
On Powers of Chordal GraphsAnd Their ColoringsGeir Agnarsson� Raymond GreenlawyMagn�us M. Halld�orsson�Abstra
tThe k-th power of a graph G is a graph on the same vertex set asG, where a pair of verti
es is 
onne
ted by an edge if they are ofdistan
e at most k in G. We study the stru
ture of powers of 
hordalgraphs and the 
omplexity of 
oloring them. We start by givingnew and 
onstru
tive proofs of the known fa
ts that any power ofan interval graph is an interval graph, and that any odd power ofa general 
hordal graph is again 
hordal. We then show that it is
omputationally hard to approximately 
olor the even powers of n-vertex 
hordal graphs within an n 12�� fa
tor, for any � > 0. Wepresent two exa
t and 
losed formulas for the 
hromati
 polynomialfor the k-th power of a tree on n verti
es. Furthermore, we give anO(kn) algorithm for evaluating the polynomial.Keywords: Chordal graphs, 
hromati
 number, 
hromati
 polynomial,
oloring, interval graphs, power of a graph, tree.1 Introdu
tionIn this paper we study the stru
ture of powers of 
hordal graphs and someimportant sub
lasses. (Ba
kground material and most 
lasses of graphs dis-
ussed in this paper are de�ned in x2.) Spe
i�
ally, we simplify the proofsof several known theorems, make the proofs more 
onstru
tive, and some-times generalize the results. The intent is to penetrate the 
hara
teristi
properties of 
hordal graphs and their powers by elementary methods, andshow how even powers of 
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trees formed by taking powers of trees, and give two exa
t formulas fortheir 
hromati
 polynomial.Chordal graphs and 
olorings of 
hordal graphs have been studied inten-sively. Many important sub
lasses of 
hordal graphs su
h as trees, intervalgraphs, and strongly 
hordal graphs have re
eived spe
ial attention. Wenote that every strongly 
hordal graph and every split graph is 
hordal.Also, every tree and every interval graph is strongly 
hordal.The fa
t that any power of a tree is 
hordal and proof thereof appearsin [16℄ and [4℄. However, Robert Jamison (Personal Communi
ation, 2000)at Clemson University may have been the �rst to prove that property inthe early eighties. Linear time algorithms are given in [16℄ for �nding a treesquare root of a given graph and a square root of a planar graph. In [4℄ apolynomial time algorithm for re
ognizing tree powers is given as well asa short proof that any power of a tree is strongly 
hordal. In [19℄ and [5℄,it is shown that any power of a strongly 
hordal graph is again 
hordal.In [18℄ it is shown that any power of an interval graph is again interval.A 
hara
terization of strongly 
hordal graphs in terms of totally balan
edmatri
es is given in [8℄, where strongly 
hordal graphs were �rst introdu
ed.The sub
lass of 
hordal graphs 
onsisting of strongly 
hordal graphs hasbeen resear
hed thoroughly. This is mainly be
ause they yield a polynomialtime solvability of the domati
 set and domati
 partition problems. Theinterested reader may pursue su
h results by following referen
es [2, 9, 13,17℄.Some fundamental properties have been proved for arbitrary 
hordalgraphs. It was shown that in [14℄ that if G is 
hordal then G3 and G5are 
hordal, while G2 is not ne
essarily 
hordal. There it was 
onje
turedthat any odd power of a 
hordal graph is again 
hordal. This 
onje
turewas proved in [1℄, although Du
het had shown this earlier in a di�erentsetting [7℄. In [15℄ a ne
essary and suÆ
ient 
ondition is given in order forall powers of a 
hordal graph to be 
hordal. Other sub
lasses of perfe
tgraphs have been shown to be 
losed under taking powers, in
luding the
lass of 
o
omparability graphs (whi
h in
ludes interval graphs) [6℄.The remainder of this paper is organized as follows. In x2 we introdu
eour notation, prove some useful lemmas, and give an elementary and self-
ontained proof of the fa
t that any power of a tree is 
hordal.In x3 we prove 
onstru
tively that any power of an interval graph is againan interval graph. We also give a linear time algorithm to 
onstru
t thepower graph. The 
onstru
tion additionally applies to 
ir
ular-ar
 graphs,whi
h as a result are also 
losed under taking powers. We 
lose the se
tionby giving a dire
t and alternative proof of the fa
t that any odd power ofa 
hordal graph is 
hordal.In x4 we show that it is hard to approximately 
olor even powers of
hordal graphs within O(n 12��), for any � > 0, unless NP-problems have2



randomized polynomial time algorithms. This is essentially the strongestresult possible, sin
e greedy 
olorings of arbitrary even power graphs arepn-approximate. We study odd powers of general graphs, and also �ndthem hard to 
olor approximately within an n1=2�� fa
tor, for any � > 0,however, we give a greedy n2=3-approximation.Lastly, in x5 we study powers of trees and 
olorings of those powers. Wegive two exa
t and 
losed formulas for the 
hromati
 polynomial of the k-thpower of a tree with n verti
es. We 
omplement these pre
ise formulas withan O(kn) algorithm to evaluate the 
hromati
 polynomial at any point.2 PreliminariesFor a set S and an element s, denote by S n fsg the set 
ontaining allelements of S ex
luding s. Let N = f0; 1; 2; : : :g and Z+ = N n f0g. Fora � b 2 Z+, we denote the set fa; a+1; : : : ; bg by [a; b℄. If a equals 1, thenwe simply write [b℄ instead of [1; b℄.All graphs in this paper are �nite, simple, and undire
ted unless other-wise stated. By 
oloring we will always mean the usual vertex 
oloring ofa given graph.For a graph G, we denote the set of verti
es of G by V (G), and the setof edges of G by E(G). We reserve the symbol n for jV (G)j, the number ofverti
es of G. For v 2 V (G), let N(v) denote the neighborhood of v, that is,the set of all verti
es adja
ent to v but not in
luding v itself. Likewise, letN [v℄ denote the 
losed neighborhood of v, whi
h is the set that 
onsists ofall the verti
es adja
ent to v, together with v itself. For a subgraph H of G,the graph in G generated or indu
ed by H , denoted G[H ℄, is the subgraphwhi
h has vertex set V (H), and edge set ffu; vg : u; v 2 V (H) and fu; vg 2E(G)g. If U � V (G) then G[U ℄ is the subgraph indu
ed by the subgraphhaving vertex set U and an no edges. For an edge fu; vg, the verti
es uand v are 
alled the endverti
es of the edge. The distan
e between u andv in G is the number of edges in the shortest path from u to v. For twoverti
es u and v in a graph G, we denote the distan
e between u and v inG by dG(u; v). This is shortened to d(u; v) when G is understood.For a graph G and an edge e of G, let Gne denote the graph obtained bydeleting e fromG. On the other hand, let G=e denote the simple 
ontra
tionof G by the edge e.We 
all an edge a 
hord of a simple 
y
le of length four or more, if itis not in the 
y
le, but has both its endverti
es on the 
y
le. A graph G is
alled 
hordal if every simple 
y
le of length four or more has a 
hord. Infa
t, there is an equivalent and more 
omputational 
ondition for a graphbeing 
hordal. A graph G is 
hordal if and only if there is an orderingfv1; : : : ; vng on V (G), 
alled a simpli
ial elimination ordering, su
h that3



for ea
h vi, the set N(vi) \ fv1; : : : ; vi�1g indu
es a 
lique in G [20, Theo-rem 5.3.13, page 199℄.An odd 
hord is an edge joining two verti
es that are an odd distan
eapart in a 
y
le. A 
hordal graph is strongly 
hordal if every simple 
y
le ofeven length six or more has an odd 
hord. An equivalent 
ondition is thatthere exist an ordering fv1; : : : ; vng on V (G), 
alled a strong eliminationordering, whi
h is a simpli
ial elimination ordering su
h that if k < j < i,and vk ; vj 2 N(vi), thenN(vk) \ fv1; : : : ; vi�1g � N(vj) \ fv1; : : : ; vi�1g [8, 13℄.An interval graph is a graph whose vertex set 
an be represented by a
olle
tion of proper, 
losed intervals of the real numbers, and where twoverti
es are 
onne
ted by an edge if and only if the 
orresponding intervalshave a nonempty interse
tion. It is easy to see that interval graphs are asub
lass of 
hordal graphs. A graph G is 
alled a split graph, if V (G) 
an bepartitioned into a disjoint union X [ Y where the indu
ed subgraph G[X ℄has no edges, and G[Y ℄ is 
omplete.For k 2 Z+ and a graph G, the k-th power of G, denoted by Gk, isthe graph formed from V (G), where all pairs of verti
es having distan
e oflength k or less in G are 
onne
ted by an edge. Note that the original edgesin G are retained.Let T be an unrooted tree and let l be the length of the longest pathin T (that is, l is the diameter of T ). A vertex of degree one in T is 
alleda leaf. If l is even, then the 
entroid of T is the unique vertex, whi
h is ofdistan
e at most l=2 from all the leaves of T . If l is odd, then the 
entroidof T is the unique adja
ent pair of verti
es su
h that ea
h leaf is of distan
eat most (l � 1)=2 from one of these two verti
es. In a tree T , rooted atvertex r, an an
estor of v is any vertex on the (unique) path from v to r.Note, v is an an
estor of itself.For a tree T and k 2 Z+, Lin and Skiena show that the graph T k is
hordal [16, x5℄. Their proof depends heavily on the 
hara
terization of
hordal graphs as pre
isely the interse
tion graphs (graphs formed from a
olle
tion of sets, where the sets represent the verti
es and two verti
esare adja
ent if and only if their 
orresponding sets interse
t) of subtrees intrees [11℄. Corneil and Kearney later proved that any power of a tree isa
tually strongly 
hordal [4℄.We 
on
lude this se
tion with a de�nition, followed by two lemmas, thatallow us to present an elementary and new proof of the Lin and Skienaresult.De�nition 2.1 For a graph G and k 2 N , we de�ne a k-ball as a subsetB � V (G), su
h that for any verti
es u; v 2 B, we have dG(u; v) � k.4



Lemma 2.2 Let T be a tree rooted at vertex r. For every vertex u 2 V (T ),the set of verti
es v 2 V (T ) satisfyingdT (u; v) � k anddT (r; v) � dT (r; u); (1)is a k-ball. That is, the verti
es whi
h are 
loser to the root than u, andare of distan
e k or less from u, form a k-ball in T .Proof. We want to show that any two verti
es v and v0 satisfying the
onditions stated in the lemma are of distan
e k or less from ea
h other.Let w (w0) be the least 
ommon an
estor of u and v (respe
tively, u andv0). Sin
e both w and w0 are an
estors of u, either w is an an
estor of w0or vi
e-versa. Without loss of generality, suppose w0 is an an
estor of w.Sin
e v satis�es (1), we have dT (u;w) � dT (v; w). Note that in a tree asimple path between two verti
es is the shortest path between them. Withthis fa
t in mind, we havedT (u; v0) = dT (u;w) + dT (w;w0) + dT (w0; v0)Therefore, dT (v; v0) = dT (v; w) + dT (w;w0) + dT (w0; v0)� dT (u;w) + dT (w;w0) + dT (w0; v0)� dT (u; v0)� k:This proves the lemma. utLemma 2.3 If T is a tree and k 2 Z+, then T k is 
hordal.Proof. Consider m distin
t verti
es u1; : : : ; um of T with the propertythat for ea
h i 2 [m℄, the unique path p(ui; ui+1) from ui to ui+1 haslength k or less, where um+1 = u1. We show there is a j 2 [m℄ su
h thatdT (uj�1; uj+1) � k. This will imply an edge between uj�1 and uj+1 in T k,and hen
e the 
hordality of T k. Consider the subtree of T de�ned byH = p(u1; u2) [ � � � [ p(um�1; um) [ p(um; u1):All the leaves of H are 
ontained in the set fu1; : : : ; umg. Let r 2 V (H) bea 
entroid of H . Root H at r and let j be su
h that dH(uj ; r) � dH (ui; r)for every i 2 [m℄. By Lemma 2.2 we see that Bj = fu : dH(u; uj) � kg is ak-ball in H . Sin
e uj�1 and uj+1 are 
ontained in Bj , and dT = dH whenrestri
ted to verti
es in H , we have that dT (uj�1; uj+1) � k. ut5



The 
lique size of a graph is the number of verti
es of the largest 
om-plete subgraph of the graph. Let !(G) denote the 
lique size of G. By atheorem of Berge from 1960 [20, page 201℄, all 
hordal graphs G are per-fe
t, meaning that �(H) = !(H) for every indu
ed subgraph H of G. Inparti
ular, �(G) = !(G). The largest 
lique in T k is indu
ed by the largestk-ball in T . If bk(T ) is the 
ardinality of a largest k-ball, then we get thefollowing 
orollary.Corollary 2.4 For a tree T and k 2 Z+, we have �(T k) = !(T k) = bk(T ).3 Chordal graphs and their powersIn this se
tion we �rst 
onsider an important sub
lass of 
hordal graphs
onsisting of interval graphs. We 
onstru
t an interval representation forany power of an interval graph from the representation of the given intervalgraph. We then derive a new and elementary proof of the fa
t that anyodd power of a 
hordal graph is again 
hordal. The approa
h of this proofis dire
t, and avoids the tedious 
ase analysis in [1℄.3.1 Powers of interval graphsAssume an interval graphG is represented by real intervals I1; : : : ; In, whereIi = [ai; bi℄ for ea
h i 2 f1; : : : ; ng. For k 2 Z+ and i 2 f1; : : : ; ng, we forma new interval Ii(k) = [ai; bi(k)℄, wherebi(k) = maxfb� : d(Ii; I�) � k � 1g;that is, the left endpoints of Ii and Ii(k) are the same, but the right endpointof Ii(k) is the largest endpoint of an interval at a distan
e of at mostk � 1 from Ii. Note that d(Ii; I�) � k � 1 means the existen
e of intervalsIl1 ; : : : ; Ilr , where r � k � 1, su
h that all the interse
tions Ii \ Il1 ; Il1 \Il2 ; : : : ; Ilr \ I� are all nonempty. With this setup in mind, we obtain thefollowing theorem.Theorem 3.1 If G is an interval graph represented by the real intervalsI1; : : : ; In, where Ii = [ai; bi℄ for 1 � i � n, and k 2 Z+, then Gk isrepresented by the intervals I1(k); : : : ; In(k).Proof. Let Ii and Ij be intervals in the representation of G of distan
e atmost k from ea
h other. We 
an assume ai < aj . Sin
e d(Ii; Ij) � k, thereis an interval Il withd(Ii; Il) � k � 1 and d(Il; Ij) � 1: (2)6



From (2) and the de�nition of Ii(k), we get that bl � bi(k). Again using (2),we see that maxfal; ajg < minfbl; bjg. Hen
e, we havemaxfai; ajg = aj � maxfal; ajg < minfbl; bjg � minfbi(k); bj(k)g:Therefore, Ii(k) \ Ij(k) 6= ;.Suppose now, on the other hand, that Ii(k) \ Ij(k) 6= ;. Sin
e we 
an
ontinue to assume that ai < aj , this means that aj 2 Ii(k). By de�nitionof Ii(k), there is an interval Il with d(Ii; Il) � k � 1 
ontaining aj , andhen
e Il \ Ij 6= ;. Thus, d(Ii; Il) � k � 1 and d(Il; Ij) � 1 and so it followsthat d(Ii; Ij) � k.This shows d(Ii; Ij) � k if and only if Ii(k)\Ij (k) 6= ;, whi
h 
ompletesthe proof of our theorem. utCorollary 3.2 of Theorem 3.1 was previously proved in [18℄. Ray
haud-huri's proof was non-
onstru
tive using the 
hara
terization of intervalgraphs by Boland and Lekkerkerker from 1962 as pre
isely those 
hordalgraphs that 
ontain no asteroidal triple [3℄. An asteroidal triple is a tripleof verti
es su
h that for any two of them, there is a path joining them thatdoes not interse
t the neighborhood of the third vertex.Corollary 3.2 If G is an interval graph, then so is Gk for any k 2 Z+.We now give an eÆ
ient O(n log k) algorithm for 
omputing the intervalrepresentation of the power graph Gk of an interval graph G.We �rst spe
ify a linear-time algorithm, Produ
t Powers, to 
omputea produ
t of two powers of interval graphs Gs and Gt, obtaining the powergraph Gs+t. We assume as input a sorted list 
ontaining all the endpointsof Gs and Gt. The output is an interval representation of Gs+t, [ai; C[i℄℄,where C[i℄ is the larger of the i-th right endpoint of the interval with leftendpoint ai in Gs and the rightmost endpoint of an overlapping intervalfrom Gt.We pro
ess the endpoints of intervals of the graphs in de
reasing order.We use a queue data stru
ture Q to maintain the set of intervals from Gsthat are live at any given time, and to report the one that rea
hes furthestto the right. In addition to the queue with its standard operations, wemake use of a bit array indexed by the intervals of Gs.Algorithm Produ
t PowersProd(Gs, Gt)f Input: Gs with Ii = [ai; bi℄, for i = 1; : : : ; n. gf Gt with I 0i = [ai; di℄, for i = 1; : : : ; n. gf Output: Interval representation of Gs+t. g7



f The 3n endpoints, the dupli
ate left endpoints are not in
luded, gf of the intervals are given in sorted order. In the sorting, ties gf are broken arbitrarily. gf interval[i℄ is the index of the interval with the i-th left endpoint. gf type[i℄ is an entry denoting the type of endpoint. gf interval[i℄ and type[i℄ have 3n entries. gf Head(Q) = null = 0, if Q is empty. gf Rightl(�) is a fun
tion that takes an interval index and returns gf the right endpoint of the interval in Gl, where l = s or t. gfor i  0 to n domarked[i℄ 0;for i 3n downto 1 doif (type[i℄ is a left endpoint) thenmarked[interval[i℄℄ 1;if (type[i℄ is a right endpoint from Gs) thenEnqueue(Q,interval[i℄);if (type[i℄ is a right endpoint from Gt) thenwhile (marked[Head(Q)℄) doDequeue(Q);if Head(Q) 6= null thenC[interval[i℄℄ Rights(Head(Q));elseC[interval[i℄℄ Rightt(interval[i℄);for i  1 to n dooutput intervals [ai; C[i℄℄;We use a traditional tri
k to eÆ
iently 
ompute the power graph Gk. Toform the square graph G2, we 
ompute Prod(G,G), and to 
ompute G2t ,we 
ompute the square t times. To 
ompute an arbitrary power, we thenform the produ
t of the powers 
orresponding to the bit representationof k, in at most 2 log k appli
ations of Prod. For example, noti
e thatG10 = (((G2)2)2 �G2.A straightforward appli
ation of our approa
h yields the same result for
ir
ular-ar
 graphs. A 
ir
ular-ar
 graph is a graph whose vertex set 
anbe represented by a 
olle
tion of proper, 
losed ar
s of the unit 
ir
le in thereal plane, where two verti
es are 
onne
ted by an edge if and only if the
orresponding ar
s have a nonempty interse
tion. Note that every intervalgraph is, in parti
ular, a 
ir
ular-ar
 graph. Also noti
e that every 
y
le, ofarbitrary length, is a 
ir
ular-ar
 graph. Therefore, in general, 
ir
ular-ar
graphs are not 
hordal graphs. In modifying the de�nitions of bi(k) andIi(k) in the obvious way, we obtain the following 
orollary that is analogousto Corollary 3.2 for interval graphs. 8



Corollary 3.3 If G is a 
ir
ular-ar
 graph, represented by ar
s I1; : : : ; In,and k 2 Z+, then Gk is a 
ir
ular-ar
 graph represented by the ar
sI1(k); : : : ; In(k).3.2 Odd powers of 
hordal graphsIt has been pointed out numerous times in the literature that squares of
hordal graphs are not ne
essarily 
hordal, and a 
lassi
 example of su
h agraph is given in Figure 1, (see [15℄, [16℄, and [19℄ for the same example). Infa
t, we will see more generally in the next se
tion that the sub
lass of the
hordal graphs 
onsisting of split graphs are su
h that for any given graph,there is a 
orresponding split graph, whose square has the given graph asan indu
ed subgraph.
y����������y

y�����y y
y

�����

y����� ����� �������
��� y����� �����

Figure 1: An example of a 
hordal graph whose square is not 
hordal. Inthe square of this graph, only two edges are missing from K8. They are the\wide horizontal edge" and the \tall verti
al edge."We will 
on
lude this se
tion with a few lemmas and an observation.They will enable us to give a dire
t and elementary proof of the fa
t that anyodd power of a 
hordal graph is again 
hordal. This result was previouslyproved in [1℄ using exhaustive 
ase analysis.A graph is outerplanar if it has a planar embedding su
h that everyvertex lies on the unbounded fa
e. We 
all an outerplanar graph G on n � 4verti
es fully triangulated if there is a planar embedding G� of G, whi
hhas one region bounded by n edges, and all of the other regions bounded9



by three edges. In other words, G is fully triangulated if G 
onsists of a
y
le, whose interior fa
e is divided into triangles. An indu
tion on n � 3;yields the following lemma.Lemma 3.4 If C is a simple m-
y
le in a 
hordal graph G, then the in-du
ed subgraph G[C℄, generated by C in G, 
ontains a fully triangulatedouterplanar graph on the m verti
es of the 
y
le.For simple 
ontra
tions G=e we obtain the following lemma.Lemma 3.5 Let G be a fully triangulated outerplanar graph on four ormore verti
es. If e is an edge bounding the non-triangular region in one(and hen
e every) planar embedding of G, then the graph G=e is also afully triangulated outerplanar graph.Proof. Clearly, G=e is outerplanar. If G has n verti
es, then every planarembedding of G=e has n� 4 triangular regions and one region bounded byn� 1 edges. Hen
e, it is fully triangulated. utThe proof of the next lemma is straightforward.Lemma 3.6 Let u1, u2, u3, and u4 be distin
t verti
es in a graph G. Fori 2 f1; 3g, assume p(ui; ui+1) is a simple path of length k or less from uito ui+1. If p(u1; u2) and p(u3; u4) have any vertex in 
ommon, then eitherdG(u1; u3) � k or dG(u2; u4) � k.For verti
es u and v in a graph, p(u; v) denotes a path between u andv. The notation lp(u; v) denotes the length of p(u; v). We sometimes sub-or supers
ript the name of a path. If there is no danger of ambiguity, thelength of a labeled path p�(u; v) will be denoted by the same label l�(u; v),instead of lp�(u; v).Observation 3.7 Let u, v, and w be three distin
t verti
es in a 
onne
tedgraph. Let p(u; v) (p(u;w)) be a path of shortest length from u to v (respe
-tively, from u to w). Then there exists a unique vertex u0 and a partitionof the paths p(u; v) = pv(u; u0) [ pv(u0; v)p(u;w) = pw(u; u0) [ pw(u0; w);where pv(u0; v) and pw(u0; w) are vertex disjoint, ex
ept for their initialvertex u0, and lv(u; u0) = lw(u; u0).We now present a di�erent and more dire
t proof from those appearingin [1℄ and [7℄ of the following theorem:10



Theorem 3.8 Let k 2 Z+ be an odd integer. If G is a 
hordal graph, thenGk is also 
hordal.Proof. Consider a simple m-
y
le in Gk. This m-
y
le 
orresponds to dis-tin
t verti
es u1; : : : ; um in G, and m simple paths in G, ea
h of lengthk or less, namely p(u1; u2); : : : ; p(um�1; um) and p(um; u1), 
onne
ting theverti
es 
y
li
ally. Throughout the proof, let um+1 (u0m+1) equal u1 (respe
-tively, u01). We assume further that all these paths have minimal lengths,that is, lp(ui; ui+1) = dG(ui; ui+1) for all i.Let i 2 [m℄. The paths p(ui�1; ui) and p(ui; ui+1) give rise to a uniquevertex u0i satisfying Observation 3.7. Similarly, the paths p(ui; ui+1) andp(ui+1; ui+2) give rise to a unique vertex u0i+1. We see by Lemma 3.6 thatthe verti
es u0i and u0i+1 on p(ui; ui+1) must be distin
t, and appear inthe same order on p(ui; ui+1) as ui and ui+1 do. Hen
e, the m-
y
le C =C(u01; : : : ; u0m) is simple, yielding disjoint paths p�(u01; u02); : : : ; p�(u0m�1; u0m)and p�(u0m; u01).For ea
h i 2 [m℄ pi
k one of the paths from ui to u0i (along p(ui�1; ui)or p(ui; ui+1)) and 
all it p�(ui; u0i).We have now shown that we 
an assume the verti
es u1; : : : ; um are
onne
ted in an \o
topus"-like manner by the simple m-
y
le C, togetherwith paths, or \tenta
les" p�(ui; u0i), whi
h are disjoint among themselvesand from C. We 
all the entire o
topus graph C�.By Lemma 3.4, G 
ontains a fully triangulated outerplanar graph onu01; : : : ; u0m. Note thatl�(ui; u0i) + l�(u0i; u0i+1) + l�(u0i+1; ui+1) = dG(ui; ui+1) � kfor ea
h i 2 [m℄.Sin
e k is odd, then for ea
h i 2 [m℄ there is an edge fyi; xi+1g onp�(u0i; u0i+1), in this order, su
h that for any vertex z on the ar
 of C de�nedby fxi; u0i; yig, the path from z to ui along this ar
 on C and the \tenta
le"p�(u0i; ui) has length at most (k � 1)=2.Denote by Ti the subtree of C� 
onne
ting ui, xi, and yi. We note thatTi has at most three leaves, and they are among fui; xi; yig. Moreover,at most one possible vertex, u0i, of Ti has degree three. We now have apartition V (C�) = V (T1) [ � � � [ V (Tm):Contra
ting ea
h Ti to a single vertex ti will give a graph, whi
h by Lem-mas 3.4 and 3.5 will 
ontain a fully triangulated outerplanar graph C��on t1; : : : ; tm as a subgraph (
ontra
ting ea
h \tenta
le," p�(ui; u0i), has noe�e
t on the full triangularity of C��). Therefore, there are two verti
es tiand tj , with neither j = i+ 1 nor i = j + 1, 
onne
ted by an edge in C��.Hen
e, there must be an edge in C� with one endvertex in Ti and the other11



in Tj , more spe
i�
ally, an edge between zi and zj , where zi is a vertex inTi and where zj is a vertex in Tj . We 
on
lude thatdG(ui; uj) � dG(ui; zi) + dG(zi; zj) + dG(zj ; uj)� l�(ui; zi) + 1 + l�(zj ; uj)� k � 12 + 1 + k � 12= k:Hen
e, there is an edge 
onne
ting ui to uj in Gk, thus 
ompleting theproof of our theorem. ut4 Approximate 
oloring of powers of graphsWe have seen that odd powers of 
hordal graphs are easy to 
olor, sin
e theyare also 
hordal, while even powers are generally not 
hordal. In the 
urrentse
tion we shall study how diÆ
ult the even powers of 
hordal graphs are to
olor. In some respe
ts, the issue is how far from being 
hordal these powergraphs are. We measure the diÆ
ulty in terms of how good an estimate ofthe 
hromati
 number an e�e
tive algorithm 
an �nd.The 
oloring problem is �(n)-approximable on a given 
lass of graphsif, there exists a polynomial time algorithm that for ea
h graph G on nverti
es outputs a 
oloring with at most �(n)�(G). We say that a problemis hard to approximate within a given fa
tor, if the 
ontrary would yield the
on
lusion that NP 6= ZPP, the 
lass of problems with polynomial-timezero-error randomized algorithms.The main result of this se
tion is that 
oloring the even powers of 
hordalgraphs is hard to approximate within a fa
tor of n1=2��, for any � > 0. Infa
t, 
oloring squares of split graphs is hard within that fa
tor. Interest-ingly, this 
an be mat
hed with a simple O(pn)-approximation algorithmfor even powers of arbitrary graphs. We then 
onsider odd powers of generalgraphs, and give nearly mat
hing bounds on their approximability.For a graph G, let �(G) denote the size of a maximum independent setin G. That is, �(G) gives the independen
e number of G.First, we give an approximation lower bound for 
oloring even powersof 
hordal graphs.Theorem 4.1 The problem of 
oloring squares of split graphs is hard toapproximate within O(n 12��) for any � > 0.12



Proof. We give a redu
tion from Graph Coloring whi
h is known to behard to approximate within an n1�� fa
tor [10℄.Given a graph G on N verti
es, we 
onstru
t a graph H that 
ontainsN 
opies of ea
h vertex in G along with an additional 
lique on N verti
es.Let n = N2 +N denote the number of verti
es in H . A 
opy of vertex viis adja
ent to the j-th 
lique vertex if and only if fvi; vjg is an edge in Gor if i = j. Formally, letV (H) = fxi; ui;j : 1 � i; j � Ng; andE(H) = ffxi; uj;lg : fvi; vjg 2 E(G) or i = jg[ffxi; xjg : 1 � i; j � Ng:In H2, the graph indu
ed by fuj;l : j = 1; 2; : : : ; Ng is a 
opy of G,for ea
h l = 1; : : : ; N . The verti
es xi are adja
ent to every vertex in H2.Copies of a vertex v are adja
ent to pre
isely the 
opies of v's neighbors inG. The result of Feige and Kilian [10℄ states that it is hard to distinguishbetween two 
ases: (i) �(G) � N �, and (ii) �(G) � N1�� for any �xed� > 0. Other 
ases from [10℄ are not relevant to our work.Observe that if I is an independent set in H2, then it 
onsists of 
opiesof distin
t verti
es that form an independent set in G. Therefore, �(H2) ��(G). Thus, if �(G) � N �, then �(H2) � N �. Also, we have �(H2) �(N2 +N)=�(H2) � N2��.Also, trivially �(H2) � �(G) � N + N . Thus, if �(G) � N �, then�(H2) � N1+� + N . So, if we 
ould distinguish between the 
ases when�(H2) � N1+� + N and �(H2) � N2��, we 
ould distinguish betweenthe two 
ases of the result of [10℄. Hen
e, it is hard to approximate the
hromati
 number of the square graph H2 within a fa
tor of N1�2� whi
his n1=2�� if we ignore lower order terms. utThe 
onstru
tion of Theorem 4.1 
an be modi�ed to give the samehardness result for another sub
lass of perfe
t graphs: bipartite graphs.Simply remove all edges between x-verti
es.Cubes, and thus all higher powers, of split graphs are already 
om-plete graphs. However, 
hordal graphs remain hard to 
olor for larger evenpowers.Theorem 4.2 Coloring even powers of 
hordal graphs is hard to approxi-mate within n1=2�� for any � > 0.Proof. Let k = 2t and assume t � 2. We modify the 
onstru
tion ofTheorem 4.1. Between ea
h vertex xi and the 
orresponding ui;x verti
es,we add a path of t� 1 verti
es.V (H) = fxi; yi;1; yi;2; : : : ; yi;t�1; ui;l; : 1 � i; l � Ng; and13



E(H) = ffxj ; yi;1g : fvi; vjg 2 E(G) or i = jg[ffxi; xjg : 1 � i; j � Ng[ffyi;1; yi;2g; : : : ; fyi;t�2; yi;t�1g;fyi;t�1; ui;lg : 1 � l; i � NgThe graph H 
ontains N2+ tN verti
es. The x and y-verti
es form a 
liqueon tN verti
es. The subgraph of Hk on the ui;j verti
es is the same as inTheorem 4.1. Again, �(Hk) � �(G), so �(Hk) � (N2 + tN)=�(G), while�(Hk) � (�(G) + t) �N . The theorem now follows by the same argumentsfor any t = O(N �). utWe note that the NP -hardness redu
tion of Lin and Skiena [16℄ yieldsnearly the same result for general graphs, or an (n=k)1=2��-hardness. We
an give a simple mat
hing upper bound that holds for arbitrary graphs G.Theorem 4.3 Coloring even powers of graphs is O(pn)-approximable bya simple greedy algorithm.Proof. If suÆ
es to show this for square graphs sin
e G2t is the square ofthe graph Gt.The maximum degree �(G2) of G2 is at most �(G)2. Thus, a �rst-�t greedy algorithm uses at most minf�(G)2 + 1; ng 
olors on G2. Anyneighborhood in G forms a 
lique in G2. Therefore, the optimal solutionrequires at least �(G) + 1 
olors. Hen
e, we get a performan
e ratio whi
his at most minf�(G); n=�(G)g � pn. utAnother measure of non-
hordality would be the types of graphs 
on-tained as subgraphs. The proofs of Theorems 4.1 and 4.2 answer that.Observation 4.4 The square of a split graph 
an 
ontain an arbitrarygraph as a subgraph.4.1 Odd powers of general graphsIt may be fruitful to study the odd powers of general graphs. For generalgraphs, the pn-hardness result also holds for odd powers.Theorem 4.5 Coloring odd powers of graphs is hard to approximate withinn1=2�� for any � > 0.Proof. For the 
ase of k = 2t, with t greater than 1, we 
onstru
t thefollowing graphH on tN+N2 verti
es, when given a graphG onN verti
es.14



The graph 
onsists of G, a path of t� 1 verti
es atta
hed to ea
h vertex ofG, and a set of N verti
es atta
hed to the end node of ea
h path. Formally,V (H) = fvi; yi;1; yi;2; : : : ; yi;t�1; ui;j ; : 1 � i; j � Ng; andE(H) = ffvi; vjg : fvi; vjg 2 E(G)g[ffv1; yi;1g; fyi;1; yi;2g; : : : ; fyi;t�2; yi;t�1g;fyi;t�1; ui;lg : 1 � l; i � NgThe u-verti
es indu
e in Hk the same subgraph as in Theorems 4.1 and4.2. The theorem now follows by the same argument. utOn the positive side, just as the odd integers play an important role inTheorem 3.8, we 
an obtain a nontrivial approximation for vertex 
oloringall odd powers of graphs.Theorem 4.6 Coloring odd powers of graphs is O(n2=3)-approximable.Proof. Let k = 2t � 1. Let Di be the maximum over all verti
es v ofthe number of verti
es within distan
e i from v. The maximum degreeof Gk is Dk. The �rst-�t algorithm then uses at most Dk + 1 
olors.Verti
es within distan
e t � 1 from a given node v must form a 
lique inGk. Thus, the 
lique and the 
hromati
 number of Gk is at least Dt�1+1.Hen
e, the performan
e ratio is at most minfDk=Dt�1; n=Dt�1g. Clearly,Dk � (Dt�1)3. Thus, the performan
e ratio is at most n2=3. Note, that we
an also bound the performan
e ratio by opt2, where opt is the size of theoptimal solution. utThis yields an interesting 
omparison with the Independent Set problem.It was shown in [12℄ that independent sets in odd powers of graphs arehard to approximate within an n1�� fa
tor. This yields the �rst nontrivialseparation between approximations of Graph Coloring and Independent Setin a natural 
lass of graphs.Corollary 4.7 The approximability of Independent Set and Graph Color-ing in odd powers of graphs di�ers by a fa
tor of at least n1=6�� for any� > 0.5 Chromati
 polynomials for powers of treesIn this last se
tion we further study powers of trees. We will give two exa
tand 
losed formulas for the 
hromati
 polynomial of the k-th power of atree on n verti
es. The 
hromati
 polynomial of a graph G, denoted �G(t),spe
i�es how many di�erent ways there are of 
oloring G using t � �(G)15




olors. Note that both G n e and G=e have fewer edges than G. Hen
e, thefa
t that �G(t) is a
tually a polynomial in t 
an easily be veri�ed by usingindu
tion on jE(G)j, and the re
urren
e�G(t) = �Gne(t)� �G=e(t)(see [20, Theorem 5.3.4, page 195℄). For example, if Kn denotes the 
om-plete graph on n verti
es, then �Kn(t) = t(t � 1) � � � (t � n + 1) for tgreater than or equal to n. Likewise, for any tree T on n verti
es, wehave �T (t) = t(t � 1)n�1. Moreover, if G is a graph on n verti
es and�G(t) = t(t � 1)n�1, then one 
an show by an easy indu
tion that G isindeed a tree on n verti
es.Let G be a 
hordal graph. The simpli
ial elimination ordering,fv1; : : : ; vng on V (G), yields that the 
hromati
 polynomial �G(t) of G hasthe following form �G(t) = nYi=1(t� d(i)); (3)where d(i) = jN(vi)\fv1; : : : ; vi�1gj. Hen
e, all the roots of the 
hromati
polynomial for 
hordal graphs are nonnegative integers. Note that in this
ase, the 
hromati
 number of G is given by �(G) = r + 1, where r =maxifd(i)g, the largest root of �G(t).Sin
e a fully triangulated outerplanar graph is 
hordal, the following
orollary is immediate from Theorem 3.8.Corollary 5.1 If G is a fully triangulated outerplanar graph and k 2 Z+ isan odd integer, then the 
hromati
 polynomial for Gk has only nonnegativeintegers as roots.Sin
e every power of a tree is 
hordal, we know that all the roots of�Tk (t) are nonnegative integers. In order to derive the formulas for �Tk(t),we need to formulate some key ideas. Re
all the meaning of k-ball presentedin De�nition 2.1.Clearly, any interse
tion of k-balls in T is again a k-ball. For a tree Tand k 2 Z+, let B1; : : : ; Bm be the 
omplete listing of all the k-balls of T .For the remainder of this paper, for S � [m℄ letfS(t) = t(t� 1) � � � (t� bS + 1);be the falling fa
torial fun
tion, where bS = ��Ts2S Bs�� (sometimes in theliterature, this fun
tion is denoted by (t)bS ). If bS = 0, then let fS(t) = 1.The fun
tion fS(t) will play an important role in what follows.
16



5.1 Formulas for 
hromati
 polynomialsWe now present the �rst formula for �Tk(t).Theorem 5.2 Let T be a tree, k 2 Z+, and B1; : : : ; Bm all of T 's k-balls.We have �Tk(t) = YS�[m℄ fS(t)(�1)jSj�1 :Proof. We will use indu
tion on n = jV (T )j. If T has exa
tly one vertex,then �Tk (t) = t, whi
h agrees with the formula.Suppose T has n � 2 verti
es. Let u 2 V (T ) be an endvertex of alongest path in T . By Lemma 2.2 all of T 's verti
es, whi
h are of distan
ek or less from u, are 
ontained in a k-ball of T .Let B1; : : : ; Bm be all the k-balls of T , enumerated in su
h a way thatu 2 B1; : : : ; Bl andu 62 Bl+1; : : : ; Bm;and su
h that jB1j � � � � � jBlj. Again, by Lemma 2.2, we may assumeBi � Bl for all i 2 [l℄, that is, Bl is pre
isely the k-ball of T 
onsisting of uand all the verti
es of distan
e k or less from u in T . Lastly, sin
e Bl n fugis a k-ball in T , we 
an assume Bl+1 = Bl n fug and Bl+1 6= ;. Considerthe tree T1 = T n fug on n� 1 verti
es. By our 
hoi
e of the vertex u, wehave by the de�nition of 
hromati
 polynomials that�Tk (t) = (t� jBlj+ 1)�Tk1 (t):Note that Bl+1; : : : ; Bm are pre
isely all the k-balls of T1, so by the indu
-tion hypothesis we have�Tk1 (t) = YR�[l+1;m℄ fR(t)(�1)jRj�1 :Let S = fS � [m℄ : S 6� [l + 1;m℄g. It therefore suÆ
es to show thatYS�S fS(t)(�1)jSj�1 = t� jBlj+ 1: (4)Now, S 
onsists of those S that 
ontain at least one element of [l℄. Hen
e,Ts2SBs is a k-ball 
ontained in one of the k-balls B1; : : : ; Bl. De�neS0 = fS 2 S : S \ [l℄ 6= flgg:We have a partition S0 = S01 [ S02, where S01 � S0 is the set of those S 2 S0not 
ontaining l, and S02 � S0 is the set of those S 2 S0 that do 
ontain l.There is a one-to-one 
orresponden
e between S01 and S02 given byS01 3 S0 $ S0 [ flg 2 S02:17



For S0 2 S01, we have fS0(t) = fS0[flg(t). Thus,fS0(t)(�1)jS0j�1 � fS0[flg(t)(�1)jS0[flgj�1 = 1:Therefore, it suÆ
es to 
onsider only those S 2 S that 
ontain l and noother element of [l℄. So,YS2S fS(t)(�1)jSj�1 = YS00�[l+1;m℄ fS00[flg(t)(�1)jS00j :For a nonempty S00 � [l + 1;m℄ either l + 1 2 S00 or not. LetS00 = fS00 [ flg : S00 � [l + 1;m℄g:Again, we get a partition S00 = S001 [ S002 , where S001 is the set of elements ofS00 that do not 
ontain l+1, and S002 is the set of those elements of S00 thatdo 
ontain l + 1. We also have a one-to-one 
orresponden
eS001 3 S00 [ flg $ S00 [ flg [ fl+ 1g 2 S002 ;where S00 � [l + 2;m℄. Sin
e Bl+1 = Bl n fug for a nonempty su
h S00, wehave that \s2S00[flgBs = \s2S00[flg[fl+1gBs:Hen
e, if we put Sl = S00 [ flg and Sl+ = S00 [ flg [ fl+ 1g, then we havefSl(t)(�1)jSlj�1 � fSl+(t)(�1)jSl+j�1 = 1:For S00 = ;, we obtainfflg(t) � ffl;l+1g(t)�1 = t� jBlj+ 1:This proves that (4) is 
orre
t, and hen
e our theorem. utRemark: Clearly the produ
t displayed in Theorem 5.2 is large (in fa
t,a produ
t of 2m fa
tors), and it does not give an eÆ
ient way to 
al
ulatethe 
hromati
 polynomial for T k. A 
onsiderable simpli�
ation appears inthe following theorem, whi
h is the se
ond exa
t formula for �Tk (t).Theorem 5.3 Let T be a tree and k 2 Z+. If B1; : : : ; B
 are all the distin
tmaximal k-balls of T , then�Tk (t) = YS�[
℄ fS(t)(�1)jSj�1 :18



Proof. We will use indu
tion on n = jV (T )j. The formula 
learly holdswhen n equals 1.Let B1; : : : ; B
 be all the maximal k-balls of T . As in the proof ofTheorem 5.2, let u 2 V (T ) be a leaf of T that is an endvertex of a longestpath in T . Let T1 = T n fug. By Lemma 2.2, we may assume that B
is the (unique!) maximal k-ball 
ontaining u. Indeed by the de�nition of
hromati
 polynomials, we have�Tk (t) = (t� jB
j+ 1)�Tk1 (t):We must 
onsider two possibilities: whether B
 n fug is a maximal k-ballof T1 or not.Case One: Suppose B
nfug is a maximal k-ball of T1. So, the maximalk-balls of T1 are B1; : : : ; B
�1, and B
 n fug. LetBui = � Bi if i � 
� 1B
 n fug if i = 
:Let fuS (t) = t(t � 1) � � � (t � buS + 1), where buS = jTs2S Bus j. We 
onsidertwo sub
ases depending on whether S = f
g or not. Note that for S 6= f
g,we have \s2SBus = \s2SBs:Thus, fS(t) = fuS (t)When S = f
g, we havefS(t) = ff
g(t)= (t� jB
j+ 1)fuf
g(t)= (t� jB
j+ 1)fuS (t):Therefore, using the indu
tion hypothesis, we have�Tk (t) = (t� jB
j+ 1)�Tk1 (t)= (t� jB
j+ 1) � YS�[
℄ fuS (t)(�1)jSj�1= (t� jB
j+ 1)fuf
g(t) � YS�[
℄;S 62ff
ggfuS (t)(�1)jSj�1= ff
g(t) � YS�[
℄;S 62ff
ggfS(t)(�1)jSj�1= YS�[
℄ fS(t)(�1)jSj�1 :19



This 
ompletes the indu
tion in this 
ase.Case Two: Suppose B
 n fug is not a maximal k-ball in T1. Sin
eB1; : : : ; B
�1 are all maximal in T , they are all maximal in T1. We knowthat B
nfug is 
ontained in some maximal k-ball of T1. This maximal k-ballmust also be maximal in T ; and therefore, we 
an assume B
 nfug � B
�1,so B1; : : : ; B
�1 are pre
isely all the maximal k-balls in T1. Hen
e, we haveby the indu
tion hypothesis�Tk1 (t) = YS�[
�1℄ fS(t)(�1)jSj�1 :It suÆ
es to show thatYS�[
℄;S 6�[
�1℄fS(t)(�1)jSj�1 = t� jB
j+ 1: (5)If S = fS � [
℄ : S 6� [
� 1℄g, then S = fS0 [ f
g : S0 � [
� 1℄g. Note thatB
 \ B
�1 = B
 n fug and also that S = S1 [ S2, whereS1 = fS00 [ f
g : S00 � [
� 2℄g;and S2 = fS00 [ f
� 1g [ f
g : S00 � [
� 2℄g:For a nonempty set S00 � [
� 2℄, we have\s2S00[f
gBs = \s2S00[f
�1g[f
gBs:Therefore, if S
 = S00 [ f
g and S
� = S00 [ f
� 1g [ f
g, thenfS
(t)(�1)jS
j�1 � fS
�(t)(�1)jS
�j�1 = 1:Also, ff
g(t) � ff
�1;
g(t)�1 = t� jB
j+1. This shows that (5) is valid andso 
ompletes the indu
tion. utRemark: Although the formula in Theorem 5.3 is a substantial simpli-�
ation of the one given in Theorem 5.2, it still does not yield a fast wayto 
al
ulate �Tk (t) for a given integer t.For the se
ond power of T , we have the following 
orollary to Theo-rem 5.3.Corollary 5.4 Let T be a tree; d1; : : : ; dm the degrees of the m non-leavesof T ; d = maxifdig; and for ea
h i 2 [m℄ let �i = jfj 2 [m℄ : dj � igj.Then �T 2(t) = t(t� 1) dYi=2(t� i)�i :20



Proof. The maximal 2-balls are the verti
es of the sub-stars of T 
enteredat the non-leaves of T . An interse
tion of 2-balls has one of the followingforms:� a 2-ball� a 1-ball (that is, a set of two neighboring verti
es neither of whi
h areleaves)� a 0-ball (that is, a single non-leaf vertex)� emptyWe 
onsider the 
ontribution of ea
h type of interse
tion to the overallprodu
t in turn. If B1; : : : ; Bm are all the maximal 2-balls, thenN = Yi2[m℄ ffig(t) = mYi=1 t(t� 1) � � � (t� di)is the produ
t 
orresponding to interse
tions forming 2-balls.The produ
t 
orresponding to all the 1-balls isD = m�1Yi=1 t(t� 1);sin
e ea
h 1-ball is an interse
tion of exa
tly two 2-balls of T , and there areexa
tly m� 1 su
h 1-balls in T , whi
h are not 
onne
ted to leaves.Next we 
onsider the 
ontribution due to interse
tions that are 0-balls.Su
h an interse
tion is a single vertex of T that is neither a leaf in T nora leaf in the tree T 0, where T 0 = T n fleaves of Tg. Assuming u 2 V (T ) issu
h a 0-ball, then fug = Bi1 \ � � � \ Bi
 ;where 
 � 2. If u is not the 
enter of any of the 2-balls Bi1 ; : : : ; Bi
 , thenu is the 
enter of some other 2-ball, say Bj , where j 62 fi1; : : : ; i
g. In this
ase fug = Bi1 \ � � � \Bi
 \ Bjalso, and hen
e we haveffi1;:::;i
 ;jg(t)(�1)
 � ffi1;:::;i
g(t)(�1)
�1 = 1:Likewise, if u is the 
enter of one of the 2-balls, say Bi1 , thenfug = Bi2 \ � � � \ Bi
 ;21



and therefore, ffi2;:::;i
g(t)(�1)
�1 � ffi1;:::;i
g(t)(�1)
�2 = 1:We 
on
lude that the polynomial produ
t 
orresponding to all the 0-ballsis 1, and hen
e by Theorem 5.3�T 2(t) = ND = t(t� 1) mYi=1(t� 2) � � � (t� di):Counting the exponents of ea
h of the fa
tors (t� i) proves our 
orollary.utRemark: A simple proof of Corollary 5.4 
an be obtained by using thesame indu
tive idea as in the proofs of Theorems 5.2 and 5.3.5.2 Algorithm for 
hromati
 polynomial evaluationGiven an integer t, the 
hromati
 polynomial �Tk(t) 
an a
tually be eval-uated in linear time for ea
h �xed power k. In what follows, we present anO(kn) algorithm to evaluate �Tk(t), where T has n verti
es and t is any in-teger. To evaluate this polynomial it suÆ
es to get a simpli
ial eliminationordering of the verti
es of T k, together with the values dk(1); : : : ; dk(n), toyield �Tk(t) as a produ
t as in (3).The next observation follows by an indu
tive appli
ation of Lemma 2.2.Any root of the tree T is suÆ
ient.Observation 5.5 Breadth-First-Sear
h (BFS) order of a tree T gives astrong elimination ordering of the power graph T k.Proof. The BFS ordering, rooted at any �xed node, divides the nodes intolevels, with the lowest leaves at level 0. Consider a leaf u at level 0 and letNk(u) be its neighborhood in T k. Let v and w be verti
es in Nk(u) at levelsi and j, respe
tively, with i � j. Then, we 
laim that Nk(v) � Nk(w). Tosee this, let q be the least 
ommon an
estor of v and w. Nk(w) 
ontainsall des
endants of q, sin
e their distan
e to w is at most the larger of thedistan
es of w to u and v to u. Hen
e, u is strongly simpli
ial in T k.Observe that for a 
onne
ted subtree S of T , the power graph Sk isthe same as the subgraph of T k indu
ed by the verti
es of S. Hen
e, thesame argument applies by indu
tion to the tree T n u, yielding a strongelimination ordering of T k. utBelow we give an algorithm, Chromati
 Polynomial, for 
omputinga representation of the 
hromati
 polynomial. Namely, we �nd the val-ues dk(1); : : : ; dk(n), where dk(i) = jNk(vi) \ fv1; : : : ; vi�1gj. Here Nk(i)22



denotes the neighborhood of vi in T k. For ea
h node v we maintain itsnumber of des
endants of distan
e t, where t = 1; : : : ; k. Then, dk(n) is asimple sum of su
h values of an
estors of the lowest leaf.Let 
h(v) be the set of 
hildren of v. Let pi(v) be v when i equals 0 andthe parent of pi�1(v) when i is greater than or equal to 1. Let des
i(v) be thenumber of des
endants of v of distan
e at most i. Thus, des
0(v) = 1, 
ount-ing the node itself. For 
onvenien
e, de�ne des
�1(v) = 0. Let depth(v)denote the distan
e from v to the root r, that is, the number of edges onthe path.Algorithm Chromati
 PolynomialChromPoly(T )f Input: Tree T gf Output: dk(1); : : : ; dk(n) garbitrarily root T at some node r;order the nodes of T in a BFS order v1; : : : ; vn;for ea
h v 2 V dodes
0(v) 1;des
i(v) 1 + Pu 2 
h(v) des
i�1(u), i = 1; : : : ; k;for j = n downto 1 dod(j) 0;for i = 1 to min(k; depth(v)) dod(j) d(j) + �des
k�i(pi(vj))� des
k�i�1(pi�1(vj))�;for i = 1 to min(k; depth(v)) dode
rease des
k�i(pi(vj)) by one;for i  1 to n dooutput d(i);The time 
omplexity ofAlgorithm Chromati
 Polynomial is 
learlyO(nk).From the BFS-order of Algorithm Chromati
 Polynomial we 
an,in fa
t, dedu
e more as shown in the next proposition.Proposition 5.6 Algorithm Chromati
 Polynomial 
orre
tly 
om-putes the sizes di of the strongly simpli
ial neighborhoods of T k.Proof. The number of nodes within distan
e k from v that have a 
ommonan
estor at pi(v) equals the number of des
endants of pi(v). Thus, thenumber of nodes within distan
e k from v that have pi(v) as a 
ommonan
estor but not pi�1(v) equals des
k�i(pi(v)) � des
k�i�1(pi�1(v)). Thisis 
ounted at ea
h inner iteration in the algorithm. The resulting sum then23




orre
tly 
ounts on
e all nodes within distan
e k from v. In the se
ondinner loop, we de
rement all 
ounters that involve the simpli
ial node beingremoved. utRemark: For �xed n, the number of verti
es of T , we need at least O(n)
al
ulations to evaluate �Tk (t) for any given t. Hen
e, the best algorithmpossible must be O(f(k)n), where f is some fun
tion.A
knowledgmentsGeir is grateful to the Department of Mathemati
s at Arizona State Uni-versity, in Tempe Arizona, for its generosity and hospitality. Ray's resear
hwas supported by a Fulbright Resear
h Fellowship to the University of I
e-land; he thanks the Fulbright Commissions of I
eland and the United Statesfor their support. His resear
h was also supported by a Japanese So
ietyfor the Promotion of S
ien
e (JSPS) Fellowship to the Human GenomeCenter at the University of Tokyo; he thanks JSPS for their support. Hethanks both departments for their hospitality during his stays in I
elandand Japan. Magnus thanks the Graduate S
hool of Informati
s of KyotoUniversity, in Japan, for their hospitality.Referen
es[1℄ R. Balakrishnan and P. Paulraja. Powers of Chordal Graphs. Aus-tralian Journal of Mathemati
s, Series A, 35:211-217, (1983).[2℄ C. Berge. Balan
ed Matri
es. Mathemati
al Programming, 2:19{31,(1972).[3℄ J. Ch. Boland and C. G. Lekkerkerker. Representation of Finite Graphsby a Set of Intervals on the Real Line. Fundamentals of Mathemati
s,51:45{64, (1962/1963).[4℄ D. G. Corneil and P. E. Kearney. Tree Powers. Journal of Algorithms,29:111{131, (1998).[5℄ E. Dahlhaus and P. Du
het. On Strongly Chordal Graphs. Ars Com-binatoria, 24 B:23{30, (1987).[6℄ P. Damas
hke. Distan
es in Co
omparability Graphs and Their Pow-ers. Dis
rete Applied Mathemati
s, 35:67{72, (1992).[7℄ P. Du
het. Propri�et�e de Helly et Probl�emes de Repr�esentation. Col-loque C.N.R.S., (Orsay 1976), CNRS, Paris, 260:117{118, (1978).24



[8℄ M. Farber. Chara
terization of Strongly Chordal Graphs. Dis
reteMathemati
s, 43:173{189, (1983).[9℄ M. Farber. Domination, Independent Domination, and Duality inStrongly Chordal Graphs. Dis
rete Applied Mathemati
s, 7:115{130,(1984).[10℄ U. Feige and J. Kilian. Zero Knowledge and the Chromati
 Number.Journal of Computer and System S
ien
es, 57:187{199, (1998).[11℄ F. Gavril. The Interse
tion Graphs of Subtrees in Trees are Exa
tlythe Chordal Graphs. Journal of Combinatorial Theory B, 16:47-56,(1974).[12℄ M. M. Halld�orsson, J. Krato
hv��l, and J. A. Telle. Independent Setswith Domination Constraints. Dis
rete Applied Mathemati
s, 99:39{54, (2000).[13℄ N. Kalyana, R. Prasad, and P. S. Kumar. On Generating StrongElimination Orderings of Strongly Chordal Graphs. Pro
eedings of the18th Foundations of Software Te
hnology and Theoreti
al ComputerS
ien
e Conferen
e. Springer-Verlag, Berlin, Germany, pages 221{232,(1998).[14℄ R. Laskar and D. Shier. On Chordal Graphs. Congressus Numeran-tium, 29:579{588, (1980).[15℄ R. Laskar and D. Shier. On Powers and Centers of Chordal Graphs.Dis
rete Applied Mathemati
s, 6:139{147, (1983).[16℄ Y.-L. Lin and S. Skiena. Algorithms for Square Roots of Graphs.SIAM Journal of Dis
rete Mathemati
s, 8(1):99{118, (1995).[17℄ S. L. Peng and M. S. Chang. A Simple Linear Time Algorithm for theDomati
 Partition Problem on Strongly Chordal Graphs. InformationPro
essing Letters, 43:297{300, (1992).[18℄ A. Ray
haudhuri. On Powers of Interval and Unit Interval Graphs.Congressus Numerantium, 59:235{242, (1987).[19℄ A. Ray
haudhuri. On Powers of Strongly Chordal and Cir
ularGraphs. Ars Combinatoria, 34:147{160, (1992).[20℄ D. B. West. Introdu
tion to Graph Theory. Prenti
e-Hall In
., UpperSaddle River, New Jersy, (1996).
25


