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Abstract

We discover a surprising connection between graph coloring in two orthogonal paradigms:
parallel and on-line computing. We present a randomized on-line coloring algorithm with
a performance ratio of O(n/logn), an improvement of /logn factor over the previous best
known algorithm of Vishwanathan. Also, from the same principles, we construct a parallel
coloring algorithm with the same performance ratio, for the first such result. As a byproduct,
we obtain a parallel approximation for the independent set problem.

1 Introduction.

At the heart of most partition and allocation problems is a graph coloring question. The graph
coloring problem involves assigning values (or colors) to the vertices of a graph so that adjacent
vertices are assigned distinct colors, with the objective of minimizing the number of colors used.

We seek graph coloring algorithms that are both effective and efficient. Efficiency means,
among other things, using computation time bounded by a polynomial in the size of the input.
Effectiveness means that the quality of the coloring is never much worse than the optimal
coloring; it is measured in terms of the performance ratio of the algorithm, defined as the ratio
of the number of colors used to the minimum number of colors needed, maximized over all
inputs. In this paper we present a reasonably effective and efficient graph coloring algorithm
that yields both parallel and on-line algorithms.

A parallel algorithm is said to be efficient if it uses time polylogarithmic and processors
polynomial in the size of the input. The coloring problem is of central importance in parallel and
distributed computation, as a means of scheduling non-conflicting concurrent tasks. Previous
parallel algorithm have attained the degree bound of Brooks’s theorem [9], 5-coloring of planar
graphs [6], and some other special cases, but no non-trivial performance guarantee on general
graph was known. We present a parallel algorithm that uses at most 3nk=2)/(k=1) ¢olors on
k-colorable graphs, for a performance ratio of O(n/logn), where n is the number of vertices.

An algorithm is said to be on-line if the color assigned to vertex i is independent of ver-
tices with index greater than 4. This corresponds to various dynamic situations, such as the
assignments of frequencies to mobile users. The on-line graph coloring problem has been widely
studied [1, 8, 14| and for various other reasons as well. In particular, an algorithm that improves
the trivial performance ratio to O(n/log* n) was given by Lovdsz, Saks, and Trotter [15], and
a randomized algorithm with ratio of O(y/n) on 3-colorable graph and O(n/y/logn) ratio on
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general graphs was given by Vishwanathan [17]. We improve here the randomized algorithm of
[17], for a performance ratio of O(n/logn).

We first present in Section 2 a sequential graph coloring algorithm with a performance ratio
of O(n/logn), and use it to derive both a parallel algorithm (in Section 3) and a randomized on-
line algorithm (in Section 4) with the same performance ratio. The randomized algorithm is an
improvement of an algorithm of Vishwanathan [17], and the performance ratio of O(n//logn)
compares favorably with the lower bound for randomized on-line coloring of Q(n/log®n) [11].
The performance ratio of the parallel algorithm is the first of its kind. It also compares favor-
ably with the best performance ratio known for sequential coloring of O(n(loglogn)?/log®n)
[10], and the best announced lower bound known for that quantity (assuming P # NP) of
n'=€ for each € > 0 [5]. Finally, using the parallel coloring algorithm, we obtain in Section 5 a
O(n(loglogn/logn)?) performance ratio for parallel independent set problem. This also com-
pares favorably to the sequential upper bound of O(n/ log? n) [3] and the announced lower bound
of n!~¢, for each € > 0 [12]. See Table 1 for comparisons.

On-line Parallel Sequential
Deterministic Randomized
Known upper bound  O(n/log*n) [15] O(n/y/logn) [17] O(n(lglgn)?/log®n) [10]
Here O(n/logn) O(n/logn)

Known lower bounds (Q(n/log®n)) Q(n/log?n) [11]  (Q(n'=9)  Q(n'°) [5]
Table 1: New and known results on approximate graph coloring

This connection between apparently unrelated algorithmic paradigms is quite surprising, as
the two paradigms we study are seemingly orthogonal and incompatible. Parallel computation
is inherently off-line, and on-line computation inherently sequential. Nevertheless, there are
certain strong similarities, in particular, both require a loose coupling among subproblems.
Parallel algorithms benefit greatly from locality, which can be thought of as a case of limited
information similar to the on-line regime. On-line algorithms know more about certain other
subproblems, but with less control over what they learn.

2 Approximate Coloring Algorithms

In this section, we present and analyze the underlying sequential, off-line coloring algorithm that
forms the basis of the parallel and on-line variants.

Let us first review what we have learned from previous methods. First, consider an algorithm
due to Wigderson [19]. Given a three-colorable graph on n vertices, we look for a vertex of degree
at least \/n. The neighborhood of that vertex must be two-colorable, so we color these neighbors
with two fresh new colors in linear time and remove them from the graph. We repeat this until
maximum degree falls below /n, for at most y/n iterations. The remaining graph can easily be
colored using (max degree) + 1 < y/n colors, for a combined total of 3y/n colors. This principle
can be generalized to graphs of larger chromatic number, where the key observation is that the
neighborhood of any node in a k-colorable graph must be & — 1 colorable. This allows us the
break the problem into a collection of somewhat easier subproblems.

The problem with this approach is that it fills the color classes in sequence. We need a
method that accumulates many color classes concurrently, rather than searching for individual
independent sets. We extract an idea from the on-line algorithm of Vishwanathan [17].

A simple greedy algorithm, sometimes referred to as First Fit, works as follows. The vertices
are processed in sequence, according to some (arbitrary) order, and a vertex is assigned to the



first color to which none of the preceding neighbors of the vertex have been assigned. If we are
given a limited number of colors, it may not be possible to color all the vertices. The resulting
coloring of a subset of the vertices is called a mazimal partial coloring of the graph.

A maximal partial coloring is an assignment of some of the nodes into fixed number of
“greedy” color classes so that each remaining node is adjacent to some node in each greedy
class. The important point is that each color class partitions the remaining nodes into subsets
of the neighborhoods of the nodes in the color class. If we choose a small class, the remaining
uncolored nodes induce relatively few subproblems. The total number of colors used is then the
number of greedy color classes, plus the sum of the number of colors used in the subproblems.
Such a maximal partial coloring is easy to achieve sequentially, via the First Fit algorithm which
assigns a vertex to the first compatible color class (if one exists).

K-Color(G,k)
begin
if (k < 2) BipartiteColor(G)
else if (k > log n) Assign each vertex a different color.
else
s «— s(n,k) = 2V/k=0) (n/(k — 2))(k=2)/(k-1)
ResidueNodes <~ MaximalPartialColor(G,s)
Find the smallest greedy color class, and let wy, ..., w, be its nodes.
Partition the ResidueNodes into Ry,... R, such that nodes in R; are adjacent to w;.
fori = 1top
Color(R;, k—1)
end

Figure 1: An approximation algorithm for k-colorable graphs

We state the main algorithm in Figure 1. The algorithm finds a maximal partial coloring,
partitions the remaining nodes around the smallest color class, and recurses on those subprob-
lems, with the recursion bottoming out at bipartite graphs. When the chromatic number is too
large for us to handle, with respect to the size of the graph, we settle on the trivial coloring of
one color per vertex.

Theorem 2.1 The number of colors used by Color on k-colorable graphs is at most f(k) -
nk=2/E=1) yhere f(k) =1+ O(l%%—k)

Proof. Let A(n,k) denote the maximum number of colors used by the algorithm to color any
k-colorable graph on n vertices. Let f(k) denote 21/ =D ((k —1)/(k — 2)*=2/(¢=1)) and let
A(n, k) denote f(k)n#=2/(=1) " Our proposition is that A(n,k) < A(n,k), for all positive
integers n, k, k > 2.

The proof proceeds by induction on k, with the base case, k = 2, established by an optimal
bipartite algorithm. Hence, assume from here on that A(n,k —1) < A(n,k — 1), for all positive
integers n.

The number of colors used by our algorithm is the number of greedy colors, s = s(n, k),
plus the number of colors used in the ¢ subproblems, each on m; vertices. (To maintain sanity
and simplicity of presentation, we ignore all ceilings.) Note that A(n,k) = (k — 1)s(n, k),
so our main task is to show that the number of colors used in the subproblems be at most
(k —2)s(n, k) = (2(k — 2)n)*~2/(=1) Intuitively, we find that the worst case occurs when the
subproblems are all of equal size, and then derive the worst-case number of subproblems.

If g is the total number of vertices in the greedy color classes, then the number of vertices
in the smallest class, and thus the number of subproblems, is at most g/s. By the inductive



assumption, we can assume that the number of colors used in the subproblems is bounded by
A. Thus,

9/s

A(n,k) < s+ > A(mj, k- 1)

7j=1
Since the approximation function is convex, the sum is maximized when the subproblem sizes
are all equal.

Zj m

9/s

, |
Aln, ) < s+ max{Z - A J,k—1>|n=g+;mj}

Substitution and simplification gives

(T Y\ (k=3)/(k=2) 7 . 91/(k—2) k-2 —1/(k=2)
A(n,k)gs—l—mgax{g ( p ) }-2 (k —3) 3/t 2) °

The function fr(g) = g- ("—;g)(k*:")/(k*?) attains a maximum value of (k—3)(k=3)/(k=2)p /(f —
2), conveniently simplifying the formula. By straightforward algebraic manipulation, we find
that
An, k) < s 42V E=2)q g7/ E=2) — A(n k).

Our algorithm assumes that the chromatic number of the graph is given as input. To
circumvent that, we can run the algorithm for all natural numbers less than n, and retain the
best result. A more efficient binary search approach add only a log & = O(loglogn) factor to the
time complexity. Start with the range [0, n], as the algorithm is guaranteed to fail for £ = 0 and
succeed for £ = n, and run the algorithm for the mid-value of the interval. If it succeeds, run it
on the lower half; if it fails, run it on the upper half. At the end we have determined a value kg
for which the algorithm succeeds while failing for £y — 1. Then, ky must be a lower bound on
the chromatic number of the graph, and our performance no worse than if this was given.

Corollary 2.2 The performance ratio of Color is O(n/logn).

Proof. The ratio of the size of the approximation to the chromatic number y of the graph is
O(nx=2/x=1) /y), which is maximized when x = log n. n

3 Parallel Coloring Algorithm

In this section we discuss how to parallelize the steps of the preceding coloring algorithm, while
maintaining an identical performance.

The main algorithm can be parallelized easily by executing the loop iterations in parallel.
The bipartite graphs can be colored exactly by finding a forest of rooted spanning trees using
the Euler tour technique (see [13]), computing the depth of each node using list ranking, and
assigning nodes of odd depth one color and nodes of even depth the other color.

The hard part is finding a maximal partial coloring. A construction of Luby [16] reduces it
to the maximal independent set problem which has known NC' solutions.

We create a new graph G’ that consists of copies of the original graph, with vertices in
different copies adjacent iff they correspond to the same original vertex. Consider a maximal
independent set I in G’, and let C; be the set of vertices in I belonging to the i-th copy of G
in G'. Note that no two vertices in I correspond to the same vertex in G, thus I and C; map
one-to-one to subsets I’ and C! of V. Moreover, each vertex in V(G) — I' is adjacent to some



MaximalPartialColor(G,r)
begin
Construct graph G’ on n - x vertices:
V(G) = {v] : v; € V(G), j=1,...,n}
B(G) = {w},02) : i=s V (j=2 A (v,v,) € B(G))}
I « MIS(G).
C; + IﬂGi, 1=1,...,x
ResidueNodes <~ G — U?Y_,C;
return {C;}, ResidueNodes
end

Figure 2: Maximal partial coloring algorithm in parallel

vertex in each C}, as otherwise its addition to I would still be independent. Hence, the C; form
a maximal partial coloring of G.

The complexity of the maximal partial coloring algorithm is dominated by the complexity
of the maximal independent set algorithm used. The faster algorithm known for the latter
problem runs in O(log? |[V|) time, due to Luby [16]. A processor-efficient algorithm of Goldberg
and Spencer [7] runs in O(log® |V|) time with (|V| + |E|)/log|V| processors. The number of
vertices of the composed graph G’ is s - n, where s = s(n, k) = (n/(k — 2))*=2/(k=1) 5 the
number of greedy bins allocated. The number of edges is then s|E| + n(5) < s(|E| 4 ns), and
thus the processor complexity of our algorithm would be s(|E| 4+ ns)/logn < n3.

The complexity of the main algorithm is also dominated by & recursion levels of calls to the
maximal partial coloring subroutine, adding a factor of £k = O(logn) to the time complexity.

4 On-line Coloring Algorithm

We show in this section how to convert Color into an on-line algorithm.

The on-line coloring problem is defined as follows. An adversary selects a graph and an
ordering of the vertices. It feeds us one node at a time along with its edges to the nodes already
received. We are to irrevocably assign that node a color consistent with the colors of the previous
nodes. We are allowed arbitrary amount of time but we are not given any further information
about the graph, including its size and chromatic number.

In order to deter the adversary from foreseeing our every move, randomization frequently
proves useful. An adversary is said to be oblivious if it picks the graph and the ordering before
we make any choices (i.e. without knowledge of the values of the random bits), rather than
constructing the graph adaptively according to our choices. We measure the expected number
of colors used by a randomized algorithm on a given graph, where the expectation ranges over the
values of the random bits. The performance ratio is then defined as the ratio of this expectation
to the chromatic number, maximized over all graphs.

For some on-line problems, randomized algorithm against adaptive adversary form an inter-
mediate model between the deterministic and the randomized oblivious cases. For the graph
coloring problem, however, no results are known that are specific to this model.

In order to convert the off-line algorithm into an on-line one, several changes need to be
made and hurdles to be overcome. The greatest change is that we must process the nodes fully
in sequence, rather than processing the chromatic levels in sequence. We must also overcome
three difficulties: the size of partitioning classes will not be known before they must be chosen,
the size of the input will not be known, and the chromatic number will be unknown.



The first hurdle is that a partitioning class must be selected in advance, before we know its
eventual size. The concern is that if the size will be large, many subproblems will be spanned.
The solution is to use randomization: pick a uniformly random class as a partitioning class.
Since the adversary must choose the ordering of the graph in advance, the expected number of
nodes in the class will be sufficiently small.

The second problem is estimating the size of the input, and recursively, the sizes of the
subproblems. For this we apply a well known trick in the on-line trade (see e.g. [15]), the
doubling strategy, which works as follows. Assume, to begin with, that the size of the input, n,
equals 2, for i initially equal 0. When the actual number of nodes exceeds this estimate, we
increment the estimate to the next power of 2, retire the old color classes and start afresh with a
new set of color classes. We continue this way and when the input finally ends our estimate of n
is never off by more than a factor of 2. Since the function giving our approximation performance
is necessarily convex, it follows that the overhead caused by this strategy is no more than a small
constant.

It is important to notice that we can apply the same strategy recursively for the subproblems
as well. From the perspective of an on-line algorithm, the subgraph induced by the nodes in
a residue class (i.e. in a “subproblem”) is structurally no different from the original problem,
except for the fact that the chromatic number is one less. We shall therefore allocate sets of
color classes to this subproblem completely independent of the other subproblems or the parent
problem. This strategy is what primarily distinguishes our algorithm from Vishwanathan’s.

The third problem — not knowing the chromatic number in advance — can be handled simi-
larly. To begin with, we assume the graph is 2-colorable, and as our assumptions are shattered,
usually by the bipartite algorithm stumbling upon a non-bipartite subgraph, we increment our
estimate by one, and start from scratch with a fresh set of colors.

Finally, we need to find on-line versions of the subroutines called by algorithm K-COLOR.
As stated in [15], there is a simple algorithm for on-line coloring bipartite graph using no more
than 2logn colors. And a First-Fit algorithm that is restricted to using only the greedy color
classes actually available is perfect for performing a maximal partial coloring.

The resulting algorithm is shown in Figures 3-5.

On-line-Color (G)
{ On-line color a graph G }
begin
k <+ 2
Root < New-Coloring-Tree(2, k)
foreach (v € V/(G)) in sequence do
Result <+ K-Color-Online(Root, v)
if (Result = Failure) then
kE+— k +1
Root < New-Coloring-Tree(2, k)
end

Figure 3: On-line Graph Coloring Algorithm

The on-line algorithm colors the graph by constructing and maintaining a coloring tree. This
tree contains each previous vertex in a greedy color class at some node in the tree. Each node
in the tree contains the following static! information: n, the capacity of the subtree; k, the
colorability of the subtree; s = s(n, k), the number of greedy bins; and part, the index of the

!Static in the sense that the values are given at the creation of the subtree rooted by the node.



K-Color-Online (T, v)

{ Re-entrant procedure. }

{ Assign a color to the vertex v using coloring tree T'. }
{ Return success or failure }

begin

with T' do

end

if (k < 2) then
return (BipartiteColor(7', v))
if (N > n) then
T < New-Coloring-Tree(2n, k)
N < N +1
forj < 1tosdo
if (v is non-adjacent to all vertices in P[j]) then
Assign v the color P[j] (or COLOR[v] <« P[j])
return (Success)
{ v must now be adjacent to some node in each color class }
Non-deterministically choose a neighbor w of v in partitioning class P[part]
if (R[w] is uninitialized) then
RJw] < New-Coloring-Tree(1, k£ — 1)
return (K-Color-Online( R[w],v))

Figure 4: A randomized on-line coloring algorithm

New-Coloring-Tree (ng, ko)
{ Create and return a new coloring tree with capacity n and chromatic upper bound & }

begin
with 7" do
n < no
k + ko
s « s(n,k) = (2¢n/(k—2))k=2/(k-1)
P[1,...,s] < A new set of colors
part < Random integer between 1 and s
N <~ 0
return T'
end

Figure 5: Create and initialize a new coloring tree



partitioning bin. Each node also contains the following variables: N, the current number of
vertices in the subtree; P[1... s], the greedy bins (the bins themselves are static; their contents
are dynamic); and, Ry, a residue tree for each vertex assigned to the partitioning bin P[part].
Finally, each node implicitly contains a host of cut-off subtrees.

Here, c is a constant, whose optimal value is determined in the analysis.

When a vertex v arrives, the algorithm will assign it to one of the static greedy bins at
the root whenever possible. If this fails, we choose any neighbor w of v in the partitioning bin
Plpart]. The vertex is the sent recursively to the subproblem corresponding to the subtree R[w]
(which is constructed if necessary). This continues until the colorability index of the tree is at
most two, in which case we know how to on-line color the node efficiently.

Two invariants must be maintained in each subtree of the coloring tree:

1. N < n. That is, the number of vertices in the subtree at any time cannot exceed the
capacity of the subtree.

2. The colorability index for the subtree rooted at node v must be at least one greater than
the colorability index for the subtree rooted at some child of v. This insures that the
colorability index stays an upper bound on the chromatic number of the graph.

The former invariant is maintained by K-Color-Online by creating a new subtree with double the
capacity, whenever the vertex count exceeds capacity. The old greedy bins (color classes) are
then set aside and never used again, and the vertices they contain do not factor into the coloring
assignment other than that their number is still a part of the content of the subtree.

The latter invariant is maintained by On-line-Color, again by cutting off the old tree and
creating a new tree with a colorability index one larger. Such an action is triggered by the
failure of the on-line bipartite coloring algorithm at some leaf, when some leaf becomes three-
chromatic, and the effect filters up the path to the root.

4.1 Analysis

The analysis of the performance of the on-line algorithm resembles that of the parallel approxi-
mation, but is more involved. The heart of the analysis is contained in the following result.

Theorem 4.1 K-Color-Online uses at most O(n¥=2)/(k=1) (1og n)Y/ ==Y egpected number of col-
ors on k-colorable graphs with n vertices.

Proof. Let us first define some notation. Let A(n,k) denote the maximum expected number
of colors the algorithm uses to color any k-colorable graph on n vertices, when n is known in
advance. Let B(n, k) similarly be the maximum expected number of colors when 7 is not known
in advance. Let ¢ denote a real-valued constant to be defined later. We shall need the following
functions and constants:

= (&)
<k 2)/( ~1) (log )/ (k=)

A( ,k)( )(n,k)
B(n, k) = 2¢/¢6=1D A(n, k)

VAl
/\??‘
W
~
Q

B(n, k) is the upper bound that we shall prove for B(n, k), and similarly A(n, k) is the bound
for A(n,k). s(n,k) denotes the number of greedy bins allocated, as previously defined. Default
logarithm is base 2.



Given the above notation, the proposition of the theorem can be restated as
B(n,k) < B(n,k), foralln,k k> 2.

The proof proceeds by induction on k simultaneously for A and B. For the base case, observe
that B(n,2) = A(n,2) < 2logn = A(n,2) = B(n,2). To prove the inductive step, we first show
that A(n,k) < A(n,k), for any positive integer n.

The number A(n, k) of bins used during the time that the size estimate n remains unchanged,
equals the number of greedy bins plus at most the average cost of the subproblems over the s
different choices of a partitioning bin. The latter amounts to at most

—ZZB(m§i>,k—1), (1)

where n; is the number of elements in greedy bin ¢ and mg-i) the size of the subgraph. Let g
denote the total number of elements placed in greedy bins. By the inductive assumption and
the convexity of B, (1) is at most

1 —
— max{g - B(s- n—9g
s 9

We now plug in the value of B, obtaining

n= - - C — —
mj"X{g . (Tg)(k 3)/(k 2)} cep1 - (k—2)- (2 /8)1/(k 2) (logn)l/(k 2).

As in Theorem 1, the maximum of the inner function simplifies the formula, leading to
A(n,k) < s+ (k—2)-s(n,k) = A(n,k).

Hence, A(n,k) < A(n, k), for any n. We now show that this implies that the same holds for
B and B, from which the theorem follows.

In general, we do not know the number of nodes in advance, at any level in the recursion.
The algorithm fixes a value for n, and when that count has been exceeded, it doubles its expec-
tation for the total number of vertices. We obtain d = [logn]| subproblems, coloring the nodes
{1}, {2,3},...,{2¢72 ..., 271 —1} {2971 ... n}, respectively. Let rn denote the total number
of nodes colored by the end of the last doubling step, i.e. rn = 2471,

The total number of bins used is at most the sum of those used on each of the size-bounded
subproblems, the residue bins used on the last (1 — r)n nodes, and the greedy bins allocated in
the last step. That is

d—1
rn 1
B < — 1— S .
(1) £ 3 AR+ AU = 7)) + = Al b
The first term evaluates to
d—1
A(rn, k) Z 27 k=D/(k=1) < A(rn, k) /(2K2/E=1) _ 1),
i=1

Maximizing the first two terms over the choices for r using standard calculus yields

Bln, k) < [(1+ @UED/E2 ) 00D 4, b)

Inspection shows that this is at most
B(n,k) < 2%77/6=1 A(n, k).

Thus we set ¢ = 3.77, and the theorem follows. |



Theorem 4.2 Our on-line algorithm uses at most O(nX=2/X=1) (log n)/X=1) colors, without
a priori knowledge of either n or the chromatic number x(G).

Proof. We maintain a lower bounded estimate £ on the chromatic number of the graph. This
estimate is incremented only when the current graph has been proven to be non k-colorable.
Consider the nodes colored while the estimate was ¢. If we denote their count by NV;, we know
that On-line-Color used no more than B(N;,4) colors to color those nodes. This can be bounded
from above by B(N;, k), which is a convex function. Thus the sum of these values, i = 2,...,k,
is maximized when all N; are equal, for a total of

(k—1) B(%, E) < (k—1)YED Bn k) < 39nk—2/(k=1) (15g 1)1/ (k=1)

number of colors. ]

We obtain the same performance ratio as in the off-line case, with a similar proof.

Corollary 4.3 Randomized on-line coloring is O(n/logn) approzimable.

5 Independent Sets in Parallel

The parallel coloring algorithm can also be used to find cliques or independent sets in parallel,
via an observation due to Wigderson [18]. Recall that the algorithm used at most n(k—2)/(k=1)
colors, where the graph was provably not k£ — 1 colorable since a k-chromatic subgraph had been
found. This subgraph is formed by the pivot nodes w; at each of the k& — 2 recursive levels,
along with a non-bipartite subgraph (i. e. an odd cycle) at the end of the recursion. These pivot
nodes are, by definition, mutually adjacent, as well as adjacent to the odd cycle, thus producing
a k-clique. Since the clique number of the graph is at most the chromatic number, which is at
most the number of colors we used, this yields a n(k_2)/(k_1)/k approximation of the maximum
clique, for an O(n/logn) performance ratio. Finally, recall that we can obtain an independent
set algorithm with the same performance by applying our algorithm to the complement graph.
Notice that the algorithm runs in polylogarithmic time, for all “interesting” values of k (i. e.
E <log’n).

Another source of a parallel independent set algorithm can be found in the first step of
Berger and Rompel’s [2| coloring algorithm. It essentially involves choosing polynomial number
of random vertex subsets of size log;, n and testing for non-adjacency. This can be made deter-
ministic via the pigeonhole principle without destroying the independence of the samples, and
hence can be parallelized trivially. This method yields a n/log, n approximation.

Notice that the two methods complement each other, since our/Wigderson’s method performs
best for small values of &, while the above random sampling performs relatively better for larger
values of k. If we run both methods and retain the better result, we get an algorithm with a

performance ratio of
. (n(k_2)/(k_1) n >
max min

k k "log n

which is minimized when k = logn/2loglogn as O(n(loglogn/logn)?).

5.1 Graphs with large independent sets

We shall show how given a graph with an independence number at least (1/3 + €)n, we can find
an independent set of size Q(y/n) in polylogarithmic time.
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The method starts by removing a maximal collection of disjoint triangles (cliques of size
3) from the graph. Such a collection can be obtained as a maximal independent set in the
graph whose vertices are all the triangles in the original graph, with edges between intersecting
triangles. Since at most one node in each triangle can be a member of a given independent set,
at least en = Q(n) nodes remain after the triangle removal.

TriangleFreelS (G)
begin
I + MaximallndependentSet(G) = (wy,ws, ..., w;)
for 1 <1 to t do
Ni — Ni,1 N {’U € V(G) : (v,wi) ¢ E(G)}
Ni+ N;_1n{v e V(G): (v,w;) € E(G)}
return max(Ny, {w;} U No, ..., {wi,we,...,wi_1} U Ny, {wy,wo,...,w})
end

Figure 6: Algorithm for finding independent sets in triangle free graphs.

Given a triangle-free graph, we apply the algorithm of Figure 6, which is based on a sequential
algorithm of [3]. The algorithm finds a maximal independent set with an ordering of the vertices
in the set, and finds the common non-neighborhoods N; of any prefix of the vertices, as well as
the complementary neighborhoods N;. Each neighborhood must be independent since the graph
contains no triangles, and is also contained in an earlier non-neighborhood. The final result is
the largest of these independent sets considered, and its size must be at least the smallest ¢ such
that (;) > n, or approximately v/2n.

Finding the recursive non-neighborhoods N; is a prefix computation that can be performed
in logarithmic time with linear number of processors. The complexity is therefore asymptotically
equivalent to that of the MIS algorithm used.

The above construction can be generalized to find independent sets of size Q(n!/(#~1) in
k-clique free graphs, providing a constructive parallel proof of the upper bound on Ramsey
numbers by Erdds and Szekeres [4]. That also allows us to find such independent sets in graphs
with independence number greater than n/k for k& > 3, but, alas, the processor complexity of

removing the k-cliques grows as fast as n¥.
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