Streaming Algorithms for Independent Sets

Bjarni V. Halldérsson' Magntis M. Halldérsson? Elena Losievskajat®
Mario Szegedy?

April 28, 2010

Abstract

We find “combinatorially optimal” (guaranteed by the degree-sequence alone) indepen-
dent sets for graphs and hypergraps in linear space in the semi-streaming model.

We also propose a new output-efficient streaming model, that is more restrictive than
semi-streaming (n-log®") n space) but more flexible than classic streaming (log®™") n space).
The algorithms in this model work in poly-logarithmic space, like in the case of the classical
streaming model, but they can access and update the output buffer, treating it as an extra
piece of memory.

Our results form the first treatment of the classic IS problem in the streaming setting.

1 Introduction

In this paper we consider streaming algorithms for the classic independent set problem on
graphs and hypergraphs. As input, we are presented with a (hyper)graph edge by edge, and we
have to output a large set of vertices that contains no (full) edges. For graphs, a theorem of
Paul Turan guarantees an independent set of size n/(d+ 1), where d is the average degree of the
graph. If the entire degree-sequence, di,...,dy of the graph is available, then) ", ﬁ is a
stronger lower bound for the maximum independent set size (in this paper n will always denote
the number of nodes of the input graph). The formula has a generalization for hypergraphs as
well (see Section 1.2). This “combinatorially optimal” output size is what we will require of our
algorithms.

In the streaming model [13], the data is presented sequentially in the form of a data stream,
one item at a time, and the working space (the memory used by the algorithm) is significantly
less than the size of the data stream. The motivation for the streaming model comes from
practical applications of managing massive data sets such as, e.g., real-time network traffic, on-
line auctions, and telephone call records. These data sets are huge and arrive at very high rate,
making it impossible to store the entire input and forcing quick decisions on each data item.
However, most graph problems are impossible to solve within the polylogarithmic space bound
that the traditional streaming model offers (a rare exception is an algorithm for the problem of
counting triangles in a graph [5]).

TSchool of Science and Engineering, Reykjavik University, 101 Reykjavik, Iceland, e-mail: bjarnivh@ru.is

School of Computer Science, Reykjavik University, 101 Reykjavik, Iceland, e-mail: {mmh@ru.is,ellossie@
gmail.com}. Research supported by grant 7000921 of the Iceland Research Fund

$Current address: Icelandic Heart Association, Holtasmari 1, 201 Kopavogur, Iceland.

TDept. of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey, USA,
e-mail: szegedy@cs.rutgers.eduSupported by NSF grant EMT-0523866.

This observation led to the introduction of the semi-streaming model [13], where space for
n-vertex graphs is restricted to nlogo(l) n. The algorithms then have enough space for some
information for each vertex, but not enough to store the whole graph. A number of graph
problems have been studied in the semi-streaming model, including bipartite matching (weighted
and unweighted cases) [10, 9], diameter and shortest paths [10, 11], min-cut [1], and graph
spanners [11]. The independent set (IS) problem, to our best knowledge, has not been studied
in the model before.

In the case of IS, the nlogo(l) n-bound of semi-streaming seems overly generous, but we
cannot reasonably expect a sublinear bound, given the need to store the problem solution.
Instead, we suggest that the focus be placed on the amount of extra space required, i.e. in
addition to that required for storing the solution.

All the algorithms we consider have the common feature that they maintain a feasible solution
at all times. Also, decisions made on edges are irreversible: once a node is ejected from the
solution, it never enters it again. This defines a new online streaming model. It is closely
related to preemptive online algorithms, considered recently by Epstein et al.[9] in a streaming
context for weighted matching. The difference is that in our problem, we can view the whole
vertex set as belonging to the initial solution, thus the solution of any algorithm is monotonously
non-increasing with time. There have been few works on online graph problems that allow for
one-way changes. A rare example is a recent work of [8] that can be viewed as dealing with
maintaining a strong independent set of a hypergraph when edges arrive in a stream.

To contrast, in the classical online version of the IS problem [12, 2], vertices arrive one by one,
along with all incident edges to previous vertices. The online algorithm must then determine
once and for all whether the node is to be included in the constructed feasible independent set
solution. This problem is very hard to approximate [12, 2]; e.g., a competitive factor of n — 1
is best possible for deterministic algorithm, even when restricted to trees. However, bounded-
degree graphs are comparatively easy, since a factor of A is trivial for a deterministic greedy
algorithm.

By focusing on the space requirements and the way the working space can be used, we seek
to gain a deeper understanding of the way independent sets can be computed. We generally try
to avoid any prior assumptions such as knowing the set or the number of vertices in advance,
and we are willing to pay a well-calculated price for this in terms of extra space.

1.1 Owur Contribution

We design space-efficient semi-streaming algorithms for IS. Our starting point is algorithm
RANDOMOFFLINE of Shachnai and Srinivasan [14] (see Fig. 2). We modify this algorithm to
achieve:

- O(nlogr) space, instead of nlogn, where r is the cardinality of the largest hyperedge
(Algorithm RANDOMPARTIALPERMUTE). Also, n does not need to be known for the
algorithm in advance.

- O(n) space (Algorithm RANDOMMAP; here n needs to be known in advance, and the
constants are somewhat compromised).

We also analyse the situation, where we are allowed to keep only a single bit (!) per node.

Finally, we explore new models of semi-streaming and argue upper and lower bounds. In the
on-line semi-streaming model output-changes can go only in one direction and a feasible solution
must be maintained at all times. Also, memoryless algorithms are allowed only logarithmic eztra
space in addition to the bits required to store the solution.

1.2 Definitions

Given a hypergraph H = (V, E), let n and m be the number of vertices and edges in H,
respectively. We assume that H is a simple hypergraph, i.e. no edge is a proper subset of
another edge. An independent set I in H is a subset of vertices that contains no edge of H. If
I is independent, then V' \ I is said to be a hitting set.

A hypergraph is r-uniform if all edges have the same cardinality r. Graphs are exactly
the 2-uniform hypergraphs. For graphs and hypergraphs the degree d(v) of a vertex v is the
number of edges incident on v. We denote by A and d the maximum and the average degree,
respectively. For us, a much better measure for the degree of the vertex v of H is 1/p, where p is
the solution of) - plel=1 = 1. This we call the efficient degree of v, and we denote it by d*(v).

Also, define i(H) =)", d%(v). For intuition, note that for a d-regular k-uniform hypergraph

H,i(H) =n/"Vd. Let a(H) be the maximum independent set size of H. What makes i(H)
interesting for us is that o(H) = Q(i(H)). In fact, Q(i(H)) is the strongest lower bound for
a(H) we can obtain from the degree-sequence alone. Let IS denote the problem of finding an
independent set in hypergraphs of size Q(i(H)).

We can generalize all of the definitions for weighted (hyper)graphs. A vertex-weighted hy-
pergraph has a non-negative weight function on its vertices. The notions of average degree etc.
carry over to the weighted case in a natural way, for instance i(H) becomes %, where w
is the weight function. Most of our results will carry over to the weighted case with obvious
modifications.

We also note that our algorithms will be such that if vertices with degree 0 should appear in
H, then they will be automatically included in the independent set that the algorithm outputs.

We assume that the vertices are labelled 0,...,n — 1. This assumption can be voided by
simply maintaining a lookup table, but the storage requirements for such lookup are beyond the
scope of our considerations here.

For this article, the most precious resource is space, and we model and regard memory as a
linear array of bits with direct access (as in standard C programming).

2 A Basic Algorithm

All of our algorithms will be based on the well known observation, that in a sparse graph
random sets of the right size are nearly independent. The algorithm we present in Fig. 1 is
crucial to the analysis of the subsequent algorithms in later sections.

Remark. On a random set of size pn we shall mean either of the two things: 1. We select a
subset of V' = [n] of size pn uniformly and randomly. 2. We create a random subset X of V/
by the procedure that selects all nodes in V' randomly and independently with probability p.
While we prove Lemma 2.1 only for case 2, our applications will use lemma for case 1, where it
also holds.

We now analyze BAsic[p, H].

Lemma 2.1 Let H(V, E) be a hypergraph and let A be the set of nodes of H with efficient degree
< i. Then Basic|p, H] will return an independent set I such that E[|ANI|] > p|A|/2.

Proof: For a node v, let x, be the random variable that takes value 1 if the node is selected
into 7, and 0 otherwise. Then |[ANI| =" 4 X». To estimate the expectation of x, from below,
notice that if v is in X, but for every edge e incident on v we have e € X, then v € I. The
probability that v € X is p. The conditional probability that for an e with v € e we have that

ALGORITHM Basic[p, H]
Input: a hypergraph H(V, E), probability value p

S0
Let X be a random subset of V' of size pn.
For each edge e € E(H) do
If e Z X, let v be any vertex in e\ X;
otherwise, let v be any vertex of e.
S — SuU{v}
Output I = V\S

Figure 1: Algorithm BASIC is crucial for most of our performance analysis

e ¢ X is 1 — plel=1. If the edges incident on v would have only vertex v in common, and were
otherwise disjoint, then this would give us the probability

p [T (1=p") 2 p <1 - p'el> > p/2

e:vee e:vee

for the desired event, where the last inequality follows from 26:1)66(2;0)@'*1 < 1, since the

efficient degree of any v € A by our assumption is at least 1/(2p). When the (hyper)edges that

are incident on v arbitrarily intersect, we use the FKG-inequality as in [14] towards getting

the exact same estimate. The latter implies that the correlations that arise by letting the edges

overlap will make the event that none of them is contained in X more likely (we omit the details).
The lemma now follows from the additivity of expectation. B

3 Permutation-based Algorithms

The idea of permutation-based algorithms is to randomly permute vertices and use this
random permutation to decide which vertices to include in the independent set. Given a set of
vertices V, the randomized algorithm RANDOMOFFLINE (see Fig. 2) creates a permutation 7
on the given set V' of vertices. The last vertex of each edge is added to a set .S. The set .S forms
a hitting set and V'\S an independent set.

ALGORITHM RANDOMOFFLINE
Input: a hypergraph H(V, E)

S—10
Let m be a random permutation of the vertices in V'
For each edge e € E(H) do
Let v be the last vertex in e with respect to 7
S — SuU{v}
Output I = V\S

Figure 2: The off-line algorithm RANDOMOFFLINE

Shachnai and Srinivasan [14] proved the following performance bounds for RANDOMOFFLINE
on hypergraphs. An elegant proof for graphs is featured in the book of Alon and Spencer [4].

4

Theorem 3.1 ([14]) Given a hypergraph H, the off-line algorithm RANDOMOFFLINE finds an
independent set of expected weight Q(i(H)).

A simple heuristic improvement to the algorithm is to add the last vertex of an edge to S
only if that edge doesn’t already have a representative in the set, i.e., if e NS # (). Since the
addition of this condition never decreases the solution size, the performance claims continue to
hold.

It is immediately clear that RANDOMOFFLINE is actually a streaming algorithm, since it
treats the edges in whichever given order. We can even avoid the assumption that the algorithm
knows the number n of vertices in advance. For that, we construct a random permutation w
on-the-fly by randomly inserting each new vertex in the ordering of the previous vertices.

We can significantly reduce the space by constructing a partial random permutation instead of
a complete random permutation. Each vertex v is associated with a finite sequence s, of random
bits, where each bit in s, is independently set to 0 or 1 with equal probability. A partial random
permutation of the vertex set V is then a lexicographic order of the corresponding bit-sequences
{sv}vev. Consider an edge e € E. Let {s,|v € e} be the set of bit-sequences associated with
the vertices in e. For vertices u,v € e, we write u > v if s, follows s, in lexicographical order.
We define the vertex u € e to be the last in e, if s, is lexicographically last in the set {s,|v € e}.
The idea is that for each vertex v € e we use the minimum number of bits required to determine
if s, is the last in {s,|v € e}. In other words, we just need to determine which vertex in e is
the last, and the relative order of other vertices in e is not important. The formal description
of this algorithm RANDOMPARTIALPERMUTE is given in Fig. 3. Let s,[j] be the j-th bit in s,.

ALGORITHM RANDOMPARTIALPERMUTE
Input: a stream E of edges

VS0
For each edge e in the stream E do
For each vertex v € e such that v ¢ V do
V —Vu{v}
Sy — 0
U~ {e}
je1
While |U| # 1 do
For each v € U such that s,[j] is not defined do
su[j] = 1 with probability 1, otherwise s,[j] = 0
If 3v € U such that s,[j] =1
U—U\{vel]|sl[j]=0}
Je=g+1
S—SuU
Output I = V\S

Figure 3: The algorithm RANDOMPARTIALPERMUTE

As stated, the algorithm RANDOMPARTIALPERMUTE is not fully implemented. Specifically,
it remains to organize the bits stored into a structure that can be easily accessed. Various
approaches are possible that all complicate the picture. We will instead leave the idea in this
partially developed state.

Theorem 3.2 RANDOMPARTIALPERMUTE finds an independent set of expected weight Q(i(H))

using expected O(nlogr) space and O(r) time to process each edge.

Proof: First, we show that the ordered set S = {s,|v € V} forms a partial permutation of
V. We note that a random permutation can be created by assigning each vertex a random
number drawn from the uniform distribution on [0, 1) and asserting that u follows v in 7, if the
random number assigned to u is greater than the random number assigned to v. A uniform
random number drawn from [0,1) can be viewed as an infinite sequence of unbiased random
bits. RANDOMPARTIALPERMUTE creates such a bit-sequence with only as many bits created
as needed to determine if s, is lexicographically last in {s,|v € e} for every edge e such that
v € e. Therefore, the set {s,|v € V} forms a partial permutation of V' and we can apply the
same argument as in the proof of Theorem 3.1 to show that RANDOMPARTIALPERMUTE finds
an independent set of expected weight Q(i(H)).

In the remainder we show that the algorithm uses O(nlogr) space to store the set {s,} of
bit-sequences. Given a vertex v, we say that we open the j-th bit in s,, if the algorithm assigns
Sy[j] to either 0 or 1.

Consider an edge e incident on v. Let s, . be the bit-sequence s, at the time e appears in
the stream and let u > v if Sy > spe. Let Usy(e) = {u € e|lu = v}, Uxy(e) = {u € elv = u}
and U—,(e) = {e}\ (Uny(e) UU<y(€e)). We need to open more bits in s, . only if Uy, (e) = 0
and U—,(e) # 0, because in this case the vertices in U—,(e) have the highest bit-sequences and
these bit-sequences are exactly the same as s, .. In this case we say that e is problematic for v.
In any other case, the opened bits in s, . are sufficient to decide which vertex covers e, namely
e is covered either by a vertex u € Uy, (e) if Usy(€e) # 0 or by the vertex v if Uy, (e) = () and
U—y(e) = 0.

To simplify the analysis we will open bits in batches, 3logr bits are opened initially and
immediately following the resolution of a problematic edge, and further as many bits are opened
as are needed to resolve a problematic edge.

Consider an edge e problematic for v. We compute an upper bound on the expected number of
vertices that have the same bit-sequence as v and condition the computation of this expectation
over all the values that v can take. Each time we encounter a problematic edge we are guarenteed
to have 3logr bits which may be considered to be random. The bit-sequences that the other
vertices in e take are conditioned on being less than or equal to the bit-sequence for v. Then, the
expected number of vertices that have the same bit-sequence as v in e at the 3logr bits under
consideration can be determined by: summing over all 73 possible values that the bit-sequence
for v can take and multiplying the probability that v takes the value of a given bit-sequence,

r%, with the expected number of other nodes in e that take the same bit-sequence value. The

expected number of nodes in e taking the same bit-sequence value as v is bounded by (Z;i),
where i is the bit-sequence value of v (As | e—{v} |< r—1 and i+1 is the number of bit-sequences

< 7). We get an expression

31 1)=1
% 1 <(0g7“+)T§

1
r . -
r i+1 r2 r

Each time we encounter a problematic edge e, we open 3logr bits and then as many bits as
needed to determine which of the vertices in U—,(e) has the highest bit-sequence, in expectation
log(1 4 1) bits. In total we open in expectation

[e.9]

1\ /1)
Z (3 log r + log(1 +)> () < 6logr
r r

1=0

bits. W

3.1 Linear Space Algorithm

Interestingly, we can run algorithm BASIC “in parallel,” for many different p’s at the same
time in the same sequential algorithm! This happens in the case of algorithm RANDOMOFFLINE.
For a random permutation 7, define

X} = {first k elements of 7} .

Now X} is a random set with size pn, where p = k/n. Notice that upon running RANDOMOF-
FLINE we also run BASIC for Xj for K = 1,...,n in parallel. Indeed, it holds that when a
hyperedge e is processed, we add the last vertex, v, of e to S. Thus, unless e C X}, vertex v is
not in Xj. Using this property, we see that for every vertex v the expectation of y, of Lemma
2.1 is at least m, just by picking X}, for the node with k£ = n/d*, and applying the same
argument to bound E[x,] from below, as in Lemma 2.1. Theorem 3.1 (aside from a constant
factor) now follows easily from the additivity of expectation.

We now create a new, more efficient algorithm, RANDOMMAP from the observation that the
above argument goes through even when we only use the properties of X, for £k =1,2,4,8,....
Indeed, if v has efficient degree d* then choose 57 < k < 5. Then, we get that x, of Lemma

- 1
2.1 is at least W
ALGORITHM RANDOMMAP
Input: a hypergraph H(V, E)

S—0
Let p be a random map V' — [log n] described below.
For each edge e € E(H) do
Let v be the vertex in e with the largest image in p
(with conflicts resolved arbitrarily)
S — SuU{v}
Output I = V\S

Figure 4: Algorithm RANDOMMAP

To provide the Xj, for all powers of two, we do not need to create a permutation of the
nodes. A map p : V — [logn] suffices, where the probability of p(v) = i is 1/2¢ (to make the
total probability equal to one, we set the probability of p(v) = logn to be 2/n instead of 1/n).

Our new algorithm runs in the same way as RANDOMOFFLINE, except that 7 is replaced by
p, and when conflicts (i.e., when the smallest element is not unique) are resolved arbitrarily.

We now describe how to store and access p using small space. Since the domain of p has size
log n, there is a straightforward random access implementation that uses only space nloglogn
by storing p(i) in the memory segment [(i — 1)[loglogn] +1,i[loglogn]]. We can use the space
even more efficiently, however. Notice that Y ;" ; log p(i¢) = O(n). Thus, the sequence

p(1) 3 p(2)$...3 p(n)

has bit-length linear in n. But this does not facilitate the binary search for p(i), since there is
no indication in the above sequence which p value we are reading. And since the p(i)’s have
random bit length, we cannot directly access the address of p(i) either. One of several possible

7

solutions is to insert markers in n/logn places to guide our search. We put a marker before
p(1), p(1+1logn), p(1 + 2logn), and so on. Each marker has bit-length logn, and tells which
p-value comes immediately after it. The new sequence with the markers obviously still occupies
linear space. It is easy to see that now we can implement a binary search where each step of
the search involves finding the closest marker and to decide whether to go left or right. Then
after each step the search interval is halved (in terms of bit-length). At the final step a short
sequential search leads to the desired p(i). The worst case running time is O((logn)?). There
are various ways to make this algorithm more time-efficient.

4 Online Streaming Algorithms

All the algorithms considered in this paper have the following two properties: (a) they main-
tain a feasible solution I at all times, and (b) rejection decisions (i.e., the removal of a node
from I, or alternatively addition to S) are irrevocable. We refer to such algorithms as online
streaming algorithms.

In this section, we study the power of this model in the deterministic case. We restrict our
attention here to the case of graphs.

Deterministic algorithms: The next result shows that no deterministic algorithm can attain
a performance ratio in terms of d alone, nor a ratio of 2°(4).

Theorem 4.1 The performance ratio of any deterministic algorithm in the online streaming
model is Q(n). This holds even for trees of mazimum degree logn, giving a bound of Q(2%). It
also holds even if the algorithm is allowed to use arbitrary extra space.

Proof: Assume that n = 2¥ is a power of 2. Let A be any deterministic algorithm.

We maintain the invariant that the independent set selected by A contains at most one
node in each connected component. We join the n vertices together into a single tree in k
rounds. In round 4, for i = 1,2,...,k, n/2¢ edges are presented. Each edge connects together
two components; in either component, we choose as endpoint the node that is currently in A’s
solution, if there is one, and otherwise use any node in the component. This ensures that the
algorithm cannot keep both vertices in its solution, maintaining the invariant.

In the end, the resulting graph is a tree of maximum degree at most k, and A’s solution
contains at most one node. B

When allowing additional space, we can match the previous lower bound in terms of A.

Theorem 4.2 There is a deterministic algorithm in the online streaming model with a perfor-
mance ratio of O(2%).

Proof: We consider an algorithm that maintains additional information in the form of a counter
¢, for each node v, initialized as zero.

When an edge arrives between two nodes in the current solution I, we compare the counters
of the nodes. The node whose counter is smaller, breaking symmetry arbitrarily, is then removed
from the current solution I. The counter of the other node, e.g. u, is then increased. We then
say that u eliminated v. We say that a node w is responsible for a vertex zx if u eliminated =z,
or, inductively, if u eliminated a node that was responsible for x.

Let R(k) denote the maximum, for any node v with ¢, = k, of the number of nodes for which
v is responsible. We claim that R(k) < 2F — 1. Tt then follows that the size of I is at least n/2%,

8

since ¢, is at most the degree of v. For the base case R(0) = 0, since the node never eliminated
another vertex. Assume now that R(t) < 2! —1, for all ¢ < k. Consider a node with ¢, = k, and
let u1,us,...,u; denote the vertices eliminated by k in order. On the i-th elimation, the value
of ¢, was ¢ — 1, hence the value of ¢,, was at most ¢ — 1. Once eliminated, the counter ¢, for
node u; stays unchanged. Hence, by the inductive hypothesis, u; was responsible for at most
R(i — 1) other nodes. We then have that

k k—1
RE) <> (Rt-1)+1) =) 2'=2"—1,
t=1 t=0

establishing the claim. W

5 Minimal Space Algorithms

In the most restricted case, we have no extra space available. We can refer to such algorithm
as memoryless, since they cannot store anything about previous events. Can we still obtain
reasonable approximations to 1S?

We show that there exists a function g allowing us to find a n/g(d)-independent set in this
model, but that ¢ must now be exponential.

The algorithm RANDOMDELETE given in Fig. 5 selects an endpoint at random from each
edge in the stream and removes it from the current solution. Note that RANDOMDELETE is
memoryless. For the sake of simplicity, we restrict our attention in this section to the case of
graphs.

ALGORITHM RANDOMDELETE
Input: a stream E of edges

VeSS0
For each edge e in the stream E do
V—VUe
Randomly select a vertex v € e
S — Su{v}
Output V'\ S

Figure 5: The algorithm RANDOMDELETE

Intuitively, a memoryless algorithm would seem to be unable to do significantly better than
randomly selecting the vertex to be eliminated.

Theorem 5.1 RANDOMDELETE finds an independent set of expected weight n/20(d), and this
1s tight even if the algorithm avoids eliminating vertices unnecessarily.

Proof: Upper bound. Each vertex v belongs to the final solution V' \ S with probability 2—d(v),
Therefore, the expected size of the V\Sis) .y 2-4(v) > p, /24 using the linearity of expectation
and Jensen’s inequality.

Lower bound. Consider the graph with vertex set V' = {v1,v2,---,v,} and edges {v;, v;} for
any |i — j| < k. Edges arrive in the stream in lexicographic order: (vy,v2), (vi,v3), ..., (v1,vg),
(v2,v3),..., (vgs1), (vs,vq), etc. Note, that all but the first and the last k vertices have degree
2k. Thus, the average degree d < A = 2k.

Let I be the independent set constructed by the algorithm. Consider the first vertex v;.
There are two cases, depending on whether v ends up in 1.

Case 1: vy € I. It means that all the neighbors of vy are deleted. The probability of
this event is P[v; € I] = 27%. The remaining stream is identical to the original one with
V= V\{vl,vg,---,vk}.

Case 2: v1 ¢ I. Suppose v; was selected to cover the t-th edge incident on v; for some
t € [1,k]. Then, the first ¢ — 1 neighbors of v; were selected to cover the first ¢ — 1 edges
incident on vy and were deleted as well. The remaining stream is identical to the original one
with V = V\{v1,va, -, v }.

Thus, a vertex v; € V is inserted in I only in Case 1 and the probability of this event is
27k for any i € [1,n — k]. Note, that the last k vertices form a clique, and so only one vertex
from this clique contributes to I. Thus, the expected size of the independent set found by the
algorithm is at most ”Tzk +1<g+1<55 N

Remark. The algorithm has the special property of being oblivious in that the solution
maintained, or any other part of memory, is never consulted in the operation of the algorithm
until it is output.

The utility of advice

When both n and p are known in advance, we can obtain from the BASIC schema an algorithm
that requires only logarithmic space in addition to the solution bits. A single bit can record
whether a node is contained in the current independent set solution, i.e. in SN X. If p = 1/d*,
the reciprocal of the efficient degree, then Lemma 2.1 yields the following bound that is slightly
weaker than i(H).

Theorem 5.2 When n and p are known in advance, there is an online streaming algorithm that
finds an independent set of expected weight Q(n/d*) in O(logn) extra space and using O(r) time
to process each edge.

In comparison with the earlier zero-space algorithms, this suggests that knowledge of the
input parameters is highly useful for IS. This relates to the recent annotation model of [6],
although the assumption there is that the advice is dispensed only after the stream is given.

6 Open questions

What is the right model for graph problems in the streaming context? All of our algorithms
for IS use: A read-once-only tape + A tape for the output stream with very limited access
+ Poly-logarithmic work space. Is poly-logarithmic work space + restricted storage types the
way to capture a range of graph problems that do not fit conveniently into existing streaming
models? If other graph problems can be also captured by this model, this could grow into a new
brand of research.

It would be interesting to compute the constants hidden in our performance gaurantees.
Finally, we conjecture that we can make all of our algorithms run without advance knowledge
of n.

Acknowledgement We are grateful to Pall Melsted for helpful discussions.

10

References

1]

2]

K.J. Ahn and S. Guha. Graph Sparsification in the Semi-streaming Model. ICALP, 328-338,
20009.

N. Alon, U. Arad and Y. Agzar. Independent Sets in Hypergraphs with Applications to
Routing via Fixed Paths. APPROX, 16-27, 1999.

N. Alon, Y. Matias and M. Szegedy. The space complexity of approximating the frequency
moments. J. Computer and System Sciences 58(1): 1167-1181, 1999.

N. Alon, J. H. Spencer. The probabilistic method. John Wiley and Sons, 1992.

Z. Bar-Yossed, R. Kumar and D. Sivakumar. Reductions in streaming algorithms, with an
application to counting triangles in graphs. SODA, 623-632, 2002.

G. Cormode, M. Mitzenmacher and J. Thaler. Streaming graph computations with a helpful
advisor. arXiv:1004.2899v1.

C. Demetrescu, I. Finocchi and A. Ribichini. Trading off space for passes in graph streaming
problems. SODA, 714-723, 2006.

Y. Emek, M. M. Halldérsson, Y. Mansour, B. Patt-Shamir, and D. Rawitz. Online set
packing. To appear in PODC, 2010.

L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees for
weighted matching in the semi-streaming model. STACS, 2010.

[10] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri and J. Zhang. On Graph Problems in a

Semi-Streaming Model. Theoretical Computer Science, 348(2): 207-216, 2005.

[11] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri and J. Zhang. Graph distances in the

data-stream model. SIAM J. Comput. 38(5):1709-1727, 2008.

[12] M. M. Halld6rsson, Kazuo Iwama, Shuichi Miyazaki, and Shiro Taketomi. Online indepen-

dent sets. Theoretical Computer Science, 289(2): 953-962, 2002.

[13] S. Muthukrishnan. Data Streams: Algorithms and Applications. Manuscript, http: //

athos. rutgers. edu/~muthu/stream-1-1. ps, 2003.

[14] H. Shachnai and A. Srinivasan. Finding Large Independent Sets of Hypergraphs in Parallel.

SIAM J. Discrete Math., 18(3):488-500, 2005.

11

