
Online Coloring Known GraphsMagn�us M. Halld�orsson�February 14, 2000Abstra
tThe problem of online 
oloring an unknown graph is known to be hard. Here we 
onsiderthe problem of online 
oloring in the relaxed situation where the input must be isomorphi
to a given known graph. All that foils a 
omputationally powerful player is that it is notknown to whi
h se
tions of the graph the verti
es to be 
olored belong. We show that theperforman
e ratio of any online 
oloring algorithm with advan
e knowledge of the input graphis at least 
(N= log2N), whereN is the number of verti
es. This mat
hes and generalizes thebound for the 
ase of an unknown input graph. We also show that any online independentset algorithm has a performan
e ratio at least N=8.1 Online Graph ColoringGraph 
oloring is the problem of assigning the fewest possible 
olors to the verti
es of a graphso that adja
ent verti
es re
eive di�erent 
olors. In the online version, the input graph is givenonly one vertex at a time, along with the edges to previous verti
es, and the algorithm mustirrevo
ably 
olor the given vertex before re
eiving later ones.The Known-Graph Online Model Online problems re
eive mu
h of their diÆ
ulty fromthe fa
t that the input is hidden. Clearly, if the whole input sequen
e was given, the problemredu
es to the o�ine version. But, what if the input was known, but not the sequen
e in whi
hit was given? In the 
ase of graphs, suppose the input had to indu
e a graph isomorphi
 to agraph known in advan
e, but the identi�
ation of the presented verti
es was not given. Can wethen 
olor the graph relatively easily?Formally, 
onsider the following game for two players, Ali
e and Bob.1. Ali
e presents Bob with a graph G on N verti
es.2. For i = 1; : : : ; na) Ali
e presents a vertex vi with all edges from vi to v1; : : : ; vi�1. The graph indu
ed byverti
es v1; : : : ; vi is isomorphi
 to a subgraph of G.b) Bob responds with a 
olor 
(vi) that is distin
t from the 
olor of any vertex vj adja
entto vi, j < i.�S
ien
e Institute, University of I
eland, IS-107 Reykjavik, I
eland, mmh�hi.is, www.hi.is/�mmh.1



In ordinary parlan
e, Bob an algorithm, while Ali
e is the adversary. Time 
omplexity, however,is not the main 
on
ern in the online s
enario, and sin
e the total number of possible gamesequen
es is bounded by 2poly(N), we may as well 
onsider Bob to be as Ali
e's equal.The input graph G is referred to as the underlying graph, while the subgraph that is in
re-mentally given to the algorithm is the presented graph. The former has N verti
es, while thelatter 
ontains n verti
es.The value of the game is the number of 
olors used by the algorithm (Bob) divided bythe 
hromati
 number of G (the number of 
olors in an optimal o�ine 
oloring). The worst-
ase game value, over all possible adversaries, is referred to as the performan
e ratio, or the
ompetitive ratio of the algorithm.Results We show that the 
ompetitive ratio of any 
oloring algorithm, even with full knowl-edge of the input graph G, is 
(N= log2N), where N is the number of verti
es of G. Thisgeneralizes the results of [6℄ for the known graph 
ase. In fa
t, for ea
h N , we 
onstru
t oneparti
ular graph that is hard to 
olor that 
ontains the whole 
lass of graphs given in [6℄ asindu
ed subgraphs (ea
h with about N= logN verti
es).The same lower bound holds also for randomized algorithm against an oblivious adversary;in this version, Bob is allowed to base his 
olor de
isions on 
oin 
ips whi
h are hidden fromAli
e. It also holds for a further restri
ted model, where Ali
e immediately 
ommits a presentedvertex to be a parti
ular vertex in the underlying graph as soon as Bob de
ides on his 
olor.This implies that Ali
e is e�e
tively 
oloring the verti
es online as well, and revealing those
hoi
es.Related results Our results are an immediate generalization of those of Halld�orsson andSzegedy [6℄ for the ordinary online 
oloring of an unknown graph. They 
onstru
ted a 
lass oflog n-
olorable graphs that require at least n= logn 
olors online in the worst 
ase [6℄. The bestperforman
e ratios known are O(n log log log n= log logn) by a deterministi
 algorithm [7℄, andO(n= log n) by a randomized algorithm against an oblivious adversary [5℄. Even for the 
ase oftrees, any online algorithm requires log n 
olors in the worst 
ase [3, 4℄. In fa
t, the 
onstru
tionof Gy�arf�as and Lehel [4℄ holds also for our model of a known input graph.Bartal et al. [2℄ 
onsidered a di�erent version of online 
oloring a known graph. In theirmodel, ea
h presented vertex is identi�ed on arrival with one of the underlying verti
es. ThediÆ
ulty then lies in the fa
t that the algorithm does not know whi
h subset of the verti
es willbe presented. Also, the adversary is 
harged only for the 
hromati
 number of the presentedsubgraph, as opposed to that of the underlying graph in our model. They prove a lower boundof 
(n1�log4 3) � 
(n:2) and an upper bound of O(pn).Online Independent Set We 
onsider also the problem of �nding an independent set (or aset of mutually nonadja
ent verti
es) of maximum 
ardinality in the same online model with aknown graph. We relax the problem by allowing the algorithm to 
olor the verti
es online andsele
ting at the end of the game the largest 
olor 
lass as the independent set solution.2



In spite of this relaxation, we 
an prove the worst possible bound of 
(n) for the performan
eratio of any deterministi
 algorithm. However, if we allow the algorithm randomization againstan oblivious adversary, the best possible performan
e ratio is �(n= log n).2 Lower bound 
onstru
tions for 
oloringWe shall fo
us on the following restri
tion to the game between Ali
e and Bob. Note that onlyAli
e's moves are being restri
ted, while Bob is supplied with more information. Hen
e, thelower bounds proved here immediately 
arry over to the basi
 game of Se
tion 1.Let [k℄ = f1; 2; 3; : : : ; kg denote the set of 
olors used by the adversary, and [k℄t denote the
olle
tion of all t-element subsets of [k℄.1. Ali
e announ
es k, the number of 
olors she will use, x, a parameter, and n, the numberof verti
es to be presented. She then presents a 
olle
tion of subsets C = fC1; C2; : : : ; Ctgof [k℄k=2 in some order.1 This spe
i�es an underlying graph G on N = t � k=2 verti
es anda 
oloring 
 : V (G) 7! [k℄ as follows. The graph 
onsists of t blo
ks of k=2 verti
es ea
h,with ea
h blo
k Bi arranged in a 
lique and 
olored with the 
olors in Ci. Further, allverti
es of Bi are identi
ally adja
ent to exa
tly those verti
es in previous blo
ks whose
olors are not in Ci.Formally, let Ci = f
i;1; : : : ; 
i;k=2g. Then,V (G) = fvi;` : i = 1; : : : ; t; ` = 1; : : : ; k=2g,
(vi;`) = 
i;`, for i = 1; : : : ; t; ` = 1; : : : ; k=2,E(G) = f(vi;`; vj;q) : i < j and 
i;` 62 Cjg [ f(vi;`; vj;q) : i = jg.2. For i 1 to tAli
e presents x (identi
ally looking) verti
es from blo
k Bi.Bob 
olors these x verti
es, 
onsistent with his previous 
oloring.Ali
e maps ea
h of the x verti
es to a di�erent vertex of Bi.The oblivious adversary model modi�es step 2 as follows:Ali
e randomly pi
ks subsets Si from ea
h Ci, su
h that jSij = x.for i 1 to tBob gives 
olors to x (identi
al) verti
es from Bi.The set Si is revealed to Bob.Thus Ali
e makes all her de
isions before Bob starts 
oloring. This is an oblivious strategy, inthat it does not depend on Bob's moves; thus it is also ne
essarily a mixed strategy, meaningthat it uses randomization. Here, it is essential that Bob does not have knowledge of Sj, j > i,during round i. The above setup borrows many of the ideas of [6℄.1Note that the ordering of the blo
ks is not important, and in fa
t Ali
e 
ould allow Bob to 
hoose the ordering.This implies that we impli
itly give an exponential-size family of hard graphs.3



It is 
lear from the edge des
ription that the graph G is k-
olorable. Further, sin
e at ea
hround Ali
e sele
ts a subset of the verti
es of a blo
k, the graph presented is an indu
ed subgraphof G. The number of presented verti
es is n = t � x = N � 2x=k.The setup above is a restri
tion of the game des
ribed in se
tion 1 in in several ways. Themost signi�
ant is that the mapping of the presented vertex to one in the underlying graph,is indi
ated to Bob at the end of ea
h round. This impli
itly informs Bob of the 
olor thatAli
e used for the vertex. In [6℄, this was referred to as a transparent model and shown thata mat
hing O(n= log2 n) performan
e ratio is a
hievable in this 
ase. The global stru
ture ofthe presented graph, in
luding the ordering of the blo
ks, is also given in advan
e. The onlyun
ertainty is whi
h x out of k=2 blo
k-verti
es are being presented in ea
h round.We shall des
ribe three strategies for Ali
e that for
e Bob to use many 
olors. A strategyinvolves spe
ifying the set 
olle
tion C and a rule for mapping presented verti
es to parti
u-lar verti
es in the underlying graph. For the latter, we refer to underlying verti
es by theirpreassigned 
olors.Terminology We say that Bob assigns verti
es to bins while Ali
e 
olors. The hue of a bin isthe set of 
olors among the verti
es in the bin. We say that progress is made on a vertex if the
olor assigned to that vertex in
reases the hue of the bin to whi
h the vertex was assigned.The goal of the 
onstru
tions is to make progress with ea
h vertex, or at least with a 
onstantfra
tion of the verti
es. Observe that if that goal is a
hieved, Bob is for
ed to use 
(n=k) bins,sin
e at most k=2 verti
es in the same bin 
an make progress. That yields a 
(n= log2 n)approximation ratio. If x is additionally 
(k), the ratio is also 
(N= log2N).Simple lower bound Let C = [k℄k=2, and let x = 1. Namely, the set 
olle
tion 
onsists ofall subsets of size k=2. From ea
h blo
k, Ali
e presents a single vertex, whose 
olor she 
hoosesso as to in
rease the hue of the bin used by Bob. We now show that su
h a 
hoi
e is alwayspossible.Lemma 1 Ali
e 
an make progress with every presented vertex.Proof. Consider a vertex presented from blo
k i, and let H be the hue of the bin used. Bythe de�nition of the edges of the graph, H must be a subset of Ci. Further, H must also be asubset of the admissible 
olors for the last vertex added to the bin, whi
h is the set Cj, for somej < i. Sin
e the interse
tion of Cj and Ci 
ontains at most k � 1 verti
es, H is a proper subsetof Ci. Thus, there always exists an element in Ci �H, and Ali
e makes progress by assigningthe vertex su
h a 
olor.We observe that the subgraph produ
ed is pre
isely the lower bound 
onstru
tion of [6℄.A lower bound of 
(N= log3N) on the performan
e ratio of any deterministi
 online 
oloringalgorithm now follows.This 
onstru
tion has the elegant property that the presented verti
es appear in the sameorder as they o

ur in the underlying graph. Thus, the presented verti
es form a subsequen
eof the ordered set of verti
es of the underlying graph.4



Optimal lower bound We want the set 
olle
tion to have 
ertain desirable properties. We
all a 
olle
tion dispersed if any pair of sets have at most 3k=8 elements in 
ommon. Thus, weseek a binary 
ode of length k with Hamming distan
e k=4. As the following lemma shows,there exists a dispersed 
olle
tion of exponential size.Lemma 2 There is a dispersed 
olle
tion of sets from [k℄k=2 with at least 1:1k elements.Proof. Consider the following greedy algorithm. Pi
k any set S from [k℄k=2 and add to 
olle
tion.Eliminate from further 
onsideration S and all sets that agree with S in at least 3k=8 elements.Repeat until no sets remain. The number of sets that di�er from S in 2i elements equals thenumber of ways that i elements 
an be removed from S, times the number of ways that i elementsoutside S 
an be added, or �k=2i �2. Hen
e, the total number of sets eliminated from 
onsiderationin ea
h round is at most k2�k=2k=8�2, and the number of rounds is at least� kk=2�k2�k=2k=8�2 � 1:1k:Ali
e 
hooses C to be a dispersed 
olle
tion as above, and x to be k=8. In the adaptive
onstru
tion, the 
olors of the verti
es are 
hosen so that she makes progress on all of them(whi
h we show possible below). In the oblivious 
onstru
tion, ea
h Si is 
hosen uniformlyrandomly among the subsets of Ci of 
ardinality k=8.Lemma 3 Ea
h vertex is assigned to a bin with a hue of at most 3k=8 elements.Proof. The verti
es of a blo
k Bi must be assigned to di�erent bins sin
e they form a 
lique.Let H be the hue of a bin to whi
h a vertex is to be assigned. H must be a subset of Ci. Hmust also be a subset of the set of admissible 
olors the admissible 
olors of the last vertexadded to that bin, whi
h 
orresponds to Cj , for some j < i. Sin
e C is a dispersed 
olle
tion,jHj � jCi \ Cj j � 3k=8.Lemma 4 There is an adaptive strategy for Ali
e that makes progress on every vertex.Proof. Ea
h vertex gets assigned to a bin whose hue 
ontains at most 3k=8 elements, in whi
h
ase the remaining at least k=8 
olors make progress. Thus, regardless of how the other k=8� 1verti
es of the blo
k are 
olored, there is always a 
olor available for v that makes progress.Lemma 5 There is an oblivious strategy for Ali
e that makes progress on at least one fourth ofthe verti
es.Proof. All the k=2 
olors of Ci are equally likely to be assigned to a parti
ular vertex v of Bi.There are at least k=8 out of k=2 
olors that in
rease the hue of the bin to whi
h v is assigned.Thus, the probability of making progress with a parti
ular vertex is at least 1=4. By linearityof expe
tation, the expe
ted number of verti
es making progress is thus at least n=4.Lemmas 4 and 5 immediately lead to strong lower bounds on Bob's performan
e.Theorem 6 
(N= log2N) is a lower bound on the performan
e ratio of any online 
oloringalgorithm, even when the input graph is given in advan
e. It holds also for randomized algorithmsagainst an oblivious adversary. 5



Proof. In the example 
onstru
ted, N � k21:1k and n = N=2. The algorithm uses at leastexpe
ted (n=4)=(k=2) = n=k = 
(N=k) 
olors, while the adversary uses k. Sin
e k = O(logN),the performan
e ratio is at 
(N= log2N).Remark: The deterministi
 
onstru
tion has the powerful property that every 
olor 
lass of any
oloring found by an online algorithm 
ontains at most k=2 = 
(logn) verti
es. This impliese.g. that the lower bound holds also for the online version of the Sum Coloring problem studiedin [1℄, where the obje
tive is to �nd a 
oloring with the positive integers so that the sum ofthe values assigned to the verti
es is minimized. Also, note that Ali
e's strategy is eÆ
iently
omputable in time O(n) per vertex.3 Online Independent Set ProblemWe now 
onsider the problem of �nding a large independent set online, when the original graphis given in advan
e. The algorithm (Bob) is allowed to form a 
oloring of the verti
es, and 
hoosethe largest 
olor 
lass at the end as the �nal solution. Clearly, this allows for a 
onsiderable
exibility over requiring Bob to irrevo
ably assign verti
es to a single set. This version faithfullyrepresent \onlineness" in that the algorithm must irrevo
ably de
ide for every pair of nodesif they are to be in the same independent set, and models somewhat more intelligent onlinestrategies.In this problem, the adversary is also evaluated in terms of the presented subgraph, i.e. theindependen
e number of the subgraph. However, we are interested in bounding the performan
eratio as a fun
tion of the size of the original graph. From the remark at the end of the lastse
tion, it is 
lear that the 
(N= log2N) lower bound holds also for the independent set problem.However, we 
an a
tually show the tightest possible 
(N) lower bound.Adaptive 
onstru
tion The underlying graph 
ontainsN = 2n verti
es, ai; bi, i = 1; 2; : : : ; n,with the a-verti
es forming an independent set, b-verti
es forming a 
lique, and ai adja
ent tobj i� i > j. In a sense, ai and bi form a blo
k of two identi
ally looking verti
es; the a verti
esare good, belonging to the optimal independent set, while the b verti
es are bad, ex
luding anyfurther addition of verti
es to the same bin.Ali
e presents n verti
es and, depending on the algorithm's a
tions, maps the i-th presentedvertex either to ai or bi. Namely, if the vertex is pla
ed in an empty bin, then it will be de
laredto be ai; if pla
ed in a nonempty bin, it will be bi.Theorem 7 The performan
e ratio of any online independent set algorithm is at least N=8,even if the graph on N verti
es is given in advan
e.Proof. If a vertex is pla
ed in a nonempty bin, all remaining verti
es will be adja
ent to it.Thus, by indu
tion, bins a

umulate at most two verti
es. On the other hand, at least half ofthe verti
es will be a-verti
es; hen
e, the size of the adversary's solution is at least n=2. Theperforman
e ratio is therefore at least n=4 = N=8.6



We 
an obtain a mat
hing performan
e ratio using the ubiquitous First-Fit algorithm thatassigns ea
h vertex in sequen
e to the �rst bin possible. Every bin, ex
ept possibly the last one,must 
ontain a node not in a parti
ular optimal independent set. If First-Fit outputs t nodes,it uses at least (n� 1)=t+1 bins and the optimal solution 
ontains at most (t� 1)(n� 1)=t+1nodes. Thus, First-Fit's performan
e ratio is at most ((t� 1)n+ 1)=t � n=4 + 1=2.Oblivious 
onstru
tion For the oblivious 
ase, we again use the same underlying graph andpresent n = N=2 nodes. Here, we let the i-th presented node be good (i.e. ai) with probability1=2 and bad (i.e. bi) with probability 1=2. With high probability the sequen
e will 
ontainn=2(1 � o(1)) good nodes. For a parti
ular bin to a

umulate nodes, all but possibly the lastnode must be good. The events of nodes being good are independent. Thus, the probabilitythat a given bin 
olle
ts more than t nodes is at most 2�t. Hen
e, the probability that all the(at most n) bins 
ontain 2 log n or fewer nodes, is at least 1� n � 2�2 logn = 1� 1=n. Therefore,the expe
ted size of the largest independent set found is O(log n). Thus, the performan
e ratioof any randomized algorithm is 
(N= logN), expe
ted and with high probability.A mat
hingO(n= log n) performan
e ratio 
an be obtained by a simple randomized algorithm,even without knowledge of the input graph. We des
ribe here an algorithm for the 
ase whenthe number of verti
es n and the independen
e number � are known in advan
e. The unknown
ase 
an be handled via a doubling te
hnique, see [5℄.Without loss of generality, � � n= logn. Let q = (1=2) logn=� n. Before 
oloring, randomlypartition the n verti
es into bn=q
 blo
ks, ea
h of size q, ignoring the remainder. Greedily
olor the verti
es of ea
h blo
k independently. With probability p = �=n, a random vertex is
ontained in the maximum independent set. Thus, with probability at least pq = 1=pn all theverti
es of a given blo
k form an independent set. The probability that none of the blo
ks areindependent is thus at most �1� 1pn�n=q � e�pn= log n:With high probability, some blo
k is independent, and thus the expe
ted size of the independentset found is 
(q). The performan
e ratio is then O(�= logn=� n) = O(n= log n).We summarize the above with the following theorem.Theorem 8 The performan
e ratio of any randomized online independent set algorithm againstan oblivious adversary is at least 
(N= logN), even if the graph on N verti
es is given in advan
e.There exists a randomized online algorithm that attains this ratio, even without knowledge ofthe input graph.Observe that our 
onstru
tions have both the transparen
y property of Se
tion 2, as well asthe property of the presented verti
es forming a subsequen
e of the underlying vertex set.Referen
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