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1 IntrodutionThe input of the test over problem (TCP) onsists of a set of items, f1; : : : ;mg,and a olletion of tests, T1; : : : ; Tn � f1; : : : ;mg. A test Tj overs or di�eren-tiates the item pair fh; ig if either h 2 Tj or i 2 Tj , i.e., if jTj \ fh; igj = 1. Asubolletion T � fT1; : : : ; Tng of tests is a test over if eah of the m(m� 1)=2item pairs is overed by at least one test in T . The objetive is to �nd a testover of minimum ardinality, if one exists.The test over problem arises naturally in identi�ation problems. Given aset of individuals and a set of binary attributes that may or may not our ineah individual, the goal is to �nd a minimum-ardinality subset of attributes{ an optimal test over { that identi�es eah individual uniquely. That is, theinidene vetor of eah individual with the test over is a unique binary signa-ture, distinguishing him or her from any other individual. The problem is alsoknown in the literature as the minimum test olletion problem [10℄ [4℄ and min-imum test set problem [15℄ [4℄. It arises ommonly in fault testing and diagnosis,pattern reognition, and biologial identi�ation [15℄.This paper is the work of two independent groups of researhers. The �rstgroup was motivated, over twenty years ago, by a request from the Agriul-tural University in Wageningen, the Netherlands, onerning the identi�ationof potato diseases [13℄. Eah potato variety is vulnerable to a number of diseases.In order to diagnose diseases eÆiently, one wished to have a minimum seletionof varieties that disriminates between all diseases. This appliation involved 28diseases (items) and 63 varieties (tests).The problem ame to the attention of the seond group of researhers ina projet on protein identi�ation by epitope reognition [6℄. It proposed anew approah of using a set of antibodies that reognize and bind spei�allyto short peptide sequenes, alled epitopes. Suh an epitope an distinguishproteins that ontain it from those that do not. The epitopes are uoresentlytagged, so that the binding of antibodies to an unidenti�ed protein an bedeteted. Thus the output is a binary vetor of dimension equal to the number ofantibodies, indiating to whih of the antibodies the protein is bound. The idea isto generate a set of antibodies with three properties: they reognize epitopes thatare shared by many proteins, the epitopes together over all possible proteinsin the organism's proteome, and eah protein is reognized by a unique subsetof antibodies. This leads to a test over problem, with proteins as items andantibodies as tests. The ited appliation involved about 6,000 proteins. Theeventual goal is to handle muh larger atalogues and, in partiular, the humanorganism, whih has between 40,000 and 100,000 proteins.Both problems were suessfully attaked by a ombination of greedy andloal improvement algorithms. For the Duth problem, optimality of the result-ing solution was proved by a simple branh-and-bound algorithm, using a lowerbound based on the observation that, for distinguishing m items, one needsat least dlog2me tests, and a branhing sheme preferring tests of size loseto m=2 to smaller or larger ones. This work inspired researh into the perfor-mane of greedy and loal improvement algorithms for the problem and into its2



omplexity and approximability. After two earlier reports [5℄ [12℄, the presentpaper gives a joint aount of our researh. A omplementary paper [2℄ disussesoptimization algorithms for the test over problem.The TCP is NP-hard in the strong sense [4℄. Moret & Shapiro [15℄ establisheda strong relation between the TCP and the well-known set overing problem,and used it to prove that the greedy algorithm for the TCP has a worst-aseperformane ratio to the optimum of �(logm). In Setion 2 we reall theseresults, and we show that no polynomial-time algorithm for the TCP is likelyto have a lower-order performane ratio.In Setion 3 we onsider the ase that eah test ontains at most k items,where k is part of the input. This is a ommon restrition for the TCP. Forthe above protein identi�ation problem the novelty of the approah is theutilization of antibodies that bind to many proteins. However, most knownantibodies bind spei�ally to protein fragments, whih justi�es interest in theTCP with small tests. We give an O(log k)-approximation algorithm for theTCP with no more than k items per test.In Setion 4 we turn to the speial ase that eah test ontains at mosttwo items, denoted by TCP2. We formulate it as an optimization problem on agraph and derive a performane ratio of 11=8 for the natural greedy algorithm;the proof is given in Appendix A. We then relate the TCP2 to the problemof paking paths of length 2 in a graph, whih implies its NP-hardness. (TheTCP2 has been stated to be solvable in polynomial time [4℄, a laim that waswithdrawn due to our work [9℄.) The relation between the two problems arriesover to approximation bounds. In fat, the greedy algorithm for the path pakingproblem gives an algorithm for the TCP2 with performane ratio 4=3, whih isbetter than 11=8. We prove that both problems are APX-hard and hene do nothave a polynomial-time approximation sheme unless P = NP.Finally, in Setion 5 we present a series of loal improvement heuristis forthe path paking problem and the TCP2. Eah next heuristi in the seriessearhes over a larger neighborhood. An analysis of these heuristis is givenin a ompanion paper [1℄, whih adds to the growing body of literature onperformane guarantees for loal searh.2 The general TCPThe TCP has a natural reformulation as a ut overing problem on a ompletegraph. Items orrespond to verties and item pairs to edges. Eah test de�nes aut, onsisting of the item pairs overed by the test. The objetive is to �nd aminimum-size subolletion of those uts whose union is the omplete edge set.The ut overing problem an in turn be formulated as a set overing problem(SCP). In the SCP, given a set of M elements and a olletion of N subsets,one wishes to �nd a minimum-size subolletion of subsets whose union is theentire set. Obviously, edges orrespond to elements and uts to subsets. Startingwith a TCP instane with m items and n tests, one obtains an equivalent SCPinstane withM = m(m�1)=2 elements andN = n subsets.3



As a onsequene, algorithms for the SCP also apply to the TCP. The greedyalgorithm for the SCP, whih iteratively selets a subset overing the largestnumber of yet unovered elements, has a performane ratio 1 + lnM [8℄ [14℄. Itdiretly gives a greedy algorithm for the TCP, always hoosing a test overing thelargest number of unovered pairs, with performane ratio 1+2 lnm [15℄ [10℄.Moret & Shapiro [15℄ showed, onversely, how to redue the SCP to theTCP. They observe that this alternative strong NP-hardness proof preludesthe existene of a fully polynomial-time approximation sheme, unless P = NP,and also use the redution to show that the performane ratio of the greedyalgorithm is tight up to a onstant fator. We repeat their redution here.Consider an SCP instane with elements f1; : : : ;Mg and subsets S1; : : : ; SN .Construt a TCP instane with m = 2M items and N + dlog2Me tests, asfollows. For eah element i reate a female item fi and a male item mi. For eahsubset Sj de�ne a test Tj = ffi : i 2 Sjg. In addition, introdue a minimum-sizeolletionM of tests that overs all pairs of male items; note that dlog2Me testsare neessary and suÆient for this purpose. Finally, if a test in M ontains anitemmi, put its partner fi in the test as well. See Figure 1.We laim that there is a set over of size at most � if and only if there isa test over of size at most � + dlog2Me. Any test over must inlude M, asthere is no other way to over the male pairs. M also overs the female pairsand the mixed pairs with nonequal index values. Any other tests are of type Tjand only serve to over pairs of type (fi;mi). Sine the tests Tj only ontainfemale items, a olletion of suh tests overs all pairs (fi;mi) (i = 1; : : : ;M) ifand only if the orresponding subsets form a set over. That is, S is a set overif and only ifM[fTj jSj 2 Sg is a test over.This argument not only shows that the TCP is NP-hard. Also inapproxima-bility results for the SCP arry over to the TCP. However, if we apply the aboveredution to the lass of bad SCP instanes due to Johnson [8℄, on whih thegreedy algorithm ahieves a logarithmi performane ratio, then we obtain aS1 S2 S3 M T1 T2 T311 1 11100 000 1 11 111 11
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lass of TCP instanes on whih the greedy solution is within a onstant fa-tor of the optimum, due to the presene of the tests in M. Following Moret &Shapiro [15℄, given an SCP instane with M elements and N subsets, we makek = dlog22Me disjoint opies of it so as to obtain a multiplied SCP instane withkM elements and kN subsets. We then onstrut a TCP instane with (k+1)Mitems and kN + dlog2Me tests, with kM female items orresponding to the el-ements, M additional male items, kN tests orresponding to the subsets, anddlog2Me \even splitting" tests. The original SCP instane has a solution of sizeat most � if and only if the multiplied instane has a solution of size at mostk�, and hene if and only if the TCP instane has a solution of size at mostk�+dlog2Me � k�(1+O(1= logM)).Now, if we were able to approximate the TCP optimum within a fator of�, then we ould apply our method to the instane onstruted above, dividethe result by dlog22Me, and obtain an algorithm for the SCP with performaneratio �(1 + O(1= logM)). We ite two inapproximability results for the SCP:No polynomial-time algorithm an have a performane ratio o(logM) unlessP = NP [17℄. And no suh algorithm an have a performane ratio (1� �) lnM ,for any � > 0, unless NP � DTIME(M log logM ) [3℄.Theorem 2.1 The TCP has no polynomial-time algorithm with performanebound o(logm), unless P = NP, and no polynomial-time algorithm with perfor-mane bound (1� �) lnm, for any � > 0, unless NP�DTIME(mlog logm).3 The TCP with tests of size at most kWe now onsider the TCP in whih eah test ontains at most k items, denotedby TCPk. We propose an algorithm with performane ratioO(log k).First note that a partial test over de�nes an equivalene relation on the setof items, where two items are equivalent if there is no test in the partial overthat di�erentiates them. The equivalene lasses are the subsets of pairwiseequivalent items.Our two-phase greedy algorithm proeeds as follows. In phase 1, given a TCPinstane, view it as an SCP instane with items as elements and tests as subsets,and apply the greedy algorithm for the SCP to �nd a set over SG. If SG is atest over, then stop. Otherwise, in phase 2 apply the greedy algorithm for theTCP to extend the partial test over SG to a omplete test over.Let �� and �� denote the size of an optimum set over and an optimum testover for the item set, respetively. The greedy set over SG found in phase 1has size �G � (1+ln k)�� [8℄ [14℄. Sine any test over is a set over of all but atmost one of the items, we have �� � ��+1 and hene �G = O(log k)��.At the start of phase 2, eah equivalene lass ontains at most k items,beause eah item is in some test of SG and thereby di�erentiated from at leastm�k other items. It follows that any test overs at most k(k�1) more item pairs,so that the greedy test over found in phase 2 has size �G � (1+ln(k(k�1)))��[8℄ [14℄. The overall test over has size �G+�G = O(log k)��.5



Theorem 3.1 The two-phase greedy algorithm for TCPk has a performaneratio O(log k).4 The TCP with tests of size at most 24.1 A problem on graphsThe rest of this paper is onerned with the speial ase that eah test ontainsat most two items, denoted by TCP2. We �rst argue that we may assume thateah test ontains exatly two items.Lemma 4.1 Any instane of the TCP with tests of size at most 2 an betransformed into an instane of the TCP with tests of size exatly 2.Proof. Let T = fT1; : : : ; Tng, and let T � T be a minimum test over. Supposethat we have u items not ontained in any test in T with u 2 f0; 1g, v itemsg1; : : : ; gv with gt only ontained in the test fgtg 2 T, for t = 1; : : : ; v, and w itempairs fh1; i1g; : : : ; fhw; iwg with the property that, for t = 1; : : : ; w, fht; itg 2 T,fhtg 2 T, possibly fitg 2 T, and no other test ontains ht or it. If u+v+w > 0,then T ontains, without loss of generality, the �rst u + v + 2w � 1 tests fromfg1g; : : : ; fgvg; fh1g; fh1; i1g; : : : ; fhwg; fhw; iwg, leaving one item isolated.Eah item h not among those u + v + 2w ones has the properties that (a)there exists an item i suh that fh; ig 2 T, and (b) for all suh fh; ig there existsan fh0; i0g 2 T suh that jfh; ig\fh0; i0gj = 1.We may assume without loss of generality that T does not ontain singletontests exept the ones mentioned above. For suppose T ontains another singletontest fhg. As T is minimum, it does not ontain two tests fh; ig and fh; i0g. IfT ontains no test fh; �g, replae fhg by any test fh; ig 2 T, whih exists by(a). If by this ation h and i beome indistinguishable (i was apparently leftisolated), or if T already ontains a test fh; ig, replae fhg by the orrespondingtest fh0; i0g 2 T, see (b).By eliminating all u + v + 2w items involved, the tests that ontain them,and all other singleton tests, and adding one isolated item if u+ v +w > 0, weobtain an equivalent instane of the TCP2 with tests of size 2 only. �From now on we will restrit our attention to the TCP2 with tests of sizeexatly 2. This TCP2 an be formulated as an optimization problem on a graph,in whih the m items orrespond to verties and the n tests to edges. We obtainthe following haraterization of test overs.Lemma 4.2 In a graph G = (V;E), a subset E0 � E is a test over if and onlyif the graph G0 = (V;E0) has no isolated edges and at most one isolated vertex.Proof. If E0 is a test over, then G0 = (V;E0) has at most one isolated vertex(an item with an all-zero signature) and no isolated edges (sine otherwise itsverties would not be di�erentiated). Conversely, a graph with these properties6



satis�es the ondition that, for any two verties, there is an edge inident toexatly one of them. �Note that this lemma also haraterizes feasible instanes of the TCP2. We willassume from now on that the instanes that we onsider are feasible.A test over is minimal if no edge an be deleted from it without ausinginfeasibility. In addition to having the properties stated in Lemma 4.2, a minimaltest over is obviously ayli. This implies the following.Lemma 4.3 In a graph G = (V;E), if E0 � E is a minimal test over, then atmost one of the omponents of G0 = (V;E0) is an isolated vertex and eah otheromponent is a tree of at least two edges.The greedy algorithm for the TCP2 iteratively selets an edge that oversthe largest number of yet unovered vertex pairs. In Appendix A we prove thefollowing performane bound for the greedy algorithm.Theorem 4.1 The greedy algorithm for the TCP2 has performane ratio 11=8.This bound is asymptotially tight.4.2 Paking paths of length 2We will now examine the relation of the TCP2 to another optimization problemon a graph. In the problem of paking paths of length 2 (PPP2), we are given agraph on m verties, and we wish to �nd a maximum number of vertex-disjointpaths of length 2, leaving at least one vertex isolated. We will often use the termpath paking to indiate a feasible solution to the PPP2. Sine the problem ofpartitioning a graph into paths of length 2 is NP-omplete [11℄ [4℄, the PPP2 isNP-hard.The seemingly arti�ial ondition that any solution to the PPP2 has at leastone isolated vertex is mathed by the property that any solution to the TCP2has at most one isolated vertex. It is introdued for the sake of a duality relationbetween the PPP2 and the TCP2, as elaborated below.Given a test over, we an easily �nd a path paking.Lemma 4.4 If a graph G = (V;E) has a minimal test over of size � , then ithas a path paking of size � = m� 1� � .Proof. Let E0 � E be the minimal test over. Suppose that the graph G0 =(V;E0) has k omponents. By Lemma 4.3, G0 is a forest, and hene � = jE0j =m�k. By the same lemma, we an selet a path of length 2 from eah but one ofthe omponents, and obtain a path paking of size � = k�1 = m�1�� . �A onverse relation holds as well. A path paking is maximal if no path an beadded to it. 7



Lemma 4.5 If a graph G = (V;E) has a maximal path paking of size �, thenit has a test over of size � = m� 1� �.Proof. The graph indued by the path paking ontains m � 3� isolated ver-ties. We distinguish two ases.(1) The path paking has a path in eah omponent of G. We extend it to atest over by suessively onneting all but one of the isolated verties to one ofthe paths, and obtain a test over of size � = 2�+m�3��1 = m�1��.(2) The path paking has a path in eah but one omponent of G. (Sine Gis feasible, the omponent without a path has one or three verties.) We extendthe path paking to a test over by spanning a tree in the omponent without apath and onneting eah of the remaining isolated verties to one of the paths,and thus obtain a test over of size � = 2� +m� 3� � 1 = m� 1� �. �Given any algorithm that produes a maximal path paking, its extension to theTCP2 onstruts a test over by the proedure in the above proof.Lemmas 4.4 and 4.5 together imply a relation between optimal solutionvalues to the TCP2 and the PPP2, and also allow us to relate the performaneof approximation algorithms.Theorem 4.2 In a graph G = (V;E), the size �� of a maximum path pakingand the size �� of a minimum test over satisfy �� + �� = m� 1.Sine the PPP2 is NP-hard, it follows that the TCP2 is NP-hard too.Theorem 4.3 If the PPP2 has an algorithm with performane ratio �, thenthe TCP2 has an algorithm with performane ratio 3=2� �=2.Proof. Suppose algorithm A for the PPP2 satis�es �A � ���. Consider itsextension A0 to the TCP2. We know that �A0 + �A = m� 1 = �� + ��. Hene,�A0 = �� + �� � �A � �� + (1 � �)��. Sine 3�� � m � 1 = �� + ��, we have�� � ��=2 and thereby �A0 � �� + (1� �)��=2 = (3=2� �=2)��. �The greedy algorithm for the PPP2 iteratively selets a path of length 2 fromthe graph and deletes its verties and adjaent edges. When the graph ontainsno path of length 2 or when it has at most three verties, the algorithm hasobtained a maximal path paking and terminates. A bad example is given bythe graph in Figure 2. The greedy algorithm may selet only one path of length2, whereas three is optimal. We show that this is the worst ase.
Figure 2: Worst-ase instane for the greedy algorithm for the PPP28



Theorem 4.4 The greedy algorithm for the PPP2 has performane ratio 1=3.Its extension to the TCP2 has performane ratio 4=3. These bounds are tight.Proof. Any path of length 2 in the greedy solution intersets at most threepaths of length 2 in the optimal solution. Sine the greedy solution is maximal,either eah path in the optimal solution intersets a greedy path, whih impliesthe desired performane bound, or the greedy solution leaves exatly three ver-ties isolated that form a path of length 2, in whih ase the greedy solution isoptimal. Theorem 4.3 implies the bound for the extension to the TCP2. �Theorems 4.1 and 4.4 tell us that, for the TCP2, piking paths of length 2 atrandom gives a better guarantee than hoosing most distintive single edges.4.3 APX-hardnessWe will show that the PPP2 and thereby also the TCP2 is APX-hard. Ourresult will follow through a redution from 3-dimensional mathing with at mostthree ourrenes per element (3DM3): Given disjont sets X;Y; Z ontaining selements eah, and a set C of t triples in X � Y � Z, suh that eah elementof X [ Y [ Z ours in at most three triples of C, �nd a maximum-ardinalitymathing C 0 � C, i.e., a subset of triples suh that no element ofX[Y [Z oursin more than one triple. For 3DM3, it is NP-hard to deide whether a maximummathing is perfet or misses a onstant fration of the elements [16℄.Lemma 4.6 There exists a onstant � > 0 suh that it is NP-hard to determinewhether an instane of the PPP2 has a path paking of size (m� 1)=3 or of sizeat most (1� �)(m� 1)=3.Proof. Given an instane of 3DM3, we reate a graph G with m = 6s+3t+1verties{ �xg ; xg for eah xg 2 X , �yh; yh for eah yh 2 Y , �zi; zi for eah zi 2 Z,{ xj ; yj ; zj for eah j 2 C,{ w, a vertex that will remain isolated,and n = 3s+ 5t edges{ f�xg ; xgg for eah xg 2 X , f�yh; yhg for eah yh 2 Y , f�zi; zig for eah zi 2 Z,{ fxg ; xj g; fyh; yj g; fzi; zjg for eah triple j = fxg ; yh; zig 2 C,{ fxj ; yj g; fyj ; zjg for eah j 2 C.We laim that G ontains 2s+ t vertex-disjoint paths of length 2 if and only ifthere exists a mathing of size s. The redution is illustrated in Figure 3.If the instane of 3DM3 has a mathing C 0 of size s, then G ontains paths(�xg ; xg ; xj ), (�yh; yh; yj ), (�zi; zi; zj ) for eah triple j = fxg; yh; zig 2 C 0 and apath (xj ; yj ; zj ) for eah triple j 2 CnC 0, giving a total number of 3s+(t�s) =2s+ t paths.Now, let a maximum mathing onsist of �� triples, and let an optimal pathpaking P onsist of �� paths. P ontains element paths of type (�; ; ) and9
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��ytFigure 3: Redution of 3DM3 to PPP2triple paths of type (xj ; yj ; zj ); it is easy to see that other types of paths in anypath paking an be replaed by element paths. We will bound �� in terms of��. Let t0; t1; t2; t3 be the number of triples in C interseting 0; 1; 2; 3 elementpaths in P , respetively. Then,�� � t0 + t1 +2t2 +3t3 = t+ t2 +2t3 = t+ 12(2t2 +3t3) + 12t3 � t+ 32s+ 12��:The �rst equality holds beause t = t0+t1+t2+t3. The seond inequality followsfrom t1 + 2t2 + 3t3 � 3s (P ontains at most 3s element paths) and t3 � ��.Hene, if �� = 2s+ t, then �� = s.Let �0 > 0 be suh that it is NP-hard to deide whether �� = s or �� �(1 � �0)s. Hene, it is NP-hard to deide whether �� = 2s + t = (m � 1)=3 or�� � 2s+ t� �0s=2 = (1� �)(m�1)=3, if we hoose � = �0s=(4s+2t). For 3DM3,we have t � 3s, so that � � �0=10. This ompletes the proof. �Lemma 4.6 and Theorem 4.2 imply the following.Theorem 4.5 The PPP2 and the TCP2 are both APX-hard.5 Loal improvement for PPP2 and TCP2In this �nal setion we propose a series of loal improvement algorithms for thePPP2. Eah next algorithm in the series starts from a maximal path paking,searhes over a larger neighborhood, and requires more time. Its extension to the10



TCP2, as desribed in Setion 4.2, transforms the loally optimal path pakinginto a test over.The basi heuristi, denoted H0, applies the greedy algorithm to obtain amaximal path paking. For k � 1, the kth heuristi in the series, denoted Hk,starts from a maximal path paking, and attempts to improve it by replaingany k paths of length 2 by k + 1 paths of length 2. This involves a ompletesearh over all sets of k paths and, for eah suh set, over all possibilities forimprovement. When no further improvements are found, Hk terminates. For�xed k, Hk runs in polynomial time, but the running time of Hk is not knownto be polynomial in k.Let �k be the performane ratio of heuristi Hk, for k � 0. Obviously, �k isnondereasing in k. Theorem 4.4 states that �0 = 1=3. Here we will disuss �1,�2, �3, and �4.Theorem 5.1 The loal improvement algorithms H1, H2, H3, and H4 for thePPP2 have performane ratios �1 = 1=2, �2 = 5=9, �3 = 7=11, and �4 = 2=3.These bounds are tight.Hurkens & Shrijver [7℄ onsider a series of analogous loal improvementalgorithms for the more general problem of paking vertex-disjoint subgraphson t verties in a given graph. Their work was, in fat, inspired by questionsabout the performane of our heuristis Hk. They derive a lower bound �kon the performane ratio of their kth heuristi, and prove that it is tight if thesubgraph is a lique. In partiular, for t = 3,�k = ( 2�2(k+2)=2�33�2(k+2)=2�3 if k is even;2�2(k+1)=2�23�2(k+1)=2�2 if k is odd:Sine a path of length 2 is a subgraph on three verties, we know that �k � �k.Table 1 lists the values of �k (k � 0) for the problem of paking triangles,�k (k = 0; : : : ; 4) for the PPP2, and the orresponding ratios for the TCP2 thatare implied by Theorem 4.3. Note that �4 = limk!1 �k. The asymptoti valuelimk!1 �k remains open, but it is likely to be stritly smaller than 1, in viewof Theorem 4.5.Instanes for whih H1, H2, H3, and H4 meet their laimed performaneratios are given in Figures 4, 5, 6, and 7, respetively. In eah ase the dashedproblem k 0 1 2 3 4 5 6 7 8 � � � 1triangle paking �k 13 12 59 35 1321 1422 2945 3046 6193 � � � 23PPP2 �k 13 12 59 711 23TCP2 32 � �k2 43 54 119 1311 76Table 1: Performane ratios for loal improvement heuristis11



Figure 4: Worst-ase instane for H1
Figure 5: Worst-ase instane for H2
Figure 6: Worst-ase instane for H3
Figure 7: Worst-ase instane for H4lines indiate a loally optimal path paking, and the solid lines indiate a largerpaking. Note that we have omitted the mandatory isolated vertex and that here,as well as in Figure 2, we an provide an in�nite family of worst-ase instanesby reating multiple opies of the graph.The upper bounds on �k provided by these examples math the lower bounds�k for k = 1 and k = 2, whih proves part of Theorem 5.1. The proof for k = 3and k = 4 is more involved. We outline the general idea here, and refer to a12



ompanion paper [1℄ for details. The argument may be extended to handle H5and H6, but we have not attempted to do so.Our approah to obtain lower bounds on �k is based on linear programming.Consider a graph G with a loally optimal path paking P found by Hk andany other path paking Q. In order to show that jPj=jQj � �k, we may makethe following assumptions:{ G does not ontain other edges than those appearing in P and Q;{ jPj < jQj;{ eah path in P intersets at least one path in Q;{ eah path in Q intersets at least one path in P ;{ no set of three verties is overed by a P-path and by a Q-path;{ eah middle vertex of a P-path is overed by some Q-path.For every vertex that is both on a P-path and on a Q-path, we de�ne a label,whih expresses the interation of its Q-path with the P-paths. Based on thislabeling we distinguish several types of P-paths. This leads to eight vertex labelsand 96 path types, 40 of whih an be exluded due to the above assumptions.For eah remaining path type we introdue a variable, denoting the fration ofP-paths of that type in P . The variables add up to 1. Furthermore, the ratiojQj=jPj an be written as a linear ombination of these variables.By arefully analyzing on�gurations that an or annot be improved by Hk,we are able to formulate restritions on ertain ombinations of the variables.For instane, onsider a Q-path that intersets exatly one P-path, in exatlyone vertex. Suh a vertex is labeled 1. It is immediate from the de�nition of H1that no path in P ontains two or three verties labeled 1. This observation setssixteen variables to 0.When desribing the onditions orresponding to on�gurations that are notimproved by H1, H2, H3, or H4, we end up with three, �ve, eight, or ten linearonstraints, respetively. Maximizing the ratio under these onstraints provesTheorem 5.1, and yields frations that are in agreement with the instanes givenin Figures 4, 5, 6, and 7.AknowledgmentWe are grateful to the referees, whose omments helped us to improve thepaper.Referenes[1℄ K.M.J. De Bontridder, B.V. Halld�orsson, M.M. Halld�orsson, C.A.J.Hurkens, J.K. Lenstra, R. Ravi, L. Stougie (2003). Loal improvement algo-rithms for a path paking problem: a performane analysis based on linearprogramming. In preparation.[2℄ K.M.J. De Bontridder, B.J. Lageweg, J.K. Lenstra, J.B. Orlin, L. Stougie(2002). Branh-and-bound algorithms for the test over problem. R.H.13



M�ohring, R. Raman (eds.). Algorithms|ESA 2002, LNCS, Springer,Berlin, 223{233.[3℄ U. Feige (1998). A threshold of lnn for approximating set over. Journalof the ACM 45, 634{652.[4℄ M.R. Garey, D.S. Johnson (1979). Computers and Intratability: A Guideto the Theory of NP-ompleteness, Freeman, San Franiso.[5℄ B.V. Halld�orsson, M.M. Halld�orsson, R. Ravi (2001). On the approximabil-ity of the minimum test olletion problem. F. Meyer auf der Heide (ed.).Algorithms|ESA 2001, LNCS 2161, Springer, Berlin, 158{169.[6℄ B.V. Halld�orsson, J.S. Minden, R. Ravi (2001). PIER: Protein identi�ationby epitope reognition. N. El-Mabrouk, T. Lengauer, D. Sanko� (eds.).Currents in Computational Moleular Biology 2001, 109{110.[7℄ C.A.J. Hurkens, A. Shrijver (1989). On the size of systems of sets everyt of whih have an SDR, with an appliation to the worst-ase ratio ofheuristis for paking problems. SIAM Journal on Disrete Mathematis 2,68{72.[8℄ D.S. Johnson (1972). Approximation algorithms for ombinatorial prob-lems. Journal of Computer and System Sienes 9, 256{278.[9℄ D.S. Johnson (1981). The NP-ompleteness olumn: an ongoing guide.Journal of Algorithms 4, 393{405.[10℄ V. Kann (1992). On the approximability of NP-omplete optimization prob-lems, PhD thesis, Royal Institute of Tehnology, Stokholm, Sweden.[11℄ D.G. Kirkpatrik, P. Hell (1978). On the omplexity of a generalized math-ing problem. Proeedings of the Tenth Annual ACM Symposium on Theoryof Computing, 240{245.[12℄ A.W.J. Kolen, J.K. Lenstra (1995). Combinatoris in operations researh.R. Graham, M. Gr�otshel, L. Lov�asz (eds.). Handbook of Combinatoris,Elsevier Siene, Amsterdam, 1875{1910.[13℄ B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan (1980). Uit de pra-tijk van de besliskunde. A.K. Lenstra, H.W. Lenstra, J.K. Lenstra (eds.),Tamelijk briljant; Opstellen aangeboden aan Dr. T.J. Wansbeek, Amster-dam.[14℄ L. Lov�asz (1975). On the ratio of optimal integral and frational overs.Disrete Mathematis 13, 383{390.[15℄ B.M.E. Moret, H.D. Shapiro (1985). On minimizing a set of tests. SIAMJournal on Sienti� and Statistial Computing 6, 983{1003.[16℄ E. Petrank (1994). The hardness of approximations: gap loation. Compu-tational Complexity 4, 133-157.[17℄ R. Raz, S. Safra (1997). A sub-onstant error-probability low-degree test,and a sub-onstant error-probability PCP haraterization of NP. Proeed-ings of the Twenty-Ninth Annual ACM Symposium on Theory of Comput-ing, 475{484. 14



A Analysis of the greedy algorithm for TCP2We onsider the greedy algorithm for the TCP2 de�ned on a graph G = (V;E)with m verties (items) and n edges (tests). The greedy algorithm iterativelyselets an edge that overs the largest number of yet unovered vertex pairs.To examine the options, onsider a partial test over E0 � E. Let Vk denotethe set of verties that lie in a omponent of G0 = (V;E0) of size k. By adding anedge onneting h; i 2 V1 we over 2(jV1j�2) more vertex pairs. An edge betweenh 2 V1 and i 2 V2 overs jV1j more vertex pairs, whereas an edge between h 2 V1and i 62 V1 [ V2 overs jV1j � 1 more vertex pairs. An edge between h; i 2 V2onnets two isolated edges and hene overs two more vertex pairs. Finally, anedge between h 2 V2 and i 62 V1[V2 overs one more vertex pair.It follows that, as long as at least four verties are isolated, the greedyalgorithm will selet isolated edges. In phase 1 it onstruts a maximal math-ing, leaving at least two verties isolated. (If it would ontinue adding edges tothe mathing until just one vertex remains isolated, then the latest edge ov-ered two more pairs, while onneting one of the three isolated verties to themathing would have overed three more pairs.) Let E01 be the set of edges inthe mathing.In phase 2 the greedy algorithm selets edges that are inident to only oneedge in E01, thus reating paths of length 2 in the graph, until this is no longerpossible, or until only one vertex is left isolated. Let E02 be the set of edgesseleted in this phase. After phase 2, the graph G2 = (V;E01 [ E02) onsists ofpaths of length 2, isolated edges, and isolated verties.In phase 3 edges are seleted that onnet isolated verties to a path in G2,until at most two verties are left isolated. Let E03 be the set of edges seleted inthis phase. The graph G3 = (V;E01 [E02 [E03) onsists of trees on three or moreverties, isolated edges, and at most two isolated verties.In phase 4 edges are seleted that onnet two isolated edges in G3, onsti-tuting the set E04. The resulting graph is G4.Finally, in phase 5 edges are seleted that onnet the remaining isolatededges and at most one isolated vertex to trees inG4, onstituting the setE05.We are now ready to prove Theorem 4.1.The edges that are isolated at the start of phase 4 were already isolated atthe end of phase 2. Thus, reversing phases 3 and 4 does not hange the outomeof the greedy algorithm. After phases 1, 2, and 4, the omponents of the graphG04 = (V;E01 [ E02 [ E04) are paths of length 3 or 2, isolated edges, and isolatedverties. We denote their number by 4, 3, 2, and 1, respetively, where theindex denotes the number of verties in the omponents. In phases 3 and 5, allisolated edges and all but one of the isolated verties in G04 are onneted to oneof the paths in G04. Therefore, the size of the greedy test over is�G = 34 + 23 + 2 + (2 + 1 � 1) = 34 + 23 + 22 + 1 � 1: (1)Theorem 4.2 together with �� � (m � 1)=3 implies that �� � 2(m � 1)=3.15
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Figure 8: Worst-ase instane for the greedy algorithm for the TCP2Sine m = 44+33+22+1, we have�� � 23(44 + 33 + 22 + 1 � 1): (2)To obtain another lower bound on ��, we onsider the graph G04 again. Eah ofits isolated edges and eah of its isolated verties exept one needs an adjaentedge in any test over. Moreover, no pair of isolated edges or verties an beombined by an extra edge into a path of length 2 or 3, as otherwise this wouldhave been done in phase 2 or phase 4. Hene,�� � 22 + 1 � 1: (3)Adding 9=8 times (2) and 2=8 times (3) and applying (1) yields118 �� � 34 + 943 + 22 + 1 � 1 � �G:To show that the ratio is asymptotially tight, onsider the graph given inFigure 8. It onsists of one isolated vertex and  isomorphi omponents ontwelve verties eah. The number displayed at an edge indiates the phase inwhih the edge is seleted by the greedy algorithm. The greedy test over hassize �G = 11 � 1. Sine eah of the large omponents an be overed by fourpaths of length 2, we have �� = 8. Thus, lim!1 �G=�� = 11=8.
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