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Abstract

The tree and tour cover problems on an edge-weighted graph are to compute a minimum weight tree and

closed walk, respectively, whose vertices form a vertex cover. Both problems are NP-hard. In this note we

give strongly polynomial time, constant factor approximation algorithms for both problems. An interesting

feature of our algorithms is how they combine approximations of other problems, namely the weighted vertex

cover, traveling salesman, and Steiner tree problems.
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1 Introduction

Our starting point is the weighted vertex cover problem: Given a graph G = (V; E) with weights on the

vertices �nd a minimum weight set of vertices that \cover" all edges, i.e., a set of vertices V

0

� V such that

for each edge fu; vg 2 E at least one of u and v belongs to V

0

. This problem is NP-hard [GJ], however it

can be approximated by a cover whose weight is at most double the optimal weight [Ho, BE] (see [Mo] for

an updated survey of bounded approximations for the problem).

In this note we are concerned with a class of problems that generalizes the vertex cover problem. A

subgraph G

0

= (V

0

; E

0

) V

0

� V; E

0

� E is said to cover G = (V; E) if V

0

is a vertex cover of the edges of

the graph G. Given a connected graph G = (V; E) with weights on the edges, we wish to �nd a minimum

weight subgraph from a given class that covers G.

Speci�cally, we describe approximation algorithms with bounded error ratios for two cases. In the tree

cover problem the subgraph is required to be connected, and thus, in the case of nonnegative weights it will

be a tree. In the tour cover problem the subgraph is required to be a closed walk. Note that in our problems

the weights are associated with edges, not vertices. Also, we do not assume that the edge weights satisfy the

triangle inequality.

Both problems are clearly NP-hard. The minimum weight tree cover is hard even when all edge weights

are equal, since it is asking for a minimum connected vertex cover ([GJ], page 190). A simple reduction from

the traveling salesman problem, TSP, shows the hardness of the tour cover problem. (For each vertex in an

instance of the TSP, add an edge whose one endpoint is that vertex and the other endpoint is a vertex of

degree 1.) On the other hand, as mentioned above, the vertex cover can be approximated by a cover whose

weight is at most double the optimum weight, and the TSP can be approximated by a tour whose length is

at most 3=2 times the optimum length, if the triangle inequality is assumed [Ch]. (Since we are looking for

a closed walk, which may repeat vertices, not assuming the triangle inequality is not a problem.) Thus we

are interested in �nding approximation algorithms to the tree and tour cover problems.

Another motivation of our study is the fact that the minimum weight tour cover can also be viewed

as a watchman route problem, in which the watchman must see every edge by visiting at least one of its

endpoints. The geometric version of the watchman route problem is: Find a shortest path (or cycle) for a

watchman in an art gallery, that allows the watchman to \see" all of the gallery. The resulting problem is

called the watchman route problem, see for example [CN]. To date no approximation methods are known

for the watchman route problem, not even ones that obtain a performance ratio of O(logn) for an n-sided

polygonal environment.

The tour cover problem is a special case of the traveling purchaser problem (TPP) [Ong]. In this problem

we are given in addition to the weighted graph G also a set I of items and a cost matrix describing the cost

of purchasing item i 2 I at each vertex v 2 V . (We can assume that each item is available at all vertices by

placing a very large cost for the item at vertices in which it is not available.) The problem is to compute

a tour such that the total costs of travel and purchasing (each item at the least expensive vertex on the

tour) is minimized. To obtain the tour cover problem as a special case, de�ne for each edge fj; kg an item

that can be purchased only at vertices j and k for a unit cost, while its cost elsewhere is very large. The

TPP has both the TSP and the set cover as immediate special cases. The TSP is obtained by de�ning a

unique item for each vertex, available only at that vertex (or equivalently, available at other vertices at a

high cost). In the set cover problem subsets S

1

; :::; S

n

� I with weights w

1

; :::; w

n

are given. It is obtained

as a special case of TPP by de�ning the purchase costs at i 2 V to be zero for S

i

and in�nity for I nS

i

, and

letting the length of edge fi; jg be

w

i

+w

j

2

. We also note that the TPP generalizes the prize collecting TSP

studied by [BGSW]. It follows from [BGLR] that unless P = NP no bounded approximation for set cover,

and hence for TPP exists. Furthermore, an approximation of factor c logn (for any constant c < 1=8) can

not be achieved unless NP is contained in DTIME(n

log logn

).

Both vertex cover and TSP are known to have a lower bound of a �xed constant performance ratio

achievable in polynomial time (assuming P 6= NP ) [ALMSS]. The reduction above shows the bound applies

to the tour cover problem. The following (similar) reduction from vertex cover shows the bound for the

tree cover problem: Add a new vertex v adjacent to all other vertices, and let all edge weights be equal.

A solution to the tree cover problem, which is a connected vertex cover on the new graph, minus the new

vertex v, corresponds to a solution to the vertex cover of the original graph.

A related class of problems deals with the location of path-shaped or a tree-shaped facilities on a graph
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[AN, HSL, KLM, KLWF, Mi, R]. There, a subgraph with a given property is looked for such that the

maximum distance between any vertex of the graph and its closest vertex of the subgraph is minimized.

The \cover version" of the problem, where a maximum allowed distance (a radius) is given, and the size of

the subgraph is to be minimized, is especially close to our problem. There, it is desired to cover vertices

while in our problem we cover edges. Using our terminology, the above radius problem could be named \the

dominating subgraph problem" (though some of the authors of the abovementioned references use the term

\covering subgraph").

We note that the tour and tree problems refer to the same setting but with a di�erent measure of distance.

In the tree version repeating a segment for the second time is free of charge. One could picture an application

of the tree measure in a situation where a tunnel must be dug or a mine �eld must be crossed. The objective

is then to minimize the total length to be dug or to be freed of mines.

The remainder of this paper is organized as follows: In Section 2 (resp. 3) we give our approximation to

the tree (resp. tour) cover problem, and we conclude with open problems and discussion.

2 Approximating the tree cover

2.1 Weighted Tree Cover

We begin with a formal de�nition of the problem:

Problem 2.1 (Tree Cover Problem) Given a graph G = (V;E) and weight on the edges w

e

� 0 for all

e 2 E, �nd a minimum weight tree, T

1

� E, whose vertices cover all the edges E.

Before describing our approximation algorithm, we show that (not surprisingly) a simple modi�cation of

Prim or Kruskal's minimum spanning tree algorithms does not yield a constant factor approximation. The

modi�cation is a change to the stopping criteria of the algorithms: Continue adding edges to the tree cover

as long as there is an edge of the original graph which is not covered and the resulting graph is connected.

Consider the following graph G = (V;E), where V = fa; b; c

1

; c

2

; . . . ; c

m

g, and the edges are (a; c

i

) of weight

1, (b; c

i

) of weight 2, for all 1 � i � m, and edge (a; b) of weight 3. Clearly the optimal tree cover is the

single edge (a; b) of weight 3, but both the modi�ed Prim and Kruskal algorithms will return the tree cover

containing all edges (a; c

i

) whose total weight is m.

Our algorithm has two main steps: Find a set of edges whose vertices form a vertex cover, and connect

these edges into a tree. We use the following contraction operation before searching for a set of connecting

edges.

De�nition 2.2 The contraction of a graph G along a set of edges Y produces a graph G

0

= (V

0

; E

0

) and a

set of vertices S � V

0

de�ned as follows: For each edge in Y , merge its two endpoints into a single vertex,

whose adjacency list is the union of the two adjacency lists. If parallel edges occur, retain the edge with

smaller weight. The resulting graph is G

0

. The set S consists of the vertices formed by edge contraction (i.e.,

the nodes in V

0

n V ).

We now state our algorithm, which is really a scheme of algorithms parametrized by k and the algorithms

used to approximate the weighted vertex cover and Steiner tree in steps 3 and 4:

1. Let Q

1

be the best solution on at most k vertices, if one exists, and E otherwise.

2. De�ne a weight for each vertex i, to be the minimum weight of any edge touching it, ŵ

i

= minfw

e

j e =

(i; j) 2 Eg.

3. Find an approximate weighted vertex cover V C on G with vertex weights ŵ

i

. Denote by EC the set

of edges that yield the weights ŵ

i

, for nodes i 2 V C. In other words, EC is the set of edges obtained

by every vertex in V C \selecting" a shortest edge incident to it.

4. Contract G along edges EC to obtain G

0

and S. Find an approximation to the Steiner tree in G

0

with

terminals S, and map this solution back to G.
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5. Let Q

2

be the union of the Steiner tree approximation and the edges EC obtained from the vertex

cover approximation. Output the smaller of the two solutions Q

1

and Q

2

. Let APX

1

denote the length

of the approximate solution obtained.

First observe that the problem can be solved e�ciently if the number of vertices in a solution is small.

Lemma 2.3 The problem of either �nding a tree cover with at most k vertices of minimum weight or

determining that no such solution exists, can be solved in time O(jEj+ k

2k+3

).

Proof: The vertices of a tree cover form a vertex cover. It follows that a solution with at most k vertices must

contain every vertex whose degree is greater than k. We therefore add all such vertices to our prospective

solution, and remove the vertices, incident edges, and possible isolated vertices from the graph. The remaining

graph can contain at most k(k � 1) vertices if there is to be a cover with only k vertices. It then su�ces to

check all subsets of size at most k.

Denote by OPT

WV C

(APX

WV C

) the weight of the optimal (approximate) weighted vertex cover of the

input graph G. Let T

1

be an optimal tree cover, OPT

1

its weight, and t

1

> 0 the number of vertices in T

1

.

We have:

Lemma 2.4 OPT

WV C

� (1 +

1

t

1

�1

)OPT

1

.

Proof: Consider the optimal tree T

1

. Let the root r of the tree be a vertex of minimum weight in the tree

ŵ

r

= minfŵ

i

ji 2 T

1

g. Direct all edges in the tree to go towards the root. De�ne ŵ

0

i

to be the weight of the

edge in the tree leaving vertex i, and ŵ

0

r

= 0. (Note that by our choice of edge direction, this de�nition is

unambiguous.) Clearly, OPT

1

=

P

i2T

1

ŵ

0

i

, and for every vertex in the tree other than the root, r, ŵ

0

i

� ŵ

i

.

Also, since T

1

is a tree cover, its vertices are a vertex cover of G. We use the notation ŵ(T

1

) =

P

i2T

1

ŵ

i

,

etc. Thus:

OPT

1

= ŵ

0

(T

1

) = ŵ(T

1

)� ŵ

r

� ŵ(T

1

)(1� 1=t

1

) � OPT

WV C

(1� 1=t

1

):

The bound given by Lemma 2.4 can be attained, as can be seen from a simple example. Consider a

graph whose vertices are four points on a line with coordinates 0; 1; 2; 3, and the edges are (0; 1), (1; 2) and

(2; 3) all of length 1. The optimal tree cover T

1

contains the middle edge (1; 2) and OPT

1

= 1, t

1

= 2, while

OPT

WVC

= 2.

Let OPT

St

(G

0

; S) (APX

St

(G

0

; S)) denote the weight of an optimal (approximate) Steiner tree of the

terminals S in the contracted graph G

0

. Let r

St

(r

WV C

) be the performance ratio obtained by the algorithm

used to approximate the Steiner tree (weighted vertex cover).

Theorem 2.5 The tree cover found by the algorithm above has weight at most r

St

+ r

WVC

(1+

1

k

) times the

optimal solution.

Proof: Our solution is the union of two edge sets, thus

APX

1

= w(EC) + APX

St

(G

0

; S)

� APX

WVC

+APX

St

(G

0

; S)

� r

WV C

�OPT

WV C

+ r

St

�OPT

St

(G

0

; S):

The �rst inequality holds since the weight of every edge in EC is counted by at least one of its endpoints

in V C. Since each terminal of the network (G

0

; S) is a contraction of one or more edges in which at least one

endpoint is contained in and connected by the optimal tree cover, OPT

St

(G

0

; S) � OPT

1

. It now follows

from lemma 2.4 that:

APX

1

� (r

WVC

(1 +

1

t

1

�1

) + r

St

) OPT

1

:

If the optimal tree cover contains k or fewer vertices, our heuristic solution will be optimal. Thus we may

assume that t

1

� k + 1.
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The complexity of our approach depends on the algorithms used for the weighted vertex cover and Steiner

tree approximations, and to a lesser extent the value of k. In fact, we have a range of choices that provide

a performance/complexity tradeo�.

For the weighted vertex cover problem, a 2-approximation can be found in linear time, while a 2 �

log log jV j=2 log jV j approximation can be obtained in time O(jV jjEj) [BE]. For a Steiner tree we can obtain:

� 2-approximation in time O(jEj + jV j log jV j) [Me],

� 11/6-approximation in time O(jSj(jEj + jV jjSj+ jV j log jV j)) [Ze], and

� 16/9-approximation in time O(jV j

2

jSj

3

+ jV j

3

) [BR].

In particular, our approach can obtain a 34=9 < 3:78 performance ratio in time O(jV j

2

jSj

3

+ jV j

4

), by

using the Steiner tree algorithm of [BR] and the more powerful vertex cover algorithm of [BE], and by

applying lemma 2.3 with k = 2 logn= log logn. Alternatively, we can �nd a tree cover of weight at most

4 + O(log logn= logn) times the optimum in time O(jEj + jV j log jV j).

2.2 Unweighted Tree Cover

If the underlying graph is unweighted we can obtain better bounds on the approximation ratios. The

algorithm largely stays the same, with weights being unit weights, step 1 checking only for a trivial single-

node solution, and step 3 changed to:

3. Find an approximate vertex cover V C on G. Let EC be the edges of a spanning forest of V C.

Theorem 2.6 Unweighted tree cover can be approximated within a factor of 3 in linear time.

Proof: We use a maximal matchingM as our vertex cover approximation. Let t = jM j. If EC is connected,

we output Q

2

= EC. Otherwise, (EC is not connected) we let Q be any minimal connected subgraph

spanning S, and output Q

2

= Q [M .

The optimal cover must contain at least one vertex of each edge of M and must connect them together.

If it doesn't use any additional vertices, neither will our solution, in which case we use 2t � 1 edges versus

optimal solution of t � 1. Since we may assume t � 2, the ratio is at most 3.

On the other hand, we never use more than 3t� 2 edges since at most one vertex can link two terminals

in the MST solution. Thus, if the optimal solution contains an additional vertex, it has at least t edges.

Combined, we obtain a ratio of (3t� 2)=t � 3.

Better yet, we can get within a factor of 2, which is best possible in the sense that a better constant

would directly lead to an improved performance ratio for the thoroughly studied vertex cover problem.

Theorem 2.7 Unweighted tree cover can be approximated within a factor of 2 in polynomial time.

Proof: For a vertex cover approximation we use the set C [W , where C is a maximal collection of disjoint

odd cycles in G and W is an optimal vertex cover of the remaining bipartite graph G n C. This method is

closely related to the vertex cover algorithms of Bar-Yehuda and Even [BE] and Monien and Speckenmeyer

[MS].

Let t be the number of odd cycles found, jC

i

j be the number of vertices in the i-th cycle, and jCj the

total number of vertices in the cycle collection.

Since C [W forms a vertex cover, at least one endpoint of every edge is in C [W . Thus, to connect the

cycles of C and the vertices of W , at most t + jW j � 1 additional vertices must su�ce. Hence, the number

of vertices in the solution is at most 2jW j+ jCj + t� 1, and the number of edges precisely one less or

APX

1

� 2jW j + jCj+ t� 2:

On the other hand, any solution must contain at least p+1 vertices from any odd cycle of length 2p+1,

as well as OPT

V C

(G nC) = jW j vertices from the remaining part of the graph. Hence, the optimal number

of vertices in a tree cover is at least jW j+

P

i

(jC

i

j+ 1)=2, and the number of edges

OPT

1

� jW j+

X

i

(jC

i

j+ 1)=2� 1 = jW j+ (jCj + t)=2 �

APX

1

2

:
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A maximal collection of disjoint odd cycles can be found in O(jV jjEj) time by running breadth-�rst

search starting at each vertex. An optimal vertex cover of a bipartite graph can be found using matching

techniques (see [La, p.190] for a theorem of K�onig-Egervary) in time O(jEj

p

jV j) [HK]. The connecting

vertices can easily be found in linear time. Hence, the combined time complexity is O(jV jjEj).

We can also approximate the following interesting generalization of the problem:

Problem 2.8 (Generalized Unweighted Tree Cover Problem) Given a graph G = (V;E) and a set

of edges E

0

where E

0

� E, �nd a tree, T

1

� E, with minimum number of edges whose vertices cover all the

edges E

0

.

Theorem 2.9 Using the vertices of a maximal matching of E

0

as a vertex cover approximation in step 3,

the performance ratio of our algorithmic scheme for the generalized unweighted problem is at most 1 + r

St

.

Proof: Let t be the number of edges in the maximal matching of E

0

. If we assume that only the edges of

the matching are contracted, then t equals jSj, the number of terminals in the contracted network. If further

edges are contracted, it can only help in reducing the costs of connecting the edges of the matching into a

(Steiner) tree. Also, since an optimal tree cover must contain a point in each edge of the matching and must

connect them together, OPT

1

� OPT

St

(G

0

; S). Hence,

APX

1

OPT

1

�

jSj+ APX

St

(G

0

; S)

OPT

St

(G

0

; S)

� r

1

: (1)

The number of edges of an optimal Steiner tree is always at least one fewer than the number of terminals

jSj, but when equality holds the Steiner problem reduces to �nding a spanning tree of the subgraph induced

by jSj. Thus, we may assume that jSj � OPT

1

, and hence equation (1) yields r

1

� 1 + r

St

.

In particular, a ratio of r

1

� 25=9 < 2:78 is possible using the Steiner tree algorithm of [BR]. Observe

that r

1

to be minimized in equation (1) is of a special nature, and in fact a bound r

1

� 2:46 has been

shown [Ha].

3 Approximating the tour cover

The problem we discuss in this section is a modi�cation of the previous one, asking for a tour instead of tree

cover. We use the word \tour", although we allow repeated vertices and edges.

Problem 3.1 (Tour Cover Problem) Given a graph G = (V;E) and weight on the edges w

e

� 0 for all

e 2 E, �nd a minimum weight closed walk, T

2

� E, whose vertices cover all the edges E.

One possible approach for the design of an approximation algorithm is to use an approximated tree

cover, and then add to it either a matching or a duplicate of the tree cover, to obtain a tour. Our method

is somewhat di�erent and yields better approximation bounds.

Our algorithm has �ve steps where the �rst three are identical to the weighted tree cover algorithm,

except the �rst step need only check if a trivial single-node solution exists. The last two steps are replaced

by:

4. Find a TSP approximation of the contracted graph, with distances modi�ed (if necessary) to the

shortest paths distances. Map this solution back to a partial tour Q of G.

5. For each component formed by the edges in EC, form an Eulerian walk from the entry point to the

exit point of Q in the component. Output the tour formed by Q and the Eulerian walks, and let APX

2

denote the length of the approximate solution obtained.

Let T

2

be an optimal tour cover, OPT

2

its weight, and t

2

the number of vertices in the optimal tour

cover. We have:

5



Lemma 3.2 If t

2

> 1 then OPT

WVC

� OPT

2

.

Proof: The proof is very similar to that of Lemma 2.4. (In fact it is easier, since we do not have to treat the

root separately.) Consider the optimal tour T

2

. Arbitrarily direct all the edges of the tour to go around the

tour in one of the two possible directions. De�ne ŵ

0

i

to be the weight of the edge in the tour leaving vertex

i. (Note that by our choice of edge direction, this de�nition is unambiguous.) Clearly, OPT

2

=

P

i2T

2

ŵ

0

i

,

and for every vertex in the tour, ŵ

0

i

� ŵ

i

. Also, since T

2

is a tour cover, it contains a vertex cover of all

edges, which we denote by Q. Hence,

OPT

WV C

� ŵ(Q) � ŵ

0

(Q) � ŵ

0

(T

2

) � OPT

2

:

The bound stated by Lemma 3.2 can be attained. This can be demonstrated by the same four points

example as in Lemma 2.4, where OPT

2

= OPT

WV C

= 2.

Let OPT

TSP

(G

0

; S) (APX

TSP

(G

0

; S)) denote the weight of an optimal (an approximate) traveling sales-

man tour on the vertices S inside graph G

0

. Since edge weights in G

0

are the lengths of the shortest paths,

the weights satisfy the triangle inequality. Let r

TSP

be the constant factor by which the TSP algorithm

given approximates the length of a tour, so APX

TSP

(G

0

; S) � r

TSP

OPT

TSP

(G

0

; S). We know that assuming

symmetric distances, and using the fact that the triangle inequality holds, it is possible to get r

TSP

=

3

2

[Ch].

Theorem 3.3 The tour cover found by the algorithm above has weight at most 2r

WVC

+ r

TSP

times the

optimal solution.

Proof: There is an Eulerian walk between any two vertices in a connected graph that uses each edge at most

twice. To see that, form a multigraph where every edge is repeated, and subtract from it one copy of some

path between the two vertices. Each vertex has an even degree except the starting and the ending vertex,

hence by the oldest theorem in graph theory, there is a walk that traverses every edge of the multigraph. It

follows from this that

APX

2

� 2 �APX

WV C

+APX

TSP

(G

0

; S):

By Lemma 3.2, OPT

WV C

� OPT

2

, and since every component must be connected by the optimal tour,

OPT

TSP

(G

0

; S) � OPT

2

. The theorem now follows.

Finally, we analyze the running time of the algorithm: The �rst three steps of the algorithm are as for

the tree cover problem. The fourth step in which we use an approximation of the TSP is the most time

consuming part. To achieve the r

TSP

= 1:5 bound for the case of symmetric distances (and hence 5.5 overall)

we need O(jV j

3

) time.

An Eulerian walk of a minimum spanning tree of the reduced graph is a walk of all the vertices of cost

at most twice the optimal TSP solution, for a overall ratio of 6. This can be obtained in time O(jEj +

jV j log jV j) since MST computation does not require the triangle inequality, saving the expensive distance

graph computation.

For the unweighted problem, we can argue as in the previous section that a maximal matching as a vertex

cover approximation costs at most the length of a tour cover. This saves a factor of 2, for a ratio of 2 + r

St

in time proportional to the complexity of the TSP heuristic. In particular, this implies a ratio of 3.5 in time

O(jV j

3

) and a ratio of 4 in linear time. The same bounds hold for the the generalized unweighted problem,

where we are given a subset of the edges to be covered.

4 Open Problems and Discussion

A question arises from the proof of Theorems 2.5 and 3.3, in which we use the fact that an optimal tree or

tour cover must connect all connected components of EC. This is due to the fact that we require our cover

to cover all edges of the graph. If the problem asks for a cover that covers edges E

0

� E our proof is not

valid, and in fact we do not know of a combinatorial approximation algorithm for the weighted version with

a guaranteed bound.
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An alternative approach approximating the tour cover was suggested by Bienstock and Simchi-Levi

(private communications) similar to the one used in [BGSW] to approximate a prize collecting traveling

salesman tour. The approach uses an LP relaxation of the problem, and careful rounding of the solution.

This method is not as fast as the one we propose, but may yield lower error bounds.
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