � 2) BipartiteColor(G)else if (k > log n) Assign each vertex a di�erent color.elses s(n; k) = 21=(k�1) (n=(k � 2))(k�2)=(k�1)ResidueNodes MaximalPartialColor(G,s)Find the smallest greedy color class, and let w1; : : : ; wp be its nodes.Partition the ResidueNodes into R1; : : : Rp such that nodes in Ri are adjacent to wi.for i = 1 to pColor(Ri, k � 1)end Figure 1: An approximation algorithm for k-colorable graphsWe state the main algorithm in Figure 1. The algorithm �nds a maximal partial coloring,partitions the remaining nodes around the smallest color class, and recurses on those subprob-lems, with the recursion bottoming out at bipartite graphs. When the chromatic number is toolarge for us to handle, with respect to the size of the graph, we settle on the trivial coloring ofone color per vertex.Theorem 2.1 The number of colors used by Color on k-colorable graphs is at most f(k) �n(k�2)=(k�1) where f(k) = 1 +O(log kk).Proof. Let A(n; k) denote the maximum number of colors used by the algorithm to color anyk-colorable graph on n vertices. Let f(k) denote 21=(k�1)((k � 1)=(k � 2)(k�2)=(k�1)), and letA(n; k) denote f(k)n(k�2)=(k�1). Our proposition is that A(n; k) � A(n; k), for all positiveintegers n, k, k � 2.The proof proceeds by induction on k, with the base case, k = 2, established by an optimalbipartite algorithm. Hence, assume from here on that A(n; k � 1) � A(n; k� 1), for all positiveintegers n.The number of colors used by our algorithm is the number of greedy colors, s = s(n; k),plus the number of colors used in the t subproblems, each on mj vertices. (To maintain sanityand simplicity of presentation, we ignore all ceilings.) Note that A(n; k) = (k � 1)s(n; k),so our main task is to show that the number of colors used in the subproblems be at most(k � 2)s(n; k) = (2(k � 2)n)(k�2)=(k�1). Intuitively, we �nd that the worst case occurs when thesubproblems are all of equal size, and then derive the worst-case number of subproblems.If g is the total number of vertices in the greedy color classes, then the number of verticesin the smallest class, and thus the number of subproblems, is at most g=s. By the inductive3

assumption, we can assume that the number of colors used in the subproblems is bounded byA. Thus, A(n; k) � s+ g=sXj=1A(mj ; k � 1)Since the approximation function is convex, the sum is maximized when the subproblem sizesare all equal. A(n; k) � s+maxg fgs � A(Pj mjg=s ; k � 1) j n = g +Xj mjgSubstitution and simpli�cation givesA(n; k) � s+maxg fg � (n� gg)(k�3)=(k�2)g � 21=(k�2) k � 2(k � 3)(k�3)=(k�2) � s�1=(k�2)The function fk(g) = g �(n�gg)(k�3)=(k�2) attains a maximum value of (k�3)(k�3)=(k�2)n=(k�2), conveniently simplifying the formula. By straightforward algebraic manipulation, we �ndthat A(n; k) � s+ 21=(k�2)n � s�1=(k�2) = A(n; k):Our algorithm assumes that the chromatic number of the graph is given as input. Tocircumvent that, we can run the algorithm for all natural numbers less than n, and retain thebest result. A more e�cient binary search approach add only a log k = O(log logn) factor to thetime complexity. Start with the range [0; n], as the algorithm is guaranteed to fail for k = 0 andsucceed for k = n, and run the algorithm for the mid-value of the interval. If it succeeds, run iton the lower half; if it fails, run it on the upper half. At the end we have determined a value k0for which the algorithm succeeds while failing for k0 � 1. Then, k0 must be a lower bound onthe chromatic number of the graph, and our performance no worse than if this was given.Corollary 2.2 The performance ratio of Color is O(n= log n).Proof. The ratio of the size of the approximation to the chromatic number � of the graph isO(n(��2)=(��1)=�), which is maximized when � � log n.3 Parallel Coloring AlgorithmIn this section we discuss how to parallelize the steps of the preceding coloring algorithm, whilemaintaining an identical performance.The main algorithm can be parallelized easily by executing the loop iterations in parallel.The bipartite graphs can be colored exactly by �nding a forest of rooted spanning trees usingthe Euler tour technique (see [13]), computing the depth of each node using list ranking, andassigning nodes of odd depth one color and nodes of even depth the other color.The hard part is �nding a maximal partial coloring. A construction of Luby [16] reduces itto the maximal independent set problem which has known NC solutions.We create a new graph G0 that consists of copies of the original graph, with vertices indi�erent copies adjacent i� they correspond to the same original vertex. Consider a maximalindependent set I in G0, and let Ci be the set of vertices in I belonging to the i-th copy of Gin G0. Note that no two vertices in I correspond to the same vertex in G, thus I and Ci mapone-to-one to subsets I 0 and C 0i of V . Moreover, each vertex in V (G) � I 0 is adjacent to some4

MaximalPartialColor(G,x)beginConstruct graph G0 on n � x vertices:V (G0) = fvji : vi 2 V (G); j = 1; : : : ; ngE(G0) = f(vji ; vzy) : i = s _ (j = z ^ (vi; vy) 2 E(G))gI MIS(G0).Ci I \Gi; i = 1; : : : ; xResidueNodes G�[xi=1Cireturn fCig, ResidueNodesend Figure 2: Maximal partial coloring algorithm in parallelvertex in each C 0i, as otherwise its addition to I would still be independent. Hence, the C 0i forma maximal partial coloring of G.The complexity of the maximal partial coloring algorithm is dominated by the complexityof the maximal independent set algorithm used. The faster algorithm known for the latterproblem runs in O(log2 jV j) time, due to Luby [16]. A processor-e�cient algorithm of Goldbergand Spencer [7] runs in O(log3 jV j) time with (jV j + jEj)= log jV j processors. The number ofvertices of the composed graph G0 is s � n, where s = s(n; k) = (n=(k � 2))(k�2)=(k�1) is thenumber of greedy bins allocated. The number of edges is then sjEj + n�s2� < s(jEj + ns), andthus the processor complexity of our algorithm would be s(jEj+ ns)= logn < n3.The complexity of the main algorithm is also dominated by k recursion levels of calls to themaximal partial coloring subroutine, adding a factor of k = O(log n) to the time complexity.4 On-line Coloring AlgorithmWe show in this section how to convert Color into an on-line algorithm.The on-line coloring problem is de�ned as follows. An adversary selects a graph and anordering of the vertices. It feeds us one node at a time along with its edges to the nodes alreadyreceived. We are to irrevocably assign that node a color consistent with the colors of the previousnodes. We are allowed arbitrary amount of time but we are not given any further informationabout the graph, including its size and chromatic number.In order to deter the adversary from foreseeing our every move, randomization frequentlyproves useful. An adversary is said to be oblivious if it picks the graph and the ordering beforewe make any choices (i.e. without knowledge of the values of the random bits), rather thanconstructing the graph adaptively according to our choices. We measure the expected numberof colors used by a randomized algorithm on a given graph, where the expectation ranges over thevalues of the random bits. The performance ratio is then de�ned as the ratio of this expectationto the chromatic number, maximized over all graphs.For some on-line problems, randomized algorithm against adaptive adversary form an inter-mediate model between the deterministic and the randomized oblivious cases. For the graphcoloring problem, however, no results are known that are speci�c to this model.In order to convert the o�-line algorithm into an on-line one, several changes need to bemade and hurdles to be overcome. The greatest change is that we must process the nodes fullyin sequence, rather than processing the chromatic levels in sequence. We must also overcomethree di�culties: the size of partitioning classes will not be known before they must be chosen,the size of the input will not be known, and the chromatic number will be unknown.5

The �rst hurdle is that a partitioning class must be selected in advance, before we know itseventual size. The concern is that if the size will be large, many subproblems will be spanned.The solution is to use randomization: pick a uniformly random class as a partitioning class.Since the adversary must choose the ordering of the graph in advance, the expected number ofnodes in the class will be su�ciently small.The second problem is estimating the size of the input, and recursively, the sizes of thesubproblems. For this we apply a well known trick in the on-line trade (see e.g. [15]), thedoubling strategy, which works as follows. Assume, to begin with, that the size of the input, n,equals 2i, for i initially equal 0. When the actual number of nodes exceeds this estimate, weincrement the estimate to the next power of 2, retire the old color classes and start afresh with anew set of color classes. We continue this way and when the input �nally ends our estimate of nis never o� by more than a factor of 2. Since the function giving our approximation performanceis necessarily convex, it follows that the overhead caused by this strategy is no more than a smallconstant.It is important to notice that we can apply the same strategy recursively for the subproblemsas well. From the perspective of an on-line algorithm, the subgraph induced by the nodes ina residue class (i.e. in a �subproblem�) is structurally no di�erent from the original problem,except for the fact that the chromatic number is one less. We shall therefore allocate sets ofcolor classes to this subproblem completely independent of the other subproblems or the parentproblem. This strategy is what primarily distinguishes our algorithm from Vishwanathan's.The third problem � not knowing the chromatic number in advance � can be handled simi-larly. To begin with, we assume the graph is 2-colorable, and as our assumptions are shattered,usually by the bipartite algorithm stumbling upon a non-bipartite subgraph, we increment ourestimate by one, and start from scratch with a fresh set of colors.Finally, we need to �nd on-line versions of the subroutines called by algorithm K-Color.As stated in [15], there is a simple algorithm for on-line coloring bipartite graph using no morethan 2 log n colors. And a First-Fit algorithm that is restricted to using only the greedy colorclasses actually available is perfect for performing a maximal partial coloring.The resulting algorithm is shown in Figures 3-5.On-line-Color (G){ On-line color a graph G }begink 2Root New-Coloring-Tree(2, k)foreach (v 2 V (G)) in sequence doResult K-Color-Online(Root, v)if (Result = Failure) thenk k + 1Root New-Coloring-Tree(2, k)end Figure 3: On-line Graph Coloring AlgorithmThe on-line algorithm colors the graph by constructing and maintaining a coloring tree. Thistree contains each previous vertex in a greedy color class at some node in the tree. Each nodein the tree contains the following static1 information: n, the capacity of the subtree; k, thecolorability of the subtree; s = s(n; k), the number of greedy bins; and part, the index of the1Static in the sense that the values are given at the creation of the subtree rooted by the node.6

K-Color-Online (T; v){ Re-entrant procedure. }{ Assign a color to the vertex v using coloring tree T . }{ Return success or failure }beginwith T doif (k � 2) thenreturn (BipartiteColor(T , v))if (N � n) thenT New-Coloring-Tree(2n, k)N N + 1for j 1 to s doif (v is non-adjacent to all vertices in P [j]) thenAssign v the color P [j] (or COLOR[v] P [j])return (Success){ v must now be adjacent to some node in each color class }Non-deterministically choose a neighbor w of v in partitioning class P [part]if (R[w] is uninitialized) thenR[w] New-Coloring-Tree(1, k � 1)return (K-Color-Online(R[w],v))end Figure 4: A randomized on-line coloring algorithm
New-Coloring-Tree (n0; k0){ Create and return a new coloring tree with capacity n and chromatic upper bound k }beginwith T don n0k k0s s(n; k) = (2c n=(k � 2))(k�2)=(k�1)P [1; : : : ; s] A new set of colorspart Random integer between 1 and sN 0return Tend Figure 5: Create and initialize a new coloring tree

7

partitioning bin. Each node also contains the following variables: N , the current number ofvertices in the subtree; P [1 : : : s], the greedy bins (the bins themselves are static; their contentsare dynamic); and, Rw, a residue tree for each vertex assigned to the partitioning bin P [part].Finally, each node implicitly contains a host of cut-o� subtrees.Here, c is a constant, whose optimal value is determined in the analysis.When a vertex v arrives, the algorithm will assign it to one of the static greedy bins atthe root whenever possible. If this fails, we choose any neighbor w of v in the partitioning binP [part]. The vertex is the sent recursively to the subproblem corresponding to the subtree R[w](which is constructed if necessary). This continues until the colorability index of the tree is atmost two, in which case we know how to on-line color the node e�ciently.Two invariants must be maintained in each subtree of the coloring tree:1. N � n. That is, the number of vertices in the subtree at any time cannot exceed thecapacity of the subtree.2. The colorability index for the subtree rooted at node v must be at least one greater thanthe colorability index for the subtree rooted at some child of v. This insures that thecolorability index stays an upper bound on the chromatic number of the graph.The former invariant is maintained by K-Color-Online by creating a new subtree with double thecapacity, whenever the vertex count exceeds capacity. The old greedy bins (color classes) arethen set aside and never used again, and the vertices they contain do not factor into the coloringassignment other than that their number is still a part of the content of the subtree.The latter invariant is maintained by On-line-Color, again by cutting o� the old tree andcreating a new tree with a colorability index one larger. Such an action is triggered by thefailure of the on-line bipartite coloring algorithm at some leaf, when some leaf becomes three-chromatic, and the e�ect �lters up the path to the root.4.1 AnalysisThe analysis of the performance of the on-line algorithm resembles that of the parallel approxi-mation, but is more involved. The heart of the analysis is contained in the following result.Theorem 4.1 K-Color-Online uses at most O(n(k�2)=(k�1)(log n)1=(k�1)) expected number of col-ors on k-colorable graphs with n vertices.Proof. Let us �rst de�ne some notation. Let A(n; k) denote the maximum expected numberof colors the algorithm uses to color any k-colorable graph on n vertices, when n is known inadvance. Let B(n; k) similarly be the maximum expected number of colors when n is not knownin advance. Let c denote a real-valued constant to be de�ned later. We shall need the followingfunctions and constants:ck = (2ck�2)(k�2)=(k�1)s(n; k) = ck � n(k�2)=(k�1)(log n)1=(k�1)A(n; k) = (k � 1)s(n; k)B(n; k) = 2c=(k�1)A(n; k)B(n; k) is the upper bound that we shall prove for B(n; k), and similarlyA(n; k) is the boundfor A(n; k). s(n; k) denotes the number of greedy bins allocated, as previously de�ned. Defaultlogarithm is base 2. 8

Given the above notation, the proposition of the theorem can be restated asB(n; k) � B(n; k); for all n; k; k � 2:The proof proceeds by induction on k simultaneously for A and B. For the base case, observethat B(n; 2) = A(n; 2) � 2 log n = A(n; 2) = B(n; 2). To prove the inductive step, we �rst showthat A(n; k) � A(n; k), for any positive integer n.The numberA(n; k) of bins used during the time that the size estimate n remains unchanged,equals the number of greedy bins plus at most the average cost of the subproblems over the sdi�erent choices of a partitioning bin. The latter amounts to at most1s sXi=1 niXj=1B(m(i)j ; k � 1); (1)where ni is the number of elements in greedy bin i and m(i)j the size of the subgraph. Let gdenote the total number of elements placed in greedy bins. By the inductive assumption andthe convexity of B, (1) is at most1s maxg fg � B(s � n� gg ; k � 1)g:We now plug in the value of B, obtainingmaxg fg � (n� gg)(k�3)=(k�2)g � ck�1 � (k � 2) � (2c=s)1=(k�2) � (log n)1=(k�2):As in Theorem 1, the maximum of the inner function simpli�es the formula, leading toA(n; k) � s+ (k � 2) � s(n; k) = A(n; k):Hence, A(n; k) � A(n; k), for any n. We now show that this implies that the same holds forB and B, from which the theorem follows.In general, we do not know the number of nodes in advance, at any level in the recursion.The algorithm �xes a value for n, and when that count has been exceeded, it doubles its expec-tation for the total number of vertices. We obtain d = dlog ne subproblems, coloring the nodesf1g; f2; 3g; : : : ; f2d�2; : : : ; 2d�1� 1g; f2d�1; : : : ; ng, respectively. Let rn denote the total numberof nodes colored by the end of the last doubling step, i.e. rn = 2d�1.The total number of bins used is at most the sum of those used on each of the size-boundedsubproblems, the residue bins used on the last (1� r)n nodes, and the greedy bins allocated inthe last step. That isB(n; k) � d�1Xi=1 A(rn2i ; k) +A((1 � r)n; k) + 1k � 1A(n; k):The �rst term evaluates toA(rn; k) d�1Xi=1 2�i(k�2)=(k�1) � A(rn; k)=(2(k�2)=(k�1) � 1):Maximizing the �rst two terms over the choices for r using standard calculus yieldsB(n; k) � [(1 + (2(k�1)=(k�2) � 1)�(k�1))1=(k�1) + 1k � 1]A(n; k):Inspection shows that this is at mostB(n; k) � 23:77=(k�1)A(n; k):Thus we set c = 3:77, and the theorem follows.9

Theorem 4.2 Our on-line algorithm uses at most O(n(��2)=(��1)(log n)1=(��1)) colors, withouta priori knowledge of either n or the chromatic number �(G).Proof. We maintain a lower bounded estimate k on the chromatic number of the graph. Thisestimate is incremented only when the current graph has been proven to be non k-colorable.Consider the nodes colored while the estimate was i. If we denote their count by Ni, we knowthat On-line-Color used no more than B(Ni; i) colors to color those nodes. This can be boundedfrom above by B(Ni; k), which is a convex function. Thus the sum of these values, i = 2; : : : ; k,is maximized when all Ni are equal, for a total of(k � 1) B(nk � 1 ; k) � (k � 1)1=(k�1) B(n; k) � 39n(k�2)=(k�1)(log n)1=(k�1)number of colors.We obtain the same performance ratio as in the o�-line case, with a similar proof.Corollary 4.3 Randomized on-line coloring is O(n= log n) approximable.5 Independent Sets in ParallelThe parallel coloring algorithm can also be used to �nd cliques or independent sets in parallel,via an observation due to Wigderson [18]. Recall that the algorithm used at most n(k�2)=(k�1)colors, where the graph was provably not k�1 colorable since a k-chromatic subgraph had beenfound. This subgraph is formed by the pivot nodes wi at each of the k � 2 recursive levels,along with a non-bipartite subgraph (i. e. an odd cycle) at the end of the recursion. These pivotnodes are, by de�nition, mutually adjacent, as well as adjacent to the odd cycle, thus producinga k-clique. Since the clique number of the graph is at most the chromatic number, which is atmost the number of colors we used, this yields a n(k�2)=(k�1)=k approximation of the maximumclique, for an O(n= log n) performance ratio. Finally, recall that we can obtain an independentset algorithm with the same performance by applying our algorithm to the complement graph.Notice that the algorithm runs in polylogarithmic time, for all �interesting� values of k (i. e.k � log2 n).Another source of a parallel independent set algorithm can be found in the �rst step ofBerger and Rompel's [2] coloring algorithm. It essentially involves choosing polynomial numberof random vertex subsets of size logk n and testing for non-adjacency. This can be made deter-ministic via the pigeonhole principle without destroying the independence of the samples, andhence can be parallelized trivially. This method yields a n= logk n approximation.Notice that the two methods complement each other, since our/Wigderson's method performsbest for small values of k, while the above random sampling performs relatively better for largervalues of k. If we run both methods and retain the better result, we get an algorithm with aperformance ratio of maxk min n(k�2)=(k�1)k ; nlogk n!which is minimized when k = log n=2 log log n as O(n(log log n= logn)2).5.1 Graphs with large independent setsWe shall show how given a graph with an independence number at least (1=3 + �)n, we can �ndan independent set of size
(pn) in polylogarithmic time.10

The method starts by removing a maximal collection of disjoint triangles (cliques of size3) from the graph. Such a collection can be obtained as a maximal independent set in thegraph whose vertices are all the triangles in the original graph, with edges between intersectingtriangles. Since at most one node in each triangle can be a member of a given independent set,at least �n =
(n) nodes remain after the triangle removal.TriangleFreeIS (G)beginI MaximalIndependentSet(G) = (w1; w2; : : : ; wt)N0 V (G)for i 1 to t doN i N i�1 \ fv 2 V (G) : (v; wi) 62 E(G)gNi N i�1 \ fv 2 V (G) : (v; wi) 2 E(G)greturn max(N1; fw1g [N2; : : : ; fw1; w2; : : : ; wt�1g [Nt; fw1; w2; : : : ; wtg)end Figure 6: Algorithm for �nding independent sets in triangle free graphs.Given a triangle-free graph, we apply the algorithm of Figure 6, which is based on a sequentialalgorithm of [3]. The algorithm �nds a maximal independent set with an ordering of the verticesin the set, and �nds the common non-neighborhoods N i of any pre�x of the vertices, as well asthe complementary neighborhoods Ni. Each neighborhood must be independent since the graphcontains no triangles, and is also contained in an earlier non-neighborhood. The �nal result isthe largest of these independent sets considered, and its size must be at least the smallest t suchthat �t2� � n, or approximately p2n.Finding the recursive non-neighborhoods N i is a pre�x computation that can be performedin logarithmic time with linear number of processors. The complexity is therefore asymptoticallyequivalent to that of the MIS algorithm used.The above construction can be generalized to �nd independent sets of size
(n1=(k�1)) ink-clique free graphs, providing a constructive parallel proof of the upper bound on Ramseynumbers by Erd®s and Szekeres [4]. That also allows us to �nd such independent sets in graphswith independence number greater than n=k for k > 3, but, alas, the processor complexity ofremoving the k-cliques grows as fast as nk.Acknowledgements.I would like to thank Ravi Boppana and Sundar Vishwanathan for helpful discussions, and thetwo anonymous referees for comments that improved the presentation. I also thank Sundar forre-inventing Luby's construction for me.References[1] D. Bean. E�ective coloration. J. Symbolic Logic, 41:469�480, 1976.[2] B. Berger and J. Rompel. A better performance guarantee for approximate graph coloring.Algorithmica, 5(4):459�466, 1990.[3] R. B. Boppana and M. M. Halldórsson. Approximating maximum independent sets byexcluding subgraphs. BIT, 32(2):180�196, June 1992.11

[4] P. Erd®s and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463�470, 1935.[5] U. Feige and J. Kilian. Zero knowledge and the chromatic number. In Proc. of Conferenceon Computational Complexity, June 1996.[6] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel symmetry-breaking in sparsegraphs. SIAM J. Disc. Math., 1(4):434�446, Nov. 1988.[7] M. Goldberg and T. Spencer. Constructing a maximal independent set in parallel. SIAMJ. Disc. Math., 2(3):322�328, Aug. 1989.[8] A. Gyárfás and J. Lehel. On-line and �rst �t colorings of graphs. J. Graph Theory,12(2):217�227, 1988.[9] P. Hajnal and E. Szemerédi. Brooks coloring in parallel. SIAM J. Disc. Math., 3(1):74�80,1990.[10] M. M. Halldórsson. A still better performance guarantee for approximate graph coloring.Inform. Process. Lett., 45:19�23, 25 January 1993.[11] M. M. Halldórsson and M. Szegedy. Lower bounds for on-line graph coloring. TheoreticalComput. Sci., 130:163�174, Aug. 1994.[12] J. Håstad. Clique is hard to approximate within n1��. Manuscript, 1996.[13] R. Karp and V. Ramachandran. A survey of parallel algorithms for shared-memory ma-chines. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A,chapter 17, pages 869�941. Elsevier Science Publishers B.V., 1990.[14] H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combinatorics. InProc. 12th Southeastern Conf. on Combinatorics, Graph Theory, and Computing. Congres-sus Numerantium XXXIII, pages 143�153, 1981.[15] L. Lovász, M. Saks, and W. T. Trotter. An online graph coloring algorithm with sublinearperformance ratio. Discrete Math., 75:319�325, 1989.[16] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.Comput., 15:1036�1053, 1986.[17] S. Vishwanathan. Randomized online graph coloring. J. Algorithms, 13:657�669, Dec. 1992.[18] A. Wigderson. Personal communications.[19] A. Wigderson. Improving the performance guarantee for approximate graph coloring.J. ACM, 30(4):729�735, 1983.
12

