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Abstract

We consider instances of the classical stable marriage problem in which persons may
include ties in their preference lists. We show that, in such a setting, strong lower
bounds hold for the approximability of each of the problems of finding an egalitarian,
minimum regret and sex-equal stable matching. We also consider stable marriage
instances in which persons may express unacceptable partners in addition to ties. In
this setting, we prove that there are constants δ, δ′ such that each of the problems
of approximating a maximum and minimum cardinality stable matching within
factors of δ, δ′ (respectively) is NP-hard, under strong restrictions. We also give
an approximation algorithm for both problems that has a performance guarantee
expressible in terms of the number of lists with ties. This significantly improves
on the best-known previous performance guarantee, for the case that the ties are
sparse. Our results have applications to large-scale centralised matching schemes.
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1 Introduction

An instance I of the classical Stable Marriage problem (sm) [6,21,17] involves
n men and n women, each of whom ranks all the members of the opposite
sex in strict order of preference. A matching M in I is a bijection between
the men and women. We say that a (man,woman) pair (m, w) blocks M , or
is a blocking pair with respect to M , if each of m and w prefers the other
to his/her partner in M . A matching that admits no blocking pair is said to
be stable. It is known that every instance of sm admits at least one stable
matching [3], and that such a matching can be found in O(n2) time using the
Gale / Shapley algorithm [3].

The man-oriented version of the Gale/Shapley algorithm [3] yields a stable
matching called the man-optimal stable matching. This is the unique stable
matching in which each man has his best possible partner (and each woman
her worst) among all stable matchings. Similarly, the woman-oriented ver-
sion leads to the woman-optimal stable matching with analogous optimality
conditions for the women (and pessimality conditions for the men).

“Fair” stable matchings

In view of the fact that man-optimal and woman-optimal stable matchings are
woman-pessimal and man-pessimal respectively, it is of interest to consider
stable matchings that are “fair” to both sexes in a precise sense. Given a
matching M and a person q in a given sm instance I, define the cost of M for
q, denoted by cM(q), to be the ranking of pM(q) in q’s preference list, where
pM(q) denotes q’s partner in M . In other words, cM(q) is one plus the number
of persons whom q prefers to pM(q). Let U and W denote the set of men
and women in I respectively, and let M denote the set of stable matchings
in I. Define an egalitarian stable matching to be a stable matching S for
which c(S) = minM∈M c(M), where c(M) =

∑
q∈U∪W cM(q) for any M ∈ M.

Similarly, define a minimum regret stable matching to be a stable matching
S for which r(S) = minM∈M r(M), where r(M) = maxq∈U∪W cM(q) for any
M ∈ M. Finally, define a sex-equal stable matching to be a stable matching
S for which d(S) = minM∈M d(M), where

d(M) =

∣∣∣∣∣
∑

m∈U

cM(m) − ∑
w∈W

cM(w)

∣∣∣∣∣

for any M ∈ M.
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Intuitively, an egalitarian stable matching seeks to minimize the total cost of
M taken over all persons in I, whilst a minimum regret stable matching aims
to minimize the maximum cost of M taken over all persons in I. Finally in a
sex-equal stable matching, the total cost of M for the men in I is as close to
the total cost of M for the women in I as possible.

Denote the problems of finding an egalitarian, minimum regret and sex-equal
stable matching by egalitarian sm, minimum regret sm and sex-equal
sm respectively, given an instance of sm. It is known that each of egalitarian
sm and minimum regret sm is polynomial-time solvable [13,2,7]. However
sex-equal sm has been shown to be NP-hard [16].

Ties in the preference lists

A natural generalisation of sm arises when each person need not rank all
members of the opposite sex in strict order. Some of those might be indifferent
among certain members of the opposite sex, so that preference lists may involve
ties 3 . We use smt to stand for the variant of sm in which preference lists may
include ties. (Henceforth we assume that a tie is of length at least two.) In
this context, a matching M is stable if there is no (man,woman) pair (m, w),
each of whom strictly prefers the other to his/her partner in M 4 .

By breaking the ties arbitrarily, an instance I of smt becomes an instance I ′

of sm, and clearly a stable matching in I ′ is also stable in I. Thus a stable
matching in I can be found using the Gale/Shapley algorithm. (Conversely,
given a stable matching M in I, it is not difficult to see that there is an
instance IM of sm in which M is stable. Hence a matching M is stable in I if
and only if M is stable in some instance of sm obtained from I by breaking
the ties.)

The stability criterion considered here is referred to as weak stability in [11],
where two other notions of stability are formulated for smt, so-called strong
stability and super-stability. However an instance of smt need not admit a
strongly stable matching or a super-stable matching [11]. By contrast, we
have already seen that every instance of smt admits at least one weakly sta-
ble matching. Therefore, perhaps unsurprisingly, of these three definitions,
it is weak stability that has received the most attention in the literature
[20,19,15,18]. We are concerned exclusively with weak stability in this paper,

3 In this paper, we restrict attention to the case where the indifference takes the
form of ties in the preference lists, but the results presented extend to the general
case where the preference lists are arbitrary partial orders.
4 Implicitly here, and henceforth for other stability definitions, such a pair (m,w)
is defined to block M , or to be a blocking pair with respect to M , as for the sm case.
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and henceforth for brevity, the term stability will be used to indicate weak
stability when ties are present.

The concept of the cost of a matching for a person may easily be extended to
the smt context. Given a matching M and a person q in an smt instance I,
cM(q) is the (possibly joint) ranking of pM(q) in q’s preference list. In other
words, cM(q) is one plus the number of persons whom q strictly prefers to
pM(q). Given this extension of the definition of cM(q), each of the definitions of
an egalitarian, minimum regret and sex-equal stable matching in an instance
of smt follows immediately. Define egalitarian smt, minimum regret
smt and sex-equal smt to be the analogous problems to egalitarian sm,
minimum regret sm and sex-equal sm respectively, given an instance of
smt.

It is known that each of egalitarian smt and minimum regret smt is
NP-hard, and not approximable within n1−ε, for any ε > 0, unless P=NP,
where n is the number of persons in a given smt instance [18]. In this paper
we improve these results by demonstrating that a worst possible Ω(n) lower
bound on the approximability of each of these problems holds. In addition we
prove that a similar lower bound holds for sex-equal smt.

Unacceptable partners

An alternative natural extension of sm occurs when persons are permitted to
express unacceptable partners. We say that person p is acceptable to person q
if p appears on the preference list of q, and unacceptable otherwise. If person
q is missing from person p’s preference list, p is not prepared to be matched
with q, or to form a blocking pair with q. We use smi to stand for this variant
of sm where preference lists may be incomplete.

It follows immediately that a matching M in an instance I of smi is now a one-
one correspondence between a subset of the men and a subset of the women,
such that (m, w) ∈ M implies that each of m, w is acceptable to the other.
Also, the revised notion of stability may be defined as follows: M is stable if
there is no (man,woman) pair (m, w), each of whom is either unmatched in
M and finds the other acceptable, or prefers the other to his/her partner in
M . (As a consequence of this definition, it follows that from the point of view
of finding stable matchings, we may assume, without loss of generality, that p
is acceptable to q if and only if q is acceptable to p.)

A stable matching in I need not be a complete matching. However, all stable
matchings in I have the same size, and involve exactly the same men and
women [4]. Therefore, each of the definitions of an egalitarian, a minimum
regret and a sex-equal stable matching in an instance of smi follows immedi-
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ately from its sm definition if we discard the unmatched men and women from
consideration. In addition, it is a simple matter to extend the Gale/Shapley
algorithm to the smi setting (see [6, Section 1.4.2]).

Ties and unacceptable partners

The variant of the stable marriage problem which incorporates both extensions
described above is denoted smti. Thus an instance I of smti comprises pref-
erence lists, each of which may involve ties and/or unacceptable partners. A
combination of the earlier definitions indicates that a matching M in I is sta-
ble if there is no (man,woman) pair (m, w), each of whom is either unmatched
in M and finds the other acceptable, or strictly prefers the other to his/her
partner in M .

As observed above, all stable matchings for a given instance of smi are of the
same size, and all stable matchings for a given instance of smt are complete
(and therefore of the same size). However, for a given instance of smti, it is
no longer the case that all stable matchings need be of the same size [18].
Furthermore, each of the problems of finding a stable matching of maximum
or minimum size, given an smti instance, is NP-hard [15,18]. Therefore one
is naturally led to consider the approximability properties of each of these
problems. It turns out that each problem admits an approximation algorithm
with a performance ratio of 2, since the size of any stable matching is at least
half the size of a maximum cardinality stable matching and is at most twice
the size of a minimum cardinality stable matching [18]. This has left open the
question of whether better approximation algorithms for these problems exist.

In this paper we present both positive and negative results regarding the
approximability of each of these problems: we show that the existence of a
polynomial-time approximation scheme (PTAS) for either of these problems
is unlikely, since there exist constants δ, δ′ such that approximating each prob-
lem within a factor of δ, δ′ (respectively) is NP-hard, under strong restrictions
on the instance. However, we also show that, for a given smti instance I,
the difference in size between a maximum and a minimum cardinality stable
matching is bounded by t(I), the number of preference lists that contain ties,
and this leads to an approximation algorithm for both problems with a perfor-
mance guarantee dependent on t(I). When t(I) is relatively small compared
to the size of the instance, our result significantly improves on the best-known
previous result regarding the approximability of both problems, namely the
performance ratio of 2.
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Practical applications

The problems of finding “fair” stable matchings and maximum cardinality sta-
ble matchings in a given instance of smti have particular significance in prac-
tical applications. In a number of countries, large-scale automated matching
schemes produce stable matchings of graduating medical students to hospital
posts based on the preferences of students over hospitals and vice versa. Ex-
amples of such schemes are the National Resident Matching Program (NRMP)
[20] in the U.S., the Canadian Resident Matching Service (CaRMS) [1] and
the Scottish Pre-registration house officer Allocation scheme (SPA) [12].

The algorithms employed by the NRMP and CaRMS essentially solve a many-
one generalisation of smi called the Hospitals / Residents problem (hr) [6,
Section 1.6]. In the context of these two matching schemes, hospitals must rank
a possibly large number of applicants in strict order of preference. However, it
is unrealistic to expect large and popular hospitals to provide a strict ranking
of all of their applicants. The SPA scheme permits hospitals to include ties,
a situation which may be modelled by a many-one matching problem known
as the Hospitals/Residents problem with Ties (hrt) [14], a generalisation of
each of hr and smti.

Thus, since the stable matchings in an instance of smti may be of different
sizes, the same is true for hrt. Yet a prime objective of any matching scheme
must be to match as many applicants as possible, and hence this motivates
the search for large stable matchings. In addition, administrators of matching
schemes may be interested to find stable matchings that are as fair as possible
for both applicants and hospitals alike, and hence this motivates the search
for egalitarian, minimum regret and sex-equal stable matchings. Thus our
approximability results have implications for matching schemes such as SPA.

Organisation of the paper

The remainder of this paper is organised as follows. In Section 2 we prove that
it is hard to approximate the min maximal matching optimization problem
(defined in that section) in a certain class of graphs. This result is required
in order to establish, in Section 3, the hardness results for the problems of
approximating a maximum or minimum cardinality stable matching in a given
instance of smti. Then, in Section 4 we present the approximation algorithm
for the variants of these problems where, in a given smti instance, the number
of lists containing ties is bounded. The Ω(n) lower bounds for each of the
problems of approximating egalitarian smt, minimum regret smt and
sex-equal smt are presented in Section 5. Finally, in Section 6 we present
some concluding remarks.
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2 Hardness of approximating min maximal matching

We begin this section with some graph-related definitions. Given a graph G =
(V, E), a strongly stable set S is a subset of V such that the distance between
every pair of vertices in S is at least 3. A matching M in G is maximal if no
proper superset of M is a matching in G. Let β0(G), βSS(G) and β−

1 (G) denote
respectively the sizes of a maximum independent set, a maximum strongly
stable set and a minimum maximal matching in G. Define min maximal
matching to be the problem of computing β−

1 (G), given a graph G.

min maximal matching is NP-hard, even for subdivision graphs of graphs
of maximum degree 3 [10] (given a graph G, the subdivision graph of G, de-
noted by S(G), is obtained by subdividing each edge {u, w} of G in order to
obtain two edges {u, v} and {v, w} of S(G), where v is a new vertex). In this
section, we will establish that min maximal matching is hard to approxi-
mate in a certain graph class; this result will be required in the next section.
In particular, we will prove the following:

Theorem 1 It is NP-hard to approximate min maximal matching within
δ0, for some δ0 > 1. The result holds even if the instance is restricted to be
the subdivision graph of some cubic graph.

Our proof of Theorem 1 involves a chain of reductions starting from max-
is. This is the problem of computing β0(G), given a graph G. We denote by
max-is(k) the restriction of max-is in which G is regular of degree k.

Theorem 2 ([9]) It is NP-hard to approximate max-is(3) within δ1, for some
δ1 < 1.

In fact, there exists a constant c1 > 0 such that it is NP-hard to distin-
guish between instances G = (V, E) of max-is(3) such that β0(G) ≥ c1n and
β0(G) < δ1c1n, where n = |V |.

We will use Theorem 2 together with the notion of a gap-preserving reduction
[22, p.308], which may be defined as follows:

Definition 3 Let Π1 and Π2 be two optimization problems. Denote by OPTi(x)
the optimal measure over all feasible solutions for a given instance x of Πi

(i ∈ {1, 2}). Let α be some constant (α ≤ 1 if Π1 is a maximization problem;
α ≥ 1 otherwise), and let g1 be a function that maps an instance x of Π1 to a
positive rational number. Then a gap-preserving reduction from Π1 to Π2 is a
tuple 〈f, β, g2〉 such that:

• f maps an instance x of Π1 to an instance f(x) of Π2 in polynomial time;
• β is a constant (β ≤ 1 if Π2 is a maximization problem; β ≥ 1 otherwise);
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• g2 maps an instance f(x) of Π2 to a positive rational number;
• if Π1 and Π2 are maximization problems, then for any instance x of Π1:

· if OPT1(x) ≥ g1(x), then OPT2(f(x)) ≥ g2(f(x));
· if OPT1(x) < αg1(x), then OPT2(f(x)) < βg2(f(x));
(if Πi is a minimization problem, for i ∈ {1, 2}, then the two inequalities
involving OPTi in the above conditions should be reversed).

The following proposition is an immediate consequence of Definition 3.

Proposition 4 Let Π1 and Π2 be two maximization problems, and suppose
that there is a gap-preserving reduction from Π1 to Π2. Assuming the no-
tation of Definition 3, suppose further that it is NP-hard to distinguish be-
tween instances x of Π1 such that OPT1(x) ≥ g1(x) and OPT1(x) < αg1(x).
Then it is NP-hard to distinguish between instances f(x) of Π2 such that
OPT2(f(x)) ≥ g2(f(x)) and OPT2(f(x)) < βg2(f(x)). (If Πi is a minimiza-
tion problem, for i ∈ {1, 2}, then the two inequalities involving OPTi in the
above conditions should be reversed). Hence it is NP-hard to approximate Π2

within β.

Our first gap-preserving reduction involves max-sss. This is the problem of
computing βSS(G) for a given graph G. We denote by max-sss(k) the restric-
tion of max-sss in which G is regular of degree k.

Theorem 5 It is NP-hard to approximate max-sss(3) within δ2, for some
δ2 < 1.

PROOF. Let G = (V, E) be a cubic graph, given as an instance of max-is(3),
where n = |V | and m = |E|. We construct a cubic graph G′ = (V ′, E ′) as an
instance of max-sss(3) as follows. As in the proof of Corollary 3.4 of [10], we
initially replace every edge {v, w} of G by a component comprising the edges
{v, u}, {u, w}, {u, u′}, {u′, u′′}. This leaves m vertices of degree 1 in G′ and m
vertices of degree 2 in G′.

We may eliminate such vertices as follows. To every vertex v of degree 1 in G′,
connect the component shown in Figure 1(a). Similarly, for every vertex v of
degree 2 in G′, connect the component shown in Figure 1(b). It is then clear
that the modified graph G′ is cubic.

It is straightforward to verify that G has an independent set of size k if and only
if G′ has a strongly stable set of size 3m+k, and hence βSS(G′) = β0(G)+3m.
Now 2m = 3n as G is cubic, and it may be verified that n′ = 22n, where
n′ = |V ′|.

Now let c1 and δ1 be the constants given by Theorem 2, such that it is NP-
hard to distinguish between the cases β0(G) ≥ c1n and β0(G) < δ1c1n. Hence
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Fig. 1. Components attached to vertices of degree 1 or 2 in G′.

if β0(G) ≥ c1n, then βSS(G′) ≥ c2n
′, whilst if β0(G) < δ1c1n, then βSS(G′) <

δ2c2n
′, where c2 = 2c1+9

44
and δ2 = 2δ1c1+9

2c1+9
. The result then follows by Theorem

2 and Proposition 4. �

Our second gap-preserving reduction is sufficient to prove Theorem 1.

Proof of Theorem 1 Let G = (V, E) be a cubic graph, given as an instance
of max-sss(3), where n = |V | and m = |E|. The constructed instance of min
maximal matching is S(G) (recall that S(G) is the subdivision graph of
G). Now by Lemmas 3.1 and 3.2 of [10], G has a strongly stable set of size k
if and only if S(G) has a maximal matching of size n− k. Thus it follows that
β−

1 (S(G)) + βSS(G) = n. Now 2m = 3n as G is cubic, and m′ = 2m, where
m′ is the number of edges of S(G).

Now let c2 and δ2 be the constants given by Theorem 5, such that it is NP-
hard to distinguish between the cases βSS(G) ≥ c2n and βSS(G) < δ2c2n.
Hence if βSS(G) ≥ c2n, then β−

1 (S(G)) ≤ c0m
′, whilst if βSS(G) < δ2c2n, then

β−
1 (S(G)) > δ0c0m

′, where c0 = 1−c2
3

and δ0 = 1−δ2c2
1−c2

. The result then follows
by Theorem 5 and Proposition 4. �

3 Hardness of approximating max smti and min smti

Given an instance I of smti, let s+(I) (respectively s−(I)) denote the size of
a maximum (respectively minimum) cardinality stable matching in I. Define
max (respectively min) smti to be the problem of computing s+(I) (respec-
tively s−(I)), given an smti instance I.

Each of max smti and min smti is NP-hard [15,18]. In this section we prove
that there exist constants δ, δ′ such that each of the problems of approximating
max smti and min smti within a factor of δ, δ′ (respectively) is NP-hard. In
each case, the result holds under the restriction that the ties belong to the
preference lists of one sex only, and preference lists have constant length. We
begin by considering max smti.

9



Theorem 6 It is NP-hard to approximate max smti within δ3, for some
δ3 < 1. The result holds even if the preference lists in the given instance are
of constant length, there is at most one tie per list, and the ties occur on one
side only.

PROOF. Let G = (V, E) be the subdivision graph of some cubic graph, given
as an instance of min maximal matching. Then G has a bipartition of V
into the left-hand vertex set U and the right-hand vertex set W , where every
vertex in U has degree 3 and every vertex in W has degree 2.

Let U = {m1, m2, . . . , ms} and W = {w1, w2, . . . , wt}. For each i (1 ≤ i ≤
s), assume that mi is adjacent in G to the vertices in Wi, where Wi =
{wk3i−2

, wk3i−1
, wk3i

}. Also, assume that pj and qj are two sequences such that
pj < qj , {mpj

, wj} ∈ E and {mqj
, wj} ∈ E (1 ≤ j ≤ t).

We form an instance I of max smti as follows. Let U be the set of men in I,
where U = U ∪X ∪Z, X = {x1, x2, . . . , xt}, and Z = {z1, z2, . . . , zt}. Also, let
W be the set of women in I, where W = W ∪W ′ ∪Y , W ′ = {w′

1, w
′
2, . . . , w

′
t},

and Y = {y1, y2, . . . , ys}. For each i (1 ≤ i ≤ s), let W ′
i = {w′

k3i−2
, w′

k3i−1
, w′

k3i
}.

Clearly |U| = |W| = s + 2t. Create a preference list for each person in I as
follows:

mi : (Wi ∪ W ′
i ) yi (1 ≤ i ≤ s) wj : zj mpj

mqj
xj (1 ≤ j ≤ t)

xi : wi (1 ≤ i ≤ t) w′
j : zj mqj

mpj
(1 ≤ j ≤ t)

zi : (wi w′
i) (1 ≤ i ≤ t) yj : mj (1 ≤ j ≤ s)

Note that, in a given preference list throughout this paper, persons listed
within round brackets are tied. Clearly the ties in I occur in the men’s pref-
erence lists only and there is at most one tie per list. Also each man’s list has
length at most 7, whilst each woman’s list has length at most 4.

Suppose that M is a maximal matching in G, where |M | = β−
1 (G). We con-

struct a matching M ′ in I as follows. For each i (1 ≤ i ≤ s), suppose firstly
that mi is matched in M , to wj say (1 ≤ j ≤ t). If i = pj, add the pairs
(mi, wj) and (zj , w

′
j) to M ′. If i = qj , add the pairs (mi, w

′
j) and (zj , wj) to

M ′.

On the other hand, if mi is unmatched, add the pair (mi, yi) to M ′.

Finally, for any j (1 ≤ j ≤ t), if wj is unmatched, add the pairs (xj , wj) and
(zj , w

′
j) to M ′.

Clearly M ′ is a matching in I, and |M ′| = 2|M | + (s − |M |) + 2(t − |M |) =
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s+2t−|M |. It is straightforward to verify that no man in X∪Z can belong to a
blocking pair of M ′. Now suppose that (mi, w) blocks M ′ for some i (1 ≤ i ≤ s)
and w ∈ W. Then (mi, yi) ∈ M ′, so that w = wj for some j (1 ≤ j ≤ t) and
(xj , wj) ∈ M ′. Thus each of mi and wj is unmatched in M , and {mi, wj} ∈ E.
Thus M ∪{{mi, wj}} is a matching in G, contradicting the maximality of M .
Hence M ′ is stable in I. Also s+(I) ≥ s + 2t − |M | = s + 2t − β−

1 (G).

Conversely, suppose that M ′ is a stable matching in I, where |M ′| = s+(I).
For each j (1 ≤ j ≤ t), either (zj , wj) ∈ M ′ or (zj , w

′
j) ∈ M ′, for otherwise

(zj , wj) blocks M ′. Hence

M =


{mi, wj} :

(1 ≤ i ≤ s) ∧ (1 ≤ j ≤ t) ∧
((mi, wj) ∈ M ′ ∨ (mi, w

′
j) ∈ M ′)




is a matching in G. Also |M ′| ≤ |M |+(t−|M |)+ t+(s−|M |) = s+2t−|M |,
for every edge in M contributes one (man,woman) pair to M ′, and in addition,
at most (t − |M |) men in X can be matched in M ′, exactly t men in Z are
matched in M ′, and at most (s − |M |) women in Y can be matched in M ′

(and everybody who could be matched in M ′ has now been counted).

Suppose that M is not maximal. Then there is some edge {mi, wj} in G such
that no edge of M is incident to either mi or wj . Thus by definition of M , either
mi is unmatched in M ′ or (mi, yi) ∈ M ′. Similarly, either (i) (xj , wj) ∈ M ′ or
wj is unmatched, or (ii) w′

j is unmatched in M ′. In case (i) (mi, wj) blocks M ′,
whilst in case (ii) (mi, w

′
j) blocks M ′, a contradiction. Hence M is a maximal

matching in G, and s+(I) = |M ′| ≤ s + 2t − |M | ≤ s + 2t − β−
1 (G).

Hence s+(I) + β−
1 (G) = s + 2t. Now 2t = 3s, as G is the subdivision graph of

some cubic graph. Also n = s + 2t and m = 2t, where n is the number of men
in I and m is the number of edges of G.

Let c0 and δ0 be the constants given by Theorem 1, such that it is NP-hard
to distinguish between the cases β−

1 (G) ≤ c0m and β−
1 (G) > δ0c0m. Hence if

β−
1 (G) ≤ c0m, then s+(I) ≥ c3n, whilst if β−

1 (G) > δ0c0m, then s+(I) < δ3c3n,
where c3 = 4−3c0

4
and δ3 = 4−3δ0c0

4−3c0
. The result then follows by Theorem 1 and

Proposition 4. �

We now demonstrate how to modify the proof of Theorem 6 in order to es-
tablish the hardness of approximating min smti under the same restrictions.

Theorem 7 It is NP-hard to approximate min smti within δ4, for some δ4 >
1. The result holds even if the preference lists in I are of constant length, there
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is at most one tie per list, and the ties occur on one side only.

PROOF. The gap-preserving reduction is similar to the one given by the
proof of Theorem 6, with some small modifications. In the constructed instance
I, the set of men and women no longer includes the persons in X ∪ Y . Any
such person is now removed from the preference list of any remaining person
in I. Now each man’s preference list is of length at most 6 and each woman’s
preference list is of length at most 3.

Suppose firstly that M is a maximal matching in G, where |M | = β−
1 (G). The

construction of the matching M ′ in I is similar to the previous one; the only
difference is as follows. If mi is unmatched in M , no pair is added to M ′, whilst
if wj is unmatched in M , the pair (zj, wj) is added to M ′. It is straightforward
to verify that M ′ is a stable matching in I and s−(I) ≤ |M ′| = t + |M | =
t + β−

1 (G).

Conversely, suppose that M ′ is a stable matching in I, where |M ′| = s−(I).
Then using a similar argument to before we may construct a maximal matching
M in G, where s−(I) = |M ′| = t + |M | ≥ t + β−

1 (G).

Hence s−(I) = t+β−
1 (G). Now 2t = 3s, as G is the subdivision graph of some

cubic graph. Also n = s + t and m = 2t, where n is the number of men in I
and m is the number of edges of G.

Let c0 and δ0 be the constants given by Theorem 1, such that it is NP-hard
to distinguish between the cases β−

1 (G) ≤ c0m and β−
1 (G) > δ0c0m. Hence if

β−
1 (G) ≤ c0m, then s−(I) ≤ c4n, whilst if β−

1 (G) > δ0c0m, then s−(I) < δ4c4n,

where c4 = 3(1+2c0)
5

and δ4 = 1+2δ0c0
1+2c0

. The result then follows by Theorem 1
and Proposition 4. �

It follows immediately from Theorems 6 and 7 that neither max smti nor min
smti admits a polynomial-time approximation scheme unless P=NP.

4 Approximation algorithm for max smti and min smti

As observed earlier, it is shown in [18] that a maximum cardinality stable
matching can have size at most twice that of a minimum cardinality stable
matching. Hence the obvious polynomial-time algorithm for smti – break all
ties in an arbitrary way and apply the classical Gale/Shapley algorithm to the
resulting instance of smi – is simultaneously an approximation algorithm for
both max and min smti with a performance ratio of 2.

12



There is no known approximation algorithm for either problem with a stronger
performance ratio, even for special cases of the problems in which the ties are
restricted to one side, or to the tails of the preference lists. A case of particular
interest arises when there is a limit on the number of preference lists that
contain ties, and in this section we show that some progress can be made in
establishing additional approximation bounds in this setting.

Ideally, in the case of max smti, one might hope for a bound of the form
s+(I)/|M | ≤ f(p) given an instance I of smti, where M is a stable matching
found by some approximation algorithm (or just any stable matching, found
by breaking ties arbitrarily), p is the proportion of preference lists that contain
ties, and f(p) is a function that decreases to 1 as p decreases to 0.

However, it is not hard to see that a bound of this form is infeasible. Were such
an algorithm to exist, a ‘gap’ argument could be used to show that it could
solve instances of max smti exactly. Given an arbitrary such instance, it could
be ‘expanded’ by the addition of new persons, none of whom has a tie in his
or her list, and none of whom can be matched in any stable matching. With
an appropriate expansion factor, application of the supposed approximation
algorithm to this derived instance would solve the original instance exactly.

Instead we derive a bound on the difference in size between a maximum
(or minimum) cardinality stable matching and an arbitrary stable match-
ing, expressed in terms of the number of preference lists that contain ties. So
the usual approximation algorithm – break all ties arbitrarily and apply the
Gale/Shapley algorithm – has a performance guarantee, for both max smti
and min smti, expressible as a difference rather than a ratio. As observed by
Garey and Johnson [5, pp.137-138], this form of performance guarantee can
reasonably be viewed as being stronger than the more familiar performance
ratio form, and there are relatively few NP-hard problems for which approxi-
mation algorithms with performance guarantees of this kind are known.

Some additional definitions are necessary before presenting the main results of
this section. Let M and M ′ be stable matchings for an instance I of smti. If a
person p strictly prefers his partner in M to his partner in M ′, or is matched in
M but not in M ′, then we say that p strictly prefers M to M ′. If p is indifferent
between his partners in M and M ′, or has the same partner in M as in M ′, or
is matched in neither M nor M ′, then we say that p is indifferent between M
and M ′. Define a tied pair to be a pair (m, w) such that m is in a tie in w’s
list, or w is in a tie in m’s list (or both). In what follows, tp(M) denotes the
number of tied pairs in M , and t(I) denotes the number of preference lists in
I that contain ties. In general tp(M) depends on the matching M , whilst t(I)
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is invariant for the given instance I; clearly tp(M) ≤ t(I). 5

Lemma 8 Let T be a maximum cardinality stable matching for a given in-
stance I of smti. Then if M is an arbitrary stable matching in I, |T | ≤
|M | + tp(M).

PROOF. We construct an undirected graph G = G(M, T ) as follows: G has a
vertex for each person in I, and two vertices are joined by a blue (respectively
red) edge if the corresponding persons are matched in T but not in M (respec-
tively in M but not in T ). It is clear that the connected components of G are
paths and cycles with edges of alternating colour. Furthermore, |T |−|M | is at
most equal to the number of blue augmenting paths in G, i.e., the number of
paths of odd length in which the first and last edges are blue. Further, every
such path has at least three edges, since a component that is a path of length
one would provide a blocking pair for one of the supposed stable matchings.

We claim that, in every blue augmenting path, at least one of the interme-
diate vertices represents a person who is indifferent between T and M , and
is therefore in a tied pair in both T and M . This claim, together with the
preceding observation, suffices to establish the lemma.

To establish the claim, let p1, q1, . . . , pr, qr form a blue augmenting path in G,
for some r ≥ 2. Since p1 and qr are both matched in T but not in M , they
both strictly prefer T to M . Suppose that no person in the path is indifferent
between T and M . A simple inductive proof starting from p1 then reveals that
qi (i = 1, 2, . . . , r − 1) strictly prefers M to T , otherwise (pi, qi) would block
M , and pi (i = 2, 3, . . . , r) strictly prefers T to M , otherwise (pi, qi−1) would
block T . Thus (pr, qr) blocks M , a contradiction. Hence at least one of the pi

(2 ≤ i ≤ r) or qi (1 ≤ i ≤ r − 1) must be indifferent between T and M , as
claimed. �

Since tp(M) ≤ |M |, it follows immediately by Lemma 8 that there exists
an approximation algorithm for max smti with performance ratio 2. Using
a similar argument to the one employed in the proof of Lemma 8, we may
deduce that |M | ≤ |S| + tp(S), where S is a stable matching of minimum
cardinality. Since tp(S) ≤ |S|, it follows immediately that there exists an
approximation algorithm for min smti, also with performance ratio 2. The
inequality established by Lemma 8 also leads to the following result:

5 The results of this section may be extended to the case that preference lists are
partially ordered by making the following amendments to two key definitions. In
this setting, define a tied pair to be a pair (m,w) such that w is indifferent between
m and some other man, or m is indifferent between w and some other woman (or
both). Define t(I) to be the number of preference lists that are not linearly ordered.
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Theorem 9 There is an approximation algorithm A such that, given any in-
stance I of either max smti or min smti, A finds a stable matching M in I
satisfying the following inequality:

s+(I) − t(I) ≤ |M | ≤ s−(I) + t(I).

Additionally, we have that s+(I) ≤ s−(I) + t(I).

PROOF. Let M be defined as in Lemma 8. Since tp(M) ≤ t(I), Lemma
8 implies that s+(I) − t(I) ≤ |M | ≤ s+(I). Also by Lemma 8, s+(I) ≤
s−(I) + t(I), and hence the result follows. �

We remark that, when the ties in a given instance I of smti are sparse, i.e. t(I)
is small compared to the numbers of men and women in I, the performance
guarantee indicated by Theorem 9 is a significant improvement on the best-
known previous result, namely the 2-approximation algorithm for each of max
smti and min smti.

The following instance is an illustration of the worst case for the above the-
orem. For each n ≥ 1, we define an smti instance I with 2n men, namely
{p1, . . . , pn, q1, . . . , qn}, and 2n women, namely {r1, . . . , rn, s1, . . . , sn}. For each
i (1 ≤ i ≤ n), define preference lists for pi, qi, ri, si as follows:

pi : si ri ri : pi

qi : si si : (pi qi)

There is a stable matching of size n (namely M1 = {(pi, si) : 1 ≤ i ≤ n}) and
one of size 2n (namely M2 = {(pi, ri), (qi, si) : 1 ≤ i ≤ n}). Clearly s+(I) = 2n,
and also s−(I) = n since |M2| = 2|M1|. Since the difference between s+(I)
and s−(I) is the number of lists with ties, the bounds given by Theorem 9 are
tight.

5 “Fair” stable matchings in smt

In this section we give Ω(n) lower bounds for the approximabililty of egal-
itarian smt, minimum regret smt and sex-equal smt in an instance
of smt with n men and n women. We begin by considering egalitarian
smt. Note that, for any matching M in such an instance of smt, it follows
that 2n ≤ c(M) ≤ 2n2. Hence an approximation algorithm with performance
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guarantee n is trivial. Our inapproximability result is therefore optimal within
a constant factor.

Theorem 10 It is NP-hard to approximate egalitarian smt within δn, for
some δ > 0, where n is the number of men in a given smt instance.

PROOF. We give a reduction from an instance I of max smti as constructed
by the proof of Theorem 6. One property of I is that there exists a constant
d such that the length of each preference list in I is at most d. Let c3 and δ3

be the constants given by Theorem 6, such that it is NP-hard to distinguish
the cases s+(I) ≥ c3n and s+(I) < δ3c3n, where n is the number of men in I.

Let X = {m1, m2, · · · , mn} be the set of men in I and let Y = {w1, w2, · · · , wn}
be the set of women of I. For each i (1 ≤ i ≤ n), let Pi and Qi denote the
preference lists of mi and wi in I respectively. We call the women in Pi proper
women for mi, and we call the men in Qi proper men for wi.

We transform I into an instance I ′ of egalitarian smt as follows. Let U =
X∪X ′ and W = Y ∪Y ′ be the sets of men and women in I ′ respectively, where
X ′ = {m′

1, m
′
2, · · · , m′

(1−c3)n
} and Y ′ = {w′

1, w
′
2, · · · , w′

(1−c3)n
}. The preference

lists in I ′ are constructed as follows:

mi : Pi (Y ′) [Y \Pi] (1 ≤ i ≤ n)

m′
i : (W ) (1 ≤ i ≤ (1 − c3)n)

wi : Qi (X ′) [X\Qi] (1 ≤ i ≤ n)

w′
i : (U) (1 ≤ i ≤ (1 − c3)n)

Note that, in a given person’s preference list, persons within square brackets
are listed in arbitrary strict order where the symbol appears.

Suppose firstly that I has a stable matching M such that |M | ≥ c3n. Then
there is a set Xu ⊆ X of men who are unmatched in M , where |Xu| ≤ (1−c3)n.
Similarly there is a set Yu ⊆ Y of women who are unmatched in M , where
|Yu| ≤ (1 − c3)n. Let M1 be a matching that assigns each man in Xu to a
woman in Y ′, and let M2 be a matching that assigns each woman in Yu to a
man in X ′. Now let M3 be a perfect matching of the remaining unmatched
members of X ′ and Y ′. Finally let M ′ = M ∪M1∪M2∪M3. It may be verified
that M ′ is a stable matching in I ′, and

c(M ′)≤ 2n(d + 1) + 2(1 − c3)n

≤ 2n(d + 2).
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On the other hand, suppose s+(I) < δ3c3n. Now let M ′ be any stable matching
in I ′. Then < δ3c3n men in X are matched in M ′ to one of their proper women.
Now at most (1−c3)n of the remaining men in X can be matched to a woman
in Y ′. Hence there are > c3n(1− δ3) men u in X such that cM ′(u) > (1− c3)n.
Similarly there are > c3n(1− δ3) women w in Y such that cM ′(w) > (1− c3)n.
Hence c(M ′) > 2εn2, where ε = c3(1 − c3)(1 − δ3).

Therefore by Theorem 6, it is NP-hard to approximate egalitarian smt
within ε

d+2
n. �

We now consider minimum regret smt. Note that, for any matching M in
an instance of smt with n men and n women, it follows that 1 ≤ r(M) ≤ n.
Hence an approximation algorithm with performance guarantee n is trivial.
Therefore again, the Ω(n) lower bound that we establish is optimal within a
constant factor.

Theorem 11 It is NP-hard to approximate minimum regret smt within
δn, for some δ > 0, where n is the number of men in a given smt instance.

PROOF. We use the same reduction as described in the proof of Theorem
10. Let I, I ′, n, c3, δ3 and d be as above. If s+(I) ≥ c3n, then I ′ has a stable
matching M ′ such that r(M ′) ≤ d + 1. On the other hand, if s+(I) < δ3c3n
then in any stable matching M ′ in I ′, at least one man u ∈ X satisfies cM ′(u) >
(1− c3)n. Hence r(M ′) > (1− c3)n. Therefore by Theorem 6, it is NP-hard to
approximate minimum regret smt within 1−c3

d+1
n. �

The final problem that we consider in this section is sex-equal smt. We
establish an inapproximability result for this problem similar to those of The-
orems 10 and 11.

Theorem 12 It is NP-hard to approximate sex-equal smt within δn, for
some δ > 0, where n is the number of men in a given smt instance.

PROOF. We formulate a reduction similar to the one described in the proof
of Theorem 10. Let I, X, X ′, Y , Y ′, Pi, Qi, n, c3, δ3 and d be as above.
We transform I into an instance I ′ of sex-equal smt as follows. Let U =
X∪X ′∪S and W = Y ∪Y ′∪T be the sets of men and women in I ′ respectively,
where S = {s1, s2, · · · , sd} and T = {t1, t2, · · · , td}. The preference lists in I ′
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are constructed as follows:

mi : Pi (W\Pi) (1 ≤ i ≤ n)

m′
i : (W ) (1 ≤ i ≤ (1 − c3)n)

si : ti [W\{ti}] (1 ≤ i ≤ d)

wi : [S] Qi (X ′) [X\Qi] (1 ≤ i ≤ n)

w′
i : (U) (1 ≤ i ≤ (1 − c3)n)

ti : si [U\{si}] (1 ≤ i ≤ d)

Clearly in any stable matching M ′ in I ′, (si, ti) ∈ M ′.

Suppose firstly that I has a stable matching M such that |M | ≥ c3n. Then we
may form M ′ as in the proof of Theorem 10. Add (si, ti) to M ′ (1 ≤ i ≤ d). It
may be verified that M ′ is stable in I ′. Also the total cost of M ′ for the men is
at most (d+1)n+(1−c3)n+d. Similarly the total cost of M ′ for the women is at
most (2d+1)n+(1−c3)n+d. Hence d(M ′) = |∑u∈U cM ′(u) − ∑

w∈W cM ′(w)| =
|∑u∈X cM ′(u) − ∑

w∈Y cM ′(w)| ≤ ∑
u∈X cM ′(u) +

∑
w∈Y cM ′(w) = (3d + 2)n.

On the other hand, suppose that s+(I) < δ3c3n. Now let M ′ be any stable
matching in I ′. As in the previous paragraph, the total cost of M ′ for the men
is at most (d + 1)n + (1 − c3)n + d. No woman w ∈ Y is matched in M ′ to
a man in S, so cM ′(w) ≥ d + 1. As in the proof of Theorem 10, there are
> c3n(1 − δ3) women w in Y such that cM ′(w) ≥ (d + 1) + (1 − c3)n. Hence
the total cost of M ′ for the women is more than

(d + 1)n + c3n(1 − δ3)(1 − c3)n + (1 − c3)n + d.

Thus d(M ′) > εn2, where ε is as defined in the proof of Theorem 10.

Therefore by Theorem 6, it is NP-hard to approximate sex-equal smt within
ε

3d+2
n. �

6 Concluding remarks

It is interesting to note that the hardness results proved in this paper for
approximating both max smti and min smti hold for identical restrictions
on the positions of ties – there are relatively few examples in the literature of
optimization problems having both maximization and minimization versions
that are hard to approximate, and fewer still where this property holds for the
same restrictions on the instance.
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It remains open as to whether there exists an approximation algorithm for
either max smti or min smti having performance ratio less than 2. However
the progress made in this paper indicates that improvements can be obtained
when ties are restricted in number. One might hope for further progress when
there are additional constraints in place – on the positions and lengths of ties,
for example.
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