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1 IntroductionThe k-th power Gk of a graph G is de�ned on the same set of vertices as G, and has an edgebetween any pair of vertices of distance at most k in G. The topic of this paper is the coloringof power graphs, or equivalently coloring the underlying graphs so that vertices of distance atmost k receive di�erent colors. We focus on the planar case, long the center of attention forgraph coloring.We upper-bound the chromatic number and the choosability, see De�nition 2.10, by theinductiveness of the graph G, which we denote here by ind(G). This measure of G, alsoknown as the degeneracy, the coloring number, and the Szekeres-Wilf number, is de�ned tobe maxH�Gfminv2H(dH(v))g, where H runs through all induced subgraphs of G. Inductivenessleads to an ordering of the vertices, fv1; : : : ; vng, such that the number d+(vi) = jfvj 2 NG(vi) :j > igj of pre-neighbors of any vi is at most ind(G).The problem of coloring squares of graphs has applications to frequency allocation. Transceiversin a radio network communicate using channels at given radio frequencies. Graph coloring for-malizes this problem well when the constraint is that nearby pairs of transceivers cannot use thesame channel due to interference. However, if two transceivers are using the same channel andboth are adjacent to a third station, a clashing of signals is experienced at that third station.This can be avoided by additionally requiring all neighbors of a node to be assigned di�erentcolors, i.e. that vertices of distance at most two receive di�erent colors. This is equivalent tocoloring the square of the underlying network. Another application of this problem, from acompletely di�erent direction, is that of approximating certain Hessian matrices [12]. Observethat neighbors of a node in a graph form a clique in the square of the graph. Thus, the min-imum number of colors needed to color any square graph is at least � + 1, where � = �(G)is the maximum degree of the original graph. As a result, the number of colors used by ouralgorithms on power graphs will necessarily be a function of �. We are particularly interestedin the asymptotic behavior as � grows.Coloring squares of graphs, in particular planar graphs, has been studied in the literaturefrom two perspectives: in graph theory, focusing on bounding the number of colors needed, andin computer science, focusing on complexity and approximate algorithms. We attempt here tocontribute to both of these directions. We �rst review graph-theoretic results on planar graphsin chronological order.The �rst reference on coloring squares of planar graphs is by Wegner [19], who gave boundson the clique number of such graphs. In particular, he gave an instance for which the cliquenumber is at least b3�=2c + 1 (which is largest possible), and conjectured this to be an upperbound on the chromatic number. He conjectured that�(G2) � ( �+ 5 if 4 � � � 7;b3�=2c if � � 8:Some work has been done on the case � = 3, as listed in [8, Problem 2.18]. Ramanathanand Lloyd [16, 15] showed that ind(G2) � 9�, which is obtained by a minimum-degree greedycoloring algorithm. Krumke, Marathe and Ravi [10] generalized the bound to other classes ofgraphs, obtaining that ind(G2) � (2 ind(G)� 1)�.Independent of the original version of this paper [1], there were at least two unrelated paperson bounding the chromatic number �(G2) of a square of a planar graph. van den Heuvel andMcGuinness [6] showed that �(G2) � 2� + 25, using methods similar to those of the proof of1



the 4-Color Theorem. And Jendrol' and Skupie« [7] showed that �(G2) � 3�+ 9, by boundingthe inductiveness.In the current paper, we show that for large values of �, squares of planar graphs are d9�=5e-inductive, implying a d9�=5e+1-coloring. We show that this is sharp for all large values of �by constructing graphs attaining this inductiveness. For larger powers of a planar graph G,we obtain that Gk is O(�bk=2c)-inductive, for any k � 1. This gives an asymptotically tightalgorithmic bound for the chromatic number of the power graph.McCormick [12] showed that the problem of coloring the power of a graph is NP-complete,for any �xed power, and a later proof was given by Lin and Skiena [11]. McCormick gave agreedy algorithm with a O(pn)-approximation for squares of general graphs. Heggernes andTelle [5] showed that determining if the square of a cubic graph can be colored with 4 colors orless is NP-complete, while it is easily determined if 3 colors su�ce.Ramanathan and Lloyd [16, 15] showed the problem of coloring squares of planar graphs tobe NP-complete. Their bound mentioned earlier gave an algorithm with a performance ratio of9, which was the best result known previous to [1]. The result of Krumke, Marathe and Ravi [10]yields in general a performance ratio of 2 ind(G)� 1. They also gave a polynomial algorithm forgraphs of both bounded treewidth and bounded degree, and used that to give a 2-approximationfor bounded-degree planar graphs.Sen and Huson [17] showed that coloring squares of unit-circle graphs is NP-complete, whilea constant approximation algorithm was given in [18].Zhou et al. [20] have in independent work given a polynomial algorithm for distance-d col-oring partial-k trees, for any constants d and k. As indicated in Section 4, this implies a2-approximation for distance-d coloring planar graphs for any d. Their algorithm, however, hasa large polynomial complexity.Our contributions give several approximation results. Combining the bound for squaresof large-degree planar graphs with previous results for bounded-degree graphs, we obtain a2-approximation for coloring that holds for all values of �. By itself, our bound gives a 1.8asymptotic approximate coloring, as the chromatic number of the square goes to in�nity. Forhigher powers of planar graphs, we obtain the �rst constant factor approximation for coloringcubes of planar graphs. However, the real strength of the current bounds are in giving absolutebounds on the number of colors used by the algorithm, as opposed to relative approximations,and thus implicitly bounding the number of colors used by an optimal solution.Note the �ne distinction between coloring the power graph Gk, and �nding a distance-kcoloring of G. The resulting coloring is naturally the same. However, in the latter case, theoriginal graph is given. While it is easy to compute the power graph Gk from G, Motwani andSudan [13] showed that it is NP-hard to compute the k-th root G of a graph Gk. All of thealgorithms presented in this paper work without knowledge of the underlying root graph.The rest of the paper is organized as follows. We bound the inductiveness of squares ofplanar graphs in Section 2, and general powers of planar graphs in Section 3. We consider theimplications of these bounds to approximate colorings of powers of planar graphs in Section 4.Notation The degree of a vertex v within a graph G is denoted by dG(v) or simply by d(v)when there is no danger of ambiguity. The maximum degree of G is denoted by � = �(G).For a vertex v denote by dk(v) the degree of v in Gk. The distance between two vertices uand v in a graph is the number of edges on the shortest path from u to v, and is denoted bydG(u; v). Let G[W ] denote the subgraph of G induced by vertex subset W . Let N(v) = NG(v)be the set of neighbors of v in G, and N [v] = NG[v] be the closed neighborhood of v in G givenby N [v] = N(v) [ fvg. The common closed neighborhood of u and v in G, denoted N [uv] or2



NG[uv], is given by N [uv] = N [u] \N [v].2 Squares of Planar GraphsWe start with a look at the main technique we use to derive bounds on the inductiveness of asquare graph (and more generally, power graphs). The argument that is used, e.g., to show thatplanar graphs are 5-inductive is the following. Euler's formula states that in a planar graph G,jE(G)j � 3jV (G)j � 2 (see [4, p.74]). Thus, G contains a vertex of degree at most 5. Place onesuch node �rst in the inductive ordering, and remove it from the graph. Now the remaininggraph is planar, so inductively we obtain a 5-inductive ordering.The upper bound of 5 on the minimum degree of a planar graph also implies that squaresof planar graphs are of minimum degree at most 5�. That would seem to imply a 5�-orderingof the square graph. However, when a vertex is deleted from the graph, its incident edges aredeleted as well, so that vertices originally distance two apart may become much further apartin the remaining graph. An example of this is shown in Figure 1. Namely, the problem is thatan induced subgraph does not preserve the paths of length two between vertices within thesubgraph. The upshot is that degrees in the remaining graph do not adequately characterizedegrees in the remaining part of the square of the graph. Our solution is to replace the deletionof a vertex by the contraction of an incident edge.
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Figure 1: After the removal of nodes from a graph, a vertex can have vastly more of its originaldistance-2 neighbors remaining than of its neighbors. After the deletion of the three whitevertices, the center node has �ve neighbors but 5� + 9 of its remaining distance-2 neighbors.The contraction of an edge uv in graph G is the operation of collapsing the vertices u andv into a new vertex, giving the simple graph G=uv de�ned by V (G=uv) = V (G) n fvg andE(G) = fww0 2 E(G) : w;w0 6= vg [ fuw : vw 2 E(G)g. Note that if G is planar, thenG=uv is also planar. This is a property of various classes of graphs that are closed under minoroperations. By the classic theorems of Kuratowski and Wagner (see [4, p.85]), planar graphsare precisely those graphs for which repeated contractions do not yield supergraphs of K5 orK3;3. Minor-closedness holds for various other classes of graphs, e.g. partial-k trees, but notd-inductive graphs in general.Since our bounds on the inductiveness are functions of�, it is imperative that the contractionoperations do not increase the maximum degree.De�nition 2.1 An edge uv is mergeable if jN [u] [N [v]j � �+ 2.3



The contraction of a mergeable uv in G yields a simple planar graph G=uv whose maximumdegree stays at most �. Also, by the property of edge contractions, the new distance functionis dominated by the one on G (i.e. distances in G=uv are at most those in G). Thus, to showthat a square graph G2 is f(�)-inductive, we want to show the existence of a mergeable edgeuv with d2(v) � f(�). We state this as a general proposition.Proposition 2.2 Let G be a class of graphs closed under edge contractions, and let f be a non-decreasing function. Suppose every graph G in G contains a mergeable edge uv with d2(v) �f(�). Then, the square of each G in G is f(�)-inductive.2.1 Example applications of the contraction techniqueWe �rst illustrate the technique on simpler examples. Consider a minor-closed class of graphsthat are 2-inductive (e.g. partial-2 trees or series-parallel graphs).Theorem 2.3 Squares of partial-2 trees are 2�-inductive.Proof. We inductively choose a vertex of degree at most 2 in the graph and contract one of itsincident edges. In this case, either of its incident edges is mergeable, as the degree of each of itsremaining neighbors does not not increase. At most 2� vertices are within distance at most 2of the selected vertex. Thus we obtain a 2�-inductive ordering of the square graph.Our second example yields a bound on the inductiveness of planar graphs of small degreethat improves on the 9�-bound of [16] for 5-inductive graphs.Theorem 2.4 If G is a planar graph with �(G) � 9, then ind(G2) � 4�(G) + 4.Proof. We consider a maximal supergraph G0 of G, and apply a theorem of Kotzig [9] (seealso [7]). The theorem states that a maximal planar graph G0 contains an edge uv such thatdG0(u) + dG0(v) � 13, and further that dG0(u) + dG0(v) � 11 unless dG0(u) = 3. We may assumedG0(u) � dG0(v).We claim that uv is mergeable when � � 9, and that d2(v) � 4� + 4 (within G). ByProposition 2.2, this yields the theorem. We show this by considering two cases. Observe �rstthat since G0 is maximal, u and v share two common neighbors a and b in G0, and also thatNG[w] � NG0 [w] for any node w.Case when dG0(u) = 3: Thus, NG0 [u] = fu; v; a; bg � NG0 [v]. Then, the union of the closedneighborhoods of u and v in G satis�esNG[u] [NG[v] � NG0 [u] [NG0 [v] = NG0 [v]:Hence, jNG[u] [NG[v]j � dG0(v) + 1 � 11. So, the edge uv is mergeable when � � 9.The number of distance-2 neighbors of u in G is at most the sum of the degrees of a, b, andv, not counting the possible edges from v to a and b, or at most 2� + 8.Case when 4 � dG0(u) � 5: Recall that the closed neighborhoods of u and v in G0 share thefour nodes a; b; u and v. Thus,jNG[u] [NG[v]j � jNG0 [u] [NG0 [v]j = jNG0 [u]j+ jNG0 [v]j � 4 = dG0(u) + dG0(v)� 2 � 9:Thus, uv is mergeable when � � 7.When counting the number of distance-2 neighbors of u in G, each of the neighbors of ucontributes at most � of them, while v contributes itself along with those of its neighbors notamong fu; a; bg. Thus,d2(u) � (d(u)� 1)� + [1 + (11� d(u)� 3)] � 4� + 4:4



Jendrol' and Skupie« [7] have recently given a re�nement of Kotzig's result, obtaining abound of 3� + 8 on the inductiveness of the square a planar graph G with �(G) � 8.2.2 Sharp upper bound for large degree graphsWe now turn to the main result of this section, which is that when G is planar and � = �(G)is large enough, then G2 is d9�=5e-inductive. The following lemma is the key to this result.Lemma 2.5 Let G be a simple planar graph of maximum degree � � 48. Then there exists amergeable edge vw in G with d2(v) � max(d9�=5e;�+ 600).Proof. We assume that we have a �xed planar embedding of G, i.e. that G is a plane graph.Let Vh = fv 2 V (G) : d(v) � 26g and Vl = V (G) n Vh.If there is a vertex v 2 Vl with at most one neighbor in Vh, then d2(v) � 1��+24�25 = �+600.Select any incident edge vw to a low degree neighbor w of v, and notice that the contracted edgewould result in a node of degree at most (25� 1)+ (25� 1) = 48. Since � � 48, vw satis�es theclaim of the lemma. Hence, for the rest of this proof, we assume the contrary, that every vertexin Vl has at least two neighbors in Vh.Call a cycle of four vertices in G forbidden, if exactly two opposite vertices of the cycle arein Vh and the enclosed region formed by the cycle in the plane properly contains at least onevertex in Vh.If G contains a forbidden 4-cycle then let G0 be the subgraph of G induced by the regionbounded by a minimal such 4-cycle. (Here, minimal means that no other 4-cycle is inside). IfG contains no such cycle then let G0 be G.Consider now the multigraph H with vertex set V (H) = Vh \ V (G0) and with colored edgesde�ned as follows. For each edge uw in E(G0) with both u;w 2 Vh connect u and w with ared edge. For each vertex v 2 Vl adjacent to u and w 2 Vh in G0 and to no other vertex in Vh,connect u and w in H with a green edge. Finally, for v 2 Vl adjacent to u1; u2; : : : ; ut 2 Vh in G0in a clockwise order for t � 3, connect u1 to u2, u2 to u3,. . . ,ut�1 to ut and ut to u1 with blueedges in H.Since G is planar, we note that H is also a planar multigraph. Hence, we can assume wehave a drawing of H in the plane such that� The vertices of H have the same con�guration as they have in the plane graph G.� For every pair fu;wg of vertices of H connected by green or blue edges, their order withrespect to u and w is the same as the order of the corresponding vertices of Vl.By our assumption there is no vertex in Vl with at most one neighbor in Vh in G and hence inG0. Therefore, the degree of a vertex in H is at least that in G0.As reference, we show in Fig. 2 the common neighborhood in G of two vertices u and v, alongwith the the corresponding multigraph. Vertices in Vh are in black, blue vertices are grey, andgreen vertices are white. Here N [uv] contains �ve nodes in addition to u and v, correspondingto two blue, and three green edges. Hence, in this �gure we have in clockwise order w.r.t. thevertex u that x1 is blue (grey in �gure), since it has three black neighbors, the vertices x2, x3and x4 are green (white in �gure), since they each have two black neighbors, u and v, and x5 isblue (grey in �gure), since it has four black neighbors.Let v 2 V (H) denote a vertex with at most �ve neighbors in H, such that v is not on the4-cycle de�ning G0 (if G0 was so de�ned). Euler's formula for planar graphs implies that there5
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Figure 2: Example of a common neighborhood and the corresponding multigraphare at least three vertices of V (H) = Vh \V (G0) with at most �ve neighbors in H. Hence, thereis such a vertex that is not on the 4-cycle de�ning G0, as required. From now, let v denote sucha vertex.Claim 2.6 Let x 2 NH(v). There are at most two vertices in Vl \NG0 [vx] that have neighborsoutside NG0 [vx] [ fv; xg).Assume the contrary that that there are three vertices in Vl \ NG0 [vx] that have neighborsoutside NG0 [vx] [ fv; xg). Since G0 is a plane graph, one of these three vertices, call it w, mustbe contained in the 4-cycle formed by v, x and the other two vertices of those three. If w has aneighbor in (Vh \ V (G0)) nNG0 [vx], then we have a smaller forbidden 4-cycle, contradicting ourassumption. If w has a neighbor in (Vl\V (G0))nNG0 [vx], then by our assumption, that neighbormust have at least two neighbors in Vh \ V (G0) that cannot be the vertices fv; xg. That wouldagain yield a smaller forbidden 4-cycle, a contradiction. Hence, the claim.From now, let u be the node in V (H) with the largest neighborhood NG0 [uv] in commonwith v in G0. When breaking ties, we prefer nodes that are not adjacent to v with a red edge.Claim 2.7 There is a vertex w 2 NG0 [uv] such that vw is mergeable and NG[NG[w]] � NG[v][NG[w].Observe that the selection criteria for u also serves to maximize the multiplicity muv of edgesuv in H. Since dG(v) � 26 and dH(v) � 5, we have that muv � d26=5e = 6. Among theseat least six edges, there is at most one red edge, and (by Claim 2.6) at most two edges (blueor green) that correspond to vertices of Vl \ NG0 [uv] with neighbors outside NG0 [uv] [ fu; vg).Let w0; w and w00 be nodes in Vl corresponding to the �rst three of the remaining edges in aclockwise order from v. By the planarity of G0, w must be properly enclosed in the cycle formedby C = fu; v; w0; w00g. Hence, NG(w) = NG0(w) � C, and wv is mergeable. Further, since w0and w00 have no neighbors outside of N [v][N [u], all distance-2 neighbors of w are in N [v][N [u]as claimed.To prove the lemma, it su�ces to bound the distance-2 degree of either v or w. We split theargument into two cases, depending on whether there is a red edge incident to v in H or not.Case I: There is no red edge incident on v. Then all of v's neighbors are in Vl. Recallthat each of them must have at least two high degree neighbors, thus each of them belongs tosome NG0 [vx] for some x 2 NH(v). For each x 2 NH(v), there are by Claim 2.6 at most twonodes in NG0 [vx], excluding v and x, that have neighbors outside of NG0 [vx]. Since there atmost �ve nodes in NH(v), there are at most 10 neighbors of v that have neighbors outside ofNG0 [v] [NH(v). Hence, d2(v) � �+ 10 � 25 + 5 < �+ 600:6



Case II: There is a red edge incident on v, say x1v. Thus, v 2 NG0 [x1v]. Since each node in Vlis by assumption adjacent to at least two vertices in Vh, it holds that Sx2NH(v)NG0 [xv] = NG0 [v].Then, jNG[uv]j = jNG0 [uv]j � jNG0 [v]j=jNH (v)j � d(dG0(v) + 1)=5e:By Claim 2.7, NG[w] � NG0 [uv], and since x 7! x� dx=5e is an increasing function, we haved2(w) + 1 = jNG[u] [NG[v]j� jNG[u]j+ jNG[v]j � jNG[uv]j� (� + 1) + (dG0(v) + 1)� d(dG0(v) + 1)=5e� 2(� + 1)� d(� + 1)=5e= d9�=5e + 1:Together, the two cases establish that for at least one of the nodes v, w, we have that thedistance-2 degree is at most max(d9�=5e;� + 600).Our main result now follows from Lemma 2.5 and Proposition 2.2.Theorem 2.8 If G is a planar graph with � = �(G) � 750, then G2 is d9�=5e-inductive.It turns out that d9�=5e is a sharp upper bound for the inductiveness, for all values of� � 750.

Figure 3: Icosahedron graph, and split edgesObservation 2.9 For any � � 5, there exists a planar graph G of maximum degree � suchthat G2 is of minimum degree d9�=5e.Proof. Let � � 5 and q = b�=5c+ 1. Then � = 5q � i, where q � 2 and i 2 f1; 2; 3; 4; 5g. LetH be a �ve-regular planar icosahedron graph that can be partitioned into �ve perfect matchings(see Fig. 3, where the edges of the �rst perfect matching are shown in bold). We construct fromH a graph G as follows: To the �rst i perfect matchings we add q � 2 paths of length two, andwe replace the remaining 5� i perfect matchings with q paths of length two. Observe that thereare two kinds of vertices in G, one kind has degree two and the other has degree �.Consider a vertex w of degree two in G. If the neighbors of w of degree � are u and v, thenthere are precisely q vertices in N [uv]. Hence, the distance-two degree of w is given byd2(w) + 1 = jN [u]j + jN [v]j � jN [uv]j= 2(� + 1)� (b�=5c + 1)= d9�=5e + 1:7



However, a vertex v of degree � is connected to i � 1 other vertices of degree �. Call one ofthem u. Note that every vertex in N [v] [N [u] is of distance two or less from v, hence we haved2(v) + 1 � jN [v] [N [u]j = jN [u]j+ jN [v]j � jN [uv]j = d9�=5e + 1:Therefore, the minimum degree of G2 is precisely d9�=5e, thereby completing our proof.Recall the following de�nition of choosability given in [4].De�nition 2.10 A graph G is k-choosable, if for every collection fSv : v 2 V (G)g of lists ofcolors, Sv � f1; 2; 3; : : :g where jSvj = k for every v 2 V (G), there is a color assignmentc : V (G) ! [v2V (G)Sv;such that� c(v) 2 Sv for each v 2 V (G), and� if c(v) = c(u) then v and u are not neighbors in G.The minimum such k is called the choosability of G and denoted by ch(G).We note that if a graph is k-choosable, then it is k-colorable. Also, by an easy induction, onecan see that if a graph is k-inductive then it is (k+1)-choosable. For any graph G we thereforehave �(G) � ch(G) � ind(G) + 1:Hence, from Theorem 2.8 we have in particular the following corollary.Corollary 2.11 If G is a planar graph with � = �(G) � 750, then ch(G2) � d9�=5e + 1.3 General Powers of Planar GraphsIn this section we consider general powers Gk of planar graphs, and establish tight asymptoticbounds of the inductiveness of ind(Gk). In fact we prove the following theorem, which inparticular, improves the bound of �(Gk) given in [7], where it is shown that �(Gk) is boundedfrom above by a polynomial in � of degree k � 1.Theorem 3.1 Let G be a planar graph with maximum degree �. For any �xed k � 1, Gk isO(�bk=2c)-colorable. Also, there is a family of graphs that attains this bound. This bound is alsoasymptotically tight for the clique number, inductiveness, choosability, arboricity, and minimumdegree of Gk.Let us �rst give a construction that matches the bound of the theorem. Given k;� � 1,consider the tree T of height bk=2c where internal vertices have degree �. The number of verticesin T isD�;k = 1 +�+�(�� 1) + �(�� 1)2 + � � �+�(�� 1)bk=2c�1 = �(�� 1)bk=2c � 2�� 2 :Observe that T k is a complete graph, thus �(T k) = D�;k.We now turn to proving the upper bound of the theorem. First we introduce some termi-nology.Notation and Arboricity 8



A k-path is a path of length exactly k. A (k;�)-path is a path of length k or less. If uand v are vertices of a given graph, then a walk of length k from u to v is simply a sequence(u0; e1; u1; : : : ; uk�1; ek; uk), where u0 = u, uk = v and each ei has endvertices ui�1 and ui. Notethat in a walk, both vertices and edges may be repeated.De�nition 3.2 For a graph G, de�ne its arboricity, denoted arb(G), as the minimum numberof forests needed to cover all the edges of the graph G.By the Nash-Williams theorem [14] we havearb(G) = maxH�G � jE(H)jjV (H)j � 1� :Arboricity is closely related to inductiveness.Lemma 3.3 For any graph G, we have arb(G) � ind(G) � 2 arb(G)� 1.Proof. Let q be ind(G). We �rst show that E(G) can be partitioned into q forests. Given alinear arrangement of the vertices, such that each vertex vi has at most q later neighbors, wearbitrarily color the edges from vi to later vertices with at most q colors. In this way, each colorclass is acyclic, since two edges of the same color cannot have the same �rst-labeled endpoint,and thus a forest. Therefore arb(G) � q, proving the �rst inequality.For the second inequality, let ind(G) = q. LetH be a subgraph of G such that minv(dH(v)) =q. Since 2jE(H)j =Pv2V (H) dH(v) � qjV (H)j, we have arb(G) > jE(H)j=jV (H)j � q=2. Sincearb(G) is an integer, we have q � 2 arb(G)� 1, which completes our lemma.Note that if G is planar we have that arb(G) � 3 by Euler's formula and the Nash-Williamstheorem. Also we have that ind(G) � 5. Since there are planar graphs obtaining these values,Lemma 3.3 is tight for planar graphs.From Theorem 2.4 and Lemma 3.3 we have in particular that arb(G2) � 4� + 4, if � � 9.Arboricity of power graphs.We now want to �nd an upper bound of the arboricity of Gk in terms of �, where G isa planar graph. For a vertex set U � V (G), let Ek(U) be the edgeset of the subgraph of Gkinduced by U . Then, the arboricity of Gk isarb(Gk) = maxU�V (G) & jEk(U)jjU j � 1 ' : (1)We will use this to bound arb(Gk), but �rst we note the following.Lemma 3.4 If G is a simple graph with arb(G) = �, then the edges of G can be directed insuch a way that for each vertex v 2 V (G), at most � directed edges are pointing from v.Proof. Let F1; : : : ; F� be the forests that cover the edges of G. For each subtree T of each Fi,direct its edges upward towards an arbitrarily chosen root r of T . In this way each Fi becomesa directed forest F di in which every vertex, but the root, has outegree one, and the root hasoutdegree zero. Hence, as G is the disjoint union of the forests Fi, the outdegree of each vertexin G is at most �.Let G be a planar graph, and U � V (G). Note that if two vertices of U are connected inGk, then there is a (k;�)-path in G between them, and hence an i-walk between them, wherei 2 fk � 1; kg.Theorem 3.5 For any graph G, we have arb(Gk) � 2k+1�dk=2e�bk=2c, where � = arb(G).Remark: The main idea of the proof below, of counting the i-walks directly, is due to theanonymous referees. 9



Proof. By Lemma 3.4 we can direct the edges of G in such a way that for each vertex v 2 V (G)there are at most � directed edges pointing from v.Let U � V (G). If uv 2 Ek(U), then there is an i-walk in G, where i 2 fk � 1; kg, eitherfrom u to v, or from v to u, that walks against at most bi=2c of the given directions of the edges.Assume in this case there is such an i-walk ~w from u to v. There are Pbi=2cj=0 �ij� possibilities of atmost bi=2c edges in ~w pointing against the walk. Also, for each vertex on ~w, there are at most �choices of directed edges pointing from the vertex, and at most � � � choices of directed edgespointing to the vertex. Hence, the number of possible such i-walks ~w from u, with at most bi=2cagainst directions, is Pbi=2cj=0 �ij��i�j�j � (Pbi=2cj=0 �ij�)�dk=2e�bk=2c. Hence,jEk(U)j � 0@b(k�1)=2cXj=0  k � 1j !+ bk=2cXj=0  kj!1A�dk=2e�bk=2cjU j � 2k�dk=2e�bk=2cjU j:The theorem now follows from (1).Note that for a planar graph G we have arb(G) � 3. Also note that from the above proof, thatfor any U � V (G) in a general graph, we have 2jEk(U)j =Pv2U dG[U ]k(v), and hence there is avertex v with dG[U ]k(v) � 2k+1�dk=2e�bk=2c. With this in mind we have the following.Corollary 3.6 For a planar graph G with � � 3 we havearb(Gk); ind(Gk) � 2k+13dk=2e�bk=2c:By Lemma 3.3 and Theorem 3.5 we have that for any planar graph G, the chromatic number,clique number, choosability and inductiveness is at most 2 arb(G), which completes the proof ofTheorem 3.1.RemarksThe original proof of Theorem 3.1, as found in [1] was di�erent. Our argument was partlybased on the following �expansion property� for planar graphs, which took the longest to prove,but is of interest in its own right: For a planar graph G and any subset W � V (G) of vertices,there is a subset W 0 with W �W 0 � V (G) and jW 0j � 10k�1jW j, such that if any two verticesin W are neighbors in Gk, then they are also neighbors in G[W 0]k, the subgraphs of Gk inducedby W 0.4 Approximation AlgorithmsWe can improve the best approximation factor known for coloring squares of planar graphs.Recall that since neighbors in G must be colored di�erently in G2, �(G2) � � + 1. Thus, for� � 750, Theorem 2.8 yields a 1.8-approximation. Hence, we obtain an asymptotic ratio of 1.8.For constant values of �, we can use a result of Krumke, Marathe and Ravi [10]. Theystated a 3-approximation, but actually a 2-approximation easily follows from their approachwhich is based on an often-used decomposition due to Baker [2]. The complexity of theirapproach is equivalent to the complexity of coloring a partial O(�)-tree. Combined, we obtaina 2-approximation for any value of �.Theorem 4.1 The problem of coloring squares of planar graphs has a 2-approximation.Theorem 3.1 also immediately gives a O(1)-approximation to coloring cubes of planar graphs.However, better factors are possible. 10



Zhou et al. [20] independently gave a polynomial algorithm for distance-d coloring partial k-trees, for any constant d and k. The complexity of their algorithm is O(n(�+1)22(k+1)(d+2)+1+n3),where � = O(min(�d=2; n)) is the number of colors needed. Since it is not indicated in [20], weshow here how this results yields a 2-approximation for coloring Gd, for any constant d, whencombined with the decomposition of Baker.The technique of Baker [2] partitions the vertex set V of a planar graph into subsets V1; V2; : : :referred to as layers, such that all edges are between adjacent layers or within the same layer,i.e. if u 2 Vi and uv 2 E, then v 2 Vi�1 [ Vi [ Vi+1. Now, let V 0 = [i mod 2d<dVi, V 00 = V � V 0,and G0, G00 be the subgraphs induced by V 0 and V 00. Observe that both G0 and G00 consist of acollection of disjoint subgraphs Ui, corresponding to Vdi[Vdi+1[ � � � [Vd(i+1)�1. Further, noticethat the subgraphs induced by the Ui will also be disjoint in G0d and G00d, since distance betweenany pair of nodes in di�erent subgraphs Ui is at least d + 1. Thus, G0d can be computed byconsidering each Ui separately. Now, Gd restricted to Ui is a subgraph of the graph Hdi , whereHi = G[[d(i+1)�(d�2)j=di�(d�1) Ui]. Hi is a 3d � 2-outerplanar graph, which means that it is a partial9d � 8-tree by a result of Bodlaender [3]. Hence, we can compute the optimal coloring of eachHi in time O(n2(9d�7)(d+2)+1+1). Thus, we can solve G02 and G002 exactly, and in total, using atmost twice the optimal number of colors.AcknowledgmentsWe thank Madhav Marathe for introducing this problem to us, and Noga Alon and Jan Kra-tochvíl for advice. Most of this work was done while both authors were at the Science Institute,University of Iceland. In addition, Geir would like to thank the Department of Mathematics atArizona State University for their hospitality, and Magnús would like to thank the Departmentof Communications Systems at Kyoto University for their hospitality. We would last but notleast like to sincerely thank the anonymous referees for their patience, helpful criticism and forrepeatedly providing valuable comments, which, in particular, helped shortening and simplifyingour original proof of Theorem 3.1.References[1] G. Agnarsson and M. M. Halldórsson. Coloring powers of planar graphs. In Proc. 11thAnn. ACM-SIAM Symp. on Discrete Algorithms, pages 654�662. ACM-SIAM, 2000.[2] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs.J. ACM, 41:153�180, Jan. 1994.[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. In Theor.Comp. Sci, volume 209, pages 1�45, 1998.[4] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer Verlag,1997.[5] P. Heggernes and J. A. Telle. Partitioning graphs into generalized dominating sets. NordicJ. Computing, 5(2):128�143, Summer 1998.[6] J. van den Heuvel and S. McGuinness. Colouring the square of a planar graph. ResearchReport LSE-CDAM-99-06, Centre for Discrete and Applicable Mathematics, June 1999.11
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