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Abstract

The k-th power of a graph G is a graph on the same vertex set as
G, where a pair of vertices is connected by an edge if they are of
distance at most k in G. We study the structure of powers of chordal
graphs and the complexity of coloring them. We start by giving
new and constructive proofs of the known facts that any power of
an interval graph is an interval graph, and that any odd power of
a general chordal graph is again chordal. We then show that it is
computationally hard to approximately color the even powers of n-
vertex chordal graphs within an na=e factor, for any € > 0. We
present two exact and closed formulas for the chromatic polynomial
for the k-th power of a tree on n vertices. Furthermore, we give an
O(kn) algorithm for evaluating the polynomial.

Keywords: Chordal graphs, chromatic number, chromatic polynomial,
coloring, interval graphs, power of a graph, tree.

1 Introduction

In this paper we study the structure of powers of chordal graphs and some
important subclasses. (Background material and most classes of graphs dis-
cussed in this paper are defined in §2.) Specifically, we simplify the proofs
of several known theorems, make the proofs more constructive, and some-
times generalize the results. The intent is to penetrate the characteristic
properties of chordal graphs and their powers by elementary methods, and
show how even powers of chordal graphs are harder to work with than odd
powers. In addition, we consider colorings of the special class of chordal
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trees formed by taking powers of trees, and give two exact formulas for
their chromatic polynomial.

Chordal graphs and colorings of chordal graphs have been studied inten-
sively. Many important subclasses of chordal graphs such as trees, interval
graphs, and strongly chordal graphs have received special attention. We
note that every strongly chordal graph and every split graph is chordal.
Also, every tree and every interval graph is strongly chordal.

The fact that any power of a tree is chordal and proof thereof appears
in [16] and [4]. However, Robert Jamison (Personal Communication, 2000)
at Clemson University may have been the first to prove that property in
the early eighties. Linear time algorithms are given in [16] for finding a tree
square root of a given graph and a square root of a planar graph. In [4] a
polynomial time algorithm for recognizing tree powers is given as well as
a short proof that any power of a tree is strongly chordal. In [19] and [5],
it is shown that any power of a strongly chordal graph is again chordal.
In [18] it is shown that any power of an interval graph is again interval.
A characterization of strongly chordal graphs in terms of totally balanced
matrices is given in [8], where strongly chordal graphs were first introduced.

The subclass of chordal graphs consisting of strongly chordal graphs has
been researched thoroughly. This is mainly because they yield a polynomial
time solvability of the domatic set and domatic partition problems. The
interested reader may pursue such results by following references [2, 9, 13,
17].

Some fundamental properties have been proved for arbitrary chordal
graphs. It was shown that in [14] that if G is chordal then G® and G°
are chordal, while G? is not necessarily chordal. There it was conjectured
that any odd power of a chordal graph is again chordal. This conjecture
was proved in [1], although Duchet had shown this earlier in a different
setting [7]. In [15] a necessary and sufficient condition is given in order for
all powers of a chordal graph to be chordal. Other subclasses of perfect
graphs have been shown to be closed under taking powers, including the
class of cocomparability graphs (which includes interval graphs) [6].

The remainder of this paper is organized as follows. In §2 we introduce
our notation, prove some useful lemmas, and give an elementary and self-
contained proof of the fact that any power of a tree is chordal.

In §3 we prove constructively that any power of an interval graph is again
an interval graph. We also give a linear time algorithm to construct the
power graph. The construction additionally applies to circular-arc graphs,
which as a result are also closed under taking powers. We close the section
by giving a direct and alternative proof of the fact that any odd power of
a chordal graph is chordal.

In §4 we show that it is hard to approximately color even powers of
chordal graphs within O(n%*), for any € > 0, unless NP-problems have



randomized polynomial time algorithms. This is essentially the strongest
result possible, since greedy colorings of arbitrary even power graphs are
\/n-approximate. We study odd powers of general graphs, and also find
them hard to color approximately within an n'/2=¢ factor, for any € > 0,
however, we give a greedy n?/*-approximation.

Lastly, in §5 we study powers of trees and colorings of those powers. We
give two exact and closed formulas for the chromatic polynomial of the k-th
power of a tree with n vertices. We complement these precise formulas with
an O(kn) algorithm to evaluate the chromatic polynomial at any point.

2 Preliminaries

For a set S and an element s, denote by S\ {s} the set containing all
elements of S excluding s. Let N = {0,1,2,...} and Z* = N\ {0}. For
a < be Z*, we denote the set {a,a+1,...,b} by [a;b]. If a equals 1, then
we simply write [b] instead of [1;b].

All graphs in this paper are finite, simple, and undirected unless other-
wise stated. By coloring we will always mean the usual vertex coloring of
a given graph.

For a graph G, we denote the set of vertices of G by V(G), and the set
of edges of G by E(G). We reserve the symbol n for |V(G)|, the number of
vertices of G. For v € V(G), let N(v) denote the neighborhood of v, that is,
the set of all vertices adjacent to v but not including v itself. Likewise, let
NJv] denote the closed neighborhood of v, which is the set that consists of
all the vertices adjacent to v, together with v itself. For a subgraph H of G,
the graph in G generated or induced by H, denoted G[H], is the subgraph
which has vertex set V(H), and edge set {{u,v} : u,v € V(H) and {u,v} €
E(G)}. It U C V(G) then G[U] is the subgraph induced by the subgraph
having vertex set U and an no edges. For an edge {u,v}, the vertices u
and v are called the endvertices of the edge. The distance between u and
v in G is the number of edges in the shortest path from w to v. For two
vertices v and v in a graph G, we denote the distance between u and v in
G by dg(u,v). This is shortened to d(u,v) when G is understood.

For a graph G and an edge e of G, let G'\ e denote the graph obtained by
deleting e from G. On the other hand, let G//e denote the simple contraction
of G by the edge e.

We call an edge a chord of a simple cycle of length four or more, if it
is not in the cycle, but has both its endvertices on the cycle. A graph G is
called chordal if every simple cycle of length four or more has a chord. In
fact, there is an equivalent and more computational condition for a graph
being chordal. A graph G is chordal if and only if there is an ordering
{v1,...,0p} on V(@G), called a simplicial elimination ordering, such that



for each v;, the set N(v;) N {vy,...,v;_1} induces a clique in G [20, Theo-
rem 5.3.13, page 199].

An odd chord is an edge joining two vertices that are an odd distance
apart in a cycle. A chordal graph is strongly chordal if every simple cycle of
even length six or more has an odd chord. An equivalent condition is that
there exist an ordering {vy,...,v,} on V(G), called a strong elimination
ordering, which is a simplicial elimination ordering such that if k£ < j < 1,
and vy, v; € N(v;), then

N(vg) N {v1,...,vi-1} S N(v;) N {v1,...,vi1} [8, 13].

An interval graph is a graph whose vertex set can be represented by a
collection of proper, closed intervals of the real numbers, and where two
vertices are connected by an edge if and only if the corresponding intervals
have a nonempty intersection. It is easy to see that interval graphs are a
subclass of chordal graphs. A graph G is called a split graph, if V(G) can be
partitioned into a disjoint union X UY where the induced subgraph G[X]
has no edges, and G[Y] is complete.

For k € ZT and a graph G, the k-th power of G, denoted by G*, is
the graph formed from V(G), where all pairs of vertices having distance of
length k or less in G are connected by an edge. Note that the original edges
in G are retained.

Let T be an unrooted tree and let [ be the length of the longest path
in T (that is, [ is the diameter of T'). A vertex of degree one in T is called
a leaf. If | is even, then the centroid of T is the unique vertex, which is of
distance at most [/2 from all the leaves of T'. If [ is odd, then the centroid
of T' is the unique adjacent pair of vertices such that each leaf is of distance
at most (I — 1)/2 from one of these two vertices. In a tree T', rooted at
vertex r, an ancestor of v is any vertex on the (unique) path from v to r.
Note, v is an ancestor of itself.

For a tree T and k € Z*, Lin and Skiena show that the graph T* is
chordal [16, §5]. Their proof depends heavily on the characterization of
chordal graphs as precisely the intersection graphs (graphs formed from a
collection of sets, where the sets represent the vertices and two vertices
are adjacent if and only if their corresponding sets intersect) of subtrees in
trees [11]. Corneil and Kearney later proved that any power of a tree is
actually strongly chordal [4].

We conclude this section with a definition, followed by two lemmas, that
allow us to present an elementary and new proof of the Lin and Skiena
result.

Definition 2.1 For a graph G and k € N, we define a k-ball as a subset
B C V(G), such that for any vertices u,v € B, we have dg(u,v) < k.



Lemma 2.2 Let T be a tree rooted at vertex r. For every vertexu € V(T),
the set of vertices v € V(T') satisfying

dr(u,v) <k and
d;(r, v) < dp(r,u), (1)

1s a k-ball. That s, the vertices which are closer to the root than u, and
are of distance k or less from u, form a k-ball in T.

Proof. We want to show that any two vertices v and v' satisfying the
conditions stated in the lemma are of distance k or less from each other.
Let w (w') be the least common ancestor of u and v (respectively, u and
v'). Since both w and w’ are ancestors of u, either w is an ancestor of w'
or vice-versa. Without loss of generality, suppose w' is an ancestor of w.
Since v satisfies (1), we have dp(u,w) > dr(v,w). Note that in a tree a
simple path between two vertices is the shortest path between them. With
this fact in mind, we have

dT(’LL,’U’) = dT(U,UJ) + dT(’LU,’LU’) + dT(wlavl)

Therefore,
dT(’U,’UI) - dT(’U,’LU) —f—dT(’LU,’LUI) +dT(wlavl
< dr(u,w) + dr(w,w') + dyp(w',v'
< dr(u, v
< k.
This proves the lemma. ad

Lemma 2.3 If T is a tree and k € Z+, then T* is chordal.

Proof. Consider m distinct vertices wi,...,u,, of 7" with the property
that for each i € [m], the unique path p(u;,u;+1) from wu; to w;41 has
length k or less, where u,,+1 = u;. We show there is a j € [m] such that
dr(uj—1,uj41) < k. This will imply an edge between u;_; and uj4q in T*,
and hence the chordality of T%. Consider the subtree of T defined by

H = p(uy,uz) U -+ Up(thm -1, ) U p(tim, 1)

All the leaves of H are contained in the set {u1,...,u,}. Let r € V(H) be
a centroid of H. Root H at r and let j be such that dg(u;,r) > da(u;,r)
for every ¢ € [m]. By Lemma 2.2 we see that B; = {u:dp(u,u;) <k}isa
k-ball in H. Since u;j_; and u;41 are contained in Bj, and dy = dg when
restricted to vertices in H, we have that dr(uj—1,u;y1) < k. O



The clique size of a graph is the number of vertices of the largest com-
plete subgraph of the graph. Let w(G) denote the clique size of G. By a
theorem of Berge from 1960 [20, page 201], all chordal graphs G are per-
fect, meaning that x(H) = w(H) for every induced subgraph H of G. In
particular, x(G) = w(G). The largest clique in T* is induced by the largest
k-ball in T'. If by (T) is the cardinality of a largest k-ball, then we get the
following corollary.

Corollary 2.4 ForatreeT and k € Z*, we have x(T*) = w(T*) = by (T).

3 Chordal graphs and their powers

In this section we first consider an important subclass of chordal graphs
consisting of interval graphs. We construct an interval representation for
any power of an interval graph from the representation of the given interval
graph. We then derive a new and elementary proof of the fact that any
odd power of a chordal graph is again chordal. The approach of this proof
is direct, and avoids the tedious case analysis in [1].

3.1 Powers of interval graphs

Assume an interval graph G is represented by real intervals I, .. ., I, where
I; = [a;, b;] foreach i € {1,...,n}. For k€ ZT and i € {1,...,n}, we form
a new interval I;(k) = [a;, bi(k)], where

bi(k) = max{b, : d(I;,I,) < k — 1},

that is, the left endpoints of I; and I;(k) are the same, but the right endpoint
of I;(k) is the largest endpoint of an interval at a distance of at most
k — 1 from I;. Note that d(I;,I,) < k — 1 means the existence of intervals
Ii,,..., I, where r < k — 1, such that all the intersections I; N Ij,, I;; N
Ii,,...,I;, NI, are all nonempty. With this setup in mind, we obtain the
following theorem.

Theorem 3.1 If G is an interval graph represented by the real intervals
Ii,....I,, where I; = [a;,b;] for 1 < i < n, and k € Z*, then GF is
represented by the intervals Iy (k), ..., I, (k).

Proof. Let I; and I; be intervals in the representation of G' of distance at
most k from each other. We can assume a; < a;. Since d(I;, I;) < k, there
is an interval I; with

d(IZ,Il) S k—1 and d(Il,Ij) S 1. (2)



From (2) and the definition of I;(k), we get that b, < b;(k). Again using (2),
we see that max{a;,a;} < min{b;,b;}. Hence, we have

max{a;,a;} = a; < max{a;,a;} < min{b;,b;} < min{b;(k),b;(k)}.

Therefore, I;(k) N I; (k) # 0.

Suppose now, on the other hand, that I;(k) N I;(k) # (. Since we can
continue to assume that a; < aj, this means that a; € I;(k). By definition
of I;(k), there is an interval I; with d(I;, ;) < k — 1 containing a;, and
hence I; N I; # 0. Thus, d(I;,I;) <k —1 and d(I;,I;) <1 and so it follows
that d(I;, I;) < k.

This shows d(I;, I;) < k if and only if I;(k)NI; (k) # 0, which completes
the proof of our theorem. O

Corollary 3.2 of Theorem 3.1 was previously proved in [18]. Raychaud-
huri’s proof was non-constructive using the characterization of interval
graphs by Boland and Lekkerkerker from 1962 as precisely those chordal
graphs that contain no asteroidal triple [3]. An asteroidal triple is a triple
of vertices such that for any two of them, there is a path joining them that
does not intersect the neighborhood of the third vertex.

Corollary 3.2 If G is an interval graph, then so is G* for any k € Z7.

We now give an efficient O(n log k) algorithm for computing the interval
representation of the power graph G* of an interval graph G.

We first specify a linear-time algorithm, PRODUCT POWERS, to compute
a product of two powers of interval graphs G* and G?, obtaining the power
graph G***. We assume as input a sorted list containing all the endpoints
of G* and G*. The output is an interval representation of G, [a;, C[i]],
where C[i] is the larger of the i-th right endpoint of the interval with left
endpoint a; in G° and the rightmost endpoint of an overlapping interval
from G?.

We process the endpoints of intervals of the graphs in decreasing order.
We use a queue data structure ) to maintain the set of intervals from G*
that are live at any given time, and to report the one that reaches furthest
to the right. In addition to the queue with its standard operations, we
make use of a bit array indexed by the intervals of G*.

ALGORITHM ProODUCT POWERS

Prod(G*, GY)

} Input: G: with IIZ = [[ai, bi]], fori =1, ..., n}}
G' with I} = [a;, d;], fore = 1, ..., n.

{ Output: Interval representation of G5*t. }



{ The 3n endpoints, the duplicate left endpoints are not included, }
{ of the intervals are given in sorted order. In the sorting, ties }

{ are broken arbitrarily. }

{ interval[¢] is the index of the interval with the i-th left endpoint. }
{ type[i] is an entry denoting the type of endpoint. }

{ interval[i] and type[i] have 3n entries. }

{ Head(Q) = null = 0, if Q is empty. }

{ Right;(-) is a function that takes an interval index and returns }

{ the right endpoint of the interval in G!, where I = sort.}

fori «+ 0ton do
marked|[i]<O0;
for ¢ < 3n downto 1 do
if (type[i] is a left endpoint) then
marked[interval[i]]+—1;
if (type[i] is a right endpoint from G?) then
Enqueue(Q intervalli]);
if (type[i] is a right endpoint from G*) then
while (marked[Head(Q)]) do
Dequeue(Q);
if Head(Q) # null then
C[interval[i]]+— Rights(Head(Q));
else
Clinterval[é]]«— Right;(interval[]);
fori < 1ton do
output intervals [a;, C[i]];

We use a traditional trick to efficiently compute the power graph G*. To
form the square graph G2, we compute Prod(G,G), and to compute G2t,
we compute the square ¢ times. To compute an arbitrary power, we then
form the product of the powers corresponding to the bit representation
of k, in at most 2logk applications of Prod. For example, notice that

GlO — (((GZ)Z)Z ) GZ'

A straightforward application of our approach yields the same result for
circular-arc graphs. A circular-arc graph is a graph whose vertex set can
be represented by a collection of proper, closed arcs of the unit circle in the
real plane, where two vertices are connected by an edge if and only if the
corresponding arcs have a nonempty intersection. Note that every interval
graph is, in particular, a circular-arc graph. Also notice that every cycle, of
arbitrary length, is a circular-arc graph. Therefore, in general, circular-arc
graphs are not chordal graphs. In modifying the definitions of b;(k) and
I;(k) in the obvious way, we obtain the following corollary that is analogous
to Corollary 3.2 for interval graphs.



Corollary 3.3 If G is a circular-arc graph, represented by arcs Ir,. .., I,
and k € ZT, then G* is a circular-arc graph represented by the arcs
Il(k)a s 7In(k)

3.2 0dd powers of chordal graphs

It has been pointed out numerous times in the literature that squares of
chordal graphs are not necessarily chordal, and a classic example of such a
graph is given in Figure 1, (see [15], [16], and [19] for the same example). In
fact, we will see more generally in the next section that the subclass of the
chordal graphs consisting of split graphs are such that for any given graph,
there is a corresponding split graph, whose square has the given graph as
an induced subgraph.

Figure 1: An example of a chordal graph whose square is not chordal. In
the square of this graph, only two edges are missing from Kg. They are the
“wide horizontal edge” and the “tall vertical edge.”

We will conclude this section with a few lemmas and an observation.
They will enable us to give a direct and elementary proof of the fact that any
odd power of a chordal graph is again chordal. This result was previously
proved in [1] using exhaustive case analysis.

A graph is outerplanar if it has a planar embedding such that every
vertex lies on the unbounded face. We call an outerplanar graph G onn > 4
vertices fully triangulated if there is a planar embedding G* of GG, which
has one region bounded by n edges, and all of the other regions bounded



by three edges. In other words, G is fully triangulated if G' consists of a
cycle, whose interior face is divided into triangles. An induction on n > 3,
yields the following lemma.

Lemma 3.4 If C is a simple m-cycle in a chordal graph G, then the in-
duced subgraph G[C], generated by C in G, contains a fully triangulated
outerplanar graph on the m vertices of the cycle.

For simple contractions G'/e we obtain the following lemma.

Lemma 3.5 Let G be a fully triangulated outerplanar graph on four or
more vertices. If e is an edge bounding the non-triangular region in one
(and hence every) planar embedding of G, then the graph G/e is also a
fully triangulated outerplanar graph.

Proof. Clearly, G/e is outerplanar. If G has n vertices, then every planar
embedding of G/e has n — 4 triangular regions and one region bounded by
n — 1 edges. Hence, it is fully triangulated. O

The proof of the next lemma is straightforward.

Lemma 3.6 Let uy, uz2, us, and uy be distinct vertices in a graph G. For
i € {1,3}, assume p(u;,u;ir1) is a simple path of length k or less from u;
to wir1. If p(uy,us) and p(us,us) have any vertex in common, then either
da(ur,uz) <k or dg(us,ug) < k.

For vertices u and v in a graph, p(u,v) denotes a path between u and
v. The notation /,(u,v) denotes the length of p(u,v). We sometimes sub-
or superscript the name of a path. If there is no danger of ambiguity, the
length of a labeled path p*(u,v) will be denoted by the same label I*(u,v),
instead of 1, (u, v).

Observation 3.7 Let u, v, and w be three distinct vertices in a connected
graph. Let p(u,v) (p(u,w)) be a path of shortest length from u to v (respec-
tively, from u to w). Then there exists a unique vertex u' and a partition
of the paths

p(u,v) = pv(uau,) Upv(ulav)
p(u, w) = py(u, U'I) U pw(ula w),

where p,(u',v) and p,(u',w) are vertex disjoint, except for their initial
vertex u', and l,(u,u') = L, (u,u’).

We now present a different and more direct proof from those appearing
in [1] and [7] of the following theorem:

10



Theorem 3.8 Let k € Z be an odd integer. If G is a chordal graph, then
G* is also chordal.

Proof. Consider a simple m-cycle in G*. This m-cycle corresponds to dis-
tinct vertices wuq,...,u, in G, and m simple paths in G, each of length
k or less, namely p(u1,us2),...,p(Um—1,Um) and p(u,,u;), connecting the
vertices cyclically. Throughout the proof, let w11 (u;, ) equal u; (respec-
tively, u}). We assume further that all these paths have minimal lengths,
that is, Ip(us, uir1) = dg(ui, uiyr) for all .

Let i € [m]. The paths p(u;_1,u;) and p(u;, u;41) give rise to a unique
vertex u} satisfying Observation 3.7. Similarly, the paths p(u;, u;41) and
p(uir1,uip2) give rise to a unique vertex u;, ;. We see by Lemma 3.6 that
the vertices u; and wuj,; on p(usu;11) must be distinct, and appear in
the same order on p(u;, u;+1) as u; and u;41 do. Hence, the m-cycle C =
C(ul,...,ul,) is simple, yielding disjoint paths p*(u}, ub),...,p*(ul,_,u,)
and p* (i, u}).

For each i € [m] pick one of the paths from u; to w} (along p(u;—1,u;)
or p(ui, ui+1)) and call it p* (u;, u}).

We have now shown that we can assume the vertices wq,...,u,, are
connected in an “octopus”-like manner by the simple m-cycle C, together
with paths, or “tentacles” p*(u;,u}), which are disjoint among themselves
and from C. We call the entire octopus graph C*.

By Lemma 3.4, G contains a fully triangulated outerplanar graph on
ul,...,ul, . Note that

U (i, uh) + U (ug, wpyy) + U (g, wivn) = da (g, uipn) < k

for each i € [m].

Since k is odd, then for each ¢ € [m] there is an edge {y;,2;+1} on
p*(uj,uj, ), in this order, such that for any vertex z on the arc of C' defined
by {x;, u,y;}, the path from z to u; along this arc on C' and the “tentacle”
p*(u},u;) has length at most (k — 1)/2.

Denote by T; the subtree of C* connecting u;, z;, and y;. We note that
T; has at most three leaves, and they are among {u;,z;,y;}. Moreover,
at most one possible vertex, u}, of T; has degree three. We now have a
partition

V(C*)=V(Th)U---UV(Ty).

Contracting each T; to a single vertex ¢; will give a graph, which by Lem-
mas 3.4 and 3.5 will contain a fully triangulated outerplanar graph C**
on ti,...,ty, as a subgraph (contracting each “tentacle,” p*(u;,u}), has no
effect on the full triangularity of C**). Therefore, there are two vertices t;
and ¢, with neither j =4 4 1 nor ¢ = j + 1, connected by an edge in C**.
Hence, there must be an edge in C* with one endvertex in T; and the other

11



in Tj, more specifically, an edge between z; and z;, where z; is a vertex in
T; and where z; is a vertex in T;. We conclude that

da(ui,uj) < da(u,zi) +da(zi, 2j) + da(zj, u))

< l*(u,-,zi) +1 +l*(Zj,U,j)
< k—1+1+k—1

- 2 2

= k.

Hence, there is an edge connecting u; to u; in G¥, thus completing the
proof of our theorem. O

4 Approximate coloring of powers of graphs

We have seen that odd powers of chordal graphs are easy to color, since they
are also chordal, while even powers are generally not chordal. In the current
section we shall study how difficult the even powers of chordal graphs are to
color. In some respects, the issue is how far from being chordal these power
graphs are. We measure the difficulty in terms of how good an estimate of
the chromatic number an effective algorithm can find.

The coloring problem is p(n)-approzimable on a given class of graphs
if, there exists a polynomial time algorithm that for each graph G on n
vertices outputs a coloring with at most p(n)x(G). We say that a problem
is hard to approximate within a given factor, if the contrary would yield the
conclusion that NP # ZPP, the class of problems with polynomial-time
zero-error randomized algorithms.

The main result of this section is that coloring the even powers of chordal
graphs is hard to approximate within a factor of n'/2=¢, for any € > 0. In
fact, coloring squares of split graphs is hard within that factor. Interest-
ingly, this can be matched with a simple O(y/n)-approximation algorithm
for even powers of arbitrary graphs. We then consider odd powers of general
graphs, and give nearly matching bounds on their approximability.

For a graph G, let a(G) denote the size of a maximum independent set
in G. That is, a(G) gives the independence number of G.

First, we give an approximation lower bound for coloring even powers
of chordal graphs.

Theorem 4.1 The problem of coloring squares of split graphs is hard to
. . . 1
approzimate within O(nz~°) for any e > 0.

12



Proof. We give a reduction from Graph Coloring which is known to be
hard to approximate within an n!~¢ factor [10].

Given a graph G on N vertices, we construct a graph H that contains
N copies of each vertex in G along with an additional clique on N vertices.
Let n = N2 + N denote the number of vertices in H. A copy of vertex v;
is adjacent to the j-th clique vertex if and only if {v;,v;} is an edge in G
or if 7 = j. Formally, let

V(H) = {zj,u;;:1<4i,j <N}, and
E(H) = {{zi,uji}:{vi,v;} € E(G) ori=j}
U{{zi,z;}:1<4,j <N}

In H?, the graph induced by {uj; : j = 1,2,...,N} is a copy of G,
for each I = 1,...,N. The vertices z; are adjacent to every vertex in H?2.
Copies of a vertex v are adjacent to precisely the copies of v’s neighbors in
G.

The result of Feige and Kilian [10] states that it is hard to distinguish
between two cases: (i) x(G) < N°¢, and (ii) a(G) < N'~¢ for any fixed
e > 0. Other cases from [10] are not relevant to our work.

Observe that if I is an independent set in H?, then it consists of copies
of distinct vertices that form an independent set in G. Therefore, a(H?) <
a(G). Thus, if a(G) < N¢, then a(H?) < N¢. Also, we have x(H?) >
(N2 + N)/a(H?) > N2,

Also, trivially x(H?) < x(G) - N + N. Thus, if x(G) < N¢, then
x(H?) < N't¢ + N. So, if we could distinguish between the cases when
x(H?) < Nt + N and x(H?) > N?7¢, we could distinguish between
the two cases of the result of [10]. Hence, it is hard to approximate the
chromatic number of the square graph H? within a factor of N!'~2¢ which
is n'/2=¢ if we ignore lower order terms. o

The construction of Theorem 4.1 can be modified to give the same
hardness result for another subclass of perfect graphs: bipartite graphs.
Simply remove all edges between z-vertices.

Cubes, and thus all higher powers, of split graphs are already com-
plete graphs. However, chordal graphs remain hard to color for larger even
powers.

Theorem 4.2 Coloring even powers of chordal graphs is hard to approwxi-
mate within n'/>=¢ for any ¢ > 0.

Proof. Let k = 2t and assume ¢t > 2. We modify the construction of
Theorem 4.1. Between each vertex z; and the corresponding u; , vertices,
we add a path of ¢ — 1 vertices.

V(H) = {xiayi,layi,Qa"'7yi,t—17ui,la: 1 SlalSN}a and
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E(H) = {{zj,yir}:{vi,vj} € E(G) ori=j}
U{{z;,z;}:1<i,j <N}

U{yi, 1, vi2}ts - {Wie—2.Yii—1},
{Yit-1,uiy} : 1 <1,i <N}

The graph H contains N2 +¢tN vertices. The z and y-vertices form a clique
on tN vertices. The subgraph of H* on the u; ; vertices is the same as in
Theorem 4.1. Again, a(H*) < a(G), so x(H*) > (N? + tN)/a(Q), while
x(H*) < (x(G) +t) - N. The theorem now follows by the same arguments
for any t = O(N°). O

We note that the NP-hardness reduction of Lin and Skiena [16] yields
nearly the same result for general graphs, or an (n/k)'/?~¢-hardness. We
can give a simple matching upper bound that holds for arbitrary graphs G.

Theorem 4.3 Coloring even powers of graphs is O(y/n)-approzimable by
a simple greedy algorithm.

Proof. If suffices to show this for square graphs since G?¢ is the square of
the graph G*.

The maximum degree A(G?) of G? is at most A(G)2. Thus, a first-
fit greedy algorithm uses at most min{A(G)? + 1,n} colors on G*?. Any
neighborhood in G forms a clique in G2. Therefore, the optimal solution
requires at least A(G) + 1 colors. Hence, we get a performance ratio which

is at most min{A(G),n/A(G)} < /n. O

Another measure of non-chordality would be the types of graphs con-
tained as subgraphs. The proofs of Theorems 4.1 and 4.2 answer that.

Observation 4.4 The square of a split graph can contain an arbitrary
graph as a subgraph.

4.1 0Odd powers of general graphs

It may be fruitful to study the odd powers of general graphs. For general
graphs, the y/n-hardness result also holds for odd powers.

Theorem 4.5 Coloring odd powers of graphs is hard to approximate within
n'2=¢ for any € > 0.

Proof. For the case of k = 2t, with ¢ greater than 1, we construct the
following graph H on tN + N2 vertices, when given a graph G on N vertices.
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The graph consists of G, a path of ¢ — 1 vertices attached to each vertex of
G, and a set of N vertices attached to the end node of each path. Formally,

V(H) = {vi,¥i1,¥i2,- - Yii—1,ij,: 1 <i,7 <N}, and
E(H) Hvi, v} {vi, v} € B(G)}

U{{vi,yi1 b {vi1,vi2}ts - {Vit—2, Yit—1},
{yit—1,uiy}: 1< 1,i <N}

The wu-vertices induce in H* the same subgraph as in Theorems 4.1 and
4.2. The theorem now follows by the same argument. O

On the positive side, just as the odd integers play an important role in
Theorem 3.8, we can obtain a nontrivial approximation for vertex coloring
all odd powers of graphs.

Theorem 4.6 Coloring odd powers of graphs is O(n2/3)—appr0;vimable.

Proof. Let k = 2t — 1. Let D; be the maximum over all vertices v of
the number of vertices within distance ¢ from v. The maximum degree
of GF is Dj. The first-fit algorithm then uses at most Dj + 1 colors.
Vertices within distance ¢ — 1 from a given node v must form a clique in
G*. Thus, the clique and the chromatic number of G* is at least D; | + 1.
Hence, the performance ratio is at most min{Dy/D;_;,n/D;_1}. Clearly,
Dy, < (Dy_1)?. Thus, the performance ratio is at most n>/®. Note, that we
can also bound the performance ratio by opt?, where opt is the size of the
optimal solution. d

This yields an interesting comparison with the Independent Set problem.
It was shown in [12] that independent sets in odd powers of graphs are
hard to approximate within an n'~¢ factor. This yields the first nontrivial
separation between approximations of Graph Coloring and Independent Set
in a natural class of graphs.

Corollary 4.7 The approximability of Independent Set and Graph Color-
ing in odd powers of graphs differs by a factor of at least n/%—¢ for any
e> 0.

5 Chromatic polynomials for powers of trees
In this last section we further study powers of trees. We will give two exact
and closed formulas for the chromatic polynomial of the k-th power of a

tree on n vertices. The chromatic polynomial of a graph G, denoted x(t),
specifies how many different ways there are of coloring G using t > x(G)
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colors. Note that both G'\ e and G/e have fewer edges than G. Hence, the
fact that x¢(t) is actually a polynomial in ¢ can easily be verified by using
induction on |E(G)|, and the recurrence

xa(t) = Xa\e(t) = xaye(t)

(see [20, Theorem 5.3.4, page 195]). For example, if K, denotes the com-
plete graph on n vertices, then xg, (¢) = t(t —1)---(t —n + 1) for ¢
greater than or equal to n. Likewise, for any tree T on n vertices, we
have xr(t) = t(t — 1)"~!. Moreover, if G is a graph on n vertices and
xg(t) = t(t — 1)"~1, then one can show by an easy induction that G is
indeed a tree on n vertices.
Let G be a chordal graph. The simplicial elimination ordering,

{v1,...,v,} on V(G), yields that the chromatic polynomial x(t) of G has

the following form
n

xa(t) =[]t - d@)), (3)
i=1
where d(i) = |N(v;) N{vy,...,v;_1}|- Hence, all the roots of the chromatic
polynomial for chordal graphs are nonnegative integers. Note that in this
case, the chromatic number of G is given by x(G) = r + 1, where r =
max;{d(i)}, the largest root of x¢(t).
Since a fully triangulated outerplanar graph is chordal, the following
corollary is immediate from Theorem 3.8.

Corollary 5.1 IfG is a fully triangulated outerplanar graph and k € Z% is
an odd integer, then the chromatic polynomial for G* has only nonnegative
integers as roots.

Since every power of a tree is chordal, we know that all the roots of
X7 (t) are nonnegative integers. In order to derive the formulas for x (%),
we need to formulate some key ideas. Recall the meaning of k-ball presented
in Definition 2.1.

Clearly, any intersection of k-balls in 7" is again a k-ball. For a tree T'
and k € Z7, let By,..., B,, be the complete listing of all the k-balls of T
For the remainder of this paper, for S C [m] let

fst)=tt—=1)---(t—bs+1),

be the falling factorial function, where bg = |ﬂs€5’ Bs| (sometimes in the
literature, this function is denoted by (t)s.). If bg = 0, then let fg(t) = 1.
The function fs(t) will play an important role in what follows.
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5.1 Formulas for chromatic polynomials
We now present the first formula for = (t).

Theorem 5.2 Let T be a tree, k € ZT, and By,..., By, all of T'’s k-balls.

We have St
xre() = [ fs "
SC[m]

Proof. We will use induction on n = |[V(T')|. If T has exactly one vertex,
then x7«(t) = ¢, which agrees with the formula.

Suppose T has n > 2 vertices. Let u € V(T') be an endvertex of a
longest path in 7'. By Lemma 2.2 all of T”s vertices, which are of distance
k or less from u, are contained in a k-ball of T'.

Let By,..., B,, be all the k-balls of T', enumerated in such a way that

u € By,...,B; and

u gBl+1,...,Bm,
and such that |By| < --- < |B;|. Again, by Lemma 2.2, we may assume
B; C B, for all i € [I], that is, By is precisely the k-ball of T' consisting of u
and all the vertices of distance k or less from u in T'. Lastly, since B; \ {u}
is a k-ball in T', we can assume Bj41 = By \ {u} and Bj41 # 0. Consider

the tree T} =T \ {u} on n — 1 vertices. By our choice of the vertex u, we
have by the definition of chromatic polynomials that

xre () = (¢ = |Bil + 1)xgp (B)-

Note that Bjt1, ..., By are precisely all the k-balls of T3, so by the induc-
tion hypothesis we have

xr® = I fr®E

RC[l4+1;m]
Let S={S C[m]:S Z[l+1;m]}. It therefore suffices to show that
[T s =t 1B + 1. )

sScs

Now, S consists of those S that contain at least one element of [I]. Hence,
(Nses Bs is a k-ball contained in one of the k-balls By, ..., B;. Define

S'={SeS:Sn[]#{l}}.

We have a partition 8" = S| US}, where S C S' is the set of those S € S’
not containing [, and S, C S’ is the set of those S € S’ that do contain I.
There is a one-to-one correspondence between S| and S, given by

S138 <« S'u{l}es,.
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For S’ € S}, we have fs/(t) = fsuy(t). Thus,

(—1)ls'utz-t

fs'(t)(*l)lsrl_1 fsruqy (t) =1L

Therefore, it suffices to consider only those S € S that contain [ and no
other element of [I]. So,

_pylsi-1 —_1)ls"
[[rs@"" = II  forom@=""
ses S Cli4+15m)
For a nonempty S” C [l + 1;m] either I + 1 € S or not. Let
S" ={S"u{l}:S" C[l+1;m]}.

Again, we get a partition S"” = S U S], where S{ is the set of elements of
S” that do not contain I+ 1, and S is the set of those elements of S” that
do contain [ + 1. We also have a one-to-one correspondence

SY>S8"u{l} <« S"U{lyu{l+1}eSy,
where S” C [l + 2;m]. Since Byy; = B\ {u} for a nonempty such S”, we

have that
N e= N &
s€S"U{l} seSu{lyu{l+1}

Hence, if we put S; = S” U{l} and S;4 = S" U {l} U {l + 1}, then we have

|S71—1

fSl (t)(fl) 'fSl+(t)(,1)|Sz+I71 1

For 8" = (), we obtain
Fur @) - Fugeny ()~ =t —|B| + 1.
This proves that (4) is correct, and hence our theorem. O

REMARK: Clearly the product displayed in Theorem 5.2 is large (in fact,
a product of 2™ factors), and it does not give an efficient way to calculate
the chromatic polynomial for T%. A considerable simplification appears in
the following theorem, which is the second exact formula for .« (t).

Theorem 5.3 LetT be atree andk € Z*. If By, ..., B, are all the distinct
maximal k-balls of T, then

e () = T fs 0"

5Cle]
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Proof. We will use induction on n = |V(T')|. The formula clearly holds
when n equals 1.

Let Bji,...,B. be all the maximal k-balls of 7. As in the proof of
Theorem 5.2, let u € V(T') be a leaf of T that is an endvertex of a longest
path in T. Let Ty = T \ {u}. By Lemma 2.2, we may assume that B,
is the (unique!) maximal k-ball containing u. Indeed by the definition of
chromatic polynomials, we have

xre(t) = (¢ = |Be| + 1)xp (1)
We must consider two possibilities: whether B, \ {u} is a maximal k-ball
of T} or not.
CASE ONE: Suppose B.\{u} is a maximal k-ball of 7. So, the maximal
k-balls of Ty are Bi,...,Bc_1, and B. \ {u}. Let
g { B ifi <c—1
i A\ {u} ifi=c
Let f§(t) = t(t —1)---(t — b¢ + 1), where b§ = |[),.q B¢|. We consider
two subcases depending on whether S = {c} or not. Note that for S # {c},

we have
(B:= ) B..
seS seSs

Thus,
fs(t) = f§(t)
When S = {c}, we have
fs() = fia®)
= (t=|Be| + 1) fiy®)
= (t—[B| +1)fs(t).
Therefore, using the induction hypothesis, we have

xre(t) = (6= [Be| + 1)xzp(t)

= =B+ [ e

5Cle]

u u —1)lsi—t
= (=Bl +Dffym-  [[ oY
SClel,S¢i{c}}

= fa®-  II s
SCle].S¢{{e}}

= II Fs(t) DT

SCc]
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This completes the induction in this case.

Case Two: Suppose B, \ {u} is not a maximal k-ball in T;. Since
By,...,B._; are all maximal in T, they are all maximal in 7;. We know
that B.\{u} is contained in some maximal k-ball of 77. This maximal k-ball
must also be maximal in T'; and therefore, we can assume B, \ {u} C B._1,
so By,...,B._1 are precisely all the maximal k-balls in T}. Hence, we have
by the induction hypothesis

_pylsi-1
xre@® = [ fs®
SCle—1]
It suffices to show that
Fs@)VT =t B + 1. (5)
5Cle],S¢Z[e—1]
FS={SCl:SZ[c—1]},then S ={S"U{c}: S’ C [c—1]}. Note that
B.NB._; = B.\ {u} and also that S = S; U S5, where
Sy ={S"U{c}:8" Cle-2]},
and
Se ={S"U{c—-1}u{c}: 8" Clec—2]}.
For a nonempty set S” C [¢ — 2], we have
ﬂ Bs = ﬂ Bs.
seS"u{c} seS"U{c—1}U{c}

Therefore, if S, = S" U {c} and S, = S" U {¢ — 1} U{c}, then

fS (t)(_l)lsclfl 'fs _(t)(_l)\sc_lﬂ —1
Also, frep(t) - fre—1,e3(t)™" =t — |B.| + 1. This shows that (5) is valid and
so completes the induction. O

REMARK: Although the formula in Theorem 5.3 is a substantial simpli-
fication of the one given in Theorem 5.2, it still does not yield a fast way
to calculate x7=(t) for a given integer t.

For the second power of T', we have the following corollary to Theo-
rem 5.3.

Corollary 5.4 Let T be a tree; dy,-..,dy, the degrees of the m non-leaves
of T; d = max;{d;}; and for each i € [m] let a; = |{j € [m] : d; > i}|.

Then
d

xre (t) =t — 1) [J (¢ =)™,

=2
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Proof. The maximal 2-balls are the vertices of the sub-stars of T' centered
at the non-leaves of T'. An intersection of 2-balls has one of the following
forms:

e 3 2-ball

e a l-ball (that is, a set of two neighboring vertices neither of which are
leaves)

e a 0-ball (that is, a single non-leaf vertex)
e empty

We consider the contribution of each type of intersection to the overall
product in turn. If By,..., B,, are all the maximal 2-balls, then

m

N= 1] fa@=TJte-1-@-d)

i1€[m)] i=1

is the product corresponding to intersections forming 2-balls.
The product corresponding to all the 1-balls is

m—1

D=TJut-1),

=1

since each 1-ball is an intersection of exactly two 2-balls of 7', and there are
exactly m — 1 such 1-balls in 7', which are not connected to leaves.

Next we consider the contribution due to intersections that are 0-balls.
Such an intersection is a single vertex of T' that is neither a leaf in T' nor
a leaf in the tree 7', where 7" = T'\ {leaves of T'}. Assuming u € V(T') is
such a 0-ball, then

{u}=B;;N---NB

where v > 2. If u is not the center of any of the 2-balls B;,, ..., B; , then
u is the center of some other 2-ball, say B;, where j & {i1,...,i,}. In this
case

[

{U}:Bil ﬂ"'ﬂ.B,‘7 ﬂBj
also, and hence we have
i _1)—1
f{il,...,i.,,j}(t)(_l) 'f{i17...7i.,}(t)( DA
Likewise, if w is the center of one of the 2-balls, say B;,, then
{u} =B, N---NB

iy
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and therefore,

TR () L S T () L AN 8

We conclude that the polynomial product corresponding to all the 0-balls
is 1, and hence by Theorem 5.3

=

xrs() = 3 =t =D [J=2) e o)

2

Il
-

Counting the exponents of each of the factors (¢ — i) proves our corollary.
O

REMARK: A simple proof of Corollary 5.4 can be obtained by using the
same inductive idea as in the proofs of Theorems 5.2 and 5.3.

5.2 Algorithm for chromatic polynomial evaluation

Given an integer ¢, the chromatic polynomial 7« (t) can actually be eval-
uated in linear time for each fixed power k. In what follows, we present an
O(kn) algorithm to evaluate x+(t), where T has n vertices and ¢ is any in-
teger. To evaluate this polynomial it suffices to get a simplicial elimination
ordering of the vertices of T*, together with the values dy(1),...,dx(n), to
yield x7=(t) as a product as in (3).

The next observation follows by an inductive application of Lemma 2.2.
Any root of the tree T is sufficient.

Observation 5.5 Breadth-First-Search (BFS) order of a tree T gives a
strong elimination ordering of the power graph T*.

Proof. The BFS ordering, rooted at any fixed node, divides the nodes into
levels, with the lowest leaves at level 0. Consider a leaf u at level 0 and let
Np,(u) be its neighborhood in T%. Let v and w be vertices in Ng (u) at levels
i and j, respectively, with ¢ < j. Then, we claim that N;(v) C Ng(w). To
see this, let ¢ be the least common ancestor of v and w. Ni(w) contains
all descendants of ¢, since their distance to w is at most the larger of the
distances of w to u and v to u. Hence, u is strongly simplicial in T*.
Observe that for a connected subtree S of 7', the power graph S* is
the same as the subgraph of T* induced by the vertices of S. Hence, the
same argument applies by induction to the tree T\ u, yielding a strong
elimination ordering of T*. O

Below we give an algorithm, CHROMATIC POLYNOMIAL, for computing
a representation of the chromatic polynomial. Namely, we find the val-
ues di(1),...,dr(n), where d(i) = |Ng(v;) N {v1,...,v;—1}|. Here N (i)
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denotes the neighborhood of v; in T*. For each node v we maintain its
number of descendants of distance ¢, where t = 1,... k. Then, di(n) is a
simple sum of such values of ancestors of the lowest leaf.

Let ch(v) be the set of children of v. Let p’(v) be v when i equals 0 and
the parent of p*~!(v) when i is greater than or equal to 1. Let desc;(v) be the
number of descendants of v of distance at most i. Thus, desco(v) = 1, count-
ing the node itself. For convenience, define desc_;(v) = 0. Let depth(v)
denote the distance from v to the root r, that is, the number of edges on
the path.

ALGORITHM CHROMATIC POLYNOMIAL

ChromPoly(T")
{ Input: Tree T' }
{ Output: di(1), ..., di(n) }

arbitrarily root 7" at some node r;
order the nodes of T" in a BFS order vy, ..., v,;
for eachv € V do
desco(v) + 1;
desci(v) < 1 + Y, ¢ cn) descioi(u), i=1,...,k;
for 5 = n downto 1 do
d(j) < 0;
for i =1 to min(k, depth(
d(j) « d(j) + (desck,i
for i = 1 to min(k, depth(
decrease descy—i(p'(vj)
fori < 1ltondo
output d(i);

)) do .

p'(vj)) — desce—i—1 (P (v))));
)) do

by one;

~ e ~c

The time complexity of ALGORITHM CHROMATIC POLYNOMIAL is clearly
O(nk).

From the BFS-order of ALGORITHM CHROMATIC POLYNOMIAL we can,
in fact, deduce more as shown in the next proposition.

Proposition 5.6 ALGORITHM CHROMATIC POLYNOMIAL correctly com-
putes the sizes d; of the strongly simplicial neighborhoods of T*.

Proof. The number of nodes within distance & from v that have a common
ancestor at p'(v) equals the number of descendants of pi(v). Thus, the
number of nodes within distance k from v that have p‘(v) as a common
ancestor but not p*~!(v) equals descy—;(p*(v)) — descr—i—1(p*~*(v)). This
is counted at each inner iteration in the algorithm. The resulting sum then
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correctly counts once all nodes within distance k£ from v. In the second
inner loop, we decrement all counters that involve the simplicial node being
removed. O

REMARK: For fixed n, the number of vertices of T', we need at least O(n)
calculations to evaluate x7«(t) for any given ¢. Hence, the best algorithm
possible must be O(f(k)n), where f is some function.

Acknowledgments

Geir is grateful to the Department of Mathematics at Arizona State Uni-
versity, in Tempe Arizona, for its generosity and hospitality. Ray’s research
was supported by a Fulbright Research Fellowship to the University of Ice-
land; he thanks the Fulbright Commissions of Iceland and the United States
for their support. His research was also supported by a Japanese Society
for the Promotion of Science (JSPS) Fellowship to the Human Genome
Center at the University of Tokyo; he thanks JSPS for their support. He
thanks both departments for their hospitality during his stays in Iceland
and Japan. Magnus thanks the Graduate School of Informatics of Kyoto
University, in Japan, for their hospitality.

References

[1] R. Balakrishnan and P. Paulraja. Powers of Chordal Graphs. Aus-
tralian Journal of Mathematics, Series A, 35:211-217, (1983).

[2] C. Berge. Balanced Matrices. Mathematical Programming, 2:19-31,
(1972).

[3] J.Ch. Boland and C. G. Lekkerkerker. Representation of Finite Graphs
by a Set of Intervals on the Real Line. Fundamentals of Mathematics,
51:45-64, (1962/1963).

[4] D. G. Corneil and P. E. Kearney. Tree Powers. Journal of Algorithms,
29:111-131, (1998).

[5] E. Dahlhaus and P. Duchet. On Strongly Chordal Graphs. Ars Com-
binatoria, 24 B:23-30, (1987).

[6] P. Damaschke. Distances in Cocomparability Graphs and Their Pow-
ers. Discrete Applied Mathematics, 35:67-72, (1992).

[7] P. Duchet. Propriété de Helly et Problémes de Représentation. Col-
loque C.N.R.S., (Orsay 1976), CNRS, Paris, 260:117-118, (1978).

24



(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Farber. Characterization of Strongly Chordal Graphs. Discrete
Mathematics, 43:173-189, (1983).

M. Farber. Domination, Independent Domination, and Duality in
Strongly Chordal Graphs. Discrete Applied Mathematics, 7:115-130,
(1984).

U. Feige and J. Kilian. Zero Knowledge and the Chromatic Number.
Journal of Computer and System Sciences, 57:187-199, (1998).

F. Gavril. The Intersection Graphs of Subtrees in Trees are Exactly
the Chordal Graphs. Journal of Combinatorial Theory B, 16:47-56,
(1974).

M. M. Halldérsson, J. Kratochvil, and J. A. Telle. Independent Sets
with Domination Constraints. Discrete Applied Mathematics, 99:39—
54, (2000).

N. Kalyana, R. Prasad, and P. S. Kumar. On Generating Strong
Elimination Orderings of Strongly Chordal Graphs. Proceedings of the
18th Foundations of Software Technology and Theoretical Computer
Science Conference. Springer-Verlag, Berlin, Germany, pages 221-232,
(1998).

R. Laskar and D. Shier. On Chordal Graphs. Congressus Numeran-
tium, 29:579-588, (1980).

R. Laskar and D. Shier. On Powers and Centers of Chordal Graphs.
Discrete Applied Mathematics, 6:139-147, (1983).

Y.-L. Lin and S. Skiena. Algorithms for Square Roots of Graphs.
SIAM Journal of Discrete Mathematics, 8(1):99-118, (1995).

S. L. Peng and M. S. Chang. A Simple Linear Time Algorithm for the
Domatic Partition Problem on Strongly Chordal Graphs. Information
Processing Letters, 43:297-300, (1992).

A. Raychaudhuri. On Powers of Interval and Unit Interval Graphs.
Congressus Numerantium, 59:235-242, (1987).

A. Raychaudhuri. On Powers of Strongly Chordal and Circular
Graphs. Ars Combinatoria, 34:147-160, (1992).

D. B. West. Introduction to Graph Theory. Prentice-Hall Inc., Upper
Saddle River, New Jersy, (1996).

25



