
1 23

Distributed Computing

ISSN 0178-2770

Distrib. Comput.
DOI 10.1007/s00446-017-0321-3

Distributed approximation of k-service
assignment

Magnús M. Halldórsson, Sven Köhler &
Dror Rawitz

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Germany, part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Distributed Computing
https://doi.org/10.1007/s00446-017-0321-3

Distributed approximation of k-service assignment

Magnús M. Halldórsson1 · Sven Köhler2 · Dror Rawitz3

Received: 10 November 2016 / Accepted: 7 December 2017
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract
We consider the k-Service Assignment problem (k-SA). The input consists of a network that contains servers and clients.
Associated with each client is a demand and a profit. In addition, each client c has a service requirement κ(c) ≤ k, where κ(c)
is a positive integer. A client c is satisfied only if its demand is handled by exactly κ(c) neighboring servers. The objective is to
maximize the total profit of satisfied clients, while obeying the given capacity limits of the servers. We focus here on the more
challenging case of hard constraints, where no profit is granted for partially satisfied clients. This models, e.g., when a client
wants, for reasons of fault tolerance, a file to be stored at κ(c) or more nearby servers. Other motivations from the literature
include resource allocation in 4G cellular networks and machine scheduling on related machines with assignment restrictions.
In the r -restricted version of k-SA, no client requires more than an r -fraction of the capacity of any adjacent server.We present
a (centralized) polynomial-time k+1−r

1−r -approximation algorithm for r -restricted k-SA. A variant of this algorithm achieves
an approximation ratio of k + 1 when given a resource augmentation factor of 1 + r . We use the latter result to present a
(k+1)2-approximation algorithm for k-SA. In the distributed setting, we present: (i) a (1+ε) k+1−r

1−r -approximation algorithm
for r -restricted k-SA, (ii) a (1 + ε)(k + 1)-approximation algorithm that uses a resource augmentation factor of 1 + r for
r -restricted k-SA, both for any constant ε > 0, and (iii) an O(k2)-approximation algorithm for k-SA (in expectation). The
three distributed algorithms run in O(k2ε−2 log3 n) synchronous rounds (with high probability). In particular, this yields the
first distributed O(1)-approximation of 1-SA.

A preliminary version was presented at the 19th International
Conference on Principles of Distributed Systems (OPODIS) 2015.
M. M. Halldórsson supported in part by the Icelandic Research Fund
(Grant nos. 120032011 and 152679-051).
S. Köhler supported in part by the Sustainability Center Freiburg, a
cooperation of the Fraunhofer Society and the University of Freiburg,
supported by grants from the Baden-Württemberg Ministry of
Economics and the Baden-Württemberg Ministry of Science,
Research and the Arts.
D. Rawitz supported in part by a grant from the Israeli Ministry of
Science, Technology, and Space (Grant no. 3-10996) and by the Israel
Science Foundation (Grant no. 497/14).

B Sven Köhler
koehlers@informatik.uni-freiburg.de

Magnús M. Halldórsson
mmh@ru.is

Dror Rawitz
dror.rawitz@biu.ac.il

1 ICE-TCS, School of Computer Science, Reykjavik
University, Reykjavik, Iceland

2 Faculty of Engineering, University of Freiburg, Freiburg im
Breisgau, Germany

1 Introduction

We consider the k-Service Assignment problem (abbrevi-
ated k-SA). A k-SA instance consists of a network containing
servers and clients. Associated with each client c is a demand
d(c), a profit p(c), and a service requirement κ(c) ≤ k,where
κ(c) is a positive integer. Each server s has a capacity cap(s).

A client c is satisfied only if its demand is assigned to
exactly κ(c) neighboring servers. Note that the demand can-
not be split up between servers, i.e., the full demand d(c)
must be assigned individually to each of the κ(c) servers. The
objective is to maximize the total profit of satisfied clients,
while obeying that the total demand assigned to a server s
must not exceed cap(s). We focus here on the more chal-
lenging case of hard constraints, where no profit is granted
for partially satisfied clients. This models, e.g., when a client
wants to store κ(c) backups of a file of size d(c) at nearby
servers for reasons of fault tolerance. Other motivations from
the literature include resource allocation in 4G cellular net-

3 Faculty of Engineering, Bar-Ilan University, Ramat Gan,
Israel

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-017-0321-3&domain=pdf
http://orcid.org/0000-0002-6068-135X

M. M. Halldórsson et al.

works and machine scheduling on related machines with
assignment restrictions.

Given a constant r ∈ (0, 1], an instance of k-SA is said to
be r -restricted if no client requires more than an r -fraction of
the capacity of any neighboring server. k-SA on r -restricted
instances is referred to as r -restricted k-SA.

k-SA is NP-hard, since the special case with s servers
and κ(c) = s, for each client c, is equivalent to the Knap-
sack problem. Since Knapsack remains NP-hard even if
the size of each item is at most an r -fraction of the knapsack
size, this hardness result applies to r -restricted k-SA, for any
r ∈ (0, 1]. (This was explicitly shown for 1-SA in [1].) This
also means that the approximation ratio of the natural greedy
algorithm (that tries to add clients in a non-increasing order-
ing of profit per demand) is Ω(1

1−r), even for r -restricted
1-SA.

The k-SAproblemnaturally arises in network applications
where clients need service from (multiple) servers. Amzal-
lag et al. [1] used 1-SA to model the problem of assigning
clients to base stations in 4G cellular networks where ser-
vices offered by providers (such as video streaming and web
browsing) require high bit-rates, and client diversity is an
issue.Byusing1-SA they took into account both base stations
diversity (using non-uniform capacities), as well as clients
diversity (using different demands, profits, and potential set
of base stations). Amzallag et al. [1] also considered the vari-
ant of 1-SA where a client c may be serviced by multiple
servers as long as the total service it receives is d(c). Such
an assignment is called a cover by many, while a solution
that assigns a single server to a client is called a cover by
one. They presented a greedy 2−r

1−r -approximation algorithm

that computes covers by one and a 1
1−r -approximation algo-

rithm that computes covers by many. In fact the former ratio
is in comparison to an optimal cover by many. Both algo-
rithms were analyzed using the local ratio technique [3–5],
and the second algorithm relies on an algorithm for comput-
ing Maximum Flow.

Patt-Shamir et al. [23] presented a distributed implemen-
tation of the first algorithm from [1] while paying a (1 + ε)

factor in the approximation ratio. That is, theypresented adis-
tributed (1+ε) 2−r

1−r -approximation algorithm, for any ε > 0,
for r -restricted 1-SA, for any r ∈ (0, 1). The algorithm
requires a polylogarithmic number of rounds in the Con-
gest model. The above result is based on two assumptions:
(i) the cost-effectiveness of clients is polynomially bounded,
and (ii) each server knows the demands and profits of adja-
cent clients. (The definition of cost-effectiveness and a more
detailed description of these assumptions are given in the
next section.)

Recently, Halldórsson at al. [17] considered the Backup
Location problem in which each client has an object whose
backup should be stored in k ∈ N neighbors to increase fault

tolerance. They mainly focused on the dual problem, where
an instance is similar to a k-SA instance and the goal is to
satisfy all clients while minimizing the maximum load. They
also observed that k-SA is APX-hard, for k ≥ 3, and showed
a lower bound of Ω(k

log k) for the approximation ratio based

on a reduction from k- Dimensional Matching [19].
Our resultsWe generalize the 2−r

1−r -approximation algorithm

from [1] by presenting a k+1−r
1−r -approximation algorithm for

r -restricted k-SA, for any r ∈ (0, 1). We provide a simpli-
fied analysis that does not rely on the local ratio technique.
We show that a variant of the above algorithm achieves an
approximation ratio of k + 1 for r -restricted k-SA, for any
r ∈ (0, 1], using a resource augmentation factor of 1 + r .
Then, by showing that the clients that receive service in
the resource augmented solution can be (k + 1)-colored,
such that each color induces a feasible solution, we obtain
a (k + 1)2-approximation algorithm for k-SA. We note that
the latter outperforms the k+1−r

1−r -approximation algorithm,

when r > k+1
k+2 .

Based on the approach taken in [23], we design a dis-
tributed version of the former algorithm that, for any constant
ε > 0, computes (1 + ε) k+1−r

1−r -approximate solutions for
r -restricted k-SA with high probability and whose running
time is O(k2 · log3 n) rounds in the Congest model. While
the algorithm for 1-SA from [23] is based on computing
a maximal matching, our algorithm is based on comput-
ing a maximal packing of stars, where each star consists
of a client c and κ(c) adjacent servers. As in the central-
ized setting we provide an algorithm that achieves a factor
of (1 + ε)(k + 1) using a resource augmentation factor
1+ r . We use distributed random selection instead of color-
ing to design a distributed algorithm for k-SA that computes
solutions whose expected profit is a Ω(k−2)-fraction of the
optimum, using O(k2 · log3 n) rounds. When k ∈ O(1), this
amounts to an O(1)-approximation algorithm that terminates
in O(log3 n) rounds. In particular, this approach yields the
first constant approximation of 1-SA in the distributed set-
ting.

We note that our distributed algorithms do not require
nodes to have knowledge of k or r .
Related work 1-SA is equivalent to an extension of the
Knapsack problem called Multiple Knapsack with
Assignment Restrictions (MKAR), where the input con-
sists of a set of bins and a set of items. Each bin has a capacity,
and each item has a size, a profit, and a subset of bins inwhich
it can be placed. A feasible solution is an assignment of items
to bins such that each item is assigned to one of the bins in
its subset and the total size of items assigned to each bin is
at most its capacity. The goal is to find a solution of max-
imum profit. A special case of MKAR, where the size and
profit of each item are the same, was considered by Dawande
et al. [10]. They presented an LP-rounding 2-approximation

123

Author's personal copy

Distributed approximation of k-service assignment

algorithm, a (2 + ε)-approximation algorithm that uses an
FPTAS for solving a single knapsack problem, and a greedy
3-approximation algorithm.

MKAR (and hence 1-SA) is a special case of the Gener-
alized Assignment Problem (GAP). In GAP the input
consists of a set of bins and a set of items, where each bin has
a capacity, and each item j has a size and a profit for each bin
i . A feasible solution is an assignment of items to bins such
that the total size of items that are assigned to a bin is at most
its capacity. Bar-Noy et al. [3] implicitly gave a local ratio
(2 + ε)-approximation algorithm for GAP. Cohen et al. [9]
showed that any α-approximation algorithm for Knapsack
can be transformed into a local ratio (1 + α)-approximation
algorithm for GAP. This resulted in a (2+ ε)-approximation
algorithm for GAP with a better running time than implied
by [3]. Cohen and Grebla [8] extended this result by allow-
ing multiple choice, thus combining GAP and Multiple
Choice Knapsack Problem (MCKP).

Chekuri and Khanna [7] gave a PTAS for Multiple
Knapsack (without assignment restrictions) and showed
that GAP is APX-hard. In addition they observed that an
LP-rounding 2-approximation algorithm for the minimiza-
tion version of GAP by Shmoys and Tardos [28] implies a
2-approximation algorithm for GAP. This result applies to
1-SA. Fleischer et al. [14] studied the Separable Assign-
ment Problem (SAP), where the input consists of a set of
bins and a set of items, and a profit fi j for assigning item j to
bin i . There is also a separate packing constraint for each bin,
i.e., a collectionIi of subsets of items that fit in bin i . The goal
is to maximize the total profit. Assuming the existence of an
α-approximation algorithm for the single bin version of SAP,
they presented an LP-rounding based αe

e−1 -approximation

algorithm and a local search (α+1
α

+ ε)-approximation algo-
rithm, for any ε > 0. If the single machine version admits a
PTAS (FPTAS), then the ratios are e

e−1 + ε (e
e−1) and 2+ ε,

respectively. GAP is a special case of SAP where the simple
knapsack version admits an FPTAS, and thus it has a e

e−1 -
approximation algorithm. The best known result for GAP
is an LP-rounding (e

e−1 − ε)-approximation algorithm, for
some constant ε > 0, due to Feige and Vondrák [13].

Amzallag et al. [1] showed that the version of 1-SA that
allows cover by many cannot be approximated to within a
factor which is better than |J |1−ε, for any ε > 0, unless
NP = ZPP. This was done using a reduction from Indepen-
dent Set and the hardness result from [18]. Gurewitz et al.
[16] studied an extension of 1-SA, inwhich every pair of a job
j ∈ J and a machine i ∈ I is associated with a service rate
R(i, j) ∈ (0, 1] and a cover by many assignment is allowed.
In this setting a client can be assigned to multiple servers and
a job is considered satisfied if

∑
i x(i, j)R(i, j) ≥ d(j),

where d(j) is the demand of job j . Under the assumption
that there exists some δ > 0 such that if R(i, j) > 0 then

R(i, j) > δ, they presented a 1
(1−r)δ -approximation algo-

rithm for r ∈ (0, 1). The algorithm adopt the approach taken
in [1]. However, as opposed to [1], it uses solutions to linear
programs in the process of adding a job. Rawitz and Voloshin
[26] also considered an extension of 1-SA that allows cover
by many, but also allows flexible demands. They presented
approximation algorithms whose approximation ratios are
1

1−r and 2.
The special case of k-SA in which each client c is adja-

cent to exactly κ(c) servers is a special case of the Packing
Integer Programs problem (PIP). In PIP we are given a
set of items and a collection of knapsack constraints over
these items. The goal is to maximize the profit of packed
items. In k-SA each item appears in at most k constraints
with the same coefficient. The single constraint (or server)
case is theKnapsack problemwhich has an FPTAS [20,27],
and the constant number of constraints case is the Multi-
dimensional Knapsack problem that has a PTAS [15],
while obtaining an FPTAS is NP-hard [22]. Raghavan and
Thompson [25] used randomized LP-rounding to obtain an
approximation ratio of O(mr) for PIP, wherem is the number
of constraints, k is the maximum number of constraints per
item, and r is the maximum item coefficient per constraint
RHS. Srinivasan [29] improved this ratio to O(mr/(r+1)).
In k-SA this translates to an O(|S|r/(r+1)) ratio, where S is
the set of servers. Chekuri and Khanna [6] proved that the
above ratio is almost tight by showing that, for every fixed
integer α and fixed ε > 0, the special case of PIP where all
constraints are composed of binary coefficients and RHS α

cannot be approximatedwithin a factor ofm1/(α+1)−ε, unless
NP = ZPP. They also showed that PIP with uniform RHS α

cannot be approximatedwithin a factor ofm1/(α+1)−ε, unless
NP= ZPP, even with a resource augmentation factor α. Note
that this does not contradict our results, since we assume that
each item appears in at most k constraints.
Paper organization We formally define the problem and the
execution model in Sect. 2. This section also contains defini-
tions and notation that is used in the paper. The centralized
algorithms are given and Sect. 3 and the distributed algo-
rithms are presented in Sect. 4.

2 Preliminaries

This section contains a formal problem statement, several
definitions and notation that we use throughout the paper,
and the execution model.

2.1 Problem definition

In the k-Service Assignment (k-SA) problem an instance
consists of a bipartite graph G = (C, S, E), where C is a
set of clients and S is a set of servers. Each server s ∈ S has

123

Author's personal copy

M. M. Halldórsson et al.

positive capacity cap(s), and each client c ∈ C has positive
demand d(c), positive profit p(c), and service requirement
κ(c) ≤ k, where κ(c) is a positive integer. We define n �
|C |+|S|. A feasible solution is a service assignment of clients
to servers, i.e., it is a function x : C × S → {0, 1} such that:

– A client is only assigned to neighboring servers, namely
x(c, s) = 1 implies (c, s) ∈ E .

– The total demand of clients assigned to a server is not
larger than its capacity, i.e.,

∑
c∈C x(c, s)·d(c) ≤ cap(s),

for every server s ∈ S.
– Each client c is assigned either to κ(c) servers or to none.
That is,

∑
s∈S x(c, s) ∈ {0, κ(c)}, for every client c ∈ C .

Given a service assignment x , a client c is considered
satisfied if it receives service from κ(c) servers, i.e., if∑

s∈S x(c, s) = κ(c). Then the total service received is
κ(c) · d(c). The set of satisfied clients is denoted by Cx ,
that is Cx �

{
c ∈ C : ∑

s∈S x(c, s) = κ(c)
}
. The profit of

a service assignment x is the total profit of satisfied clients,
or p(Cx) �

∑
c∈Cx

p(c), and the goal in k-SA is to find a
service assignment with maximum profit.

Given a constant r ∈ (0, 1], a k-SA instance is said to
be r -restricted if no client requires more than an r -fraction
of the capacity of any neighboring server, namely if d(c) ≤
r ·cap(s), for every (c, s) ∈ E . k-SA on r -restricted instances
is referred to as r -restricted k-SA.

Without loss of generality, we assume that each client is
adjacent to at least κ(c) severs. Also, since our algorithms do
not rely on the knowledge of k, it may be assumed that k =
maxc κ(c). Furthermore, if κ(ci) = κ(c j) for every ci , c j ∈
C , we refer to the instance as a uniform k-SA instance. In
this case one may assume that κ(c) = k, for every client c.

2.2 Definitions, notation, and assumptions

We use standard graph theoretic notation. The neighborhood
of a vertex v is denoted by N (v), and the degree of v is
denoted by deg(v).

If a function is applied to a finite set, then this yields the
sumof functionvalues for all elements of the set, e.g.,d(C) �
∑

c∈C d(c). Also, given a function f with a finite domain,
let fmin and fmax denote the minimum and maximum value
of f in its domain. For example, pmax � maxc∈C p(c).

Given a k-SA instance and a service assignment x , the
set of clients assigned to a server s is denoted by Cx (s) =
{c ∈ C : x(c, s) = 1}, and note that Cx = ∪s∈SCx (s). We
call d(Cx (s)) = ∑

c∈C x(c, s)d(c) the load of server s.
In this paper we sometimes consider non-feasible service
assignments that violate the server capacity constraints, in
which case it is possible that d(Cx (s)) > cap(s), for a server
s ∈ S. Such a server is called overloaded. Given α ∈ [0, 1],
a server s is called α-saturated if d(Cx (s)) ≥ α · cap(s). A

service assignment x is called α-maximal, if no unsatisfied
client c is adjacent to κ(c) non-α-saturated servers.

Given a k-SA instance, the cost effectiveness of a client
c is denoted by ρ(c) � p(c)

d(c) . Cost-effectiveness is assumed

to be polynomially bounded, i.e., ρ(c) ≥ ρmin ∈ n−O(1) as
well as ρ(c) ≤ ρmax ∈ nO(1). The bounds ρmin and ρmax are
assumed to be known to each node.

Following [23] we assume that each server s is aware
of the demands and profits of adjacent clients, namely each
server knows d(c) and p(c), for every c ∈ N (s). Observe
that even if the numbers are large, it may be the case that
their encoding is somewhat small (i.e., of size O(log n)). An
actual implementation may use a floating-point encoding,
so it may be possible to efficiently send the demands and
profits of clients to the adjacent servers. We also consider
an alternative assumption that all nodes know the maximum
profit pmax. Notice that while the latter assumption requires
global knowledge, the former assumption requires only local
knowledge.

2.3 Executionmodel

We use the classic Congest model [24], which is a dis-
tributed network model with small messages. Briefly, in this
model nodes are processors, with unique IDs, connected by
links that can carry O(log n)-bit messages in a time unit,
or round. Processors are not restricted computationally (all
computations that are performed by our algorithms are poly-
nomial, though). For our upper bounds, we implicitly assume
that an α-synchronizer [2] is employed in the system, so that
the algorithms operate in a synchronous manner in the fol-
lowing sense. Execution proceeds in global rounds, where in
each round each processor: (i) Receives messages sent by its
neighbors in the previous round, (ii) Performs a local com-
putation, and (iii) Sends (possibly distinct) messages to its
neighbors.

3 Centralized greedy algorithm

In this section we present an algorithm that computes α-
maximal service assignments. This algorithm is used to
obtain three results:

1. A k+1−r
1−r -approximation algorithm for r -restricted k-SA,

for any r ∈ (0, 1).
2. A (k+1)-approximation algorithm for r -restricted k-SA,

for any r ∈ (0, 1], using a resource augmentation factor
of 1 + r .

3. A (k + 1)2-approximation algorithm for k-SA.

123

Author's personal copy

Distributed approximation of k-service assignment

The first algorithm extends the 2−r
1−r -approximation algorithm

for 1-SA from [1]. However, we provide a simplified analysis
that does not use the local ratio technique.

Algorithmα-Greedy (Algorithm 1) is a greedy algorithm.
It starts by sorting the clients in a non-increasing order of
cost-effectiveness, and then it tries to service the clients in
that order. It assigns each client c to some κ(c) adjacent
servers that are not yetα-saturated, if possible; otherwise, the
client is dismissed. We note that if α > 1− r , the computed
solution x may be infeasible.

Algorithm α-Greedy is a variant of the natural greedy
algorithm that tries to service clients by order of cost-
effectiveness. However, there is a slight difference, namely
that α-Greedy does not use a server which is α-saturated.We
note that the more natural greedy algorithm could have been
used, but we chose to use α-Greedy, since it comes with a
simpler analysis.

In what follows we either assign α = 1 − r or α = 1. In
the former option the algorithm computes a feasible solution
in which servers are not fully utilized. On the other hand, in
the second option the algorithm better utilizes servers, but
computes an infeasible solution.

Alg. 1 α-Greedy(C, S, E, κ, cap, d, p)
1: Let 〈c1, c2, c3, . . .〉 be a sequence of all clients sorted in a non-

increasing order of ρ

2: x ← 0
3: for i = 1, 2, 3, . . . do
4: if N (ci) contains κ(ci) non-α-saturated servers then
5: Let s1, . . . , sκ(ci) ∈ N (ci) be non-α-saturated servers
6: x(ci , s j) ← 1, for every j
7: end if
8: end for

Observation 1 α-Greedy computes α-maximal service
assignments.

Proof Assume that the computed solution x is not α-
maximal. Then, there exists a client ci ∈ C that is adjacent to
κ(ci) non-α-saturated servers. It follows that when ci is con-
sidered byα-Greedy these κ(ci) servers are non-α-saturated,
which means that ci would have received service. A contra-
diction.
�

In Sect. 4, we will modify the demands and profits and
therefore we state the analysis of α-Greedy more generally
than will be used in this section.

Let π, δ ≥ 1. Given a k-SA instance, let p′ be a profit vec-
tor such that p′(c) ∈ [p(c), π · p(c)] and let d ′ be a demand
vector such that d ′(c) ∈ [d(c), δ ·d(c)]. Define ρ′(c) � p′(c)

d ′(c) .

Lemma 2 Given a k-SA instance, let x be the solution com-
puted by α-Greedy using p′ and d ′, and let x∗ be an optimal

Fig. 1 The arrows represent the mapping f

solution with respect to p and d. Then, we have that p(Cx) ≥
α

δπk+α
p(Cx∗).

Proof Let F be the set of servers that are α-saturated with
respect to the α-Greedy solution x . Consider a client ci ∈
Cx∗ \ Cx satisfied by the optimal solution x∗ but not by
α-Greedy. Since α-Greedy does not satisfy ci and due to
Observation 1, ci must be connected to fewer than κ(ci)
non-α-saturated servers (in S \ F). Therefore, there exists
an α-saturated server s ∈ F that is assigned to ci by the
optimal solution, that is such that x∗(ci , s) = 1. Let f be a
mapping which maps each client ci ∈ Cx∗ \ Cx to a server
s ∈ F such that x∗(ci , s) = 1. This is depicted in Fig. 1.

Observe that the load of an α-saturated server s is by def-
inition at least

d ′(Cx (s)) =
∑

c

x(c, s)d ′(c) ≥ α · cap(s). (1)

Let f −1(s) = {c ∈ Cx∗ \ Cx : f (c) = s} be the set of clients
that are mapped to an α-saturated server s ∈ F . Since each
such client is assigned to s in the optimal solution x∗,

d(f −1(s)) ≤
∑

c

x∗(c, s)d(c) ≤ cap(s) ≤ d ′(Cx (s))

α
(2)

Consider a client ci ∈ f −1(s) and a client c j ∈ Cx (s).
Since x does not satisfy ci , the server s must have been α-
saturated when α-Greedy tried to assign ci . Thus, c j must
have been considered by α-Greedy,prior to ci , and the cost-
effectiveness of c j is then at least as high as that of ci , i.e.,
ρ′(c j) ≥ ρ′(ci). It follows that ρ′(c) ≤ ρ′(c′), for every
c ∈ f −1(s) and c′ ∈ Cx (s). This implies that

ρ′(c) ≤ p′(Cx (s))

d ′(Cx (s))
,

for every c ∈ f −1(s).

123

Author's personal copy

M. M. Halldórsson et al.

For the total profit of all clients that f maps to s we then
have that

p(f −1(s)) ≤ p′(f −1(s))

=
∑

c∈ f −1(s)

d ′(c) · ρ′(c)

≤
∑

c∈ f −1(s)

d ′(c) · p′(Cx (s))

d ′(Cx (s))

= d ′(f −1(s)) · p′(Cx (s))

d ′(Cx (s))

≤ δ · d(f −1(s)) · p′(Cx (s))

d ′(Cx (s))

≤ δ

α
p′(Cx (s))

≤ πδ

α
p(Cx (s)),

where the fourth inequality is due to (2).
It remains to bound the approximation ratio:

p(Cx∗) =
∑

c∈Cx∗∩Cx

p(c) +
∑

c∈Cx∗\Cx

p(c)

≤
∑

c∈Cx

p(c) +
∑

s∈F
p(f −1(s))

≤ p(Cx) +
∑

s∈F

πδ

α
p(Cx (s))

= p(Cx) + πδ

α

∑

s∈F

∑

c∈Cx (s)

p(c)

= p(Cx) + πδ

α

∑

c∈Cx

p(c)
∑

s∈F
x(c, s)

≤ p(Cx) + k · πδ

α
p(Cx)

= α + πδk

α
· p(Cx),

where the last inequality holds because each client is assigned
to at most k servers from F .
�

We note that a similar proof can be given with comparison
to an optimal fractional solution as done in [1] for the case
of k = 1.

We get our first result by assigning α = 1 − r and δ =
π = 1.

Corollary 3 If δ = π = 1, the approximation ratio of (1−r)-
Greedy for r-restricted k-SA is at most k+1−r

1−r .

We note that Lemma 2 and Corollary 3 still hold if instead
of using r and α = 1 − r , each server s makes its decisions
according to its local versions of r and α, namely on r(s) �
maxc:(c,s)∈E d(c)

cap(s) and α(s) � 1−r(s). Replacing α with its

local versions works since α(s) ≥ α, for every server s. More
specifically, if s is α(s)-saturated, then it is also α-saturated,
which means that (1) still holds. This observation will be
useful in the distributed setting.

We show that the analysis of α-Greedy is almost tight.
Consider the following uniform k-SA instance for the case
where 1 − α = 1

q , for q ∈ N. Let C = {c1, c2, . . .} be a
set of q(k + 1) − 1 clients and S = {s1, s2, . . .} be a set of
2k − 1 servers. For i ≤ q − 1 and a positive parameter t , let
d(ci) = q, p(ci) = qt + 1, and N (ci) = {s1, . . . , sk}, while
for i ≥ q, let d(ci) = q, p(ci) = qt , and N (ci) = S. As
for server capacities, cap(si) = q2, for i ≤ k, and cap(si) =
kq2, for i > k. If we run α-Greedy (assuming δ = π = 1),
it considers clients c1, . . . , cq−1 first and assigns all of them.
This renders servers s1, . . . , sk α-saturated, so that no other
clients will receive service. Thus, α-Greedy obtains a profit
of (q −1)(qt +1), while an optimal solution services clients
cq , . . . , cq(k+1)−1 for a profit of kq · qt = kqt+1.
Hence, the approximation ratio of α-Greedy is at least

kqt+1

(q−1)(qt+1) , which goes to
kq
q−1 = k

α
as t goes to infinity. Our

next result is obtained by assigning α = 1 and δ = π = 1.
Notice that in this case the server capacity constraints may
be violated, but not by much.

Lemma 4 Given an r-restricted k-SA instance, let x be a
service assignment computed by 1-Greedy with δ = π = 1.
Then, the load on any server s is less than (1 + r) · cap(s).
Moreover, if we remove the last client assigned to each over-
loaded server we obtain a feasible service assignment.

Proof By the algorithm design, an overloaded server s was
non-1-saturated when the last client was assigned to it. The
load of a non-1-saturated server is less than its capacity, while
the last client assigned to s has a demand of at most r ·cap(s).

�
From Lemma 4 we get that, with a resource augmentation

factor (1+ r), the approximation ratio of 1-Greedy is k + 1,

Corollary 5 If δ = π = 1, then 1-Greedy is a (k + 1)-
approximation algorithm for r-restricted k-SA that uses
(1 + r) times the capacity of each server.

In the next lemma we show that the non-feasible solution
that is computed by 1-Greedy can be partitioned into k + 1
feasible solutions.

Lemma 6 Given a k-SA instance, let x be a service assign-
ment computed by 1-Greedy with δ = π = 1. Then, x can
be partitioned into k + 1 feasible service assignments.

Proof Consider the conflict digraph G ′ = (Cx , E ′), where
E ′ contains an edge (c, c′) if and only if 1-Greedy assigned
both c and c′ to a server s and c was the last client assigned
to s. The maximum in-degree of G ′ is at most k for the sim-
ple reason that x assigns at most k servers to each client.

123

Author's personal copy

Distributed approximation of k-service assignment

Fig. 2 Construction showing that Lemma 6 is tight for k = 3

Furthermore, the graph G ′ is a DAG, since an edge (c, c′)
always points from a client c to a client c′ that was consid-
ered by 1-Greedy prior to c. It follows that the underlying
graph of G ′ is k-degenerate (or k-inductive), and therefore
can be (k + 1)-colored [12]. For completeness, we provide
the following simple recursive algorithm that (k + 1)-colors
G ′:

– If the graph is empty, return an empty coloring.
– Find a node v with out-degree zero. Such a node always

exists as the graph is a DAG.
– Remove v from the graph and color the remaining graph
recursively.

– Color node vwith the smallest available color. Since v has
at most k neighbors that have already received a color—
only the in-neighbors – at least one of the first k+1 colors
is free.

– Return the coloring.

The coloring of G ′ is a partition of Cx into k + 1 indepen-
dent sets. We show that an independent set induces a feasible
solution. Let I be an independent set and let x I be the solu-
tion restricted to I , that is x I (c, s) = x(c, s), if c ∈ I , and
x I (c, s) = 0, otherwise. If I contains the last client assigned
to a server s, then I does not contain anyother clients assigned
to s. It follows that x I is feasible.
�

We show that the analysis is tight by considering a graph
with k+1 clients and

(k+1
2

)
servers. Each server is connected

to a distinct set of 2 clients. Note that, by construction, each
client is connected to exactly k servers. See Fig. 2 for an
example. All demands are 2, and all capacities are 3. All
clients have the same profit. Indeed we can only take one
of the clients as taking 2 clients would violate the capacity
constraint of the server which is connected to both.

This leads to the last result of the section.

Corollary 7 There exists a (k+1)2-approximation algorithm
for k-SA.

Proof First, 1-Greedy, with δ = π = 1, computes a pos-
sibly non-feasible (k + 1)-approximate service assignment
due to Corollary 5. Lemma 6 implies that x can be partitioned
into k + 1 feasible solutions x1, . . . , xk+1. Since p(Cx) =
∑k+1

i=1 p(Cxi), there exists i such that p(Cxi) ≥ 1
k+1 p(Cx).

�

4 Distributed greedy algorithm

In this section, we present distributed approximation algo-
rithms for k-SA by providing a distributed implementation
of Algorithm α-Greedy. More specifically, we present: (i)
a k+1−r

1−r (1 + γ)-approximation algorithm for r -restricted k-
SA, (ii) a (k+1)(1+γ)-approximation algorithm that uses a
resource augmentation factor 1+r for r -restricted k-SA, and
(iii) a 4k(k + 1)(1 + γ)-approximation algorithm for k-SA,
all for any constant γ > 0. The three algorithms terminate
in O(k2γ −2 polylog(n)) rounds.

The distributed implementation ofAlgorithmα-Greedy is
based on the following idea. We partition the client set into
subsets, such that the clients in each subset have similar cost-
effectiveness, and instead of trying to augment the solution
one client at a time, we do so for subsets. The crux is that
augmenting the solution with respect to a subset becomes
an unweighted star packing problem that we solve using a
variant of Luby’s algorithm [21] for computing a maximal
independent set.

We first give a distributed algorithm that relies on the
assumption that all nodes know pmax. We then give a modi-
fication that does not need this assumption, but relies on the
assumption that each server s knows the demands and profits
of the clients in N (s). We start the section by classifying the
clients.

4.1 Client classification

The basic idea of our distributed algorithm is to mimic the
sequentialα-Greedy. The challenge is to parallelize the com-
putation of the assignment as dealingwith clients one-by-one
would yield linear running time. The key is to efficiently com-
pute the assignment of multiple clients with equal profit and
equal demand. To enlarge the number of clients with equal
profit and demand, we apply an implication of Lemma 2: we
may round profits and demands up to the closest power of
1+ ε, for some ε > 0, increasing the approximation ratio by
at most a factor of (1 + ε)2.

We first classify all clients by demand and profit. Define
for integers
 and i

C[
, i] �
{
c ∈ C : d(c) ∈ ((1 + ε)i−1, (1 + ε)i]

∧ p(c) ∈ ((1 + ε)i+
−1, (1 + ε)i+
]},

and C[
] �
⋃

i C[
, i]. We call C[
, i] a subclass of class
C[
]. Also, define the rounded demand and profit for all
clients c ∈ C[
, i] as

d ′(c) � (1 + ε)i

p′(c) � (1 + ε)i+
.

123

Author's personal copy

M. M. Halldórsson et al.

Note that all clients in C[
] have equal cost-effectiveness
with respect to the rounded profits and demands, namely
ρ′(c) = p′(c)

d ′(c) = (1+ ε)
. That means that the clients in C[
]
can be considered byAlgorithm α-Greedy in any order. Also
note that

d ′(c) ∈ [d(c), (1 + ε)d(c))

p′(c) ∈ [p(c), (1 + ε)p(c))

ρ′(c) ∈ ((1 + ε)−1ρ(c), (1 + ε)ρ(c)).

For the remainder of the section, wemostly consider rounded
profits and demands.

4.2 Distributed implementation of α-Greedy

We are ready to describe a distributed implementation of
Algorithm α-Greedy that relies on the assumption that all
nodes know pmax. The algorithm is described in a top-down
manner.

By assumption, the cost-effectiveness of each client is
polynomially bounded in n. Given the values ρmin and ρmax,
we can find an interval [W ,W ′] such that C[
] �= ∅ only if

 ∈ [W ,W ′]. This is the case for W = ⌊

log1+ε(ρmin)
⌋
and

W ′ = ⌈
log1+ε(ρmax)

⌉
. Note that W ′ − W ∈ O(log1+ε n) ⊆

O(ε−1 log n).
DefineC≥z �

⋃

≥z C[
] and assume that there is an algo-

rithm called Augment that augments a service assignment
forC≥
+1 into a service assignment forC≥
. AlgorithmDist-
α-Greedy (Algorithm 2) uses Augment to iteratively con-
struct a service assignment. Clearly Dist-α-Greedy runs for
O(TAε−1 log n) rounds, where TA is the running time of
Augment.

Alg. 2 Dist-α-Greedy (C, S, E, κ, cap, d, p)
1: x ← 0
2: for
 = W ′ downto W do
3: x ← Augment(C, S, E, κ, cap,
, x)
4: end for

As shown in the sequel, Algorithm Augment consid-
ers the subclasses of C[
] one by one and augments the
given service assignment with a service assignment for each
C[
, i]. In order to keep the running time of our algorithm
poly-logarithmic, we use the next result showing that only
considering O(log1+ε n) subclasses per class C[
] does not
increase the approximation ratio by much.

A client c ∈ C is called heavy if p′(c) >
p′
max
n3

. Otherwise,
it is called light. Recall that p′

max = maxc∈C p′(c). Define
Cheavy � {c ∈ C : p′(c) >

p′
max
n3

}. The next lemma explains
why we can simply ignore light clients.

Lemma 8 Let x be an optimal service assignment and let
y be an optimal service assignment for the same instance
but restricted to a set C̃, where C̃ ⊇ Cheavy. Then p(Cx) ≤
(1 + 1

n2
)p(Cy).

Proof Observe that each client c /∈ C̃ satisfies p(c) ≤ pmax
n3

.
Clearly, p(Cx) ≥ p(Cy) ≥ pmax, and thus we have that

p(Cx) = p(Cx ∩ C̃) + p(Cx \ C̃)

≤ p(Cy) + n · pmax

n3

= p(Cy) + pmax

n2

≤
(

1 + 1

n2

)

p(Cy)

which concludes the proof.
�
Following the above result, Algorithm Augment (Algo-

rithm 3) considers only the subclasses C[
, i] which contain
heavy clients. The heavy clients are contained in at most⌈
3 log1+ε n

⌉
subclasses of C[
]. For each subclass, Aug-

ment uses Algorithm Uniform-Augment which augments
the current service assignment with an assignment for the
specified subclass C[
, i]. Recall that all clients in C[
, i]
have the same profit and demand (with respect to p′ and d ′).

Alg. 3 Augment(C, S, E, κ, cap,
, x)
1: imax

 ← log1+ε p′
max −

2: for i = imax

 downto imax

 − ⌈
3 log1+ε n

⌉ + 1 do
3: x ← Uniform-Augment(C, S, E, κ, cap, i,
, x)
4: end for
5: return x

Clearly, if Uniform-Augment requires TU rounds, then
Augment terminates afterO(TU log1+ε n)⊆O(TU ε−1 log n)

rounds. It follows that Algorithm Dist-α-Greedy requires
O(TU ε−2 log2 n) rounds.

As mentioned before, Algorithm Uniform-Augment is
used to compute a service assignment for the clients in a given
subclass C[
, i], augmenting a given service assignment x .
Recall that clients have uniform demands, i.e., d ′(c) = (1+
ε)i for each c ∈ C[
, i]. Hence, given a solution x and a
server s, an upper bound mi

(x, s) on the number of clients
from C[
, i] that can be assigned to s before it becomes α-
saturated can be computed as follows:

mi

(x, s) = min

{
max

{
0, qi
(x, s)

}
, deg(s)

}

with

qi
(x, s) =
⌈

α · cap(s) − d ′(Cx (s))

(1 + ε)i

⌉

.

123

Author's personal copy

Distributed approximation of k-service assignment

Wenote that α may be replaced by α(s) in case α = 1−r and
global knowledge of r is not assumed. (Recall that α(s) =
1 − r(s) and r(s) = maxc:(c,s)∈E d(c)

cap(s) .)
A star centered at a client c ∈ C is a subgraph of G

that contains c and κ(c) servers adjacent to c. We call the
servers the leaves of the star. Per server s ∈ S we introduce
mi

(x, s) copies denoted s1, s2, and so forth. An incarna-
tion of a star replaces each leaf s with a copy sq , where
1 ≤ q ≤ mi

(x, s). Note that incarnations never have two
leaves which are copies of the same server. Also note that
some stars have no incarnations, namely if mi

(x, s) = 0 for
some leaf s. We define the graph H(i,
, x). The vertex set of
H(i,
, x) contains all possible incarnations of stars centered
at a client c ∈ C[
, i]. There is an edge between two nodes of
H(i,
, x), i.e., between two incarnations, if and only if the
two are centered at the same client or share a common leaf
(copy of a server). Given i ,
, and x , Algorithm Uniform-
Augment (Algorithm 4) constructs H(i,
, x) and computes
a maximal independent set (MIS) in H(i,
, x).

Alg. 4 Uniform-Augment(C, S, E, κ, cap, i,
, x)
1: MIS ← Maximal Independent Set of H(i,
, x)
2: Augment x with service assignment corresponding toMIS
3: return x

The computation of theMIS is based on Luby’s algorithm
[21]. We rely on the analysis of Wattenhofer [30] that shows
that theMIS algorithm terminates with high probability after
O(log N) rounds, where N is the number of nodes in the
graph. In the next lemma we show how to implement the
algorithm such that the number of rounds is O(k2 log n).

Lemma 9 Algorithm Uniform-Augment computes an α-
maximal service assignment with high probability in
O(k2 log n) rounds.

Proof Consider the graph of incarnations H(i,
, x) =
(V (i,
, x), E(i,
, x)). For a client c ∈ C , there are

(deg(c)
κ(c)

)

stars centered at c. For each star there are at most nκ(c) dif-
ferent incarnations, as there are at most deg(s) ≤ n copies
of each server s. It follows that, per client c of G, the vertex
set V (i,
, x) contains at most

(
deg(c)

κ(c)

)

nκ(c) ≤ n2κ(c) ≤ n2k

vertices. Thus, in total, V (i,
, x) contains

n(i,
, x) � |V (i,
, x)| ≤ n2k+1

vertices (incarnations of stars of G).
We would like to execute Luby’s algorithm [21] to com-

pute a maximal independent set in H(i,
, x). Let M = ∅

and M = V (i,
, x). Luby’s algorithm repeatedly executes
the following procedure:

– Each incarnation in M is assigned a random priority with
O(k log n) bits.

– Let U be the set of incarnations with a priority higher
than any adjacent incarnation.

– All incarnations in U are added to M and removed from
M . Also, all incarnations adjacent to incarnations in U
are removed from M .

With high probability, M is a maximal independent set after
the above procedure has been executedO(k log n) times [30].

We now describe how the above procedure can be simu-
lated on the graph G:

1. A client c ∈ C[
, i] draws a random priority for each
(surviving) incarnation in M centered at c. Per client,
only the incarnation with the highest priority is relevant
to Luby’s algorithm. Thus for each leaf sq of such an
incarnation, clients send the priority and the index q to s.
Note that each client sends at most one message to each
adjacent server.

2. Each server determines the highest priority received for
each of its copies. The server sends an ACK message to
the clients that sent the winning (highest) priorities and a
NACK message to clients that sent the losing priorities.

3. If a client c receives k ACK messages, then the incar-
nation with the highest priority centered at c joins the
independent set and all other incarnations centered at c
are removed fromM . Per leaf sq of an incarnation joining
the MIS, the clients inform server s that the copy with
index q has been taken.

4. Servers keep track of which copies have been taken and
inform the clients which copies are no longer available.
Clients remove all incarnations with unavailable leaves
from M .

We examine the messages exchanged during this proce-
dure and their sizes in bits. In the first step each client sends
a priority and server copy index to adjacent servers, there-
fore the message size is O(k log n + log n) ⊆ O(k log n).
In the second step each server sends a single ACK/NACK
message to clients whose size is O(1). Winning clients send
a single server copy index to adjacent servers. The message
size is O(log n). Finally, servers need to inform clients about
which copies cannot be used anymore. The naive solution is
a message that may require Ω(n) bits (a bit vector with one
bit per server copy).

Recall that for each star there are O(n2k) different incar-
nations. Observe that these incarnations are interchangeable,
since the identity of the copy sq of each server s in the star
is not important. Hence, we may assume that the available

123

Author's personal copy

M. M. Halldórsson et al.

copies of a server s are always in the range {1, . . . ,ms},
where ms is the current number of available copies of s. In
other words, server copies may be relabeled after each itera-
tion such that the available copies have the smallest possible
indexes. It follows that the number of available copies per
server is important while the actual server copy indexes are
not. In conclusion, it suffices to inform the clients only about
the number of available copies per server, thus providing
them with the new range of available copies. This can be
done using a message of size O(log n) bits.

The above procedure takes O(1) rounds when assuming
messages of size O(k log n) or O(k) rounds using messages
of size O(log n) bits. As the procedure needs to be executed
O(k log n) times, we have that the total number of rounds is
O(k2 log n).

Finally, the computed solution is α-maximal, since other-
wise the independent set in H(i,
, x) is not maximal.
�

Wenote that a client c need not actually draw a randompri-
ority for each incarnation in M centered at c. As c is aware of
the number of available copies per adjacent server, it is easy
to count the number of incarnations in M centered at c. Let z
be this number. It then suffices to choose one of the z incar-
nations uniformly at random and to draw its priority from the
distribution of the maximum over z random priorities (see,
e.g., [11]).

We bound the running time of Algorithm Dist-α-Greedy.

Lemma 10 Algorithm Dist-α-Greedy terminates with high
probability in O(k2ε−2 · log3 n) rounds.

Proof Algorithm Dist-α-Greedy consists of O(ε−1 log n)

invocations of Augment, which in turn consists of
O(ε−1 log n) invocations of Uniform-Augment. The lemma
follows sinceUniform-Augment requiresO(k2 log n) rounds
according to Lemma 9.
�

Next, we analyze the computed solution. In preparation
for Sect. 4.3, the next result is slightly more general than
necessary.

Lemma 11 Givena k-SA instance, AlgorithmDist-α-Greedy
mimics α-Greedy on a set C̃ ⊇ Cheavy using the rounded
profits p′ and the rounded demands d ′.

Proof Notice that Algorithm Dist-α-Greedy considers
CW ′ , . . . ,CW in decreasing order of
. Since all clients in
C[
] have the same cost-effectiveness, (1 + ε)
, it follows
that the algorithm augments x according to a non-increasing
order of client cost-effectiveness with respect to p′ and d ′.
For each
, AlgorithmAugment considers subclassesC[
, i]
in a decreasing order of i , that is in a decreasing order
of both profit and demand. For each i , Uniform-Augment
computes an α-maximal solution, as shown in Lemma 9,

by adding clients with the same profit, demand, and cost-
effectiveness in an order that is induced by the random
choices of the maximal independent set computation. Hence,
Algorithm Augment can be seen as trying to service clients
with the same cost-effectiveness in an arbitrary order. It fol-
lows that Dist-α-Greedy is a specific implementation of
α-Greedy.

It remains to show that Augment considers all heavy
clients in each class C[
]. Let c ∈ C[
] be a client not con-
sidered by Augment. Then c ∈ C[
, i] with i ≤ imax

 −⌈
3 log1+ε n

⌉
and we have that

p′(c) = (1 + ε)i+
 ≤ (1 + ε)i
max

 +
−�3 log1+ε n�

= (1 + ε)log1+ε p′
max−�3 log1+ε n�

≤ p′
max

n3
,

and thus c is a light client.
�
The previous lemma allows us to find a lower bound on

the profit of the solution that is computed byDist-α-Greedy.

Lemma 12 Given a k-SA instance, let x be the solution com-
puted by Dist-α-Greedy using p′ and d ′, and let x∗ be an
optimal solution with respect to p and d. Then, we have that
p(Cx) ≥ 1

1+1/n2
· 1

(1+ε)2
· α
k+α

p(Cx∗).

Proof Let y∗ be an optimal solution with respect to p, d, and
C̃ ⊇ Cheavy. We have that p(Cx∗) ≤ (1 + 1

n2
)p(Cy∗) by

Lemma 8. Furthermore, p(Cx) ≥ 1
(1+ε)2

· α
k+α

p(Cy∗) due to

Lemmas 2 and 11 and the definition of p′ and d ′. The claim
follows.
�
Lemma 13 Let γ > 0 be a constant. There exists distributed
((1+ γ) k+α

α
)-approximation algorithm for k-SA that termi-

nates with high probability in O(k2γ −2 · log3 n) rounds.

Proof If γ < 4
n2
, then n ≤ 2/

√
γ which means that n =

O(1). In this case, an optimal solution can be computed in
O(1) rounds as follows: each node sends its input to the
node with highest id, which computes an optimal solution
and broadcasts it to all nodes.

If γ ≥ 4
n2
, then set ε = γ /4 and run Dist-α-Greedy. In

this case we have that

(1 + 1

n2
) · (1 + ε)2 ≤

(
1 + γ

4

)3

= 1 + 3γ

4
+ 3γ 2

16
+ γ 3

64
< 1 + γ.

The rest follows from Lemmas 10 and 12.
�
By setting α = 1 − r , Lemma 13 leads to the following

result:

123

Author's personal copy

Distributed approximation of k-service assignment

Corollary 14 There exists a distributed ((1 + γ) k+1−r
1−r)-

approximation algorithm for r-restricted k-SA that termi-
nates with high probability in O(k2γ −2 · log3 n) rounds, for
every γ > 0.

We can obtain a better ratio using resource augmentation,
i.e., by setting α = 1.

Corollary 15 There exists a distributed (1 + γ)(k + 1)-
approximation algorithm for r-restricted k-SA that uses at
most (1 + r) times the capacity of each server and termi-
nates with high probability in O(k2γ −2 · log3 n) rounds, for
every γ > 0.

As in the centralized case (Lemma 6) we use the resource
augmentation algorithm in order to obtain a feasible service
assignment. However, in the distributed setting we use ran-
dom selection instead of using coloring.

Theorem 16 There exists a distributed algorithm for k-SA
that terminates with high probability in O(k2γ −2 · log3 n)

rounds and computes solutions whose expected profit is at
least p(Cx∗)/((1+ γ) · 4k(k + 1)), for any γ > 0, where x∗
is an optimal solution.

Proof We present a distributed randomized algorithm that
computes a service assignment whose expected profit is at
least the optimum divided by (1 + γ) · 4k(k + 1), for any
constant γ > 0.

The first phase of the algorithm is to compute a (1+γ)(k+
1)-approximate solution x for k-SA that uses at most (1 +
r) times the capacity of each server. By Corollary 15 this
takes O(k2γ −2 ·log3 n) rounds. The solution is either already
feasible orwas computed byDist-1-Greedy (seeLemma13).
In the latter case, for each server s, consider the set of clients
that were last assigned to a server s by an invocation of Uni-
form-Augment and choose as c(s) the client with the largest
identifier.

Recall the conflict graph G ′ = (Cx , E ′) that was defined
in Lemma 6. The set E ′ contains an edge between two clients
(c, c′) if c and c′ are both assigned to a server s and c = c(s).
The second phase is to compute an independent set I of G ′.
As shown in the proof of Lemma 6, restricting x to the clients
in I yields a feasible solution.

We exploit that G ′ is a DAG with in-degree at most k.
Let β > 1 and U = ∅. We denote by N−(c) the set of in-
neighbors of c in G ′ and by N+(c) the set of out-neighbors.
We define a local version of k for each client c ∈ Cx , namely
k(c) = maxc′∈N+(c) κ(c′) if N+(c) �= ∅ and k(c) = 1 oth-
erwise. Add each client c ∈ Cx to U independently with
probability 1

βk(c) . Then let I ⊆ U be the set of clients with
no in-neighbor in U . Clearly I is an independent set of G ′.
By the Union Bound, a client c has an in-neighbor inU with
probability at most

Fig. 3 Each client is labeled with the index of its class, each server is
labeled with imax

 (s)

∑

c′∈N−(c)

1

βk(c′)
≤ κ(c)

1

βκ(c)
= 1

β
.

Thus, a client c is in I with probability at least

1

βk(c)

(

1 − 1

β

)

= β − 1

β2k(c)
≥ β − 1

β2k
.

We choose β = 2 to maximize β−1
β2 , so a node of Cx is in I

with probability at least 1
4k . Thus E[p(I)] ≥ 1

4k p(Cx).
The set I can be easily constructed by the following dis-

tributed algorithm. Each client c ∈ Cx sends κ(c) to every
server s with x(c, s) = 1. Each server s then sends the value
maxc �=c(s) κ(c) to the client c(s). At this point, every client
c ∈ Cx knows the value of k(c). Each client c then informs
every server s with x(c, s) = 1 whether c ∈ U . A server s
responds to a client c ∈ U with a NACKmessage if c �= c(s)
and c(s) ∈ U , andwith anACKmessage otherwise. If a client
c ∈ U receives no NACK message, then c ∈ I . Otherwise, c
informs its servers that c /∈ I .
�

4.3 Modification

In the remainder of this section, we describe a modified
version of Augment, called Mod-Augment, that does not
assume knowledge of pmax. Instead, we assume that each
server s knows the demand d(c) and the profit p(c) of each
adjacent client c ∈ N (s), as explained in Sect. 2.

Without knowledge of pmax, intuitively, we would like
to start with the non-empty subclass C[
, i] of maximum
index i . A naive approach, such as determining themaximum
index i and making it known to all nodes, would require time
proportional to the network diameter. Our algorithm avoids
this issue by using the index

imax

 (s) = max{i : C[
, i] ∩ N (s) �= ∅},

for each server s ∈ S. See Fig. 3 for an example. As the
demands and profits are known, a server s can easily deter-
mine imax

 (s).
Algorithm Mod-Augment (Algorithm 5) works as fol-

lows. In each iteration of a loop starting at i = imax

 (s) and

counting downwards, each server s sends a START mes-
sage to each adjacent client in class C[
, i]. It then runs

123

Author's personal copy

M. M. Halldórsson et al.

Algorithm Uniform-Augment for index i . The execution
of Uniform-Augment for index i is restricted to the graph
G(i,
) = (C[
, i], S, E ∩ (C[
, i] × S)). Thus, a client
c ∈ C[
, i] may only receive messages due to an execution
of Uniform-Augment for index i .

Alg. 5 Mod-Augment (C, S, E, κ, cap,
, x)
1: each s ∈ S runs
2: for i = imax

 (s) downto 0 do
3: Send START message to every client c ∈ N (s) ∩ C[
, i]
4: Using an α-synchronizer,

execute TU synchronous rounds
of Uniform-Augment(G(i,
), κ, cap, i,
, x)

5: end for
6: end

1: each c ∈ C[
] runs
2: while not all adjacent servers

have sent a START message do
3: Receive all messages and save any

messages sent by Uniform-Augment
4: end while
5: Using an α-synchronizer and delivering all saved

messages, execute TU synchronous rounds
of Uniform-Augment(G(i,
), κ, cap, i,
, x)

6: end

A client c ∈ C[
, i] doesn’t run Algorithm Uniform-
Augment for index i straightaway. Instead, it waits until all
adjacent servers have sent a STARTmessage.While delaying
the execution of Uniform-Augment, incomingmessages for
Uniform-Augment are saved by c and delivered later when
its execution starts.

As messages are delayed and since Uniform-Augment
was written for the synchronous model, we use an α-
synchronizer to executeUniform-Augment.Also,weassume
that the synchronizer counts the number of synchronous
rounds of Uniform-Augment that it has completed. This
serves as a means of termination detection. Let TU be
the worst-case running time of Uniform-Augment in syn-
chronous rounds. After starting an execution of Uniform-
Augment for a particular index, servers and clients wait until
the synchronizer has completed TU synchronous rounds of
Uniform-Augment. Once this has happened, clients update
the service assignment and servers continue with the next
iteration of the loop over i .

Consider the graph shown in Fig. 3. In the first round,
servers s1 and s2 send a START message to c1, c2, and c3.
So servers s1 and s2 as well as clients c1 and c2 start execut-
ing Uniform-Augment for class C[
, 1]. However, client c3
locally delays the execution of Uniform-Augment for class
C[
, 1] until it receives a START message from server s3.
This only happens after s3 and c4 finish executing Uniform-
Augment for classC[
, 2]. This in turn is delayed until s4 and
c5 finish executingUniform-Augment for class C[
, 3]. We

observe that the execution of Uniform-Augment for some
class C[
, i] is delayed for at most (i
 − i) · O(TU) rounds,
where i
 = maxs∈S imax

 (s).
As we only need to consider all subclasses of C[
] that

contain heavy clients, we simply stop the execution of Mod-
Augment after O(TU ε−1 log n) rounds and take the service
assignment computed by then. Abruptly stopping the exe-
cution may render the local view of the computed service
assignment by clients and servers inconsistent. This can be
fixed within one round by letting each client c send the value
x(c, s) to each adjacent server s. As the following result
shows, the given time bound suffices to let Mod-Augment
consider all heavy clients.

Lemma 17 With high probability, AlgorithmMod-Augment
requires O(k2ε−1 log2 n) rounds to run Uniform-Augment
for all subclasses of C[
] that contain heavy clients.

Proof Let i
 = maxs∈S imax

 (s) and by S(i) denote the set of

servers with i ≤ imax

 (s), i.e., S(i) �

{
s ∈ S : i ≤ imax

 (s)
}
.

Also, fix an execution e of AlgorithmMod-Augment and let
TU be the worst-case running time of Uniform-Augment.
Then let M(i) denote the set of servers that have sent a
STARTmessage to all adjacent clients in classC[
, i]within
the first 1+ (i
 − i)(TU +1) rounds of e. Note that all servers
adjacent to a client of C[
, i] are in S(i).

We show that S(i) ⊆ M(i), for all i , by induction on i .
An implication of S(i) ⊆ M(i) is that all clients in class
C[
, i] and their adjacent servers start executing algorithm
Uniform-Augment for class C[
, i] at the latest after round
1+ (i
 − i)(TU +1) of e and thus have finished its execution
before the end of round 1 + (i
 − i)(TU + 1) + TU .

The base case is S(i
) ⊆ M(i
), which is true since clearly
s ∈ M(imax

 (s)), for all s ∈ S. For i > 0 we show that if
S(i) ⊆ M(i), then S(i − 1) ⊆ M(i − 1). By the argument
given above, all servers in S(i) finish the execution of Uni-
form-Augment before the end of round 1 + (i
 − i)(TU +
1) + TU . So they will send a START message to all adjacent
clients in class Ci−1

 in the next round, which is 1+ (i
 − i +
1)(TU + 1). Thus, S(i) ⊆ M(i − 1). It remains to prove that
s ∈ M(i − 1) for each s ∈ S(i − 1) \ S(i). Note that such
a server satisfies imax

 (s) = i − 1 and thus s ∈ M(i − 1).
Consequently, S(i − 1) ⊆ M(i − 1).

Each heavy client of C[
] is contained in some class
C[
, i] with i ≥ i
 − ⌈

3 log1+ε n
⌉
. As shown above, the

clients in any such class C[
, i] have been considered after
at most 1+ (i
 − i)(TU +1)+TU ≤ 1+⌈

3 log1+ε n
⌉

(TU +
1) + TU rounds. Note that Uniform-Augment is invoked by
Mod-Augment for at most n non-empty classes. Therefore
we have that TU ∈ O(k2 log n) with high probability.
�

By replacing Algorithm Augment with Mod-Augment
we obtain Algorithm Mod-Dist-α-Greedy (Algorithm 6).
Note that Mod-Augment is a drop-in replacement in the

123

Author's personal copy

Distributed approximation of k-service assignment

Alg. 6 Mod-Dist-α-Greedy (C, S, E, d, p, cap)
1: x ← 0
2: for
 = W ′ downto W do
3: x ← Mod-Augment(C, S, E, cap,
, x)

� stop after O(k2ε−1 log2 n) rounds
4: end for

sense that it preserves all significant properties of Augment:
(i) All subclasses of C[
] with heavy clients are considered,
(ii)Mod-Augment has the sameasymptotic runtime asAlgo-
rithm Augment, and (iii) the subclasses C[
, i] are (locally)
considered in decreasing order of index i . We proceed to
show that in particular Lemmas 10 and 11 remain true for
Mod-Dist-α-Greedy. As all subsequent results in Sect. 4.2
are mainly derived from these two lemmas, they also remain
true.

Lemma 18 Mod-Dist-α-Greedy terminates with high prob-
ability in O(k2ε−2 log3 n) rounds.

Proof Mod-Dist-α-Greedy consists of O(ε−1 log n) invo-
cations of AlgorithmMod-Augment, which in turn requires
O(k2ε−1 log2 n) rounds according to Lemma 17.
�
Lemma 19 Given a k-SA instance, Algorithm Mod-Dist-α-
Greedy mimics α-Greedy on a set C̃ ⊇ Cheavy using the
rounded profits p′ and the rounded demands d ′.

Proof Notice that AlgorithmMod-Dist-α-Greedy considers
CW ′ , . . . ,CW in a decreasing order of
. Since all clients in
C[
], for any
, have the same cost-effectiveness, (1 + ε)
,
it follows that the algorithm augments x according to a non-
increasing order of client cost-effectiveness with respect to
p′ and d ′. For each
, Algorithm Mod-Augment (locally)
considers subclasses C[
, i] in a decreasing order of i , that
is unless i = imax

 (s), a server waits with the execution of
Uniform-Augment for class C[
, i] until the execution of
Uniform-Augment for classC[
, i+1] is finished. For each
i , Uniform-Augment computes an α-maximal solution, as
shown in Lemma 9, by adding clients with the same profit,
demand, and cost-effectiveness in an order that is induced
by the random choices of the maximal independent set com-
putation. Hence, Algorithm Mod-Augment can be seen as
trying to service clients with the same cost-effectiveness in
an arbitrary order. It follows that Mod-Dist-α-Greedy is a
specific implementation of α-Greedy. Also, by Lemma 17,
all heavy clients in each class C[
] are considered.
�
Acknowledgements We thank Boaz Patt-Shamir for helpful discus-
sions.

References

1. Amzallag,D., Bar-Yehuda,R., Raz,D., Scalosub,G.: Cell selection
in 4G cellular networks. IEEETrans.Mobile Comput. 12(7), 1443–
1455 (2013)

2. Awerbuch, B.: Complexity of network synchronization. J. ACM
32(4), 804–823 (1985)

3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A
unified approach to approximating resource allocation and schedul-
ing. J. ACM 48(5), 1069–1090 (2001)

4. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio:
a unified framework for approximation algorithms. ACMComput.
Surv. 36(4), 422–463 (2004)

5. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating
the weighted vertex cover problem. Ann. Discret. Math. 25, 27–46
(1985)

6. Chekuri, C., Khanna, S.: On multidimensional packing problems.
SIAM J. Comput. 33(4), 837–851 (2004)

7. Chekuri, C., Khanna, S.: A polynomial time approximation scheme
for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–
728 (2005)

8. Cohen, R., Grebla, G.: Joint scheduling and fast cell selection in
OFDMA wireless networks. IEEE/ACM Trans. Netw. 23(1), 114–
125 (2015)

9. Cohen, R., Katzir, L., Raz, D.: An efficient approximation for the
generalized assignment problem. Inf. Process. Lett. 100(4), 162–
166 (2006)

10. Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F.S., Ravi,
R.: Approximation algorithms for the multiple knapsack problem
with assignment restrictions. J.Comb.Optim.4(2), 171–186 (2000)

11. Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Rad-
hakrishnan, J., Rawitz, D.: Online set packing. SIAM J. Comput.
41(4), 728–746 (2012)

12. Erdös, P., Hajnal, A.: On chromatic number of graphs and set-
systems. Acta Math. Hung. 17(1–2), 61–99 (1966)

13. Feige, U., Vondrák, J.: Approximation algorithms for allocation
problems: improving the factor of 1-1/e. In: 47th IEEE Annual
Symposium on Foundations of Computer Science, pp. 667–676
(2006)

14. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.:
Tight approximation algorithms for maximum general assignment
problems. In: 17th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 611–620 (2006)

15. Frieze,A.M.,Clarke,M.R.B.:Approximation algorithms for them-
dimensional 0−1 knapsack problem: worst-case and probabilistic
analyses. Eur. J. Oper. Res. 15, 100–109 (1984)

16. Gurewitz, O., Sandomirsky, Y., Scalosub, G.: Cellular multi-
coverage with non-uniform rates. In: INFOCOM, pp. 1330–1338
(2014)

17. Halldórsson, M.M., Köhler, S., Patt-Shamir, B., Rawitz, D.: Dis-
tributed backup placement in networks. In: 27th ACM Symposium
on Parallelism in Algorithms and Architectures, pp. 274–283
(2015)

18. Hȧstad, J.: Clique is hard to approximate within n1−ε . Acta Math.
182(1), 105–142 (1999)

19. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approxi-
mating k-set packing. Comput. Complex. 15(1), 20–39 (2006)

20. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the
knapsack and sum of subset problems. J. ACM 22(4), 463–468
(1975)

21. Luby,M.: A simple parallel algorithm for themaximal independent
set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

22. Magazine, M.J., Chern, M.S.: A note on approximation schemes
for multidimensional knapsack problems. Math. Oper. Res. 9(2),
244–247 (1984)

23. Patt-Shamir, B., Rawitz, D., Scalosub, G.: Distributed approxi-
mation of cellular coverage. J. Parallel Distrib. Comput. 72(3),
402–408 (2012)

24. Peleg, D.: Distributed computing: a locality-sensitive approach.
Society for Industrial and Applied Mathematics, Philadelphia
(2000)

123

Author's personal copy

M. M. Halldórsson et al.

25. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. Combinator-
ica 7(4), 365–374 (1987)

26. Rawitz, D., Voloshin, A.: Flexible cell selection in cellular net-
works. In: 12th International Symposium on Algorithms and
Experiments for Wireless Sensor Networks. LNCS, vol. 10050,
pp. 112–128 (2016)

27. Sahni, S.: Approximate algorithms for the 0/1 knapsack problem.
J. ACM 22(1), 115–124 (1975)

28. Shmoys, D.B., Tardos, É.: An approximation algorithm for the gen-
eralized assignment problem. Math. Program. 62, 461–474 (1993)

29. Srinivasan, A.: Improved approximation guarantees for packing
and covering integer programs. SIAM J. Comput. 29(2), 648–670
(1999)

30. Wattenhofer, R.: Principles of distributed computing: maxi-
mal independent set. http://www.dcg.ethz.ch/lectures/fs15/podc/
lecture/chapter7.pdf. Accessed 27 Aug 2015

123

Author's personal copy

http://www.dcg.ethz.ch/lectures/fs15/podc/lecture/chapter7.pdf
http://www.dcg.ethz.ch/lectures/fs15/podc/lecture/chapter7.pdf

	Distributed approximation of k-service assignment
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 Definitions, notation, and assumptions
	2.3 Execution model

	3 Centralized greedy algorithm
	4 Distributed greedy algorithm
	4.1 Client classification
	4.2 Distributed implementation of α-Greedy
	4.3 Modification

	Acknowledgements
	References

