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When � is the set of all positive integers the �-IS problem is asking for an independent dom-inating set, a problem which is easy since any maximal independent set is also a dominating set.When � = f1g the �-IS problem is asking for the existence of a perfect code, a problem which isNP-complete even for planar 3-regular graphs [6] and for chordal graphs [7]. The natural questionbecomes: For what values of � is the �-IS problem solvable in polynomial time? In the next sectionwe resolve this question for all cases, up to P vs. NP .Theorem 1.1 The �-IS problem is NP-complete if there is a positive integer k 62 � with k+1 2 �,and otherwise it is solvable in polynomial time.Approximation algorithms Even for the cases when the decision problem is solvable in poly-nomial time, the corresponding optimization problem, �nding a minimum or maximum size �-IS,is hard. In Section 3 we give on the one hand approximation algorithms for these optimizationproblems, and on the other hand strong inapproximability results.The class of problems that we can approximate is that of �nding an independent set wherevertices outside the set are adjacent to at most a given number k vertices inside. We obtainperformance ratios of O(pn) for the maximization versions of these problems. This is signi�cantlybetter than what is known for the ordinary Independent Set problem, where the best performanceratio known is O(n= log2 n) [1], a mere log2 n factor from trivial. In fact, it is known that obtaininga performance ratio that is any �xed root of n factor better than trivial is highly unlikely [4].We �nd that the same algorithmic technique extends to a number of related independenceproblems for which no non-trivial bounds had been given before. Given a base set with m elementsand a collection of n subsets of the base set, the Set Packing problem is to �nd the largest numberof disjoint sets from the collection. There is a standard reduction from Independent Set to SetPacking [2] where the number of sets n equals the number of vertices of the graph and the numberof base elements m equals the number of edges of the graph. Thus, the hardness results of [4]translates to a n1�� lower bound for Set Packing, as a function of n, but only a m1=2�� lower boundin terms of m. The only previous upper bound in terms of m (to our best of knowledge) was thetrivial bound m. This left a considerable gap in our understanding of the approximability of theproblem, e.g. when m is linear in n.We resolve this issue by showing that a simple and practical greedy algorithm yields a perfor-mance ratio of pm . It also yields an O(pm) performance ratio for the Maximum k-Matching of aset system (see de�nition in Section 3), and a pn ratio for the maximum collection of vertices of agraph of mutual distance at least t, for odd t. In all of these cases, the bounds are essentially bestpossible.2 Decision ProblemsIn this section we prove Theorem 1.1. The polynomial cases are summarized in the following result:Lemma 2.1 The �-IS problem is solvable in polynomial time if � = ;, � = N+ or � = f0; 1; :::; kgfor some k 2 N.Proof. The cases � = ; and � = N+ are trivial. When � = f0; 1; :::; kg for some k 2 N, we areasking if the input graph G has an independent set S of at least k + 1 vertices such that everyvertex not in S has at most k neighbors in S. The algorithm simply tries all subsets S of size k+1,and if none of them satisfy the conditions the answer is negative.We remark that when restricted to chordal graphs the �-IS problem is solvable in polynomialtime whenever minfk : k 2 �g � 2 [7]. We turn to the NP-complete cases, and �rst state twoearlier results. When � = f1g, a �-IS set is also known as a perfect code.2



Theorem 2.2 [6] Deciding if a 3-regular graph has a perfect code is NP-complete.Theorem 2.3 [10] The �-IS problem is NP-complete whenever � is a �nite nonempty subset ofpositive integers or when � = fk; k + 1; :::g for some k � 2.We �rst take care of an easy special case.Lemma 2.4 The f0; k + 1; k + 2; : : :g-IS problem is NP-complete for k � 1.Proof. We reduce from the fk + 1; k + 2; : : :g-IS problem that is NP-complete by Theorem 2.3.Given a graph G = (V;E), construct a graph G0 with vertex set V [V 0[I, where V 0 = fv0 : v 2 Ggand I = fs1; s2; : : : ; skg. The edges are given byE(G0) = E(G) [ fv0w : v0 2 V 0; w 2 V; vw 2 E(G)g [ fvv0 : v 2 V g[fv0u0 : v0; u0 2 V 0g [ fv0s : v0 2 V 0; s 2 Ig:In other words, V 0 is a clique, I is an independent set, V is connected as in G, every vertex of I isconnected to every vertex of V 0 and to no vertex of V , while every vertex v0 2 V 0 is connected tothe neighbors in V of the corresponding vertex v 2 V and to v itself.We show that G has a fk+1; k+2; : : :g-IS if and only ifG0 has a f0; k+1; k+2; : : :g-IS. Let S be af0; k+1; k+2; : : :g-IS in G0. First, observe that V 0\S = ;, since 1 62 f0; k+1; k+2; : : :g and if somevertex in V 0 was in S, the vertices in I would have no other neighbor in S. Next note that there mustbe some vertex v 2 V \S, since I contains only k vertices and f1; 2; :::; kg\f0; k+1; k+2; : : :g = ;.The corresponding vertex v0 2 V 0 has no other neighbors in V \ S, thus all vertices in I must becontained in S, for the same reason. It follows that each vertex in V 0 must have at least one neighborin V \ S. Thus, every vertex in V must either be in S or have at least one neighbor, and thus atleast k+1 neighbors, in S, and all of these are from V . Hence, V \ S forms a fk+1; k+2; : : :g-ISin G.Conversely, if X is a fk + 1; k + 2; : : :g-IS in G, then X [ I is a fk + 1; k + 2; : : :g-IS in G0and thus also a f0; k + 1; k + 2; : : :g-IS. Hence, G contains a fk + 1; k + 2; : : :g-IS i� G0 contains af0; k + 1; k + 2; : : :g-IS.Let EVEN be the set of all even and ODD be the set of all odd non-negative integers. As is oftenthe case with parity problems, e.g. Chromatic Index of 3-regular graphs, the cases of EVEN-ISand ODD-IS require a special reduction for their NP-completeness.The EVEN-IS case is by reduction from a NP-complete version of problem EXACT COVERBY 3-SETS (X3C) [2].De�nition 2.5 X3C-3: Given a system of triples such that every element of the base set X belongsto exactly 3 triples, decide if there is a subset of triples such that every element of X belongs toexactly one of the chosen triples.Lemma 2.6 The EVEN-IS problem is NP-complete.Proof. We reduce from X3C-3, but consider instead the dual problem, which clearly has an exactcover i� the original one does: given a system of triples T1; :::; Tm drawn from a base set X, withevery element of X belonging to exactly 3 triples, decide if there is a subset I � X such that foreach i, jI \ Tij = 1.We construct a graph G such that G has an EVEN-IS i� the given system of triples has an exactcover. For each triple, say Ti = fx; y; zg, G contains a 4-clique with vertices ti; txi ; tyi ; tzi . For an ele-ment x appearing in the triples Tx1; Tx2; Tx3, G contains a cycle of 9 vertices: x1Tx1 ; x2Tx1 ; x3Tx1 ; x1Tx2 ; x2Tx2 ; x3Tx2 ;3
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Figure 1: Part of the constructed graph G0 for the EVEN-IS reduction. A triple t with elementsx; y; z gives the upper-left 4-clique. Shown is the 9-cycle created by element x, and the 3-cyclecreated by x; y; z for this triple. When element x is chosen for the exact cover, the black verticeswould be in the EVEN-IS.x1Tx3 ; x2Tx3 ; x3Tx3 . For each element x and triple Ti that it appears in, G contains an edge between txiand x2Ti . For a triple Ti = fx; y; zg, G contains a triangle on the three vertices x3Ti ; y3Ti ; z3Ti . Finally,G contains 3 additional vertices A;B;C with edges AB;BC and vertex A adjacent to vertex ti foreach triple and to each vertex x1Ti for each element and triple that it appears in. See Figure 2.For one direction of the proof, assume that I is a subset of elements such that for each i,jI\Tij = 1. ThenG has an EVEN-IS with vertices fAg[fCg[ftxi ; x3Ti : x 2 I\Tig[fx2Ti : x 62 I\Tig.It is easy to check that this is an EVEN-IS.For the other direction of the proof, we �rst show that any non-empty EVEN-IS S in G mustcontain the vertex A. Otherwise, none of the vertices txi can be in S, since ti would have just oneS-neighbor. Neither could any of the vertices ti be in S, since then x2Ti for each x 2 Ti would haveto be in S to satisfy txi . This in turn would imply, since no txj is in S, that every other vertexaround the 9-cycle associated with variable x would have to be in S, but this is impossible since 9is odd. Thus, if A 62 S then none of the vertices of the 4-clique associated with a triple could be inS and thus neither could x2Ti since txi would then have only one S-neighbor. But neither can x1Tior x3Ti since these would force some x2Tj to be in S.We thus know that any EVEN-IS S in G must contain the vertex A, and therefore in every4-clique associated with a triple Ti = fx; y; zg exactly one of txi ; tyi ; tzi must be in S. Moreover, thecorresponding element is said to be chosen, since if txxi 2 S then x3Txi�1 2 S and also txxi�1 2 S, sothat if an element is chosen in one 4-clique it is chosen in every 4-clique in which it appears. Sincethere is a 4-clique for each triple, we conclude that an EVEN-IS in G gives rise to an exact coverin the original triple system.Lemma 2.7 The ODD-IS problem is NP-complete.Proof. We reduce from the EVEN-IS problem. Note in the above proof that the EVEN-IS problemis NP-complete for a graph on 13n+ 3 vertices, with the property that if it contains an EVEN-IS4



then it has size 3n + 2. Without loss of generality we let n be odd so that the input graph G toEVEN-IS has an even number of vertices and any EVEN-IS must have an odd number of vertices.We �rst describe a special gadget Hx.
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wg g gg gFor a vertex x, let Hx be a graph, as in the �gure above, with vertices x; x1; : : : ; x6; x0 andedges xx1; x1x2; x2x3; x3x4; x4x5; x5x2; x2x6; x6x0. If S � V (Hx) is an independent set such thatevery vertex y 2 fx1; : : : ; x6g � S has an odd number of neighbors in S, then either x; x6 2 S (andx1; x0 62 S), or x1; x0 2 S (and x; x6 62 S). Every such S must contain x4 and exclude x2, the restthen follows straightforwardly.Given a graph G subject to the EVEN-IS question, we construct G0 with vertex set V (G0) =Sx2V (G) V (Hx) [ fAg and edge set E(G0) = E(G) [ Sx2V (G)E(Hx) [ Sx2V (G)fx0Ag. In otherwords, G0 consists of a copy of G, with a gadget Hx for each vertex x 2 V (G), and a vertex Aconnected to the vertex x0 2 Hx in each such gadget.We claim that G0 has an ODD-IS if and only if G has a nonempty EVEN-IS.Let S � V (G) be a nonempty EVEN-IS in G, hence both jSj and jV (G) � Sj are odd. SetS0 = S [ fx6 : x 2 Sg [ fx4 : x 2 V (G)g [ fx0; x1 : x 2 V (G) � Sg. Every vertex x 2 V (G) � Shas an even number of S-neighbors plus the S0-neighbor x1, thus an odd number of S0-neighbors.Vertices from V (G0)� (V (G)[fAg) also have an odd number of S0-neighbors and the S0-neighborsof A are those x0 2 Hx where x 2 V (G)� S, whose number is odd as well.Suppose on the other hand that S0 is an ODD-IS in G0. Note that A 62 S0, since otherwisex0 62 S0 for every x 2 V (G), implying that V (G) � S0, which cannot be if G has at least one edge.Thus A 62 S0 and jS0 \ fx0 : x 2 V (G)gj must be odd. Setting S = S0 \ V (G) = fx : x0 62 S0g, wededuce that jSj is odd and hence S is nonempty. Straightforwardly, S is an EVEN-IS in G.We now prove the remaining cases, completing the proof of Theorem 1.1Lemma 2.8 The �-IS problem is NP-complete if there is a positive integer k 62 � with k + 1 2 �.Proof. Let t = minfx : (x � 1) ^ (x 2 �) ^ (x + 1 62 �)g. If such t does not exist then either� = fk+1; k+2; :::g and �-IS problem is NP-complete by Theorem 2.3, or � = f0; k+1; k+2; :::gand is NP-complete by Lemma 2.4. Let z = minfx : (x > t) ^ (x 62 �) ^ (x + 1 2 �)g. If such zdoes not exist then � = f1; 2; :::; kg and is NP-complete by Theorem 2.3.For any 3-regular graph G we construct a graph G0 which has a �-IS if and only if G has aperfect code. We shall be assuming that G is su�ciently large, e.g. contain at least z2 vertices.Let V (G) = fv1; :::; vng. The derived graph G0 will consist of z+1 copies G1; :::; Gz+1 of G, withvertices V (Gk) = fvk1 ; :::; vkng, along with a large collection of nodes connected into a clique. Foreach edge vivj 2 E(G) add edges vki vk0j for 1 � k; k0 � z+1. This ensures that, for any independentset S in G0, its projection SG (ui 2 SG i� 9k : uki 2 S) onto G is also an independent set.A claw is a set of four vertices, consisting of a center vertex vki and its three neighbors in aparticular copy of G. Thus, G0 contains n(z + 1)2 claws. Note that an independent set contains5



at most three vertices of a claw, and if the center vertex is in the independent set then the otherthree are not. Our construction will ensure that, for any �-IS S of G0, each claw contains exactlyone vertex of S. This will imply that, for each vi 2 V (G), either all copies of vi or no copies ofvi are in S, as all copies have the same neighbors. Moreover, it will imply that the projection SGof S onto the 3-regular graph G is a perfect code, since a subset of vertices containing exactly onevertex from the closed neighborhood of each vertex is a perfect code. Henceforth, when we refer toclaws, we always mean claws as described above.There is a clique node for every group of z + 1 vertex-disjoint claws in G0 and also one cliquenode for every group of t vertex-disjoint claws in G0. These clique nodes are connected to all thevertices of those claws in G0, and to no other vertex in the copies of G. Note that both t 2 � andz + 1 2 �, but ft+ 1; :::; zg \ � = ; and t+ 1 � z.It remains to show that, for any �-IS S of G0, each claw contains exactly one vertex of S. Toease the presentation, we �rst prove a weaker property, and then complete the speci�cation of G0by adding some more vertices to the clique, which will allow us to prove the main property.Claim 1 Any �-IS S in G0 contains either one or three vertices from each claw.Proof. Let � denote the smallest positive value not contained in �. By de�nition, S contains atleast � vertices. If jSj � z, then we can �nd a clique node w adjacent to exactly � vertices of S,possibly one of which was also a clique node. Since � 62 �, jSj � z + 1.If S contains a clique node y, then some clique node x 6= y would be adjacent to some t vertex-disjoint claws each having a vertex from S as a center. We ensure that the claws are vertex-disjointby choosing the neighbors of the centers from separate copies of G. Since x would have exactlyt+ 1 neighbors in S and t+ 1 62 �, S contains no clique node.If some claw X has X \ S = ;, we can take z vertices from S, cover them by z vertex-disjointclaws centered at these vertices, as above, and a clique node x will be adjacent to these claws andto X. But then x would have z neighbors in S, and z 62 �. Thus X has at least one vertex in S.Moreover, X cannot have two vertices in S, since we can pick t� 1 vertices from S and coverthem, as above, by t�1 vertex-disjoint claws that do not intersect the neighborhood of X. A cliquenode x is adjacent to these claws and to X and it would have t + 1 neighbors in S if X had twovertices in S. However, t+ 1 62 �.Claim 1 already establishes that either all or none of the copies of a vertex vi 2 V (G) must be ina �-IS S, since any pair vki and vk0i are centers of distinct claws sharing the three other claw vertices.When vki 2 S the three other claw vertices are not in S so that vk0i 2 S also, and vice-versa.We complete the construction of G0 in three di�erent manners depending on which of thefollowing three cases holds:(i) 0 and 1 are in �, but 2 is not.(ii) For some w � 3, w � 2 is in �, but w is not.(iii) For some w � 2, w is in � but w � 2 is not.If none of these cases hold, then for each w 2 N, either both or none of w and w + 2 wouldhave to be in �, and � � N would be equal to EVEN or ODD. Note that if any pair of non-centervertices of a claw are adjacent, then by Claim 1 we already know the claw has exactly one vertexin any �-IS set.In case (i) we add a node to the clique for each pair of vertices in G1 which are copies of verticesat distance 2 in G, and make the node adjacent to the pair.In case (ii) we add a node to the clique for each group of w� 2 vertex disjoint claws, and makethe node adjacent to these claws.In case (iii) we add for each set Y of w � 2 vertex-disjoint claws a new clique node Yi for eachvi 2 G whose neighbors form an independent set. We make Yi adjacent to v1i and to v2i and to all6



copies of vertices in G1 at distance two from vi. There are between three and six such vertices inG1, since if only two then this would be the whole graph G. Let vi have neighbors va; vb; vc and letthese latter three have additional neighbors a0 and a00, b0 and b00, c0 and c00, respectively. We makeYi adjacent to the copy in G2 of some of these vertices, depending on the common identities of thismultiset of six vertices (see Figure 2):� A: six singletons- adjacent to no further vertices,� B: one triple and three singletons- adjacent to no further vertices,� C: one pair and four singletons- adjacent to copy in G2 of the pair,� D: two pairs and two singletons- adjacent to copies in G2 of both pairs,� E: three pairs- adjacent to copies in G2 of all three pairs,� F: one triple, pair and singleton- adjacent to copy in G2 of the pair.
A B E FC D

Figure 2: The six cases, showing the center vertex of the claw on top, the clique vertex on bottom,with a thick edge indicating that the clique vertex is adjacent to copies in both G1 and G2 and adotted edge indicating adjacency only to the copy in G1. In each case, if the top claw has threevertices in S the clique vertex has no S-neighbors in the �gure, whereas if each claw has exactlyone vertex in S the clique vertex has exactly two S-neighbors in the �gure (counting thick edgestwice).Claim 2 Any �-IS S in G0 contains exactly one vertex from each claw.Proof. Let X be any claw in G1. We show that in none of the cases (i),(ii) or (iii) does X containthree vertices in S. The claim then follows for all claws in G0, since either all or no copies of avertex must be in S.In case (i) we have 2 62 �. No two vertices in G1 at distance two in G can both be in S sincethen the corresponding newly added clique node would have exactly two neighbors in S. Hence noclaw in G1 can contain more than one vertex in S.In case (ii) we can �nd a set of w � 3 vertex-disjoint claws in G whose centers are all in S. Weensure that such vertex-disjoint claws can always be found by assuming, without loss of generality,that G is large, say with at least w2 vertices, so that by Claim 1 the center vertices can be chosento be copies of vertices in G whose pairwise distance in G is at least three. If X had three neighborsin S, the clique node adjacent to X and these claws would have exactly w neighbors in S. However,w 62 �.In case (iii) a set Y of w � 2 vertex-disjoint claws has the central vertex chosen. Let X havecenter node v1i . The clique node Yi added for v1i and these w� 2 claws has at least w� 2 neighborsin S. If the claw X has three vertices in S then these are all the three neighbors of v1i and noneof the remaining neighbors of Yi is in S. On the other hand, if X and all other claws all have onevertex in S, then it is easy to check, in each of the separate cases of common identities above, thatexactly two of the remaining neighbors of Yi is in S. For example, if Yi has an extra neighbor v2jin G2 then in each case v2j is adjacent to exactly two (a pair) of the neighbors of v1i and the thirdneighbor of v1i must be in S whenever v2j 2 S so that the remaining neighbors of Yi could then not7



be in S. We conclude that, since w� 2 62 � but w 2 �, the claw X must have exactly one vertex inS. A perfect code in G gives rise to a �-IS in G0 consisting of all copies of nodes in the perfectcode. For every �-IS S in G0, either all or no copies of a vertex from G must be in S and no cliquenode is in S. Hence it follows from Claim 2 that the projection of S onto G is a perfect code.3 OptimizationLet us consider the complexity of �-IS optimization problems. Clearly optimization is no easierthan the corresponding decision problem, thus we are interested in the problems where the decisionversion is polynomial solvable. When an optimization problem turns out to be hard to compute,we would further like to know how hard it is to compute approximate solutions by polynomial-timealgorithms.We say that an algorithm approximates a problem within r if the solution computed on anyinstance never strays from the optimal by more than a multiplicative factor r. The algorithm thenhas performance ratio r. Note that the factor r may be a function of the size of the input. When abetter approximation algorithm cannot be found, we naturally try to show that no better algorithmcan be found given some natural complexity-theoretic assumption.Approximation is not well de�ned when the corresponding decision problem is not polynomialsolvable. If an algorithm cannot produce a feasible value for a solvable problem, the approximationratio for that problem is not de�ned. Attempts to deal with this by modifying the de�nition ofa performance ratio seldom meet with success. Thus, we consider only the approximation of the�-IS optimization problems, either minimization or maximization, whose decision version is in P,namely: � = N+ , � = f0g, and � = f0; 1; : : : ; kg, for some k 2 N+ .Minimization problems are trivial when � contains zero, which leaves only the case � = N+ .This is the Minimum Independent Dominating Set problem, which is known to be NP-hard toapproximate within n1��, for any � > 0 [3]. The reduction holds even if the graph is sparse, thusit is hard within m1��. In fact, no sub-linear performance ratio is known for this problem.The maximization problem with � = f0g is trivial, whose solution consists of all isolated vertices.When � = N+ we have the Maximum Independent Set problem, for which the best performanceratio known is O(n= log2 n) [1]. H�astad has recently improved a sequence of deep results to showthat this problem is hard to approximate within n1��, for any � > 0 [4]. This result is modulo theassumption that NP 6= ZPP , namely that zero-error randomized polynomial algorithms do notexist for all problems in NP . This is highly expected, while slightly weaker hardness results areknown under the stronger assumption that P 6= NP . We shall use this result in this paper, withthe knowledge that weaker assumptions will then also transfer to our results. In particular, ourreductions do give the NP-hardness of the exact optimization problems considered.The only remaining maximization problems are when � = f0; 1; : : : ; kg, for some k 2 N+ . Wefocus on these problems for the remainder of this section. We show them to be NP-hard, andobtain nearly tight bounds on their approximabilities. The results are summarized in the followingtheorem. Let opt denote the size of the optimal solution of the instance.Theorem 3.1 The f0; 1; : : : ; kg-IS maximization problem, for k 2 N+ , can be approximated withinO(pn) in polynomial time, but not within O(n1=(k+1)��) nor O(opt1��), for any �xed � > 0, unlessNP = ZPP.
8



3.1 Approximation algorithmWe now give an algorithm that approximates some important problems on set systems. Theseresults are interesting in their own right. Simple reductions then imply the same approximationfor the f0; 1; : : : ; kg-IS problems.De�nition 3.2 The Set Packing problem is the following: Given a base set S and a collection Cof subsets of S, �nd a collection C0 � C of disjoint sets that is of maximum cardinality.Set Packing andMaximum Independent Set can be shown to be mutually reducible by approximation-preserving reductions. Given a graph, form a set system with a base element for each edge and a setcorresponding to a vertex containing the elements corresponding to incident edges. Then indepen-dent sets in the graph are in one-to-one correspondence with packings of the set system. Thus, theO(n= log2 n) approximation of Independent Set carries over to Set Packing. This approximation isin terms of n, the number of sets in the set system.An alternative would be to measure the approximation in terms of m, the size of the basesystem. For this, there is an obvious upper bound of m, since that is the maximum size of anysolution. Another easy upper bound is the maximum cardinality k of a set in the solution, sinceany maximal solution will �nd a solution of size at least m=k. However, k can be as large as m,and no better bounds were known in terms of m, to the best of our knowledge.Theorem 3.3 Set Packing can be approximated within pm, where m is the size of the base set,in time linear in the input size.Proof. A greedy algorithm is given in Fig. 3. In each step, it chooses a smallest set and removesfrom the collection all sets containing elements from the selected set.Greedy(S,C)t  0repeatt  t + 1Xt  C 2 C of minimum cardinalityZt  fC 2 C : Xt \ C 6= ; g C  C � Ztuntil jCj = 0Output fX1; X2; : : : ; XtgFigure 3: Greedy set packing algorithmLet M = bpmc. Observe that fZ1; : : : ; Ztg forms a partition of C. Let i be the index of someiteration of the algorithm, i.e. 1 � i � t. All sets in Zi contain at least one element of Xi, thus themaximum number of disjoint sets in Zi is at most the cardinality of Xi. On the other hand, every setin Zi is of size at least Xi, so the maximum number of disjoint sets in Zi is also at most bm=jXijc.Thus, the optimal solution contains at most min(jXij; bm=jXijc) � maxx2Nmin(x; bm=xc) = Msets from Zi.Thus, in total, the optimal solution contains at most tM sets, when the algorithm �nds t sets,for a ratio of at most M .The Strong Stable Set problem is the f0; 1g-IS maximization problem. A strong stable set, alsoknown as a 2-packing, corresponds to a set of vertices of pairwise distance at least three. The StrongStable Set problem reduces to Set Packing in the following way. Recall that N [v] = N(v) [ fvg.9



Given a graph G = (V;E), construct a set system (S; C) with S = V and C = fN [v] : v 2 V g.Then, a strong stable set corresponds to a set of nodes whose closed neighborhoods do not overlap,thus forming a set packing of (S; C).Corollary 3.4 Strong Stable Set can be approximated within pn.The Distance-t Set problem is that of �nding a maximum cardinality set of vertices of mutualdistance at least t in a given graph G. It corresponds to �nding a maximum independent set inthe power graph Gt�1. If A is the adjacency matrix of G and I is the identity matrix, then theadjacency matrix of Gt�1 is obtained by computing (A+ I)t�1, replacing non-zero entries by ones,and eliminating self-loops. The Strong Stable Set problem on G is the Distance-3 Set problem, orthat of �nding a maximum independent set in G2. Since the Distance-2q+1 Set problem is that of�nding a maximum independent set in (Gq)2, the odd case is a restricted case of the Strong StableSet problem.Corollary 3.5 The Distance-t Set problem can be approximated within pn, for any odd t.We now extend the application of the greedy set packing algorithm.De�nition 3.6 A k-matching of a set system (S; C) is a collection C 0 � C such that each elementin S is contained in at most k sets in C0.In particular, a 1-matching is precisely a set packing. The k-Matching problem is that of �ndinga k-Matching of maximum cardinality, i.e. containing the greatest number of sets.Observe that the sizes of maximum set packings and maximum k-matchings can vary widely.Consider the set system that is the dual of a complete graph, namely S = fei;j : 1 � i < j � ng,C = fCx : 1 � x � ng and Cx = fei;x : 1 � i < xg[ fex;j : x < j � ng. Then, the whole system is a2-matching while any set packing is of unit size. Thus, the ratio between the two can be as muchas pm. We nevertheless �nd that the algorithm for Set Packing still yields O(pm) approximationsfor k-Matching.Theorem 3.7 The greedy set packing algorithm approximates the k-Matching problem within kpm.Proof. The sum of the sizes of sets in a k-matching is at most km. Thus, if each set contains atleast q elements, then the matching contains at most bkmq c sets.Consider any iteration i. Each set in Zi is of size at least jXij. Thus, the optimal k-matchingOPT contains at most b kmjXijc sets from Zi. On the other hand, OPT never contains more thankjXij sets from Zi, since it contains at most k sets containing a particular element from Xi. Thus,jOPT \ Zij � kmin(jXij;m=jXij) = kpm:Hence, the optimal k-matching contains at most tkpm sets,jOPT j = tXi=1 jOPT \ Zij � tkpm:while the algorithm obtains t sets, for a performance ratio of kpm.This also translates to a similar ratio for the other f0; 1; : : : ; kg-IS problems. While we canagain show that the size of a maximum strong stable set and a maximum f0; 1; 2g-IS can di�er bya factor of as much as 
(pn), the analysis nevertheless works out.10



Corollary 3.8 The f0; 1; : : : ; kg-IS problem, for k � 1 is approximable within O(pn).Proof. Given an instance G to f0; 1; : : : ; kg-IS, form the set system of closed neighborhoods, asin the reduction of Strong Stable Set to Set Packing. Recall that the number of base elements mnow equals the number of sets n. Clearly the solution output by the greedy set packing solution isa feasible solution, since it forms a f0; 1g-IS.Observe that any solution to the f0; 1; : : : ; kg-IS problem of G corresponds to a k-matching inthe derived set system (while the converse is not true). Hence, by Theorem 3.7 the size of thealgorithm's solution is also within O(pn) of the optimal f0; 1; : : : ; kg-IS solution.3.2 Approximation lower boundA set system is also sometimes referred to as a hypergraph, where the hypervertices correspond tothe base elements and hyperedges correspond to the sets of the set system. A t-uniform hypergraphis a set system where the cardinality of all edges is t. A subset S of V is an independent set if nohyperedge is fully contained in S.Our lower bound rests on the following reduction from the problem of �nding an approximatelymaximum independent set in a hypergraph.Lemma 3.9 If the f0; 1; : : : ; kg-IS maximization problem can be approximated within f(n), thenthe Maximum Independent Set problem in (k+1)-uniform hypergraphs can be approximated withinO(f(n)k+1).Also, if the former problem can be approximated within g(opt), as a function of the optimalsolution value opt, so can the latter.Proof. Given a hypergraph H, construct a graph G as follows. G contains a vertex for eachnode and each hyperedge of H. The hyperedge-vertices form a clique, while the node-vertices areindependent. A hyperedge-vertex is adjacent precisely to those node-vertices that correspond tonodes incident on the hyperedge.We �rst claim that any independent set S in the hypergraphH is a f0; 1; : : : ; kg-IS inG. Clearlyit is an independent set in G since it consists only of node-vertices. Each node-vertex thus has a�-value of 0. Hyperedge-vertices have exactly k node-vertices as neighbors and not all of those canbe in S given the independence property of S in H. Thus, hyperedge-vertices have a �-value of atmost k � 1.Any f0; 1; : : : ; kg-IS S in G can contain at most one hyperedge-vertex, and if we eliminate thatpossible vertex from S, it can be veri�ed that the remainder corresponds to an independent set inH. Taken together, any approximate solution to f0; 1; : : : ; kg-IS gives an equally approximate in-dependent set of H, within an additive one. Hence, ratios in terms of opt carry over immediately.For approximations in terms of the input size, we must factor in that jV (G)j = jV (H)j+ jE(H)j =O(jV (H)jk+1).To obtain the theorem, we need to show that Maximum Independent Set in hypergraphs is hardto approximate. We sketch here how the n1�� inapproximability result of [4] translates to the samebound for the case of uniform hypergraphs. Given a graph G, form a hypergraph H on the samevertex set, with hyperedges for any (k+1)-tuples such that some pair of vertices in the tuple forman edge in G. Then, we have a one-to-one correspondence between independent sets (of cardinalityat least k) in G and in H.Observe that in the case k = 1, the Strong Stable Set problem, we obtain a lower bound of
(n1=2��) which is essentially tight in light of the upper bound given. The lower bound can be11



generalized for Set Packing to show that the O(pm) approximation in terms of the number of baseelements is essentially the best possible.We also obtain tight lower bounds for the Distance-t Set problems de�ned earlier.Theorem 3.10 For any � > 0, the Distance-t Set problem is hard to approximate within n1��when t is even, and within n1=2�� when t is odd, t � 3.Proof. First consider the even case, t = 2q + 2. Given a graph G, construct a graph H thatcontains a copy of G, a vertex u adjacent to every vertex of G, and a distinct path of q edgesattached to each vertex of G. That is, V (H) = fvi; wi;j : vi 2 V (G); 1 � j � qg [ fug, andE(H) = E(G) [ fuvi; viwi;1; wi;jwi;j+1 : vi 2 V (G); 1 � j < qg. All pairs of vertices in H are ofdistance at most 2q + 2 = t. The only vertices of distance t are pairs wi;q; wj;q of leaves on pathswhere (vi; vj) are non-adjacent. Hence, a Distance-t Set in H is in one-to-one correspondence withan independent set in G. Further, the size of H is linear in the size of G. Thus, the Distance-t Setproblem, for t even, is no easier to approximate than the IS problem.For the lower bound for the odd case, we similarly append paths to each vertex of the construc-tion for the Strong Stable Set problem. We invite the reader to verify the details.4 ConclusionWe have investigated the complexity of decision and optimization problems over independent setswith domination constraints. These problems belong to the framework of (�; �)-problems. Ourresults constitute a complete complexity classi�cation for the cases when � = f0g, up to P vs. NPfor the decision problems, and with tight approximability bounds for the optimization problems.The approximation results extended also to several related independence problems. The complexityof problems for other cases of � � N remain to be investigated in detail.AcknowledgementA comment by Hiroshi Nagamochi prompted us to greatly improve an early algorithm.References[1] R. B. Boppana and M.M. Halld�orsson, Approximating maximum independent sets by exclud-ing subgraphs, BIT, 32 (1992), 180{196.[2] M. R. Garey and D. S. Johnson, Computers and Intractability (Freeman, New York, 1979).[3] M.M. Halld�orsson, Approximating the minimum maximal independence number, InformationProcessing Letters 46 (1993), 169{172.[4] J. H�astad, Clique is hard to approximate within n1��, In Proc. 37th IEEE Symp. on Found.of Comput. Sci., (1996), 627{636.[5] S. Khanna, M. Sudan and D. P. Williamson, A complete classi�cation of the approximabilityof maximization problems derived from boolean constraint satisfaction. in Proc. 29th ACMSymp. on Theory of Computing, (1997), 11{20.[6] J. Kratochv��l, Perfect codes in general graphs, monograph, Academia Praha (1991).12
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