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Abstract
Given n wireless transceivers located in a plane, a funda-
mental problem in wireless communications is to construct
a strongly connected digraph on them such that the con-
stituent links can be scheduled in fewest possible time slots,
assuming the SINR model of interference.

In this paper, we provide an algorithm that connects
an arbitrary point set in O(log n) slots, improving on the
previous best bound of O(log2 n) due to Moscibroda. This
is complemented with a super-constant lower bound on
our approach to connectivity. An important feature is
that the algorithms allow for bi-directional (half-duplex)
communication.

One implication of this result is an improved bound of
Ω(1/ log n) on the worst-case capacity of wireless networks,
matching the best bound known for the extensively studied
average-case.

We explore the utility of oblivious power assignments,
and show that essentially all such assignments result in
a worst case bound of Ω(n) slots for connectivity. This
rules out a recent claim of a O(log n) bound using oblivious
power. On the other hand, using our result we show that
O(min(log ∆, log n · (log n + log log ∆))) slots suffice, where
∆ is the ratio between the largest and the smallest links in
a minimum spanning tree of the points.

Our results extend to the related problem of minimum

latency aggregation scheduling, where we show that aggrega-

tion scheduling with O(log n) latency is possible, improving

upon the previous best known latency of O(log3 n). We also

initiate the study of network design problems in the SINR

model beyond strong connectivity, obtaining similar bounds

for biconnected and k-edge connected structures.

1 Introduction

A key architectural goal in wireless adhoc networks is to
ensure that each node in the network can communicate
with every other node (perhaps by routing through
other nodes). This requires that the nodes be connected
through a communication overlay. The problem can be
abstracted as such: Given n points on the plane (each
representing a wireless node), how efficiently can one
ensure connectivity among the points?

The notion of efficiency in a wireless setting is cru-
cially dependent on that distinguishing feature of wire-
less networks: interference. Two or more simultaneous
communications in the same wireless channel interfere
with each other, potentially destroying all or some of
the communications. Thus, easy as it might be to come
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up with a set of links (a link is an directed edge be-
tween two nodes) that connect the n nodes, it is highly
unclear whether or not one can schedule these links in
a small amount of time. This fundamental problem
has been the focus of substantial amount of research
[19, 21, 18, 3, 1].

The model of interference is of course a crucial
aspect. Traditionally, all theoretical results have been
in graph-based models, with either fixed radii (unit-
disc graphs and quasi-unit disc graphs) and variable
radii (geometric radio networks and protocol model),
while engineering research has focused on largely non-
algorithmic studies in more complex models. We adopt
the SINR (signal to noise and interference ratio) model,
a.k.a. the physical model, of interference. The main
differences are two-fold: the received signal is a decaying
function of distance (rather than being on/off), and
interferences from multiple transmitters sum up. While
more involved analytically, the SINR models is known
to be more realistic than graph-based ones, as shown
theoretically as well as experimentally [6, 17, 20].

The first worst-case guarantee for wireless connec-
tivity in the SINR model was provided by Moscibroda
and Wattenhofer [19], who showed how to construct a
strongly connected set of links that can be scheduled
in O(log4 n) slots. This was improved to O(log3 n) in
[21] and finally to O(log2 n) by Moscibroda [18], which
is the best bound currently known.

Our main result is the following: Any minimum
spanning tree (arbitrarily oriented) on n nodes on
the plane can be scheduled in O(log n) slots. This
immediately leads to a O(log n) worst-case bound for
strong connectivity, by orienting the tree towards an
arbitrary root and then using the same tree with the
orientation reversed. Thus we improve the connectivity
bound by a log n factor, while giving at the same time
a simple characterization of the resultant network in
terms of the natural MST structure.

The connectivity problem is closely related to the
capacity of a wireless network, a subject of a vast
literature. The computational throughput capacity of
a network is the sustained rate at which data can be
aggregated to an information sink, which is really the
raison d’être of wireless sensor networks. At each time
step, data is introduced at each source node. If the



aggregation function is compressible, like sum or max,
only one item of data needs to be forwarded on each
link. A short schedule that is repeated as needed
yields high throughput using buffering. Bounds for
the connectivity problem lead therefore immediately to
equivalent bounds for worst-case capacity of wireless
network (for compressible functions) [18].

Indeed, this particular application also highlights
the specific benefits of adopting the SINR model. The
best known bound on the average-case capacity in the
SINR model is Ω(1/ log n), given in the influential work
of Gupta and Kumar [7]. On the other hand, whereas
the average case throughput capacity in the protocol
model is Θ(1/ log n) [7], the worst-case capacity is only
Θ(1/n) [18].

We also study a variation of the connectivity prob-
lem inspired by the sensor networking application men-
tioned above is known as minimum-latency aggregation
scheduling. In this variation, one seeks a tree aggregat-
ing to a information sink (as before), but with the addi-
tional requirement that links must be scheduled after all
links below them in the tree are scheduled. A straight-
forward modification of our algorithm achieves this in
optimal O(log n) slots, improving on the O(log3 n) re-
sult previously known [16].

We conjecture that a logarithmic bound is neces-
sary for connectivity. One reason is that it matches
the average-case bound, which has been a highly re-
searched topic [7]. We also give a construction that
shows that our approach cannot yield a constant up-
per bound. It is distinguished from all previous lower
bound constructions in the SINR model in that it is
(necessarily) not based on showing that pairs of links
are incompatible. Without being able to show the ex-
istence of large “cliques”, hardness results in the SINR
with power control are hard to come by.

An important – and perhaps surprising – feature
of our method is that it allows for bidirectional com-
munication. Namely, the links scheduled in each slot
can communicate in either direction without affecting
or being affected by the other scheduled links. This is
important in a communication setting because of the
need to supply acknowledgements and flow control, and
is sometimes viewed as indispensable. The previously
studied algorithms [19, 21, 18] all assumed unidirec-
tional communication. In fact, it was taken for granted
that unidirectionality could not be avoided, sometimes
with references to lower bounds from graph-based mod-
els [21]. Our algorithm uses different power for the two
directions of each link; we show that to be unavoidable
by constructing instances for which the use of symmet-
ric power on bidirectional links forces the use of Ω(n)
slots.

Power assignments are yet another important issue
in wireless protocols. It is preferable if power settings
are locally computable. A power assignment is oblivious
if it depends only on the length of the respective
link. Recently, a O(log n)-slot connectivity algorithm
was claimed that used a particular oblivious power
assignment [15]. Unfortunately, there are problems
with the proof (specifically, in Lemma 5 whose proof
is not in the conference version) as acknowledged by
one of the authors [14]. Actually, that general approach
is bound to fail; namely, we show that essentially all
oblivious power assignments (including the one used in
[15]) require Ω(n) slots in the worst case.

On the other hand, when the edge lengths in the
MST differ by a factor of at most ∆, then com-
bining the results here with recent work [9] gives a
O(log n(log log ∆ + log n)) slot connectivity algorithm
that uses a certain oblivious power assignment called
mean power.

We use our approach as a starting point for the first
excursion into network design problems beyond strong
connectivity. By applying the connectivity routine a
constant number of times, we find that we can solve
other connectivity problems with asymptotically the
same number of slots, including biconnectivity and k-
edge connectivity.

Outline of the paper. We introduce the SINR
model and related notation in Sec. 2, followed by quick
overview of related work in Sec. 3. The connectivity
algorithm is given in Sec. 4, with a subsection on a limi-
tation result. We extend the method to a bi-directional
model of communication in Sec. 5, and examine the
power of oblivious power in Sec. 6. Extensions to other
connectivity problems are treated in Sec. 7.

2 Model and Preliminaries.

Given is a set P = {p1, p2, . . . , pn} of points on the
Euclidean plane. A link ` = (s, r) is a directed edge
from point s (the “sender”) to point r (the “receiver”).
The goal is compute a set of links that strongly connect
P and to schedule them in O(log n) slots.

The distance between two points x and y is denoted
d(x, y). The asymmetric distance from link ` = (s, r) to
link `′ = (s′, r′) is the distance from `’s sender to `′’s
receiver, denoted d``′ = d(s, r′). The length of link `
is denoted simply `. For a link set L, let ∆ denote the
ratio between the maximum and minimum length of a
link in L.

When a point s transmits as a sender of link `,
it uses some transmission power P`. We adopt the
physical model (or SINR model) of interference: a
communication over a link ` = (s, r) succeeds if and



only if the following condition holds:

(2.1)
P`/`α∑

`′∈S\{`} P`′/dα
`′` + N

≥ β,

where α > 2 is the path loss constant, N is a universal
constant denoting the ambient noise, β ≥ 1 denotes
the minimum SINR (signal-to-interference-noise-ratio)
required for a message to be successfully received, and
S is the set of concurrently scheduled links in the same
slot with `. We say that S is SINR-feasible (or simply
feasible) if (2.1) is satisfied for each link in S.

We will use the notion of affectance of [10], as
refined in [13], which is a scaled interference measure
from one link on another, defined as

a`(`′) = min
{

1, c`′
P`/dα

``′

P`′/`′α

}
where c`′ = β/(1− βN`′

α
/P`′) is a constant depending

only on the length and power of the link `′. As in
previous work [19, 21, 18, 12], we assume that powers
can be scaled up as needed, which implies that the effect
of the noise N (and the coefficient c`′) can be ignored.
It holds that `′ is feasible in S iff

(2.2)
∑
`∈S

a`(`′) ≤ 1,

where S is the set of simultaneously transmitting links.
We will sometimes use this version of the SINR con-
straint instead of Eqn. 2.1.

For a set of points P , we will use T (P ) to denote a
minimum spanning tree over the points in P . We will
simply use T when P is clear from the context. Natu-
rally, T contains undirected edges, but when scheduling
directed links, we need to orient T in some way. When
no ambiguity arises, we will simply use T to describe a
particular oriented version of T .

3 Related Work

Abstract problems capturing aspects of wireless net-
works have a long history, but the adoption of the SINR
model in theoretical analysis has been a comparatively
recent phenomenon. The first rigorous worst case re-
sults were achieved in the seminal work of Moscibroda
and Wattenhofer [19] (which involved the problem stud-
ied in this paper). Ever since, numerous paper have ap-
peared on the SINR model. For a recent overview, see
[5]. Apart from the connectivity, another fundamental
problem is the capacity problem, where one wants to
find the maximum feasible subset of a given set of links.
First rigorous results for the capacity problem were es-
tablished in [4], followed by a number of other results.

Kesselheim achieved a breakthrough recently by prov-
ing the first O(1)-approximation algorithm for capacity
with power control [12], whose techniques we adopt into
our analysis. In this regard, this work can be considered
to bring the approaches to connectivity and capacity to-
gether. Other recent progresses made include a O(1)-
approximation capacity algorithm for oblivious powers
[9], and the study of topological properties of wireless
communication maps [11].

4 O(log n) connectivity in the SINR model

The starting point of our analysis is a criteria for
wireless capacity recently developed by Kesselheim [12].
Kesselheim showed that any set of links for which
this criteria holds (defined in Eqn. 4.4 below) can be
scheduled in a single slot, and provided an efficient
algorithm to do so. We shall call this algorithm
Schedule, which is described in Section 3 of [12]. For
reference, we also include the algorithm in Appendix A.

Our approach is as follows. We show, via a related
criteria, that given any T ′ ⊆ T (P ), Eqn. 4.4 holds for
a constant fraction of the links in T ′. Thus, a constant
fraction of the tree can be scheduled in a single step (and
this holds recursively). Naturally this process will end in
O(log n) steps. Our analysis applies to any orientation
of T . Thus to achieve a strongly connected network, we
simple schedule two trees. One is a copy of T oriented
towards some arbitrary root, another one oriented away
from the same root. Thus any two nodes in the network
can communicate by first routing from the source to the
root, and then routing from the root to the destination.

Our goal is then to prove the following.

Theorem 4.1. Let P be any set of points on the Eu-
clidean plane. Let T = T (P ) be a minimum spanning
tree on the points of P , arbitrarily oriented. Then algo-
rithm Connect schedules T in O(log n) slots.

Algorithm 1 Connect(An arbitrarily oriented MST T
on point set P )
1: L← T
2: while L 6= ∅ do
3: Use Algorithm Schedule to find a feasible subset

L′ ⊆ L
4: L← L \ L′

5: end while

For two links `, `′, define d(`, `′) = min{d``′ , d`′`}.
For links ` ≤ `′, ` 6= `′ define the function f`(`′) =
min

{
1, `α

d(`,`′)α

}
. Let f`(`) = 0 and for ` > `′ let

f`(`′) = 0. The function f`(`′) can be thought of as
a measure of how badly the link ` might affect link `′ if
they were to transmit simultaneously.



We call a set of links L amenable if the following
holds: for any link ` = (s, r) (` not necessarily a member
of L),

(4.3)
∑

`′∈L,`′≥`

f`(`′) ≤ ρ

for some constant ρ to be chosen later. The concept
of an amenable set is closely related to the following
theorem due to Kesselheim (the connection is made
explicit in Lemma 4.1).

Theorem 4.2. ([12]) Assume L′ is a set of links such
that for all `′ ∈ L′,

(4.4)
∑

`∈L′,`≤`′

f`(`′) ≤ γ

for a constant γ = 1
4·3α·(4β+2) . Then, L′ is feasible and

there exists a polynomial time algorithm to find a power
assignment to schedule L′ in a single slot.

Moreover, for any given set L assume S is the
largest feasible subset of L. Then Schedule finds a L′′

of size Ω(S) for which Eqn. 4.4 holds.

Lemma 4.1. If a set L of size n is amenable, then there
are Ω(n) links in L that can be scheduled in a single slot.

Proof. Since L is amenable, then by definition∑
`∈L

∑
`′≥` f`(`′) ≤ nρ. Rearranging, we get∑

`′∈L

∑
`≤`′ f`(`′) ≤ nρ. By an averaging argument,

there must be a set S of at least n/2 links for which

(4.5)
∑
`≤`′

f`(`′) ≤ 2ρ .

This is almost exactly Eqn. 4.4 except for the use of a
different constant. To achieve the correct constant, a
simple sparsification suffices. Start an empty set. Go
through links in S in increasing order of length, putting
the link in the first set in which Eqn. 4.4 holds. Start a
new set if necessary. Clearly, no more that 2ρ

γ sets will
be necessary.

Thus, a set of size n·γ
4ρ can be found for which

Eqn. 4.4 holds.

The most important step is to prove that T is
amenable.

Lemma 4.2. Let T ′′ ⊆ T where T = T (P ) is a
minimum spanning tree on the points in P . Then T ′′ is
amenable.

Proof. Consider any link ` (not necessarily in T ) and
assume without of loss of generality that its length is

1. We can do this because scaling all links to make `
of length 1 does not change the values of the function
f`(`′). To prove amenability, we thus have to only
consider links in T ′′ of length at least 1. Let T ′ be
this set and let P ′ be the points that are incident to at
least one edge in T ′.

First we claim,

Lemma 4.3. Any disc of radius c1 = 1/4 contains at
most 9 points from P ′.

Proof. Let D be a disc of radius c1 and let PD be the
set of points from P ′ in D.

We first observe that no two points p1, p2 ∈ PD

have a common neighbor in T ′. If p1 and p2 were
neighbors in T then a common neighbor would imply
a cycle, while if they were non-neighbors, replacing
either of the edges to the common neighbor by the
edge (p1, p2) results in a cheaper spanning tree (since
d(p1, p2) ≤ 2c1 < 1). Since each point in PD has a
neighbor in T ′, it holds that |N(PD)| ≥ |PD| (where
N(X) = NT ′(X) = {p ∈ P ′ : ∃x ∈ X, (x, p) ∈ T ′}
denotes the neighborhood of a point set X in T ′).

Let c be the center of D, and consider any pair of
points a, b ∈ N(PD). We aim to show that the angle
∠acb > π/5, which implies the lemma. Let pa (pb) be
the unique neighbor of a (b) in T . We observe first that
the unique path in T between pa and pb goes through
neither a nor b, since if it did, say through a, then
replacing (pa, a) by (pa, pb) results in a smaller tree.

Consider now the triangle 4abc. Let α = ∠cab,
β = ∠abc, γ = ∠bca, and denote |p1p2| = d(p1, p2), for
points p1 and p2. Note that |ab| ≥ d(a, pa) ≥ 1, as we
could otherwise delete the edge apa and add ab to get
a better tree. Similarly, |ab| ≥ d(b, pb) ≥ 1. From the
triangular inequality, our observations above, and the
fact that |ab| ≥ 1, we have that

|ac| ≤ d(a, pa) + d(pa, c) ≤ |ab|+ c1 ≤ |ab|(1 + c1) ,

and similarly |bc| ≤ |ab|(1 + c1). By the sine law,
sinα/ sin γ = |bc|/|ab| ≤ 1 + c1, and sinβ/ sin γ =
|ac|/|ab| ≤ 1 + c1. For c1 = 1/4, this implies that since
2π = α + β + γ ≤ γ + 2 arcsin(5/4 · sin γ), computation
shows that γ > π/5 as claimed.

Now for ` = (s, r),
∑

`′=(s′,r′)∈T ′,`′≥` f`(`′) ≤∑
p∈P ′

(
min

{
1, 1

d(p,s)α

}
+ min

{
1, 1

d(p,r)α

})
. Thus it

suffices to upper bound
∑

p∈P ′ min
{

1, 1
d(p,x)α

}
for any

arbitrary point x by a constant to get the required
bound.

Now take concentric circles C0, C1 . . . around x such
that the tth circle has radius t + 1. The proof of the
following fact can be found in Appendix B.



Lemma 4.4. C0 can be covered by O(1) circles of radius
c1 (where c1 is the constant from Lemma 4.3). The
annulus Ct\Ct−1 can be covered by O(t) circles of radius
c1, for t ≥ 1.

Thus by Lemma 4.3, there are at most O(t) points from
P ′ in Ct \ Ct−1. Similarly, C0 can be covered by O(1)
circles of radius c1 (see Lemma 4.4) and thus contains
O(1) points from P ′.

The distance to x from any point in Ct \Ct−1 is at
least t. Then,∑

p∈P ′

min
{

1,
1

d(p, x)α

}
= |p ∈ P ′ ∩ C0| · 1 +

∑
t≥1

∑
p∈P ′∩(Ct\Ct−1)

1
d(p, x)α

≤ O(1) + O

∑
t≥1

t
1
tα

 = O(1) ,

for α > 2. This completes the proof of Lemma 4.2,
assuming that ρ is at least twice the implicit constant
in the bound above.

Theorem 4.1 now follows easily. By Lemma 4.2, the
remaining set of links at each step of the algorithm is
amenable. Thus, by Lemma 4.1, a constant factor of
these links are feasible, and by Theorem 4.2, a constant
factor of those will be scheduled by Connect. Clearly,
this process terminates in O(log n) steps.
Remark. We note that the assumption α > 2 is
necessary. Indeed, suppose points are placed at all
integer coordinates within a large circle, so all links will
be of at least unit length. Then, when α ≤ 2, it can be
shown with standard methods that there is no feasible
subset of links of size larger than Ω(n/ log n).

4.1 A lower bound on our approach It is easy
to construct an example where a link in T (P ) violates
Eqn. 4.4 (below, the set G1 provides an example of
that). However, this still leaves open the possibility that
the spanning tree can be partitioned into a small num-
ber of subsets (for example, a constant number of sub-
sets) such that Eqn. 4.4 holds for each of them, thus im-
proving upon the O(log n) result. In the following the-
orem, we show that one cannot partition all the points
into a constant number of subsets. This, naturally, is
not a lower bound on the connectivity problem, just on
our particular approach.

Theorem 4.3. For any number c, there exists a set of
points on the line such that the minimum spanning tree
T cannot be partitioned into ≤ c sets S1, S2 . . . Sc such
that Eqn. 4.4 holds for each Si.

Proof. For t ≥ 1, we will recursively construct gadgets
Gt such that a spanning tree on Gt cannot be parti-
tioned into t sets for which Eqn. 4.4 holds.

Since we are considering points on a line, the
minimum spanning tree is simply the edges connecting
each point to its immediate neighbors to the right and
left. Our theorem holds for any orientation of the links.

A gadget G is simply a set of points located on
a line, with an implicit ordering from the left to the
right. We will often use G to mean a translated copy
of G as well, which will be clear from the context. For
two gadgets F and G, we will use F ⊕G to denote the
joining of the two gadgets, which is a new gadget with
|F | + |G| − 1 points. The first (starting from the left)
|F | points are a copy of F , and the last |G| points are a
translated copy of G. In other words, the |F |th point is
both the ending point of the gadget F and the starting
point for the copy of gadget G. For any collection of
points (or gadget) G, let L(G) be the diameter of G.

For a gadget G, we use G(b) to mean a copy of
the gadget scaled by a factor of b. For example, if
G = {−10, 0, 1, 2.5}, then G(10) = {−100, 0, 10, 25}.

We are ready to describe our construction. G1

contains the points {−28, 0, 2, 6, 14}. For a gadget G,
define ρ(G) = min`∈T (G)

`α

d̂`(G)
α where d̂`(G) is the

maximum distance from either end point of ` to the left
most point in G. It is easy to verify that ρ(G) ≤ 1. Now
Gt is constructed by joining copies of Gt−1 (each copy
scaled much larger than preceding copies) and preceding
all of it with a new point, such that the distance between
the new point and the beginning of the copies of Gt−1

is humongous. This is informally depicted in Fig. 1.
To formally define Gt, we first define G′

t =
⊕1≤i≤I(t)Gt−1(h(i)). The value of I(t) is set to
d 8αγ
·ρ(Gt−1)

e where γ is the constant from Eqn. 4.4. The
scaling factors are defined as such: h(1) = 1, h(j)
(for j > 1) is chosen such that min`∈T (Gt−1(h(j))) ` =
2L(⊕1≤i≤j−1Gt−1(h(i))). Let G′

0 be G′
t translated so

that its left most point is at location 0. Define the
number B(t) = 4L(G′

t). Then Gt = {−B(t)} ∪G′
0, i.e.,

a single point at location −B(t), followed by the gadget
G′

0.
Define the partition number P (G) as the minimum

number of partitions of a link set required so that
Eqn. 4.4 holds for each set. We claim:

Claim 4.1. P (G1) ≥ 2 and P (Gt) ≥ 1 + P (Gt−1) for
all t ≥ 1.

Combined, these two claims clearly prove the theorem.
The claim about G1 is easy to verify by direct compu-
tation. Let us prove the inductive step. For Gt con-
sider the left-most link `g in T = T (Gt). This is of
course a link of length B(t) which is by construction



Figure 1: Construction of Gt from copies of Gt−1. We join a number of copies of Gt−1, each succeeding copy
scaled must larger than all the copies before it combined. All this is preceded by a huge new link between points
−B(t) and 0 (B(t) is very large)

the unique largest link in Gt (since B(t) = 4L(G′
t)).

Thus {` ∈ T : ` < `g} = T \ {`g}. We claim that
`α

d(s,rg)α + `α

d(sg,r)α ≥ ρ(G(t−1))
2α for all ` ∈ T \ {`g}. To

see this, consider any ` 6= `g ∈ T . Now ` is of course
part of the jth copy of Gt−1 for some j ≥ 1. Now
let d′ = min{d(s, rg), d(sg, r)}. We can observe that
d′ ≤ d̂`(Gt−1(h(j)) + L(⊕1≤i≤j−1Gt−1(h(i))). By con-
struction, d̂`(Gt−1(h(j)) ≥ ` > L(⊕1≤i≤j−1Gt−1(h(i)))
and thus `α

d(s,rg)α + `α

d(sg,r)α ≥ `α

d′α ≥
ρ(Gt−1)

2α (by defini-
tion of ρ(Gt−1)) proving the claim.

Given this and noticing the value of I(t) chosen in
the construction of G′

t, it is clear that there must be
some 1 ≤ j ≤ I(t) such that no link in T (Gt−1(h(j))) is
in the same set as `g. This completes the proof of the
claim and the theorem.

5 Bi-directionality

We have worked with the uni-directional model of wire-
less communication so far, where the links are directed
from a sender to a receiver. The bi-directional model,
in contrast, has two-way half-duplex communication be-
tween the nodes of a link in the same slot. The advan-
tage of this model is that it simplifies one-hop commu-
nication protocols. Two-way communication in a single
slot without worrying about mutual interference can be
achieved in practice in more than one way, and we sim-
ply take that as given. The difficulty arises in that in-
terferences from other links are now potentially much
larger, since we have to take into account both direc-
tions of each link.

We can model the bi-directional case as follows:
L contains n pairs ` = {n1, n2}. These two points
implicitly define two unidirectional links `1 = (n1, n2)
and `2 = (n2, n1). Each pair can be associated with
two power levels P`1 and P`1 , to be used by `1 and `2
respectively. We consider a set of pairs L′ feasible if for
all ` ∈ L′,

P`i
/(`i)α∑

`′∈L′\{`}
∑2

k=1 P`′k
/(d`′k`i

)α + N
≥ β fori ∈ {1, 2},

or equivalently,∑
`′∈L′,`′ 6=`

(a`′1
(`i) + a`′2

(`i)) ≤ 1 fori ∈ {1, 2},

where affectances are as defined for the unidirectional
case.

We differentiate two versions of the bi-directional
model. In the symmetric model, we insist that P`1 =
P`2 for each `. With this restriction, the model is
essentially equivalent to the one introduced in [2].
Without such a restriction, we call it the asymmetric
model, which was briefly mentioned in [12].

First we show,

Theorem 5.1. There is an instance that requires Ω(n)
slots for connectivity in the symmetric bi-directional
model.

Proof. Consider the pointset x0, . . . , xn−1 given by x0 =
0, x1 = 1 and for i ≥ 2, xi = 2x2

i−1. Observe
that xm − xm−1 > x2

m−1. Consider any two pairs
` = {xi, xj} and `′ = {xk, xm}, and assume without loss
of generality that m ≥ max(i, j, k). Thus, there must
be indices a, b, c, d ∈ {1, 2} such that d`a`′b

≤ xm−1 and
d`′c`d

≤ xm−1.
On the other hand `′b ≥ xm − xm−1 and `d ≥ 1.
Then,

a`a(`′b) · a`′c
(`d) =

P`a/dα
`a`′b

P`′b
/(`′b)α

·
P`′c/dα

`′c`d

P`d
/(`d)α

=

(
`d`

′
b

d`′c`d
d`a`′b

)α

≥
(

xm − xm−1

x2
m−1

)α

> 1 .

Thus, any pair of links must be scheduled in different
slots.

In surprising contrast to the above strong lower
bound in the symmetric model,

Theorem 5.2. In the asymmetric bi-directional model,
any set of n points can be strongly connected in O(log n)
slots.



The argument in Section 4 is as follows. First, we
show that T ′ ⊆ T is amenable. Then we find a large
subset for which Eqn 4.4 holds, and finally, we schedule
it in one slot. The main difference in the bi-directional
case is that we have to choose pairs in a feasible set,
i.e., for any pair ` that we want to connect, we have
to include `1 and `2 in the same slot. Note that since,
`1 and `2 have no effect on each other, we can define
f`i(`k) = 0 for i, k ∈ {1, 2}. The new definition of
amenability is thus,

(5.6)
∑

`′∈L,`′≥`

2∑
j=1

2∑
k=1

f`j
(`′k) ≤ ρ

for a constant ρ.
We first need to verify that Lemma 4.2 still holds

with the new definition. This happens to be easy. In-
deed, the proof of Lemma 4.2 does not use the di-
chotomy between sender and receiver, and thus auto-
matically holds (up to a factor of 4). It is easy to see
that the argument in Lemma 4.1 continues to hold with
minor differences.

Finally, we need to show that Thm. 4.2 still holds
with the new definition, i.e., the algorithm Schedule
can still successfully find and schedule the link set thus
selected. The algorithm Schedule is robust in relation
this, as [12] points out.

More specifically, to show that Schedule works for
the bi-directional variant, we need the following version
of Thm. 4.2:

Proposition 5.1. Assume L′ is a set of pairs such that
for all `′ ∈ L′,

(5.7)
∑

`∈L′,`≤`′

2∑
j=1

2∑
k=1

f`j
(`′k) ≤ γ

for a constant γ = 1
4·3α·(4β+2) . Then, L′ is feasible and

there exists a polynomial time algorithm to find a power
assignment to schedule L′ in a single slot.

Moreover, for any given set L assume S is the
largest feasible subset of L. Then Schedule finds a L′′

of size Ω(S) for which Eqn. 5.7 holds.

The last part about finding a large feasible subset
is an implication of arguments like Lemmas 4.2 and 4.1,
which we already verified to be sound in the new regime.

For the first part of the algorithm, Eqn. 5.7 is
identical to Eqn. 4.4 if we assume the link set to be
L′ = ∪`{`1, `2} except one caveat. For a given `, Eqn.
4.4 includes the term f`k

(`j) for the two links of the
same pair, and Eqn. 5.7 doesn’t (or rather f`k

(`j) is

set to zero). However, this is not a problem, since we
assume that `1 and `2 do not interfere with each other.
In relation to all other pairs, Eqn. 5.7 is identical to
Eqn. 4.4 and thus the argument is identical.

6 Oblivious Power Assignments

We examine here the complexity of connectivity when
using simple power assignments. A power assignment is
said to be oblivious if it depends only on the length of
the link. We show that any reasonable oblivious power
assignment is ineffective in that it requires Ω(n) slots to
connect some instance of n points. On the other hand,
we also find that if the diversity of the edge lengths in
the MST is small, then they can be quite effective.

Moscibroda and Wattenhofer [19] showed that for
both uniform power (all links use the same power) and
linear power (P` = `α), there are pointsets for which
connectivity requires Ω(n) slots. It is easy to verify that
their construction applies also to functions that grow
slower than uniform (i.e., are decreasing) or faster than
linear. We address here essentially all other reasonable
oblivious assignments, namely those that are monotone
increasing but grow slower than linear.

We call a power function p smooth if p(x) ≥ x for
all x, p(x) ≤ p(y) when x ≤ y, and p(x) ≤ xα, and
g : R+ → R+ defined by g(x) = 1

2 min(p(x), xα/p(x))
is monotone increasing and ω(1). This is true for
mean power (p(x) = xα/2) and many similar power
assignments (such as the one used in [15], p(x) =
x(α+2)/2).

Lemma 6.1. Let Y = {y1, y2 . . . yn} be a set of points
on the line such that y1 < y2 < . . . < yn, the
minimum distance between any pair of points is 1, and
g(yt − yt−1) ≥ (yt−1 − y1)α, for each t = 3, 4, . . . , n.
Then, no two links between points in Y can be scheduled
simultaneously using power assignment p.

Proof. Consider two links `t = (yt, yk) and `1 = (yi, yj),
where without loss of generality t ≥ max(k, i, j) and yi is
the sender of `1. We may assume that j 6= t and i 6= t,
since a point cannot be involved in two transmissions
simultaneously, if the signal requirement β > 1. The
power is Pt = p(yt− yk) on link `t and P1 = p(|yi− yj |)
on link `1.

First, consider the case where yt is the receiver of
`t = (yk, yt), k < t. The affectance of `t on `1 is

at(1) =
p(yt − yk)
|yk − yj |α

|yi − yj |α

p(|yi − yj |)
1
≥ p(yt − yt−1)
|yk − yj |α

2
≥ p(yt − yt−1)

g(yt − yt−1)
3
> 1 .

Explanations:



1. By sublinearity, p(|yi − yj |) ≤ |yi − yj |α, and by
monotonicity, p(yt − yk) ≥ p(yt − yt−1).

2. Because |yk − yj |α ≤ (yt−1 − y1)α ≤ g(yt − yt−1).

3. Since g(x) < p(x).

Thus these two links cannot be scheduled together.
Second, consider the case where yt is the sender of

`t = (yt, yk), k < t. Let z denote yt−yk. The affectance
of `1 on `t is now

a1(t) =
p(|yi − yj |)
|yi − yk|α

zα

p(z)
1
≥ zα

|yi − yk|αp(z)
2
≥ zα

g(z)p(z)
3
> 1 .

Explanations:

1. Because p(|yi − yj |) ≥ 1, since |yi − yj | ≥ 1.

2. Since |yi − yk|α ≤ (yt−1 − y1)α ≤ g(z).

3. Since g(z) < zα/p(z), by assumption.
We shall argue the lower bound for a more general

class of structures (similar to [19]). We say that a
structure (set of links) on a pointset has property φmin

if each point is either a sender or receiver on at least
one link.

Since g is monotone increasing and eventually in-
finite, it has an inverse g−1. We construct n points
x1, x2 . . . xn on the line defined by x1 = 0, x2 = 2 and
xi = xi−1 + g−1(2(xi−1)α). The following result is now
immediate from Lemma 6.1.

Theorem 6.1. For any structure with property φmin

and any smooth oblivious power assignment, there is an
instance that requires n/2 slots.

In spite of this highly negative statement, we do
find that oblivious power assignments are quite effective
given some natural assumptions about edge length
distributions.

Upper bounds Let T be a MST of the given pointset.
Let ∆ denote the ratio between longest to shortest edge
length in T . Assume, by scaling, that ` ≥ 1 for all
` ∈ L. Let g(L) = |{m : ∃` ∈ L, dlg `e = m}| denote
the length diversity of the link set L, or the number of
length groups. Note that g(L) ≤ log ∆.

Theorem 6.2. Any pointset can be strongly connected
in O(g(L)) slots using uniform (or linear) power assign-
ment. This is achieved on an orientation of the mini-
mum spanning tree.

Proof. Divide the links of the spanning tree into at most
g(L) length classes, where links in the same class differ
in length by a factor at most 2. Consider one such color
class S. Let P be the endpoints of links in S and let d
be length of the shortest link. Consider an endpoint x
of a link in S. By Lemma 4.3, at most 9 points from
P are within a distance d/4 from any point. Note that
any radius-r circle can be covered with at most 2(r/s)2

radius-s circles. Thus, for any t ≥ 1, there are at most
C = 4 · 2(4t)2 points from P within a distance td from
x. The links in S can then colored with C colors so that
senders of any pair of links are of distance at least td. If
t = 4(α42τ(α−1))1/α, where τ is the Riemann function
and α > 2, then it follows from Lemma 3.1 of [8] that
each colorset forms a feasible set using uniform power.
The total number of slots used is then tg(L).

This bound improves on a bound of O(g(L) log n)
given by Moscibroda and Wattenhofer [19]. The con-
struction in [19] shows also that the bound is best pos-
sible for uniform and linear power.

Exponentially weaker dependence on ∆ can be
achieved by using mean power (the power is set pro-
portional to the length to the power of α/2).

Theorem 6.3. Any pointset can be strongly connected
in O(log n(log log ∆ + log n)) slots using mean power
assignment.

Proof. The capacity of a linkset is the maximum num-
ber of links that can be scheduled simultaneously. Our
main result is that any orientation of the MST T yields
a directed linkset with linear capacity: Ω(n) links can
be scheduled in a single slot. A recent result [9] shows
that for any linkset, the optimal capacity with power
control differs from optimal capacity with mean power
by a factor of O(log log ∆ + log n). Further, a con-
stant approximation algorithm for mean power capac-
ity is given in [9]. That algorithm then schedules
Ω(n/(log log ∆+ log n)) links from T in a single slot. In
O(log n(log log ∆ + log n)) slots it will then have sched-
uled all of T .

Note that the construction of Lemma 6.1 yields a
lower bound of Ω(lg lg ∆) for mean power.

7 Extensions to other connectivity problems

7.1 Minimum-latency aggregation scheduling
Recall the problem definition. An in-arborescence T is
a directed rooted tree that has a path from every node
to the root. An edge e in T is said to be a descendant
of edge e′ if there is a directed path starting with e that
includes e′. Given a set of n points P on the plane,
the MLAS problem is to find t ordered disjoint linksets



S1, S2, . . . St such that each Si is feasible, the links in
T = ∪iSi form a spanning in-arborescence T , and when-
ever e ∈ Si is a descendant of e′ ∈ Sj then i < j. Let
us call this last condition the ordering requirement.

Consider the following iterative algorithm. Let
P1 = P . In step i the algorithm finds a feasible linkset
Si on Pi and derives a new pointset Pi+1, repeating the
process until Pi+1 contains only a single node. Given
Pi, we form the nearest-neighbor forest Fi, where each
node p ∈ Pi provides the link (p, p′) to its nearest point
p′; whenever links whenever Fi contains a pair (p, p′)
and (p′, p), we remove one of the two links. This forest
Fi is a subset of some minimum spanning tree of Pi,
and therefore it is amenable by Lemma 4.2. Thus, we
can find a feasible set Si ⊆ Fi with |Si| = Ω(|Pi|)
using Schedule. This set Si is necessarily a (partial)
matching on Pi. We form Pi+1 by removing from Pi the
tails of all the links in Si.

We first show that this algorithm uses O(log n)
steps, which follows immediately from the following
Lemma.

Lemma 7.1. |Pi+1| ≤ c3|Pi|, for some c3 < 1.

Proof. The forest Fi contains at least |Pi|/2 edges. By
Theorem 4.2, Schedule finds a feasible matching Si of
size at least c4|Fi|, for some c4 > 0. Then, |Pi+1| =
|Pi| − |Si| ≤ (1− c4)|Pi.

We also need to show that the resulting link set
forms an in-arborescence and that it satisfies the order-
ing requirement. Both of these are easily verified.

Also, it can be easily verified that any aggrega-
tion tree satisfying the ordering requirement requires
a schedule of length at least lg n.

Thus we get the following result.

Theorem 7.1. Given any set of n points on the plane
a aggregation tree can be formed with O(log n) latency,
and this is optimal.

7.2 Biconnectivity and k-edge connectivity We
can use our basic connectivity method to achieve addi-
tional network design criteria. As a warmup, we first
show how to achieve biconnectivity at minimal extra
cost. A graph is biconnected if there are at least two
vertex-disjoint paths between any pair of vertices.

Theorem 7.2. Let P be any set of points on the Eu-
clidean plane. Then P can be strongly biconnected in
O(log n) slots.

To see this, take the minimum spanning tree T used
for Thm. 4.1. Let X be the set of degree-1 nodes in T
and form a minimum spanning tree T ′ of X. Apply the

algorithm Connect to the union of T and T ′, directed
in both ways. Between any pair of nodes is a path in T ,
all of whose internal nodes are in P \X, and a path in
T ′, with all its internal nodes in X.

A directed graph is k-edge strongly connected if the
graph stays strongly connected after the removal of less
than k-edges. Here we prove:

Theorem 7.3. Let P be any set of points on the Eu-
clidean plane. Then P can be k-edge strongly connected
in O(k4 log n) slots.

Proof. [Outline] The algorithm is as follows. We repeat-
edly compute k spanning trees T0, T1 . . . Tk. Here, T0 is
a minimum spanning tree, and for i ≥ 1, Ti is a min-
imum spanning tree that does not use any edge from
∪j<iTj . Once we schedule these trees in two orienta-
tions, the resultant structure is clearly k-edge strongly
connected.

We then claim that each Ti can be scheduled
in O(i3 log n) slots from which the theorem follows.
Proving that Ti can be scheduled in O(i3 log n) boils
down to proving a version of Lemma 4.3 for Ti, given
below. The rest follows in a routine fashion.

Lemma 7.2. Any disc of radius c1 = 1/4 contains at
most O(i3) points from P ′, where P ′ is the set of points
incident to a link of length at least 1 in Ti.

Proof. Consider Ti for i ≥ 1 (we already have the bound
for i = 0). As before, let N(PD) be the set of neighbors
of PD in Ti.

Define G = ∪j<iTj .

Lemma 7.3. Let a, b ∈ N(PD) with the following prop-
erty: There exist p1, p2 ∈ PD such that (a, p1), (b, p2) ∈
Ti, and (a, b), (p1, p2) 6∈ G. Then ∠acb > π/5.

The proof of this claim is essentially identical to the
same argument in Lemma 4.3. The fact that (a, b) 6∈ G
and (p1, p2) 6∈ G simply mean that the links (p1, p2) and
(a, b) can be used in the argument as they are not ruled
out by being included in an earlier tree.

Assume from now on that |PD| ≥ c2i
3 for c2 =

72 · 10. We shall show that there exists then a set
B ⊆ N(PD) of 10 points all of whose pairs satisfy the
conditions of Lemma 7.3, which leads to a contradiction.
Let G[X] denote the subgraph of G induced by pointset
X.

We first argue that |N(PD)| ≥ 1
2i |PD|. More

strongly, we claim that no point in N(PD) has more
than 2i neighbors in PD. Suppose point p1 ∈ N(PD)
has a set X of c > 2i neighbors in PD. Since G is a
union of i−1 trees, G[X] contains at most (c−1)(i−1)
edges, which is strictly smaller than c(c−1)

2 , as c > 2i.



Thus there is a pair x1, x2 ∈ X that is non-adjacent
each of the previous trees, in which case we can argue
as in Lemma 4.3 and claim that we can delete (p1, x1)
and add (x1, x2) to get a better tree.

The following is a general claim about points in
relation to spanning trees.

Claim 7.1. For any set Y of points, G[Y ] contains an
independent set of size |Y |

2i−1 in G.

Proof. Since G is a union of i − 1 trees, the average
degree of any induced subgraph is less than 2(i − 1).
The claim then follows from Turán bound.

Now, by Observation 7.1, there is an independent
set Yc ⊆ N(PD) in G of size at least 1

2i |N(PD)| ≥
1

(2i)2 |PD| ≥ c2
4 i.

If some ten points in Yc share a common neighbor
in PD, then we are done. Otherwise, there is a subset
Y ′ of Yc of size at least c2

4·9 i such that no two share the
same neighbor in PD. Let, Z ⊆ PD be the neighbors of
Y ′ in PD. By Observation 7.1, we can find a subset
Z ′ ⊆ Z of size at least c2

9·8 which is independent in
G. Since no two points in Yc share neighbors in Z ′,
|N(Z ′) ∩ Yc| ≥ c2

72 . Setting c2 = 72 × 10, we find that
B = N(Z ′)∩ Yc contains at least 10 points all of whose
pairs satisfy the conditions of Lemma 7.3, which is a
contradiction. Hence, |PD| ≤ c2i

3.

8 Conclusion

We have shown that there the links of a minimum span-
ning tree of any pointset can be be scheduled in O(log n)
slots in the SINR model. An open question is whether
this is optimal; we conjecture that it is. Another direc-
tion would be to derive effective distributed algorithms.
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A The algorithm Schedule

We include, as a reference, the algorithm Schedule due
to Kesselheim [12].

B Proof of Lemma 4.4: Covering by circles

Lemma 4.4: C0 can be covered by O(1) circles of
radius c1 (where c1 is the constant from Lemma 4.3).



Algorithm 2 Schedule (Set L of n links)
1: Sort links in increasing order of length `1 ≤ `2 . . . ≤

`n, breaking ties arbitrarily
2: S ← ∅
3: for i = 1 to n do
4: if

∑
j<i f`j (`i) ≤ γ then

5: S ← S ∪ {`i}
6: end if
7: end for
8: Now schedule S by finding power assignment for all

links in S:
9: P`n

= 1
10: for i = n− 1 to 1 do
11: P`i

= 4β ·
∑

j>i

P`j
`α

i

d(sj ,ri)α where sj is the sender of
`j and ri is the receiver of `i

12: end for
13: Scale powers to take care of noise.

The area of the annulus Ct \ Ct−1 can be covered by
O(t) circles of radius c1, for t ≥ 1.

Proof. The first claim follows directly from the fact that
the 2-dimensional space has a finite doubling dimension.
Namely, each unit circle can be covered by O(1) radius-
c1 circles. Thus it suffices to prove that Ct \ Ct−1 can
be covered by O(t) unit circles.

Consider now the circle C concentric with C0 with
radius t + 0.5, i.e., in the middle of Ct and Ct−1.
The circumference of this circle is clearly contained in
Ct \Ct−1. Now, place 4π(t+0.5) equidistance points P
on this circle. Since the circumference of C is 2π(t+0.5),
the distance between consecutive points is ≤ 0.5. Now
we claim that all points in Ct\Ct−1 are within a distance
1 of a point in P , thus proving that the unit circles
around points in P cover the whole annulus.

Let x be any point in Ct \ Ct−1. Consider the line
connecting this point to the center of C0. Assume this
line intersects C at point y. Now clearly ‖x− y‖ ≤ 0.5.
On the other hand, there exists a p ∈ P such that
‖y − p‖ ≤ 0.5. By the triangle inequality ‖x − p‖ ≤ 1,
completing the proof.


