
As appearing in Information Processing Letters, Feb. 1993.

A Still Better Performance Guarantee for

Approximate Graph Coloring

Magn�us M. Halld�orsson

�

School of Information Science

Japan Advanced Institute of Science and Technology, Hokuriku

Tatsunokuchi, Ishikawa 923-12, Japan

Email: magnus@jaist-east.ac.jp

Abstract

We present an approximation algorithm for graph coloring which achieves a performance

guarantee of O(n(log logn)

2

=(logn)

3

), a factor of log logn improvement.

Keywords: analysis of algorithms, approximation algorithms, graph coloring.

1 Introduction

A coloring of a undirected graph is a partition of the vertices into color classes so that no edge

joins two vertices in the same class. The objective is to use as few colors as possible. Given

that it is NP-hard to color every graph with the minimum number of colors, we are interested

in polynomial time algorithms that provide guarantees on the number of colors they use. The

performance guarantee of an approximate coloring algorithm is the largest ratio, over all graphs

on n vertices, of the number of colors used to the minimum number of colors required.

The �rst algorithm with a non-trivial performance guarantee was given by Johnson [4]. This

performance guarantee ofO(n= log n) was later improved byWigderson [6] toO(n(log log n= log n)

2

),

and by Berger and Rompel [1] to O(n(log log n= log n)

3

).

We further improve the best performance guarantee known by applying an approximate

algorithm for the independent set problem by Boppana and Halld�orsson [2] in combination with

these earlier results on coloring. The performance guarantee we obtain isO(n(log logn)

2

= log

3

n).

2 Graph Coloring Algorithm

We shall present an algorithm for �nding large independent sets in k-colorable graphs. This

will directly lead to a good coloring algorithm, as well shall indicate later. For simplicity of

presentation, we state the algorithm in its randomized form.

Let G be a k-colorable graph on n vertices, and let A be a largest color class under some

optimal coloring of G. Let I be a set of log

k

n randomly selected vertices. Let N(I) denote the

subgraph induced by vertices neither in I nor adjacent to any vertex in I; alternatively, N(I) is

the graph obtained from G by removing I, the vertices adjacent to vertices in I , and all incident

edges. For a graph S, jSj denotes the number of vertices in S.

Our algorithm is based on the following three observations:

�

Research performed at Rutgers University. Supported in part by Center for Discrete Mathematics and

Theoretical Computer Science graduate fellowship.

1



Observation 1

1. I � A (and thus A � I [N(I)), with probability at least 1=n.

2. N(I) is k-colorable.

3. If N(I) is small and A � I [N(I), then an independent set algorithm of [2] �nds a large

independent set in N(I).

The �rst two observations are from [1]. The �rst observation holds because the ratio of the

number of log

k

n-sized vertex sets contained in A to the number of all such sets is at least 1=n.

It tells us that some searching will give us a sizable independent set with certain nice properties.

The second observation forms the basis of a recursive algorithm: Apply the same arguments on

the graph N(I), and merge the result with the independent set I .

The third observation is new to this paper. It allows us to argue that when the independent

set algorithm fails to �nd a large approximation, the size of N(I) must be large, facilitating a

deeper recursion. We formalize the observation in the following lemma, withN(I)[I represented

by S. We �rst need the following result.

Fact 1 ([2]) Given a graph G with independence number at least tn where t � 1= log n, the

algorithm CliqueRemoval will �nd an independent set of size at least e

�1

n

t

=t.

Lemma 1 Let S be a subgraph of G on at most

n

k

log n

2 log logn

vertices, containing an n=k indepen-

dent set. Then CliqueRemoval returns an independent set of size at least log

3

n=6 log log n, when

applied to S.

Proof. When applied to S, CliqueRemoval �nds an independent set of size at least

e

�1

jSj

(n=k)=jSj

� jSj=(n=k) = e

�1

(k=n)e

(log jSj)(n=(kjSj)+1)

:

This is minimized when jSj is maximized, giving

e

�1

(log n=2 log log n) n

2 log logn= logn

� e

�1

log

3

n=2 log log n:

We now present our algorithm in �g. 2.1.

Theorem 1 Given a k-colorable graph G, SampleIS(G,k) returns an independent set of size at

least log

k

n log n=(2max(log(k � 2 log logn= log n); 1)) in expected polynomial time.

Proof. The proof is by induction on the size of the graph. The claim holds trivially for the

single vertex graph, hence we inductively assume the claim holds for all graphs of size less than

n. Each iteration of the loop in the algorithm can conclude in one of three di�erent ways:

a) jN(I)j � n=k � log n=2 log log n. Then, by the inductive assumption, SampleIS(N(I), k) is

at least

(log jN(I)j)

2

=(2 log kmax(log(k(2 log log jN(I)j= log jN(I)j)); 1)):

As jN(I)j is trivially at most n, and at least the assumed lower bound, this becomes at

least

log

2

n=(2 log kmax(log(k(2 log log n= log n)); 1))� log n= log k:

But the size of I is log

k

n = log n= log k, hence the size of the result I [ SampleIS(N(I); k)

satis�es the claim.

2



SampleIS (G,k)

f G is k-colorable, jGj = n g

begin

if jGj � 1 then return G

forever do

randomly pick a set I of log

k

n nodes

if I is independent then

if jN(I)j � n=k � log n=2 log log n then

return (I [ SampleIS(N(I),k))

else

I

2

= CliqueRemoval(N(I)) [ I

if jI

2

j � log

3

n=6 log log n then return (I [ I

2

)

f else I 6� A g

endif

endif

od

end

Algorithm 2.1: Algorithm for �nding independent sets in k-colorable graphs

b) CliqueRemoval returned a set of size log

3

n=(6 log log n), in which case the claim is satis�ed.

c) jN(I)j < n=k � log n=2 log log n, and CliqueRemoval was not successful. Then, according to

lemma 1, I could not have been contained in the largest color class of the graph.

After at most expected n iterations, the randomly selected vertex set I will be contained in the

largest color class of the graph, at which point only the successful outcomes b) and c) can occur.

The time complexity of each iteration of the loop is equivalent to the complexity of CliqueR-

emoval or O(�(G)(n+m)), where �(G) is the chromatic number of the graph and m is the

number of edges in the graph. Each invocation of the method executes the loop at most n times

on the average, while the number of invocations is proportional to the size of the approximation.

Note that the algorithm can be made deterministic using the method presented in [1]. Par-

tition the vertices of the graph into bins of size k log

k

n. By the pigeonhole principle, at least

one of the n=(k log

k

n) bins must contain a subset of A of size

n=k

n=(k log

k

n)

= log

k

n, and we can

�nd this subset by exhaustively examining the

�

k log

k

n

log

k

n

�

� n such subsets in each bin.

An algorithm for �nding independent sets leads directly to a coloring algorithm as follows.

Call the independent set algorithm and color the result with the �rst color, and then remove

this set of vertices and incident edges from the graph. Call the independent set algorithm on

the resulting graph and color with the second color, and so on. The following lemma, which has

been used implicitly numerous times [4, 6, 2, 1], indicates how the approximations relate.

Lemma 2 An iterative application of an algorithm that guarantees �nding an independent set

of size f

k

(n) = O(

p

n) in a k-colorable graph G, produces a coloring of G with no more than

2n=f

k

(n) colors.

Proof. Assume that f is a positive, non-decreasing function. Then, the iterative application

of the independent set algorithm produces a coloring with at most

P

n

i=1

1=f

k

(i) colors, since

each node contributes at most 1=f

k

(n

0

) colors, where n

0

is the number of nodes remaining in

the graph at the time when the node was assigned a color. This discrete integral is at most

t=(t� 1) � n=f

k

(n) when f

k

(n) grows no faster than O(n

1=t

).

3



Corollary 1 Graph coloring is O(n(log log n)

2

=(log n)

3

) approximable.

Proof. First notice that we can run SampleIS for all values of k, obtaining an approximation at

least as good as that of SampleIS(G,�), where � = �(G) denotes the chromatic number of G.

We shall also run CliqueRemoval, and retain the best result. We color the graph with a repeated

application of this combined method for �nding independent sets.

By the preceding lemma, when � � log n=2 log log n, an application of CliqueRemoval will

produce a coloring with at most O(n

1�1=�

=�) colors, while when � � log n=2 log log n, using

SampleIS will yield a coloring using at most O(n log�max(log(� � 2 log log n= log n); 1)=(log n)

2

)

colors. As a function of �, the ratio of the number of colors used to the chromatic number is

monotone decreasing in the former case and monotone increasing in the latter case. Thus it

su�ces to observe that at the point of discontinuity, � = log n=2 log log n, the value of either

function is O(n(log log)

2

= log

3

n).

3 Remarks

In the more than two years that have passed since the development of the algorithm reported

here, no method has been found that improves on the performance guarantee. By recent results

of Lund and Yannakakis [5], obtaining a performance guarantee of n

�

, for some � > 0, is NP-

hard. Using results of [2] we can argue that even a n= log

3

n approximation is not possible

within the framework of current approximate coloring algorithms. Also, the fact that on-line

algorithms, and some of their extensions, can not provide n= log

2

n performance guarantee [3]

can be taken as a further evidence of the hardness of the approximate coloring problem. We

thus conclude with a bold conjecture.

Conjecture 1 The best possible performance guarantee for graph coloring is �(n= log

c

n), for

some constant c � 3.

Acknowledgements

I am indebted to my adviser, Ravi Boppana, for assistance, ideas, and discussions leading to

this and related work. I also thank the anonymous referee and Jaikumar Radhakrishnan for

suggestions for improving the presentation.

References

[1] B. Berger and J. Rompel. A better performance guarantee for approximate graph coloring.

Algorithmica, 5(4):459{466, 1990.

[2] R. B. Boppana and M. M. Halld�orsson. Approximating maximum independent sets by

excluding subgraphs. BIT, 32(2):180{196, June 1992.

[3] M. M. Halld�orsson and M. Szegedy. Lower bounds for on-line graph coloring. In Proc. 3rd

ACM-SIAM Symp. on Discrete Algorithms, pages 211{216, Jan. 1992.

[4] D. S. Johnson. Worst case behaviour of graph coloring algorithms. In Proc. 5th Southeastern

Conf. on Combinatorics, Graph Theory, and Computing. Congressus Numerantium X, pages

513{527, 1974.

[5] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.

Manuscript, July 1992.

4



[6] A. Wigderson. Improving the performance guarantee for approximate graph coloring.

J. ACM, 30(4):729{735, 1983.

5


