Independent sets with domination constraints

Magnus M. Halld6rsson* Jan Kratochvilf Jan Arne Telle
University of Iceland Charles University University of Bergen
Reykjavik, Iceland Prague, Czech Republic Bergen, Norway
Abstract

A p-independent set S in a graph is parameterized by a set p of non-negative integers
that constrains how the independent set S can dominate the remaining vertices (Vv ¢ S :
IN(v) N S| € p.) For all values of p, we classify as either A"P-complete or polynomial-time
solvable the problems of deciding if a given graph has a p-independent set. We complement
this with approximation algorithms and inapproximability results, for all the corresponding
optimization problems.

These approximation results extend also to several related independence problems. In par-
ticular, we obtain a /m approximation of the Set Packing problem, where m is the number of
base elements, as well as a y/n approximation of the maximum independent set in power graphs
G?, for t even.

1 Introduction

A large class of well-studied domination and independence properties in graphs can be characterized
by two sets of nonnegative integers o and p. A (o, p)-set S in a graph has the property that the
number of neighbors every vertex u € S (or u € S) has in S, is an element of o (of p, respectively)
[9]. This characterization facilitates the common algorithmic treatment of problems defined over
sets with such properties. Previous papers on classification of the complexity of problems from an
infinite class include [5, 8]. Unfortunately, the investigations of uniform complexity classification for
subclasses of (o, p)-problems have so far been incomplete [7, 10]. In this paper we give a complete
complexity classification of the cases where o = {0}, which constitute maybe the most important
subclass of (o, p)-problems.

In this class of problems the chosen vertices are pairwise non-adjacent, forming an independent
set. Independent (stable) sets in graphs are a fundamental topic with applications wherever we
seek a set of mutually compatible elements. It is therefore natural to study the solvability of
finding independent sets with particular properties, as in this case, where the independent set is
constrained in its domination properties.

Assume that we have an oracle for deciding membership in p C N= {0,1,...}. Let N(v) denote
the set of neighbors of a vertex v. Consider the following decision problem:

p-IS Problem

Given: A graph G

Question: Does G have an independent set of vertices S # () with
|S| > min{k : k & p} such that Vo € S : [N(v) N S| € p?

*Adjunct affiliation: University of Bergen
"Research support in part by Czech research grants GAUK 194 and GACR. 0194/1996.
9An extended abstract of this paper will be presented at ICALP’98

When p is the set of all positive integers the p-IS problem is asking for an independent dom-
inating set, a problem which is easy since any maximal independent set is also a dominating set.
When p = {1} the p-IS problem is asking for the existence of a perfect code, a problem which is
NP-complete even for planar 3-regular graphs [6] and for chordal graphs [7]. The natural question
becomes: For what values of p is the p-IS problem solvable in polynomial time? In the next section
we resolve this question for all cases, up to P vs. N'P.

Theorem 1.1 The p-IS problem is N'P-complete if there is a positive integer k & p with k+1 € p,
and otherwise it is solvable in polynomial time.

Approximation algorithms Even for the cases when the decision problem is solvable in poly-
nomial time, the corresponding optimization problem, finding a minimum or maximum size p-1S,
is hard. In Section 3 we give on the one hand approximation algorithms for these optimization
problems, and on the other hand strong inapproximability results.

The class of problems that we can approximate is that of finding an independent set where
vertices outside the set are adjacent to at most a given number k vertices inside. We obtain
performance ratios of O(y/n) for the maximization versions of these problems. This is significantly
better than what is known for the ordinary Independent Set problem, where the best performance
ratio known is O(n/ log® n) [1], a mere log? n factor from trivial. In fact, it is known that obtaining
a performance ratio that is any fixed root of n factor better than trivial is highly unlikely [4].

We find that the same algorithmic technique extends to a number of related independence
problems for which no non-trivial bounds had been given before. Given a base set with m elements
and a collection of n subsets of the base set, the Set Packing problem is to find the largest number
of disjoint sets from the collection. There is a standard reduction from Independent Set to Set
Packing [2] where the number of sets n equals the number of vertices of the graph and the number
of base elements m equals the number of edges of the graph. Thus, the hardness results of [4]
translates to a n' ¢ lower bound for Set Packing, as a function of n, but only a m!/2~¢ lower bound
in terms of m. The only previous upper bound in terms of m (to our best of knowledge) was the
trivial bound m. This left a considerable gap in our understanding of the approximability of the
problem, e.g. when m is linear in n.

We resolve this issue by showing that a simple and practical greedy algorithm yields a perfor-
mance ratio of /m . It also yields an O(y/m) performance ratio for the Maximum k-Matching of a
set system (see definition in Section 3), and a /n ratio for the maximum collection of vertices of a
graph of mutual distance at least ¢, for odd ¢. In all of these cases, the bounds are essentially best
possible.

2 Decision Problems

In this section we prove Theorem 1.1. The polynomial cases are summarized in the following result:

Lemma 2.1 The p-IS problem is solvable in polynomial time if p =0, p = NT or p = {0,1,...,k}
for some k € N.

Proof. The cases p = () and p = NT are trivial. When p = {0,1,...,k} for some k € N, we are
asking if the input graph G has an independent set S of at least k + 1 vertices such that every
vertex not in S has at most k£ neighbors in S. The algorithm simply tries all subsets S of size k+ 1,
and if none of them satisfy the conditions the answer is negative. =

We remark that when restricted to chordal graphs the p-IS problem is solvable in polynomial
time whenever min{k : k € p} > 2 [7]. We turn to the N'P-complete cases, and first state two
earlier results. When p = {1}, a p-IS set is also known as a perfect code.

Theorem 2.2 [6] Deciding if a 3-regular graph has a perfect code is N'P-complete.

Theorem 2.3 [10] The p-IS problem is N'P-complete whenever p is a finite nonempty subset of
positive integers or when p = {k,k +1,...} for some k > 2.

We first take care of an easy special case.
Lemma 2.4 The {0,k + 1,k +2,...}-IS problem is N'P-complete for k > 1.

Proof. We reduce from the {k + 1,k + 2,...}-IS problem that is N"P-complete by Theorem 2.3.
Given a graph G = (V, E), construct a graph G’ with vertex set VUV'UI, where V' = {v' : v € G}
and I = {s1,5s2,...,5t}. The edges are given by

EG) = E@QU{P'w:v eV iweV,owe EG)}U{vw :veV}
U{v'u 0" o e VU {v's: o e Vs eI}

In other words, V' is a clique, I is an independent set, V' is connected as in G, every vertex of I is
connected to every vertex of V' and to no vertex of V, while every vertex v’ € V' is connected to
the neighbors in V' of the corresponding vertex v € V' and to v itself.

We show that G has a {k+1,k+2,...}-IS if and only if G’ has a {0, k+1,k+2,...}-IS. Let S be a
{0,k+1,k+2,...}-IS in G'. First, observe that V'NS =0, since 1 ¢ {0,k+1,k+2,...} and if some
vertex in V'’ was in S, the vertices in I would have no other neighbor in S. Next note that there must
be some vertex v € VNS, since I contains only k vertices and {1,2,....k}N{0,k+1,k+2,...} = 0.
The corresponding vertex v' € V' has no other neighbors in V' N S, thus all vertices in I must be
contained in S, for the same reason. It follows that each vertex in V/ must have at least one neighbor
in V' N S. Thus, every vertex in V must either be in S or have at least one neighbor, and thus at
least k£ + 1 neighbors, in S, and all of these are from V. Hence, V NS forms a {k+ 1,k +2,...}-IS
in G.

Conversely, if X isa {k+ 1,k +2,...}-ISin G, then X Ul isa {k+ 1,k +2,...}-IS in G’
and thus also a {0,k 4+ 1,k + 2,...}-IS. Hence, G contains a {k + 1,k + 2,...}-IS iff G’ contains a
{0,k+1,k+2,...}-IS. =

Let EVEN be the set of all even and ODD be the set of all odd non-negative integers. As is often
the case with parity problems, e.g. Chromatic Index of 3-regular graphs, the cases of EVEN-IS
and ODD-IS require a special reduction for their N"P-completeness.

The EVEN-IS case is by reduction from a NP-complete version of problem EXACT COVER
BY 3-SETS (X3C) [2].

Definition 2.5 X3C-3: Given a system of triples such that every element of the base set X belongs
to exactly 3 triples, decide if there is a subset of triples such that every element of X belongs to
exactly one of the chosen triples.

Lemma 2.6 The EVEN-IS problem is N'P-complete.

Proof. We reduce from X3C-3, but consider instead the dual problem, which clearly has an exact
cover iff the original one does: given a system of triples 71, ..., T}, drawn from a base set X, with
every element of X belonging to exactly 3 triples, decide if there is a subset I C X such that for
each i, |[INT;| = 1.

We construct a graph G such that G has an EVEN-IS iff the given system of triples has an exact

cover. For each triple, say T; = {z,y, 2z}, G contains a 4-clique with vertices ¢;,¢;, ti-’, t7. For an ele-
ment = appearing in the triples 1,1, Ty, T3, G contains a cycle of 9 vertices: :v%pm 0 x%ﬂ i :E%z o :v%pm » .’E%z) :vi}m »

Figure 1: Part of the constructed graph G’ for the EVEN-IS reduction. A triple ¢ with elements
x,y, z gives the upper-left 4-clique. Shown is the 9-cycle created by element z, and the 3-cycle
created by x,y, z for this triple. When element z is chosen for the exact cover, the black vertices
would be in the EVEN-IS.

:EITZB, x2T,537$3Tz3- For each element z and triple T; that it appears in, G' contains an edge between ¢}

and .’L'% For a triple T; = {z,y, 2}, G contains a triangle on the three vertices $3Ti, y%_, z% Finally,
G contains 3 additional vertices A, B, C with edges AB, BC and vertex A adjacent to vertex t; for
each triple and to each vertex a;T for each element and triple that it appears in. See Figure 2.

For one direction of the proof, assume that I is a subset of elements such that for each ¢,
[INT;] = 1. Then G has an EVEN-IS with vertices { AYU{CYU{t, 2%, : & € INT;}U{z7, : © & INT;}.
It is easy to check that this is an EVEN-IS.

For the other direction of the proof, we first show that any non-empty EVEN-IS § in G must
contain the vertex A. Otherwise, none of the vertices t{ can be in S, since ¢; would have just one
S-neighbor. Neither could any of the vertices ¢; be in S, since then .’E% for each x € T; would have
to be in S to satisfy ¢7. This in turn would imply, since no ¢ is in S, that every other vertex
around the 9-cycle associated with variable would have to be in S, but this is impossible since 9
is odd. Thus, if A € S then none of the vertices of the 4-clique associated with a triple could be in
S and thus neither could :vT since t7 would then have only one S-neighbor. But neither can x%
or a;Tl since these would force some .’L'T to be in S.

We thus know that any EVEN-IS 'S in G must contain the vertex A, and therefore in every
4-clique associated with a triple T; = {z,y, z} exactly one of 7, ¢/, t? must be in S. Moreover, the
corresponding element is said to be chosen, since if t2, € S then me‘—l € Sandalsot?, | €85, s0
that if an element is chosen in one 4-clique it is chosen in every 4-clique in which it appears. Since
there is a 4-clique for each triple, we conclude that an EVEN-IS in G gives rise to an exact cover
in the original triple system. =

Lemma 2.7 The ODD-IS problem is N'P-complete.

Proof. We reduce from the EVEN-IS problem. Note in the above proof that the EVEN-IS problem
is N'P-complete for a graph on 13n + 3 vertices, with the property that if it contains an EVEN-IS

then it has size 3n + 2. Without loss of generality we let n be odd so that the input graph G to
EVEN-IS has an even number of vertices and any EVEN-IS must have an odd number of vertices.
We first describe a special gadget H.

L4 Lq

Ts Zs3 Ts Z3

P L2

For a vertex z, let H, be a graph, as in the figure above, with vertices z,z1,...,z¢ 2 and
edges zx1, %1%, Lok, T3Ty, T4Ts, T5La, ToZe, Tex' . 1f S C V(H,) is an independent set such that
every vertex y € {z1,...,2¢} — S has an odd number of neighbors in S, then either z,z¢ € S (and
z1,2' € S), or z1,2' € S (and z, 26 ¢ S). Every such S must contain z4 and exclude x5, the rest
then follows straightforwardly.

Given a graph G subject to the EVEN-IS question, we construct G’ with vertex set V(G') =
Useva) V(Hz) U {A} and edge set E(G') = E(G) U U,ev(g) £(Hz) U Ugev(g){z'A}. In other
words, G’ consists of a copy of G, with a gadget H, for each vertex x € V(G), and a vertex A
connected to the vertex z' € H, in each such gadget.

We claim that G’ has an ODD-IS if and only if G has a nonempty EVEN-IS.

Let S C V(G) be a nonempty EVEN-IS in G, hence both |S| and |V (G) — S| are odd. Set
S'=SU{zg:z € StU{zy: 2 e V(@)}U{z',z1: 2 € V(G) — S}. Every vertex z € V(G) — S
has an even number of S-neighbors plus the S’-neighbor z, thus an odd number of S’-neighbors.
Vertices from V(G') — (V(G) U{A}) also have an odd number of S’-neighbors and the S’-neighbors
of A are those 2/ € H, where z € V(G) — S, whose number is odd as well.

Suppose on the other hand that S’ is an ODD-IS in G’. Note that A ¢ S’, since otherwise
' ¢ S’ for every z € V(G), implying that V(G) C S’, which cannot be if G has at least one edge.
Thus A ¢ S" and |S"' N {2z’ : x € V(G)}| must be odd. Setting S = S'NV(G) ={z: 2" € S'}, we
deduce that |S| is odd and hence S is nonempty. Straightforwardly, S is an EVEN-IS in G. =

We now prove the remaining cases, completing the proof of Theorem 1.1
Lemma 2.8 The p-IS problem is N'P-complete if there is a positive integer k & p with k+ 1 € p.

Proof. Let ¢t = min{z : (zx > 1) A(z € p) AN (z+1 & p)}. If such ¢ does not exist then either
p=1{k+1,k+2,..} and p-IS problem is N'P-complete by Theorem 2.3, or p = {0,k + 1,k +2,...}
and is N'P-complete by Lemma 2.4. Let z = min{z : (z > t) A (z € p) A (z + 1 € p)}. If such z
does not exist then p = {1,2,...,k} and is N'P-complete by Theorem 2.3.

For any 3-regular graph G we construct a graph G’ which has a p-IS if and only if G has a
perfect code. We shall be assuming that G is sufficiently large, e.g. contain at least z? vertices.

Let V(G) = {v1, ..., vn }. The derived graph G’ will consist of z+1 copies G*, ..., G*! of G, with
vertices V(G¥) = {v},...,0F}, along with a large collection of nodes connected into a clique. For
each edge v;v; € E(G) add edges vaf, for 1 < k,k’ < z+1. This ensures that, for any independent
set S in G, its projection Sg (u; € S¢ iff Ik : uf € S) onto G is also an independent set.

A claw is a set of four vertices, consisting of a center vertex v¥ and its three neighbors in a
particular copy of G. Thus, G’ contains n(z + 1)? claws. Note that an independent set contains

at most three vertices of a claw, and if the center vertex is in the independent set then the other
three are not. Our construction will ensure that, for any p-IS S of G’, each claw contains exactly
one vertex of S. This will imply that, for each v; € V(G), either all copies of v; or no copies of
v; are in S, as all copies have the same neighbors. Moreover, it will imply that the projection S¢
of S onto the 3-regular graph G is a perfect code, since a subset of vertices containing exactly one
vertex from the closed neighborhood of each vertex is a perfect code. Henceforth, when we refer to
claws, we always mean claws as described above.

There is a clique node for every group of z 4+ 1 vertex-disjoint claws in G’ and also one clique
node for every group of ¢ vertex-disjoint claws in G'. These clique nodes are connected to all the
vertices of those claws in G', and to no other vertex in the copies of G. Note that both ¢ € p and
z+lep,but {t+1,...,2}Np=0andt+1< 2.

It remains to show that, for any p-IS S of G’, each claw contains exactly one vertex of S. To
ease the presentation, we first prove a weaker property, and then complete the specification of G’
by adding some more vertices to the clique, which will allow us to prove the main property.

Claim 1 Any p-IS S in G' contains either one or three vertices from each claw.

Proof. Let 7 denote the smallest positive value not contained in p. By definition, S contains at
least 7 vertices. If |S| < z, then we can find a clique node w adjacent to exactly 7 vertices of S,
possibly one of which was also a clique node. Since 7 & p, |S| > z + 1.

If S contains a clique node y, then some clique node x # y would be adjacent to some t vertex-
disjoint claws each having a vertex from S as a center. We ensure that the claws are vertex-disjoint
by choosing the neighbors of the centers from separate copies of G. Since x would have exactly
t + 1 neighbors in S and t + 1 & p, S contains no clique node.

If some claw X has X NS = (), we can take z vertices from S, cover them by z vertex-disjoint
claws centered at these vertices, as above, and a clique node z will be adjacent to these claws and
to X. But then x would have z neighbors in S, and z € p. Thus X has at least one vertex in S.

Moreover, X cannot have two vertices in S, since we can pick ¢ — 1 vertices from S and cover
them, as above, by t — 1 vertex-disjoint claws that do not intersect the neighborhood of X. A clique
node z is adjacent to these claws and to X and it would have ¢ 4+ 1 neighbors in S if X had two
vertices in S. However, t+1 ¢ p.

Claim 1 already establishes that either all or none of the copies of a vertex v; € V(G) must be in
a p-1S S, since any pair vf and vf, are centers of distinct claws sharing the three other claw vertices.
When v € S the three other claw vertices are not in S so that v¥ € S also, and vice-versa.

We complete the construction of G’ in three different manners depending on which of the
following three cases holds:

(i) 0 and 1 are in p, but 2 is not.

(ii) For some w > 3, w — 2 is in p, but w is not.

(iii) For some w > 2, w is in p but w — 2 is not.

If none of these cases hold, then for each w € N, either both or none of w and w + 2 would
have to be in p, and p C N would be equal to EVEN or ODD. Note that if any pair of non-center
vertices of a claw are adjacent, then by Claim 1 we already know the claw has exactly one vertex
in any p-IS set.

In case (i) we add a node to the clique for each pair of vertices in G' which are copies of vertices
at distance 2 in GG, and make the node adjacent to the pair.

In case (ii) we add a node to the clique for each group of w — 2 vertex disjoint claws, and make
the node adjacent to these claws.

In case (iii) we add for each set Y of w — 2 vertex-disjoint claws a new clique node Y; for each
v; € G whose neighbors form an independent set. We make Y; adjacent to vl-l and to v? and to all

copies of vertices in G' at distance two from v;. There are between three and six such vertices in
G', since if only two then this would be the whole graph G. Let v; have neighbors v, vy, v. and let
these latter three have additional neighbors a’ and a”, b’ and b”, ¢’ and ¢”, respectively. We make
Y; adjacent to the copy in G? of some of these vertices, depending on the common identities of this
multiset of six vertices (see Figure 2):

e A: six singletons- adjacent to no further vertices,

e B: one triple and three singletons- adjacent to no further vertices,

e C: one pair and four singletons- adjacent to copy in G2 of the pair,

e D: two pairs and two singletons- adjacent to copies in G? of both pairs,
e E: three pairs- adjacent to copies in G? of all three pairs,

e F: one triple, pair and singleton- adjacent to copy in G? of the pair.

Figure 2: The six cases, showing the center vertex of the claw on top, the clique vertex on bottom,
with a thick edge indicating that the clique vertex is adjacent to copies in both G' and G? and a
dotted edge indicating adjacency only to the copy in G'. In each case, if the top claw has three
vertices in S the clique vertex has no S-neighbors in the figure, whereas if each claw has exactly
one vertex in S the clique vertex has exactly two S-neighbors in the figure (counting thick edges
twice).

Claim 2 Any p-IS S in G' contains exactly one vertex from each claw.

Proof. Let X be any claw in G'. We show that in none of the cases (i),(ii) or (iii) does X contain
three vertices in S. The claim then follows for all claws in G’, since either all or no copies of a
vertex must be in S.

In case (i) we have 2 ¢ p. No two vertices in G' at distance two in G can both be in S since
then the corresponding newly added clique node would have exactly two neighbors in §. Hence no
claw in G! can contain more than one vertex in S.

In case (ii) we can find a set of w — 3 vertex-disjoint claws in G whose centers are all in S. We
ensure that such vertex-disjoint claws can always be found by assuming, without loss of generality,
that G is large, say with at least w? vertices, so that by Claim 1 the center vertices can be chosen
to be copies of vertices in G whose pairwise distance in G is at least three. If X had three neighbors
in S, the clique node adjacent to X and these claws would have exactly w neighbors in S. However,
w e p.

In case (iii) a set Y of w — 2 vertex-disjoint claws has the central vertex chosen. Let X have
center node v}. The clique node Y; added for v} and these w — 2 claws has at least w — 2 neighbors
in S. If the claw X has three vertices in S then these are all the three neighbors of v; and none
of the remaining neighbors of Y; is in §. On the other hand, if X and all other claws all have one
vertex in S, then it is easy to check, in each of the separate cases of common identities above, that

exactly two of the remaining neighbors of Y; is in S. For example, if Y; has an extra neighbor v?

J
in G? then in each case vjz is adjacent to exactly two (a pair) of the neighbors of v} and the third

neighbor of v} must be in S whenever v?- € S so that the remaining neighbors of Y; could then not

be in S. We conclude that, since w — 2 ¢ p but w € p, the claw X must have exactly one vertex in
S. m

A perfect code in G gives rise to a p-IS in G’ consisting of all copies of nodes in the perfect
code. For every p-IS S in G, either all or no copies of a vertex from G must be in S and no clique
node is in S. Hence it follows from Claim 2 that the projection of S onto G is a perfect code. »

3 Optimization

Let us consider the complexity of p-IS optimization problems. Clearly optimization is no easier
than the corresponding decision problem, thus we are interested in the problems where the decision
version is polynomial solvable. When an optimization problem turns out to be hard to compute,
we would further like to know how hard it is to compute approximate solutions by polynomial-time
algorithms.

We say that an algorithm approzimates a problem within r if the solution computed on any
instance never strays from the optimal by more than a multiplicative factor . The algorithm then
has performance ratio r. Note that the factor r may be a function of the size of the input. When a
better approximation algorithm cannot be found, we naturally try to show that no better algorithm
can be found given some natural complexity-theoretic assumption.

Approximation is not well defined when the corresponding decision problem is not polynomial
solvable. If an algorithm cannot produce a feasible value for a solvable problem, the approximation
ratio for that problem is not defined. Attempts to deal with this by modifying the definition of
a performance ratio seldom meet with success. Thus, we consider only the approximation of the
p-1S optimization problems, either minimization or maximization, whose decision version is in P,
namely: p = Nt p={0}, and p={0,1,...,k}, for some k € NT.

Minimization problems are trivial when p contains zero, which leaves only the case p = N*.
This is the Minimum Independent Dominating Set problem, which is known to be N'P-hard to
approximate within n!=¢, for any € > 0 [3]. The reduction holds even if the graph is sparse, thus
it is hard within m! €. In fact, no sub-linear performance ratio is known for this problem.

The maximization problem with p = {0} is trivial, whose solution consists of all isolated vertices.
When p = N we have the Mazimum Independent Set problem, for which the best performance
ratio known is O(n/log?n) [1]. Hastad has recently improved a sequence of deep results to show
that this problem is hard to approximate within n!=¢, for any e > 0 [4]. This result is modulo the
assumption that NP # ZPP, namely that zero-error randomized polynomial algorithms do not
exist for all problems in NP. This is highly expected, while slightly weaker hardness results are
known under the stronger assumption that P # NP. We shall use this result in this paper, with
the knowledge that weaker assumptions will then also transfer to our results. In particular, our
reductions do give the ANP-hardness of the exact optimization problems considered.

The only remaining maximization problems are when p = {0,1,...,k}, for some k € N*. We
focus on these problems for the remainder of this section. We show them to be N'P-hard, and
obtain nearly tight bounds on their approximabilities. The results are summarized in the following
theorem. Let opt denote the size of the optimal solution of the instance.

Theorem 3.1 The {0,1,...,k}-IS mazimization problem, for k € N*, can be approzimated within
O(y/n) in polynomial time, but not within O(n'*+D=¢) nor O(opt' =€), for any fired € > 0, unless
NP = ZPP.

3.1 Approximation algorithm

We now give an algorithm that approximates some important problems on set systems. These
results are interesting in their own right. Simple reductions then imply the same approximation
for the {0,1,...,k}-IS problems.

Definition 3.2 The Set Packing problem is the following: Given a base set S and a collection C
of subsets of S, find a collection C' C C of disjoint sets that is of mazimum cardinality.

Set Packing and Maximum Independent Set can be shown to be mutually reducible by approximation-
preserving reductions. Given a graph, form a set system with a base element for each edge and a set
corresponding to a vertex containing the elements corresponding to incident edges. Then indepen-
dent sets in the graph are in one-to-one correspondence with packings of the set system. Thus, the
O(n/log?n) approximation of Independent Set carries over to Set Packing. This approximation is
in terms of n, the number of sets in the set system.

An alternative would be to measure the approximation in terms of m, the size of the base
system. For this, there is an obvious upper bound of m, since that is the maximum size of any
solution. Another easy upper bound is the maximum cardinality & of a set in the solution, since
any maximal solution will find a solution of size at least m/k. However, k can be as large as m,
and no better bounds were known in terms of m, to the best of our knowledge.

Theorem 3.3 Set Packing can be approzimated within \/m, where m is the size of the base set,
i time linear in the input size.

Proof. A greedy algorithm is given in Fig. 3. In each step, it chooses a smallest set and removes
from the collection all sets containing elements from the selected set.

Greedy(S,C)

t < 0

repeat

t+—t+1

Xy < C € C of minimum cardinality

Zy +—~{CeC:X,NnC##0} C+C—- 2
until |C] = 0

Output {Xl, Xa, ..., Xt}

Figure 3: Greedy set packing algorithm

Let M = |\/m]. Observe that {Z,...,Z;} forms a partition of C. Let i be the index of some
iteration of the algorithm, i.e. 1 < ¢ < ¢. All sets in Z; contain at least one element of X;, thus the
maximum number of disjoint sets in Z; is at most the cardinality of X;. On the other hand, every set
in Z; is of size at least X;, so the maximum number of disjoint sets in Z; is also at most [m/|X;|].
Thus, the optimal solution contains at most min(|X;|, [m/|X;|]) < maxgyeymin(z, [m/z]) = M
sets from Z;.

Thus, in total, the optimal solution contains at most tM sets, when the algorithm finds ¢ sets,
for a ratio of at most M. =

The Strong Stable Set problem is the {0, 1}-IS maximization problem. A strong stable set, also
known as a 2-packing, corresponds to a set of vertices of pairwise distance at least three. The Strong
Stable Set problem reduces to Set Packing in the following way. Recall that N[v] = N(v) U {v}.

Given a graph G = (V, E), construct a set system (5,C) with § =V and C = {N[v] : v € V}.
Then, a strong stable set corresponds to a set of nodes whose closed neighborhoods do not overlap,
thus forming a set packing of (S,C).

Corollary 3.4 Strong Stable Set can be approzimated within \/n.

The Distance-t Set problem is that of finding a maximum cardinality set of vertices of mutual
distance at least ¢ in a given graph G. It corresponds to finding a maximum independent set in
the power graph G'~!. If A is the adjacency matrix of G and I is the identity matrix, then the
adjacency matrix of G'~! is obtained by computing (A + I)!~!, replacing non-zero entries by ones,
and eliminating self-loops. The Strong Stable Set problem on G is the Distance-3 Set problem, or
that of finding a maximum independent set in G2. Since the Distance-2q + 1 Set problem is that of
finding a maximum independent set in (G9)2, the odd case is a restricted case of the Strong Stable
Set problem.

Corollary 3.5 The Distance-t Set problem can be approzimated within \/n, for any odd t.
We now extend the application of the greedy set packing algorithm.

Definition 3.6 A k-matching of a set system (S,C) is a collection C' C C such that each element
in S is contained in at most k sets in C'.

In particular, a 1-matching is precisely a set packing. The k-Matching problem is that of finding
a k-Matching of maximum cardinality, i.e. containing the greatest number of sets.

Observe that the sizes of maximum set packings and maximum k-matchings can vary widely.
Consider the set system that is the dual of a complete graph, namely S = {e; ; : 1 <i < j < n},
C={Cy:1<z<n}and Cp ={e;p: 1 <i<z}U{ez;: 2z <j<n}. Then, the whole system is a
2-matching while any set packing is of unit size. Thus, the ratio between the two can be as much
as y/m. We nevertheless find that the algorithm for Set Packing still yields O(y/m) approximations
for k-Matching.

Theorem 3.7 The greedy set packing algorithm approzimates the k-Matching problem within k+/m.

Proof. The sum of the sizes of sets in a k-matching is at most km. Thus, if each set contains at
least g elements, then the matching contains at most LkTmJ sets.
Consider any iteration 7. Each set in Z; is of size at least | X;|. Thus, the optimal k-matching
km

OPT contains at most LWJ sets from Z;. On the other hand, OPT never contains more than

k| X;| sets from Z;, since it contains at most k sets containing a particular element from X;. Thus,
|OPT N Z;| < kmin(| X;], m/|X;|) = kv/m.

Hence, the optimal k-matching contains at most tk+/m sets,
t
|OPT| =Y |OPT N Z| < thy/m.
i=1

while the algorithm obtains ¢ sets, for a performance ratio of ky/m. =

This also translates to a similar ratio for the other {0,1,...,k}-IS problems. While we can
again show that the size of a maximum strong stable set and a maximum {0, 1,2}-IS can differ by
a factor of as much as Q(y/n), the analysis nevertheless works out.

10

Corollary 3.8 The {0,1,...,k}-IS problem, for k > 1 is approxzimable within O(\/n).

Proof. Given an instance G to {0,1,...,k}-IS, form the set system of closed neighborhoods, as
in the reduction of Strong Stable Set to Set Packing. Recall that the number of base elements m
now equals the number of sets n. Clearly the solution output by the greedy set packing solution is
a feasible solution, since it forms a {0, 1}-IS.

Observe that any solution to the {0,1,...,k}-IS problem of G corresponds to a k-matching in
the derived set system (while the converse is not true). Hence, by Theorem 3.7 the size of the
algorithm’s solution is also within O(y/n) of the optimal {0,1,...,k}-IS solution. =

3.2 Approximation lower bound

A set system is also sometimes referred to as a hypergraph, where the hypervertices correspond to
the base elements and hyperedges correspond to the sets of the set system. A t-uniform hypergraph
is a set system where the cardinality of all edges is ¢. A subset S of V' is an independent set if no
hyperedge is fully contained in S.

Our lower bound rests on the following reduction from the problem of finding an approximately
maximum independent set in a hypergraph.

Lemma 3.9 If the {0,1,...,k}-IS mazimization problem can be approzimated within f(n), then
the Mazimum Independent Set problem in (k + 1)-uniform hypergraphs can be approzimated within
O(f(n)*1).

Also, if the former problem can be approzimated within g(opt), as a function of the optimal
solution value opt, so can the latter.

Proof. Given a hypergraph H, construct a graph G as follows. G contains a vertex for each
node and each hyperedge of H. The hyperedge-vertices form a clique, while the node-vertices are
independent. A hyperedge-vertex is adjacent precisely to those node-vertices that correspond to
nodes incident on the hyperedge.

We first claim that any independent set S in the hypergraph H is a {0,1,...,k}-IS in G. Clearly
it is an independent set in G since it consists only of node-vertices. Each node-vertex thus has a
p-value of 0. Hyperedge-vertices have exactly k node-vertices as neighbors and not all of those can
be in S given the independence property of S in H. Thus, hyperedge-vertices have a p-value of at
most k£ — 1.

Any {0,1,...,k}-IS S in G can contain at most one hyperedge-vertex, and if we eliminate that
possible vertex from S, it can be verified that the remainder corresponds to an independent set in
H.

Taken together, any approximate solution to {0,1,...,k}-IS gives an equally approximate in-
dependent set of H, within an additive one. Hence, ratios in terms of opt carry over immediately.
For approximations in terms of the input size, we must factor in that |V (G)| = |V (H)| + |[E(H)| =
O(|V (H)[F+1). =

To obtain the theorem, we need to show that Maximum Independent Set in hypergraphs is hard
to approximate. We sketch here how the n!~¢ inapproximability result of [4] translates to the same
bound for the case of uniform hypergraphs. Given a graph G, form a hypergraph H on the same
vertex set, with hyperedges for any (k 4 1)-tuples such that some pair of vertices in the tuple form
an edge in G. Then, we have a one-to-one correspondence between independent sets (of cardinality
at least k) in G and in H.

Observe that in the case kK = 1, the Strong Stable Set problem, we obtain a lower bound of
Q(n'/?=¢) which is essentially tight in light of the upper bound given. The lower bound can be

11

generalized for Set Packing to show that the O(y/m) approximation in terms of the number of base
elements is essentially the best possible.

We also obtain tight lower bounds for the Distance-t Set problems defined earlier.

Theorem 3.10 For any € > 0, the Distance-t Set problem is hard to approzimate within n'~¢
when t is even, and within n*/2=¢ when t is odd, t > 3.

Proof. First consider the even case, t = 2q + 2. Given a graph G, construct a graph H that
contains a copy of GG, a vertex w adjacent to every vertex of G, and a distinct path of ¢ edges
attached to each vertex of G. That is, V(H) = {v,,w;; : v; € V(G),1 < j < g} U {u}, and
E(H) = E(G) U {uv;, viw; 1, w; jw; j+1 : v; € V(G),1 < j < ¢}. All pairs of vertices in H are of
distance at most 2¢g + 2 = ¢. The only vertices of distance ¢ are pairs w; 4, w; 4 of leaves on paths
where (v;,v;) are non-adjacent. Hence, a Distance-¢ Set in H is in one-to-one correspondence with
an independent set in G. Further, the size of H is linear in the size of G. Thus, the Distance-t Set
problem, for ¢ even, is no easier to approximate than the IS problem.

For the lower bound for the odd case, we similarly append paths to each vertex of the construc-
tion for the Strong Stable Set problem. We invite the reader to verify the details. =

4 Conclusion

We have investigated the complexity of decision and optimization problems over independent sets
with domination constraints. These problems belong to the framework of (o, p)-problems. Our
results constitute a complete complexity classification for the cases when o = {0}, up to P vs. NP
for the decision problems, and with tight approximability bounds for the optimization problems.
The approximation results extended also to several related independence problems. The complexity
of problems for other cases of ¢ C N remain to be investigated in detail.

Acknowledgement

A comment by Hiroshi Nagamochi prompted us to greatly improve an early algorithm.

References

[1] R. B. Boppana and M.M. Halld6rsson, Approximating maximum independent sets by exclud-
ing subgraphs, BIT, 32 (1992), 180-196.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability (Freeman, New York, 1979).

[3] M.M. Halld6rsson, Approximating the minimum maximal independence number, Information
Processing Letters 46 (1993), 169-172.

[4] J. Hastad, Clique is hard to approximate within n'=¢, In Proc. 37th IEEE Symp. on Found.
of Comput. Sci., (1996), 627-636.

[5] S. Khanna, M. Sudan and D. P. Williamson, A complete classification of the approximability
of maximization problems derived from boolean constraint satisfaction. in Proc. 29th ACM
Symp. on Theory of Computing, (1997), 11-20.

[6] J. Kratochvil, Perfect codes in general graphs, monograph, Academia Praha (1991).

12

[7] J. Kratochvil, P. Manuel and M. Miller, Generalized domination in chordal graphs, Nordic
Journal of Computing 2 (1995), 41-50

[8] T.J. Schaefer, The complexity of satisfiability problems, In Proc. 10th ACM Symp. on Theory
of Computing (1978), 216-226.

[9] J.A. Telle, Characterization of domination-type parameters in graphs, Proceedings of 24th
Southeastern International Conference on Combinatorics, Graph Theory and Computing -
Congressus Numerantium Vol.94 (1993), 9-16.

[10] J.A. Telle, Complexity of domination-type problems in graphs, Nordic Journal of Computing
1 (1994), 157-171.

13

