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Abstract. We study a fundamental measure for wireless interference in the SINR model known
as (weighted) inductive independence. This measure characterizes the effectiveness of using oblivious
power — when the power used by a transmitter only depends on the distance to the receiver — as
a mechanism for improving wireless capacity.

We prove optimal bounds for inductive independence, implying a number of algorithmic appli-
cations. An algorithm is provided that achieves capacity that is — due to existing lower bounds
— asymptotically best possible using oblivious power assignments. Improved approximation algo-
rithms are provided for a number of problems involving both oblivious power and arbitrary power
control, including connectivity, secondary spectrum auctions, and dynamic packet scheduling. We
also show that the price of oblivious power — the relative increase in capacity possible when using
unconstrained power control — is only doubly logarithmic in the maximum link length.
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1. Introduction. Power control is one of the most versatile tools to increase the
capacity of a wireless network. Higher power increases the throughput of a transmis-
sion link, while causing more interference to other simultaneously transmitting links.
Given this tension, intelligent power control is crucial in increasing the spatial reuse
of the available bandwidth provided by the shared medium. Thus it is not surprising
that most contemporary wireless protocols use some form of power control. It has also
been shown theoretically that power control may improve the capacity of a wireless
network in an exponential [26, 50] or even unbounded [15] way.

Unrestricted power control is, however, a double-edged sword. In order to achieve
the theoretically best results, one must solve complex optimization problems, where
transmission power of one node potentially depends on the transmission powers of all
other nodes [42]. In real wireless networks, where communication demands change
over time, this may not be an option. In practical protocols, the transmission power
should preferably be independent of other concurrent transmissions, which leaves it
to only depend on the distance between transmitter and receiver. This is known as
oblivious power control.

Many questions immediately arise in the wake of the preceding observations:
What is the price in performance for restricting power control to oblivious powers?
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Which of the infinitely many oblivious power schemes are good choices? Once an
oblivious power scheme is chosen, what algorithmic results can be achieved?

In this work, we look at these questions in the context of the physical or SINR
model of interference, a realistic model gaining increasing attention (see Section 1.2
for historical background and motivation and Section 2 for precise definitions). In this
setting, our work completes a line of investigation by answering a number of these
questions optimally.

The specific problem at the center of our work is capacity maximization: Given
a set of transmission links (each a transmitter-receiver pair), find the largest sub-
set of links that can successfully transmit simultaneously when assigned appropriate
transmission powers.

Before the present work, the state-of-the-art was as follows. The mean power
assignment, where a link of length ` is assigned power (proportional to) `α/2 (α being
a small physical constant), had emerged as the “star” among oblivious power assign-
ments. It was shown that using mean power, one can approximate capacity maximiza-
tion with respect to arbitrary power control within a factor of O(log(n) · log log ∆)
[26] and O(log(n) + log log ∆) [29], where ∆ is the ratio between the maximum and
minimum transmission distance and n is the number of links in the system. This
showed that the somewhat earlier lower bound of Ω(n) [15] applied only when ∆ was
doubly exponential. In terms of ∆, it was shown that one must pay an Ω(log log ∆)
factor [26]. The best upper bounds were, as mentioned, either dependent on the size
of the input [26, 29] and as such unbounded (in relation to ∆), or exponentially worse
(O(log ∆)) [1, 21].

1.1. Our Contributions. In this paper, we study power assignments of the
form `p·α for all fixed 0 < p < 1 (setting p = 1

2 results in mean power). Our first
result is a simple algorithm using any oblivious power scheme of this form, whose
performance matches the known Ω(log log ∆) lower bound. For small to moderate
values of ∆, e.g., when ∆ is at most polynomial in n (which presumably includes
most real-world settings), our bound is an exponential improvement over previous
bounds, including the O(log ∆)-bound of [1] (see also [21]).

This result extends the “star status” from mean power to a large class of assign-
ments. This class has been studied implicitly before in a range of work on “length-
monotone, sub-linear” power assignments [28, 29, 37, 45], but its relation to arbitrary
power was not well understood.

Our second main contribution is to improve a number of algorithmic results that
use these power assignments. We shave a logarithmic (in n) factor off the approxi-
mation ratios of a variety of problems, including secondary spectrum auctions [37],
wireless connectivity [30, 31, 50], and dynamic packet scheduling [3, 44]. Using the ca-
pacity relation between oblivious and arbitrary power (our first result), we strengthen
the bounds for these problems in the power control setting as well.

Though we have presented our work above in terms of algorithmic implications,
what we actually prove are two structural results, from which the algorithmic appli-
cations follow essentially immediately. These results are important in their own right,
e.g., implying tight bounds on certain efficiently computable measures of interference.

To provide an intuitive understanding of our results in the next paragraph, we
recall the graph theoretic notion of inductive independence [57].

Definition 1.1 (Inductive independence). A graph G is d-inductive independent
if there is an ordering of the vertices v1, v2, . . . , vn such that each vi has at most d
neighbors in any independent set I ⊆ {vi+1, vi+2, . . . , vn}.
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Fig. 1. The graph on the left has inductive independence number 1 (i.e., is chordal), while the
graph on the right has inductive independence number 2.

An example is provided in Figure 1.
The inductive independence property is found in many graph classes (e.g., in-

tersection graphs of translates of a convex planar object are 3-inductive independent
[57]), and it has powerful algorithmic implications [25, 37, 57]. For example, a simple
d-approximation algorithm for the maximum independent set problem in such a graph
is as follows: Process the vertices in the prescribed order, adding each vertex to the
solution if it has no neighbors already in the solution. By the inductive independence
property, the addition of a single vertex disqualifies at most d vertices of the optimal
solution from being added in the future, which implies the claimed approximation
factor.

In this paper, we deal with an interference measure that is a natural analog of
inductive independence, applied to certain weighted graphs that model the SINR
interference scenario. In this context, the links to be scheduled are represented by
vertices of a graph. The weight of a directed edge is the relative interference that
the source link causes on the destination link. The relevant ordering of the vertices is
the ascending order of link length. The vertices of an “independent set” in this graph
represent a set of links that cause limited interference to each other when transmitting
simultaneously. These sets are called feasible sets of links, as all links in such a set
can transmit successfully at the same time.

When one is interested in feasible sets and allowed to assign arbitrary (unre-
stricted) transmission powers to links, we show that the measure is bounded by
O(log log ∆) (Theorem 3.2), implying our first capacity result (and its applications).
This result holds for links on the plane, and in a more general class of metrics that
we define here. Technically, this is done by carefully extending the analysis of [26].
When feasibility is with respect to oblivious power from the abovementioned class, the
measure is constant-bounded (Theorem 3.3), implying the second set of algorithmic
results. This results hold for general metric spaces and all constants α > 0.

Apart from the specific applications pinpointed here, we expect future algorithmic
questions in the SINR model to directly benefit from these bounds.

1.2. Related Work. Gupta and Kumar [24] were among the first to provide
analytical results for wireless scheduling in the physical (SINR) model. Those early
results analyzed special settings using e.g. certain node distributions, traffic patterns,
transport layers etc. In reality, however, networks often differ from these specialized
models and no algorithms were provided to optimize the capacity. On the other
hand, graph-based models yielded algorithms like [46, 53], but such models do not
capture the nature of wireless communication well, as demonstrated in [23, 48, 51]. In
2006, Moscibroda and Wattenhofer [50] combined the best of both worlds, studying
algorithms for scheduling in arbitrary networks. Since then, the problems studied
in this setting have reflected the diversity of the application areas underlying it –
topology control [17, 41, 52], sensor networks [49], combined scheduling and routing
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[9], ultra-wideband [38], and analog network coding [22].
In spite of this diversity, certain canonical problems have emerged, the study

of which has resulted in improvements for other problems as well. The capacity
problem is one such problem. After it was quickly shown to be NP-complete [21], a
constant factor approximation algorithm for uniform power was achieved in [19, 18],
and eventually extended to essentially all interesting oblivious power schemes in [29].
In [42, 43], a constant approximation to the capacity problem for arbitrary powers
was obtained. The relation between capacity using oblivious power and capacity using
arbitrary power was first studied in [26].

An alternative approach to capacity maximization using uniform power is to use
regret minimization by distributed algorithms, first proposed in [1], with a constant
factor approximation derived in [2], and later extended to handle jamming [12], and
changing spectrum availability [11].

Linear power has turned out to be the easiest among fixed power assignments,
being the only one with a constant factor approximation for scheduling with respect
to the optimum schedule achievable with linear power [16, 56] and a constant-bounded
interference measure [16]. Whereas there are instances for which linear and uniform
power are arbitrarily bad in comparison with mean power [50], a maximum feasible
subset under mean power is known to be always within a constant factor of subsets
feasible under linear or uniform power [55]. Recently it was shown in [10] that algo-
rithms for capacity-maximization in the SINR model can be transferred to a model
that takes Rayleigh-fading into account, losing only an O(log∗ n) factor in the approx-
imation ratio. Also, it was argued in [7] that capacity maximization algorithms like
ours could be applied to arbitrarily complex environments, with the approximation
factor reflecting an innate property of the signal reception matrix (as opposed to the
interpolated path loss constant).

Technically, the idea of looking at the interaction between a feasible set and a link
was studied before. The works of [26] and [45] are particularly relevant – the first in
the context of oblivious/arbitrary-power comparison, and the second in the context of
oblivious power. Our results improve the bounds in those papers to the best possible
up to a small constant factor.

Since the initial publication of the current work in [27], there has been progress
on the related scheduling problem with power control. In particular, a O(log log ∆)-
approximation was achieved in [34] using oblivious power (assuming non-weak links),
matching our capacity result. Curiously, that approximation ratio holds only for a
more limited set of power assignments (when p > 2/α). Also, an improved approxima-
tion of O(log∗∆) was obtained for scheduling with power control in [33], necessarily
using non-oblivious power assignments, with evidence provided that this might be
best possible. It was shown in [5] that, unlike we show here for capacity, induc-
tive independence is not a strong enough bound to achieve better than logarithmic
approximation of scheduling problems.

1.3. Outline of the Paper. Section 2 lays down the basic setting, including
a formal description of the SINR model. In Section 3, we introduce the interference
measure and our two structural results. Sections 3.1 and 3.2 are devoted to proofs of
the structural results. Section 4 illustrates a key application, with further applications
given in Section 5.

2. Model and Definitions. Given is a set L of links, where each link v repre-
sents a unit-demand communication request from a transmitter sv to a receiver rv,
both of which are points in a metric space. The distance between two points x and y is
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denoted by d(x, y). We write dvw = d(sv, rw) for short, and denote by dvv = d(sv, rv)
the length of link v.

Definition 2.1 (SINR-formula). Let Φv denote the power assigned to link v, or
in other words, sv transmits with power Φv. In the physical model (or SINR model)
of interference, a transmission on link v is successful if and only if

(2.1) Φv/dαvv∑
w∈S\{v} Φw/dαwv +N

≥ β ,

where N is a universal constant denoting the ambient noise, β ≥ 1 denotes the min-
imum SINR (signal-to-interference-noise-ratio) required for a message to be success-
fully received, α > 0 is the so-called path-loss constant, and S ⊆ L is the set of links
scheduled concurrently with v. Let Φmax denote maximum available transmission
power and `max = (Φmax/βN)1/α denote the maximum distance for a transmission
to be successful in the absence of interference.

We view α as a universal constant that can be hidden in big-oh notation, but not
the parameter β.

We focus on oblivious power assignments Pp, where the power Φv ∼ dp·αvv assigned
to the sender of link v only depends on the length dvv of the link and the parameter
p. More precisely, under Pp, the power assigned to v is given by

Φv = Φmax ·
(
dvv
`max

)pα
= Φ1−p

max(βN)p · dpαvv .

This includes all the specific assignments of major interest: uniform (P0), mean (P1/2),
and linear power (P1).

Definition 2.2 (Feasibility). We say that a subset S ⊆ L of links is P-feasible,
if Condition (2.1) is satisfied for each link in S when using power assignment P. We
say that S is feasible if there exists a power assignment P for which S is P-feasible.

Let Capacity denote the problem of finding a maximum cardinality feasible subset
of links (that is, maximizing the capacity of the wireless channel used).

The notion of relative interference [39], which we refer to as affectance following
[18, 45], is crucial to our arguments.

Definition 2.3 (Affectance). The affectance aPw(v) on link v caused by another
link w, with a given power assignment P, is the interference of w on v relative to the
power received, or

aPw(v) := min
(

1, cv
Φw/dαwv
Φv/dαvv

)
= min

(
1, cv

Φw
Φv
·
(
dvv
dwv

)α)
,

where cv := β/(1 − βNdαvv/Φv) depends only on properties of the link v and on
universal parameters. Note that cv ≥ β ≥ 1.

Let apv(w) denote aPpv (w). Conventionally, we define aPv (v) := 0, since v does not
interfere with itself. For sets S and T of links and a link v, let aPv (S) :=

∑
w∈S a

P
v (w),

aPS (v) :=
∑
w∈S a

P
w(v), and aPS (T ) :=

∑
w∈S a

P
w(T ). Given a set of links L and a link

v ∈ L, we often refer to aPL (v) as the sum of in-affectance on link v. Using this
notation, Condition (2.1) can be rewritten as aPS (v) ≤ 1 (except for the near-trivial
case of S containing only two links).

We introduce two more affectance notations.
Definition 2.4 (Symmetric affectance). We define

bPv (w) := bPw(v) := aPv (w) + aPw(v)
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to be the symmetric version of affectance.
Without loss of generality, assume that link-lengths form a total order ≺, where

symmetry is broken arbitrarily; i.e., ≺ is an arbitrary linear extension of the partial
order given by length comparisons.

Definition 2.5 (Length-ordered affectance). Denote by âPv (w) (and b̂Pv (w)) the
length-ordered version of affectance, defined as aPv (w) (bPv (w)) if dvv ≺ dww and 0
otherwise, respectively.

These are extended in similar ways to affectances to and from sets as defined for
aPv (w). As before, we write bpv(w) := b

Pp
v (w), b̂pv(w) := b̂

Pp
v (w) and âpv(w) := â

Pp
v (w).

These measures are essentially identical when taken over a whole set.
Observation 2.6. aPS (S) = b̂PS (S) = bPS (S)/2.
Proof.

bPS (S) =
∑
v,u∈S

bPv (w) =
∑
v,u∈S

(aPv (w) + aPw(v)) = 2aPS (S) .

Also,

b̂PS (S) =
∑
v,w∈S

b̂Pv (w) =
∑
v,w∈S
v≺w

bPv (w) =
∑
v,w∈S
v≺w

(aPv (w) + aPw(v))

=
∑
u,x∈S
u≺x

aPu (x) +
∑
u,x∈S
x≺u

aPu (x) =
∑
u,x∈S

aPu (x) = aPS (S) .

Let ∆ = ∆(L) denote the ratio between the maximum and minimum length of a
link in L.

Definition 2.7 (Length-classes). A set of links is a length-class if the lengths
of the links within the set vary by a factor at most 2. We refer to links in the same
length-class as nearly-equilength.

Clearly, every link set L can be partitioned into dlog ∆(L)e length-classes.
Links that are very close to the longest possible need special treatment.
Definition 2.8 ((Non)-weak links). A link v is said to be weak if cv > 2β and

non-weak if cv ≤ 2β. The latter is equivalent to the condition Φv ≥ 2βNdαvv.
Intuitively, this means that the link uses at least slightly more power than the

absolute minimum needed to overcome ambient noise (the constant 2 can be replaced
with any fixed constant larger than 1). Some of our theorems assume links to be
non-weak, a reasonable and often-used assumption [1, 14, 20, 45].

To handle also weak links, we classify them into groups of roughly equal cv-values,
along similar lines as proposed in [6].

Definition 2.9 (Tolerance-classes). A set S of links is an (interference) tolerance-
class if both the lengths and cv-values of the links differ by a factor at most 2, i.e., if
∀v, w ∈ S, cv ≤ 2cw and dvv ≤ 2dww.

Let cmax(S) = maxv∈S cv (cmin(S) = minv∈S cv) denote the largest (smallest) cv
value among the links in a set S of links, respectively.

Definition 2.10 (Convergent metric). A metric M is a pair (V, d) where V is
a set and d is a distance function satisfying the triangle inequality. A subset X ⊆ V
is a c-packing if d(x, x′) ≥ c, for every x, x′ ∈ X, x 6= x′. In the context of a given
pathloss parameter α, a metric is convergent if there is a constant cM such that for
any c > 0, any c-packing X, and any v ∈ V , it holds that

∑
x∈X d(x, v)−α ≤ cM/cα.
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This definition captures the property that is essential for many arguments about
wireless algorithms that the interference from a set of properly spaced links that tile
the plane converges to a constant, assuming α > 2. Convergent metrics generalize all
previous definitions of similar type, including fading metrics [26] and bounded-growth
metrics [13, 40].

Definition 2.11 (Independence). Links v and w are q-independent if they
satisfy dvw · dwv ≥ q2 · dww · dvv. A set of mutually q-independent links is said to be
q-independent.

An example of q-independence is given in Figure 2.

      
          

r3

r2

r1s1

s2

s3

Fig. 2. Nodes are located on the grid at unit-distances. Links 1 and 2 are 1.92-independent.
Set {1, 2, 3} is 1.43-independent.

Independence is a pairwise property, and thus weaker than feasibility. A feasi-
ble set is necessarily β1/α-independent [26], but there is no good relationship in the
opposite direction.

In this paper we provide an independence-strengthening result with better trade-
offs than the so-called “signal-strengthening” of [35]. This lemma allows us to forget
about the specific value of β that the feasible set satisfies and consider some stronger
threshold, e.g., β′ = 2, for convenience. Recall cmin(S) = minv∈S cv.

Lemma 2.12. For any given q > 1, a feasible set S of links can be partitioned
into d2qα/cmin(S)e sets, each q-independent.

Proof. Let r := cmin(S)/qα and z := d2/re = d2qα/cmin(S)e. Let P be a power
assignment that makes S feasible. We form a graph G on the set S of links, where
links v and w are adjacent if and only if bPv (w) > r.

We first show that G is z-colorable. Suppose otherwise and let R ⊆ S be a
minimally z + 1-chromatic subgraph. Since R is P-feasible, aPR(v) ≤ 1, for each v in
R. Thus,

bPR(R) = 2aPR(R) = 2
∑
v∈R

aPR(v) ≤ 2|R| .

Then, there is a link u1 in R with bPu1
(R) ≤ 2. Form a z-coloring of R \ {u1}, which

exists by the minimality of R. There are strictly fewer than z = d2/re links w in R
for which bPu1

(w) > r. Thus, there is a color class that contains no neighbor of u1,
and assigning u1 to that class yields a z-coloring of R, which is a contradiction.

Consider now a color class (i.e., a graph-theoretic independent set) Sc ⊆ S, c ∈
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{1, . . . , z}. It holds by the definition of G that, for any pair v, w of links in Sc,

(2.2) aPw(v) · aPv (w) ≤ bPw(v) · bPv (w) ≤ r · r = cmin(S)2

q2α ≤ cvcw
q2α .

Since w and v belong to the same feasible set, it holds by the definition of affectance
that

(2.3) aPv (w) · aPw(v) = cw
Φv/dαvw
Φw/dαww

· cv
Φw/dαwv
Φv/dαvv

= cwcv

(
dwwdvv
dwvdvw

)α
.

Combining the Bounds (2.2) and (2.3) yields that v and w are q-independent. Since
this holds for arbitrary links v 6= w ∈ Sc and arbitrary c ∈ {1, . . . , z}, it follows that
the coloring of G yields the desired partition of L into q-independent sets.

3. Structural Properties. We start by defining the interference measure at the
center of this work. As mentioned in the introduction, this definition is a fractional
analogue of the inductive independence number of a graph.

Definition 3.1 (Inductive independence). Let L be a set of links, P,Q be two
power assignments of L, and FQ(L) be the collection of Q-feasible subsets of L. Then,

IPQ(L) := max
S∈FQ(L)

max
v∈L

b̂Pv (S) .

When either P or Q denotes Pp, we replace it by p, e.g., Ipp (L) := I
Pp
Pp (L).

In our setting, the weighted graph is formed on the links, that is, L is the set
of nodes in the graph. The weight of the (undirected) edge between links u and v is
bPu (v) = bPv (u). The ordering is the ascending order of length of the corresponding
links. Then, IPQ(L) is an upper bound on how much weight/interference (when using
power P) a link can have into a Q-feasible set containing longer links, just as the
inductive independence number in graphs is an upper bound on how many edges a
node can have to an independent set consisting of higher-ranked nodes.

When used with different power assignments, IPQ(L) gives us a handle on compar-
ing the utility of these power assignments. We primarily use it in the setting where
P = Pp, for some p ∈ (0, 1], and Q is (an) optimal arbitrary power assignment (that
maximizes Capacity of L), allowing us to relate oblivious power to arbitrary power.

In this section, we give two structural results that characterize the utility of
oblivious power assignments. Both of these are best possible and answer important
open questions.

The first characterizes the price of oblivious power, i.e., the quality of solutions
using oblivious power assignment relative to those achievable by unrestricted power
assignments. It improves upon the O(log(n) + log log ∆) bound stated implicitly in
[29] and extends it to a range of power assignments.

Theorem 3.2. For every set L of non-weak links in a convergent metric, 0 <
p < 1, and power assignment Q, it holds that IpQ(L) = O(log log ∆(L)).

The second is a constant upper bound on the function when P and Q are the
same Pp assignment, for some p ∈ (0, 1]). This improves upon the O(logn) bound in
[45].

Theorem 3.3. Every set L of links is O(1)-inductive independent under Pp, i.e.,
Ipp (L) = O(1), where 0 < p ≤ 1.

Each theorem is treated in a separate subsection.
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3.1. Inductive Independence of Oblivious Powers with Respect to the
Optimum Assignment (Proof of Theorem 3.2). We want to bound the sym-
metric affectance of a link v with respect to a set S of longer links. We do so by
partitioning S into three sets and bounding the contributions of each set separately.

For the set S1 of “long” links with “large” affectance (with respect to v), we
extend a result of [26]. That argument (Lemma 3.4) is based on showing that the
lengths of the links in S1 must grow doubly exponentially, and thus there can be at
most O(log log ∆) links in the set.

For the set S2 of “long” links with “small” affectance with respect to v, we break
S2 into tolerance-classes, show that the affectance of v towards each tolerance-class
is small, i.e., O(1/ log ∆), and since the number of tolerance-classes is at most log ∆
(when the links are non-weak), the total affectance is O(1).

Finally, the set S3 of “short” links has only O(log log ∆) tolerance-classes, so it
suffices to show that the affectance to each of them is constant. The same Lemma 3.9
is used for the tolerance-class arguments of both S2 and S3.

We first present key lemmata (Lemmata 3.4, 3.7, and 3.9) to bound affectances
of a link to and from a set of links. The first lemma handles the set of long links
with relatively high affectance. This lemma is key to the O(log log ∆) bound and
essentially shows that if the links in a set are mutually distant, yet all “close” to a
given link, then their lengths must grow doubly exponentially. It originates in [26]
(Lemma 4.4) and is generalized here to any Pp power assignment (with 0 < p < 1)
and to the property of independence (which is weaker than affectance).

We introduce a parameter p̂ defined as p̂ := 1
min(1−p,p) for the rest of this subsec-

tion.
Lemma 3.4. Let p be a constant, 0 < p < 1, τ be a parameter, τ ≥ 1, and Λ :=

(2(2τ)1/α)p̂. Let v be a link and let Q be a 3β1/α-independent set of non-weak links in
an arbitrary metric space, where each link w ∈ Q satisfies max(apv(w), apw(v)) ≥ 1/τ
and Λ · dvv ≤ dww. Then, |Q| = O(log log ∆(Q)).

Proof. Let γ := β1/α. We partition Q into two sets:
1. The set Q1 = {w ∈ Q : apw(v) ≥ 1/τ} of links that affect v by at least 1/τ ,

and
2. The set Q2 = {w ∈ Q : apv(w) ≥ 1/τ} that are similarly affected by v.

We prove the statement for each type separately.
Step 1: Consider a pair w,w′ of links in Q1 that each affect v by at least 1/τ

under Pp, and suppose without loss of generality that dw′w′ ≤ dww. The assumption
that apw(v) ≥ 1/τ is equivalent to the relationship cv(dpwwd1−p

vv )α ≥ dwv
α/τ , which

implies that

(3.1) dwv ≤ dpwwd1−p
vv (cvτ)1/α .

Similarly,

(3.2) dw′v ≤ dpw′w′d
1−p
vv (cvτ)1/α ≤ dpwwd1−p

vv (cvτ)1/α ,

additionally using that w′ is at most as long as w. Recall that cv ≤ 2β = 2γα, since
the links are non-weak. By Bounds (3.1) and (3.2) and the definition of Λ,

(3.3) dwv + dw′v ≤ 2dpwwd1−p
vv γ(2τ)1/α = dpwwd

1−p
vv γΛ1/p̂ .

By the triangle inequality and Bound 3.3,

(3.4) dw′w ≤ d(sw′ , rv) + d(rv, sw) + d(sw, rw) ≤ dpw′w′d
1−p
vv γΛ1/p̂ + dww
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Let the links in Q1 be ordered 1, 2, . . . , |Q1| in order of non-decreasing length. Observe
that by assumption, dvvΛ ≤ d11 ≤ dww. Continuing from Bound (3.4), applying the
definition of p̂,

(3.5) dw′w ≤ dpww(dvvΛ)1−pγ + dww ≤ 2γdww .

We can derive in the same way that

(3.6) dww′ ≤ dwv + dw′v + dw′w′ ≤ dpww(dvvΛ)1−pγ + dw′w′ ≤ dpwwd
1−p
11 γ + dw′w′ .

Using the definition of independence, on one hand, and Bounds (3.5) and (3.6) on
dw′w and dww′ , on the other hand, we get that

(3.7) 9γ2dwwdw′w′ ≤ dw′w · dww′ ≤ 2γdww(dw′w′ + γdpwwd
1−p
11 ) ,

Canceling a γ2dww-factor and simplifying (using that γ ≥ 1), we get that

7dw′w′ ≤ 2dpwwd
1−p
11 .

Rearranging,

(3.8)
(
dww
d11

)p
≥ 3dw′w′

d11
.

Define λi = dii/d11 as the ratio of the length between link i and the shortest link
1 in Q1. Applying Bound (3.8) with w′ = i and w = i+ 1, we get that, for i =
1, 2, . . . , |Q1| − 1,

λpi+1 ≥ 3λi .

Then, λ2 ≥ 31/p and by induction λt ≥ 3(1/p)t−1 . Note that

∆(Q1) = d|Q1||Q1|/d11 = λ|Q1| ≥ 3(1/p)|Q1|−1
,

so |Q1| − 1 ≤ log1/p log3 ∆(Q1), and the claim follows.
Step 2: The other case of links w with apv(w) ≥ 1/τ is symmetric, with the roles

of p and 1− p switched, leading to a bound of 1 + log1/(1−p) log3 ∆(Q2).
Lemma 3.4 bounds the number of longer links that affect (or are affected by)

a given link by a significant amount, or at least 1/τ . For affectances below that
threshold, we bound their contributions for each tolerance-class separately.

We need the following geometric argument to convert statements involving the
link v into statements about links within the length-class S. In particular, we bound
the affectance involving v by affectances involving its “guard” u, the link in S closest
to v. To this end, we first lower bound the distance between the receiver of v to any
sender in S by the distance between that sender and the receiver of u.

Proposition 3.5. Let v be a link. Let S be a 2-independent length-class and let
u be the link in S with duv minimum. Then, dwv ≥ dwu/6, for any link w in S.

Proof. The reader may find Figure 3 helpful when reading this proof. Consider
a link w in S. Let D := dwv and note that by choice of u, duv ≤ D. By the triangle
inequality and the choice of u,

(3.9) dwu ≤ dwv + duv + duu ≤ 2D + duu .



The Power of Oblivious Wireless Power 11

      
          

dwv

rv

rw

su

sv

sw

ru

dwu

duw

duv

Fig. 3. Links u, v and w as used in the proof of Proposition 3.5. The distances dwv and dwu

that are related to each other as stated in the proposition’s statement are represented by red dotted
lines. The gray dashed lines mark the distances duw and duv that are used in the proofs as well.

Similarly,

(3.10) duw ≤ duv + dwv + dww ≤ 2D + dww .

Now we recall the definition of 2-independence, apply it to u and w and bound dwu
and dwv by Bounds (3.9) and (3.10) to obtain

(3.11) 4duudww ≤ dwu · duw ≤ (2D + duu) · (2D + dww) .

This implies that D must be at least min(duu, dww)/2, as otherwise Bound (3.11) leads
to a contradiction. Thus, since the links are nearly-equilength, D ≥ max(duu, dww)/4.
Combined with Bound (3.9), we obtain that dwu ≤ 6D.

The following Proposition serves a similar purpose as Proposition 3.5, treating
senders instead of receivers and vice versa.

Proposition 3.6. Let S be a 2-independent length-class and v be a link not
necessarily in S. Let u be the link in S with dvu minimum. Then, dvw ≥ dwu/6, for
any link w in S.

Proof. The proof is nearly the same as for Proposition 3.5 and is given for com-
pleteness in Appendix A.

This leads to the second key lemma of this section. It shows that the symmetric
affectance of a link relative to a length-class is small when the link is much shorter than
the links in the class. We use this lemma for the theorem in the following subsection,
but use it also to derive a sibling lemma that is used later in this subsection.

Lemma 3.7. Let q ≥ 1 be a real value and let v be a link. Let S be a 2-independent
and Pp-feasible tolerance-class with links of minimum length at least qp̂/α ·dvv. Then,

bpv(S) = O(1/q) + max
w,w′∈S

bpv ({w,w′}) .

Proof. We prove this in three steps. We show that for a set S′ of all but two links
in S it holds that (i) apS′(v) = O(1/q) and (ii) apv(S′) = O(1/q). From this we derive
the statement of the Lemma in Step (iii).

The intuitive idea is to identify a “guard” for the link v, which is the link in
S “closest” to v. We then bound the affectance involving v in terms of that of the
guard. By using the triangle inequality (in the form of Propositions 3.5 and 3.6),
we argue that the interference on v is not much more than that experienced by the
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guard, which by definition is small, since S is feasible. Also, since v is much shorter
than the guard – by a factor of at least qp̂/α – the affectance involving v is at least q
times smaller than that of the guard. When considering affectance to v, the guard is
chosen as the link whose sender is closest to v’s receiver, while for affectance from v,
it is the one with receiver closest to v’s sender.

Step (i): Consider the link u in S with duv minimum. Since dvv ≤ duu, it holds
that cv ≤ cu. We bound apw(v), for each w ∈ S, as follows, where the numbered
transformations/bounds are explained by:

1. Def. 2.3 of affectance.
2. Choice of u and Proposition 3.5.
3. Def. 2.3 of affectance, and that since S is Pp-feasible, thresholding does not

take place.
4. Choice of p̂ = 1

min(1−p,p) and q ≥ 1.

apw(v)
1.
≤ cv

(
d1−p
vv dpww
dwv

)α 2.
≤ cu

(
(duu/qp̂/α)1−pdpww

dwu/6

)α
= 6α

qp̂·(1−p)
· cu

(
d1−p
uu dpww
dwu

)α
3.= 6α

qp̂·(1−p)
apw(u)

4.
≤ 6α

q
apw(u) ,

For any subset S′ ⊆ S \ {u}, this extends to

(3.12) apS′(v) ≤ 6α

q
apS′(u) = O(1/q) ,

using that S′ is feasible such that apS′(u) ≤ 1.
Step (ii): Consider the link u′ in S with dvu′ minimum. Then, for each w ∈ S,

apv(w) ≤ cw
(
dpvvd

1−p
ww

dvw

)α
≤ cw

(
(dww/qp̂/α)pd1−p

ww

dwu′/6

)α
,

using Proposition 3.6 and the bound assumed on the lengths of links in S (and thus
of w) relative to v. Since u′ and w are in the same tolerance-class, we bound this by

apv(w) ≤ 2cu′
(

(dww/qp̂/α)p(2du′u′)1−p

dwu′/6

)α
= 21+α·(1−p) · 6α

qp̂·p
· apw(u′) ,

using that apw(u′) < 1. Using that q ≥ 1 and that p̂ · p ≥ 1, we get that apv(w) ≤
1
q2 · 12α · apw(u′). Thus, for any subset S′ ⊆ S \ {u′},

(3.13) apv (S′) ≤ 2 · 12α

q
apS′ (u

′) = O(1/q) ,

since S′ is feasible such that apS′(u′) ≤ 1.
Step (iii): Combining Bounds (3.12) and (3.13) yields

bpv(S)− bpv({u, u′}) = apS\{u,u′}(v) + apv(S \ {u, u′}) = O(1/q) .

Note that we do not require that u 6= u′. The theorem follows.
For links in a convergent metric, we can replace the assumption of Pp-feasibility

of the preceding lemma with a strengthened independence condition. This is the only
place where we use the assumption of a convergent metric.

Proposition 3.8. Let v be a link and S be a tolerance-class of links in a conver-
gent metric M. Let p > 0, q ≥ 1 be a real value, and k ≥ (cM · cmax(S))1/α2p+1 + 4.
If S is k-independent, then it is Pp-feasible.
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Proof. Let u and w be links in S and let d(u,w) denote the distance between the
nearest nodes on the two links: d(u,w) = min(duw, dwu, d(su, sw), d(ru, rw)). Let x
be the link in S of largest length, and note that since S is a tolerance-class, dxx ≤
2 max(duu, dww). By triangle inequality, d(u,w) ≥ duw − duu − dww ≥ duw − 2dxx,
and similarly d(u,w) ≥ dwu − 2dxx. Thus by k-independence,

(d(u,w) + 2dxx)2 ≥ duwdwu ≥ k2duudww ≥
(
k

2dxx
)2

.

Thus,

(3.14) d(u,w) ≥ (k/2− 2)dxx .

Consider a link a in S. Let X be the set of nodes consisting of the receiver of a
and the senders of the other links in S. By the k-independence of S and Bound (3.14),
we have that X is a (k/2 − 2)dxx-packing (see Def. 2.10). Thus,

∑
u∈S\{a} 1/dαua ≤

cM · ((k/2− 2)dxx)−α, and hence,∑
u∈S\{a}

dαxx
dαua
≤ cM

(k/2− 2)α ≤
1

cmax(S) · 2pα .

Then, using that daa ≤ dxx and that Φu ≤ 2pαΦa under Pp (since S is a length-class),

apS(a) ≤ ca
∑

u∈S\{a}

Φudαaa
Φadαua

≤ 2pαca
∑

u∈S\{a}

dαxx
dαua
≤ ca
cmax(S) ≤ 1 .

Hence, S is Pp-feasible.
The next main lemma follows immediately from Lemma 3.7 and Proposition 3.8.

Lemma 3.9. Let q ≥ 1 be a real value, v be a link, and S be a tolerance-
class with links of length at least qp̂/α · dvv in a convergent metric M. Let k ≥
(cM · cmax(S))1/α2p+1 + 4. If S is k-independent, then,

bpv(S) = O(1/q) + max
w,w′∈S

bpv ({w,w′}) .

We are now ready to prove the first core result, Theorem 3.2.
Theorem 3.2: For every set L of non-weak links in a convergent metric, 0 <

p < 1, and power assignment Q, it holds that IpQ(L) = O(log log ∆(L)).
Proof. Consider a link v ∈ L and a Q-feasible subset S ⊆ L \ {v}. We first

argue that b̂pv(S) = bpv(S) and then show that bpv(S) = O(log log ∆(L)), from which
the theorem follows.

By the definition of b̂, we can assume, without loss of generality, that all links in
S are of length at least dvv, since b̂ is defined in such a way that all shorter links do
not contribute to its value. With this assumption, b̂pv(S) = bpv(S).

We use the independence-strengthening Lemma 2.12 with q = max(3β1/α, (cM ·
cmax(S))1/α2p+1+4) to partition S into q-independent sets. The number of sets in the
partition is t = O(max(β/cmin(S), cmax(S)/cmin(S)) = O(1), since S contains only
non-weak links. Let S′ be one of these sets, and note that it satisfies the independence
conditions of both Lemma 3.4 and 3.9.

Let D := τ := log ∆(L) be the number of tolerance-classes of L (recalling that
the links are non-weak) and Λ := (2(2τ)1/α)p̂. We say that a link w in S′ is short if
dvv ≤ dww < Λ · dvv and long if dww ≥ Λ · dvv. We partition S′ into three sets:
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S1: Long links w with bpv(w) ≥ 1/τ ,
S2: Long links w with bpv(w) < 1/τ , and
S3: Short links.

We bound the symmetric affectance bpv(Si) of each set Si separately.
The set S1 satisfies the hypothesis of Lemma 3.4 (as the set Q) when using the

link v and threshold τ . This implies that |S1| = O(log log ∆(S1)). Thus, by the
Def. 2.4 of symmetric affectance,

bpv(S1) ≤ 2|S1| = O(log log ∆(S1)) = O(log log ∆(L)) .

Next, consider S2 and partition it into tolerance-classes X1, X2, . . . , XD. Each
such class Xi satisfies the hypothesis of Lemma 3.9 with the choice of q = 2τ ≥ 1.
Since bpv(w) < 1/τ , for each w ∈ Xi, by assumption, Lemma 3.9 yields bpv(Xi) =
O(1/q) + maxw,w′∈S2 b

p
v({w,w′}) = O(1/τ) for any Xi. Then,

bpv(S2) =
D∑
i=1

bv(Xi) ≤ D · O(1/τ) = O(1) .

The set S3 can be partitioned into log Λ length classes Y1, . . . , Ylog Λ. For each
such length-class Yi, we apply Lemma 3.9 with q = 1, which yields that bpv(Yi) =
O(1/q) + maxw,w′∈S2 bv({w,w′}) = O(1). In total, we obtain that bpv(S3) = logD ·
O(1) = O(log log ∆(L)). Thus,

bpv(S′) = bpv(S1) + bpv(S2) + bpv(S3) = O(log log ∆(L)) ,

and, as we can do this for each of the t different q-independent sets S′ that make up
S, we obtain

bpv(S) ≤ t · bpv(S′) = O(log log ∆(L)) .

Finally, we give trade-offs in terms of the weakness of the links.
Corollary 3.10. For every set L of links in a convergent metric, 0 < p < 1,

and power assignment Q, IpQ(L) = O(log log ∆(L) + log(cmax(L)/β)).
Proof. Let v be a link and S be a feasible subset of L in a convergent metric M.

Partition S into the non-weak links Snw and the weak links Sw, and further partition
Sw into dlog(cmax/β)e tolerance classes of weak links. We show below that for each
such tolerance class X, bpv(X) = O(1). Hence, bpv(Sw) = O(1) · dlog(cmax/β)e, and
bpv(S) = O(log log ∆ + log(cmax/β)), by Thm. 3.2. Since this holds for any link and
any feasible sets of L, the corollary follows.

It remains to show that bpv(X) = O(1), for a feasible tolerance-class X of weak
links. Since it is a tolerance class, cmax(X) ≤ 2cmin(X). Let k ≥ (cM·cmax(X))1/α2p+1+
4, and note that kα = O(cmax(X)) = O(cmin(X)). By Lemma 2.12, X can be parti-
tioned into d2(k/cmin(X))αe = O(1) sets Rj , j = 1, 2, . . ., each k-independent. We ap-
ply Lemma 3.9 on each set Rj , obtaining that bpv(Rj)) = O(1), and thus bpv(X) = O(1).

Remark: Metrics The assumption of a convergent metric is necessary. Namely, a
set L of equilength links in a tree metric was constructed in [29] (slightly simplified in
[34]) for which IpQ(L) = Ω(logn) (for some power assignment Q and any p ∈ (0, 1)).
It follows therefore more generally that no bounds in terms of ∆ alone can hold in
general metrics.
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Remark: Power assignments The fact that all Pp power assignments, p ∈ (0, 1),
seem to result in equivalent approximation factors begs the question whether there
is any advantage of using one over another. One characteristic is that the value of
p̂ grows as p gets closer and closer to either 0 or 1, and the resulting performance
guarantees grow about linearly in p̂. On the other hand, both ends of the spectrum
have their advantages. Being close to uniform power can be highly useful when the
range of power control is limited. Linear power, on the other hand, has the advantage
of being energy efficient, requiring only about as much energy as needed to transmit;
thus, being close to linear power transfers some of those benefits.

The theorem also shows that capacity under these different power assignments is
comparable within doubly logarithmic factors. This may very well be best possible,
but that is not known. What is known is that for each oblivious power assignment Φ,
there is another oblivious power that allows for Ω(log log ∆) larger capacity [26].

3.2. Constant-Inductive Independence under Fixed Oblivious Power
Assignments (Proof of Theorem 3.3). The following crucial lemma shows that
the total affectance of a link v on the longer links in L is constant. Together with
a previous result on the affectance from the longer links on v, this implies constant-
inductive independence.

The proof treats a worst-case instance, i.e., a set S and link v for which the
inductive independence bpv(S) is maximized (for a given n). We split S into two sets
S1 and S2, where S1 contains “shorter” links, those that are at most a certain factor
U longer than v, while S2 contains the remaining longer links. The set S1 of shorter
links contains few length classes, so the affectance to them can easily be bounded using
Lemma 3.7. To handle S2, we scale v to a longer link u that is still shorter than all the
links in S2, and bound u’s affectance on S2 by v’s affectance on S (by the worst-case
assumption). The latter (v’s affectance on S2) must, however, be considerably less
than the former (u’s affectance on S2), since shorter links use less power (p > 0) and
cause correspondingly less affectance.

Lemma 3.11. Let 0 < p ≤ 1, S be a Pp-feasible set of non-weak links, and v be
a link (not necessarily in S). Then, âpv(S) = O(1).

Proof. Let L be the set of all possible non-weak links and let Ln be the family of
all Pp-feasible subsets of L with at most n links. Define the function g : N → R+ to
be the “optimum upper bound” on âp, that is, g(n) := supS∈Ln supv∈L â

p
v(S). Such

a function exists, as it is trivially upper bounded by n.
Let c1 be the implicit constant in Lemma 3.7 (with q = 1) such that for any

2-independent Pp-feasible tolerance-class X, it holds that bpv(X) ≤ c1. Define c2 =
4 max(c1d 1

pαed
2α+1

β e, 3
α). We shall show that g(n) ≤ c2, for all n, which implies the

lemma.
Let n be a number. Let v ∈ L and S ∈ Ln be a link and a Pp-feasible set of at

most n non-weak links, respectively, for which âpv(S) = g(n). By Def. 2.5 of âp, we
may assume without loss of generality that each link in S is at least as long as v.

Let U = 21/(pα). Split S into sets S1 and S2 of shorter and longer links, where
S1 := {w|dww ≤ U · dvv} and S2 := S \ S1. Partition S1 into dlgUe = d 1

pαe length-

classes and further partition each such class into at most
⌈

2α+1

β

⌉
sets that are 2-

independent, using Lemma 2.12. For each such 2-independent length-class X, we
invoke Lemma 3.7 (with q = 1) to obtain that apv(X) ≤ bpv(X) ≤ c1. Thus,

(3.15) âpv(S1) = apv(S1) ≤ c1
⌈

1
pα

⌉
·
⌈

2α+1

β

⌉
≤ 1

4c2 .
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Consider next set S2 of links longer than U · dvv. Let `W be the threshold for the
length of weak links, i.e., a link is weak if and only if its length is greater than `W .
If U · dvv > `W , then S2 is empty, since S consists of only non-weak links, so we are
done. Assume, therefore, in the remainder that U · dvv ≤ `W . Form a new non-weak
link u = (su, ru) with su = sv and ru chosen arbitrarily so that duu = U · dvv. The
power assigned to u satisfies Φu = UpαΦv = 2 ·Φv. Since S2 contains only long links,
duu ≤ U · dvv ≤ dww, for every w ∈ S2, and thus apu(S2) = âpu(S2).

Partition S2 into S′2 = {w ∈ S2 : apu(w) = 1}, the links that u affects heavily, and
S′′2 = S2 \ S′2, the rest. For w ∈ S′2, thresholding of affectance takes place, so

1 = apu(w) ≤ cw
Φu · dαww
dαuw · Φw

= cw
dpαuud

(1−p)α
ww

dαuw
,

that is, duw ≤ c1/αw dpuud
1−p
ww . Thus, using the triangle inequality, we have that for any

pair x, y in S′2 with dxx ≤ dyy (and thus cx ≤ cy),

dxy ≤ dux + dxx + duy ≤ c1/αx dpuud
1−p
xx + dxx + c1/αx dpuud

1−p
yy ≤ 3c1/αy dpxxd

1−p
yy .

Hence,

apx(y) = min
(

1, cy
Φxdαyy
Φydαxy

)
= min

(
1, cy

dpαxxd
(1−p)α
yy

dαxy

)
≥ 1

3α .

Thus, S′2 contains at most 3α links, so

(3.16) âpv(S′2) = apv(S′2) ≤ 3α ≤ c2/4 .

For links in S′′2 , affectances scale linearly with transmission power (at least up to
Φu, since apu(w) < 1, for each link w ∈ S′′2 ). This is the key to proof of the Lemma,
and the reason why it does not extend to uniform power. Thus,

(3.17) âpv(S′′2 ) = apv(S′′2 ) = Φv
Φu
· apu(S′′2 ) = 1

2 â
p
u(S′′2 ) ≤ 1

2g(n) .

Then, by the definition of S and Bounds (3.15), (3.16) and (3.17),

g(n) = âpv(S) = âpv(S1) + âpv(S′2) + âpv(S′′2 ) ≤ 1
4c2 + 1

4c2 + 1
2g(n) .

Thus, 1
2g(n) ≤ 1

2c2, or g(n) ≤ c2, as desired.
We can now complete the proof of Theorem 3.3.
Theorem 3.3: Every set L of links is O(1)-inductive independent under Pp, i.e.,

Ipp (L) = O(1), where 0 < p ≤ 1.
Proof. Let v ∈ L be a link and S ⊆ L be a Pp-feasible subset of links. Lemma

7 of [45] states that âpS(v) = O(1), while our Lemma 3.11 shows that âpv(S) = O(1).
Plugging this into the Def. 2.5 of b̂p, we get that b̂pv(S) = âpv(S)+ âpS(v) = O(1). Since
this holds for an arbitrary combination of a link v and subset S, we conclude that
Ipp (L) = O(1), by Def. 3.1 of Ipp .

We note that the assumption of L consisting of non-weak links is necessary when
there is a fixed upper bound Φmax on maximum power. Indeed, without this assump-
tion, it can be shown that there exists a set L for which Ipp (L) = Ω(logn). Namely,
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when dealing with weak links, all the links are operating at near full power, result-
ing in approximately uniform power assignment. A bijective transformation is given
in [34] from arbitrary link sets to sets of weak links that preserves feasibility under
uniform power. A logarithmic lower bound on inductive independence under uniform
power is given in [32].

We can treat instances that include weak links by handling each of the dlog(cmax/β)e
tolerance classes separately using Lemma 3.7 (in the same way as in Corollary 3.10).
Combined with Thm. 3.3 for the non-weak links, we obtain the following trade-off,
which matches the construction in [32].

Corollary 3.12. Every set L of links satisfies Ipp (L) = O(1 + log(cmax(L)/β)),
where 0 < p ≤ 1.

4. Application: Capacity Approximation. Using the characterization de-
scribed above, we can derive a simple single-pass algorithm (Algorithm 1) for max-
imizing capacity. It is, in fact, identical to Algorithm C of [29] that gives constant
approximation for fixed power capacity. We show that it also yields asymptotically
best possible approximation when measured against arbitrary power optima.

Theorem 4.1. Let 0 < p < 1. Algorithm 1 is an O(log log ∆)-approximation
algorithm for Capacity in convergent metrics (that uses Pp), even in the presence of
weak links.

To be more specific, it is a type of a greedy algorithm that falls under the notion
of “fixed priority”, as defined by Borodin et al. [8]. Namely, the algorithm uses an
initial fixed ordering of the input, and for each item decides irrevocably whether to
include that item or not in the solution. Recall the d-approximation algorithm to
compute a maximum independent set described in the introduction. It added vertices
to the solution set in sequence, where vertices with edges to the solution so far were
disqualified. Our algorithm below is its natural weighted variant: each vertex is
assigned an affectance-budget of 1/2, and is disqualified from being in the solution if
the weight (affectance) of the edges to it from the solution so far exceeds the budget
(Lines 4 and 5). We ensure that the final set of links is indeed Pp-feasible in Line 8.

Algorithm 1 Input: Set L = {1, 2, . . . , n} of links in non-decreasing order of length,
parameter p ∈ (0, 1). Output: Pp-feasible subset X ⊆ L

1: R0 ← ∅
2: for i = 1 to n do
3: Ri ← Ri−1
4: if b̂pRi−1

(i) < 1/2 then
5: Ri ← Ri ∪ {i}
6: end if
7: end for
8: return X := {v ∈ Rn : apRn(v) ≤ 1}

Theorem 4.2. Given a set L of links, Algorithm 1 finds a Pp-feasible subset
X ⊆ L such that |X| ≥ |S|

2·(2IpQ(L)+1) for every power assignment Q and every Q-
feasible subset S ∈ FQ(L).

The structure of the proof is inspired by that of, e.g., [42].
Proof. Let R := Rn and X be the sets computed by Algorithm 1 on input L. The

proof consists of two parts. In Part I we show that S is at most 2IPQ (L) + 1 times
larger than R, while in Part II we relate the sizes of X and R.
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Part I: Consider a power assignment Q and Q-feasible subset S ⊆ L. Let
S′ := S \ R. By Def. 3.1 of IPQ(L), we know that b̂Pi (S) ≤ IPQ(L), for each i ∈ R.
Thus, since R ⊆ L,

(4.1) b̂PR(S) ≤ IPQ(L) · |R| .

As Algorithm 1 chose none of the links in S′, the acceptance criteria of Line 4
and the definition of b̂P yield that b̂PR(j) ≥ b̂PRj−1

(j) ≥ 1/2, for each j ∈ S′. Summing
over S′,

(4.2) b̂PR(S′) ≥ |S′|/2 .

Combining Bounds (4.1) and (4.2),

|S′| ≤ 2 · b̂PR(S′) ≤ 2 · b̂PR(S) ≤ 2IPQ(L) · |R| .

Thus,

(4.3) |S| = |S′|+ |R| ≤ (2IPQ(L) + 1)|R| .

Part II: We next show that the set R found by Algorithm 1 has small mean
internal affectance. Observe that the sum of in-affectances is bounded by

aPR(R) =
∑
i∈R

∑
j∈R

aPj (i) 1.=
∑
i∈R

∑
j∈R:j<i

(aPj (i) + aPi (j))

2.=
∑
i∈R

∑
j∈R:j<i

b̂Pj (i) 3.=
∑
i∈R

b̂PRi−1
(i)

4.
≤ 1

2 |R| ,

with the numbered transformation explained as follows:
1. By rearrangement. Here j < i refers to the indices of the links as sorted by

Algorithm 1. We also use that by the Def. 2.3 of affectance,
∑
i∈R a

P
i (i) = 0.

2. From the precondition of Algorithm 1, j < i implies that djj ≤ dii. Thus,
b̂Pj (i) = aPj (i) + aPi (j), by the Def. 2.5 of b̂.

3. Since Ri−1 = {j : j ∈ R, j < i} as specified by Algorithm 1.
4. By the acceptance criteria of Line 4 of the algorithm.

This implies that the average in-affectance is 1
|R|a

P
R(R) ≤ 1

2 .
At least half the links in R have at most double the average affectance, or

(4.4) |X| = |{v ∈ R | aPR(v) ≤ 1}| ≥ 1
2 |R| .

Combining Bounds (4.3) and (4.4) yields the statement of the theorem.
Now we are ready to prove Theorem 4.1
Proof. [of Theorem 4.1] Let L be the set of non-weak input links and W be the

set of weak links. By Theorem 4.2, running Algorithm 1 on L with power Pp yields
a solution with capacity at most O(1 + IpQ(L))-factor smaller than the optimum for
Capacity. By Theorem 3.2 this amounts to a O(log log ∆) factor.

On the set W of weak links, we apply the constant-factor approximation algorithm
of [29] for uniform power capacity (setting all powers to the maximum power Φmax).
We claim that our solution on W is within a constant factor of the size of OPTW ,
the optimal solution on W . Observe that links in OPTW must use power that is
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a constant fraction of Φmax, since the links are weak and would otherwise not be
feasible. More precisely, one can work out that the power is at least 1/c-fraction
of Φmax, where c = 21/(1−p)−1. By raising the power on all the links up to Φmax,
we increase the affectance by at most a factor of c. By signal strengthening [5], the
optimal uniform capacity is then at least |OPTW |/(2c), and thus the claim.

We finally output the larger of the solutions on L and on W . The theorem
follows.

5. Further Applications. Both of our structural results have a number of fur-
ther applications, improving the approximation ratio for many fundamental and im-
portant problems in wireless algorithms. All our improvements come from noticing
that many existing approximation algorithms have bounds that are implicitly based
on IpQ(L) or Ipp (L) (or both). Plugging in our improved bounds for these interference
measures thus gives the (poly)-logarithmic improvements for a variety of applications.

5.1. Connectivity. Wireless connectivity — the problem of efficiently connect-
ing a set of wireless nodes in an interference aware manner — is one of the central
problems in wireless network research [31]. Such a structure may underlie a multi-hop
wireless network, or provide the underlying backbone for synchronized operation of
an ad-hoc network. In a wireless sensor network, the structure can function as an
information aggregation mechanism.

Recent results have shown that any set of wireless nodes can be strongly connected
in O(log(n) ·Υ) slots using mean power in both centralized [31] and distributed [30]
algorithms, where Υ = Υ(∆, n) is the maximum ratio, over all instances of n links with
length ratio ∆, between the optimal capacity with arbitrary power and the optimal
capacity with mean power. More precisely, if T is the minimum spanning tree of a
set of points in the Euclidean plane, and T contains no weak links, then it can be
scheduled in O(Υ logn) slots. Theorem 4.1 implies a tight bound on Υ.

Theorem 5.1. Suppose there is no upper bound on transmission power, or that
all nodes are within single hop communication distance. Then, any set of nodes in a
convergent metric can be strongly connected in O(log(n) · log log ∆) slots using power
assignment Pp, where 0 < p < 1. This can be computed by either a poly-time central-
ized algorithm or an O(poly(logn) · log ∆)-time distributed algorithm.

Results for variations of connectivity such as minimum-latency aggregation schedul-
ing and applications of connectivity such as maximizing the aggregation rate in a
sensor network benefit from similar improvements. We refer the reader to [31] for a
discussion of these problems and their applications.

5.2. Spectrum Sharing Auctions. In light of recent regulatory changes by the
Federal Communications Commission (FCC) opening up the possibility of dynamic
white space networks (see, for example, [4]), the problem of dynamic allocation of
channels to bidders (these are the wireless devices) via an auction has attracted much
attention [58, 59].

The combinatorial auction problem in the SINR model is as follows: Given k
identical channels and n users (links), with each user having a valuation for each of
the 2k possible subsets of channels, find an allocation of the users to channels so that
each channel is assigned a feasible set (w.r.t. given restriction of the power control)
and the social welfare is maximized.

For the SINR model, recent work [37, 36] has established a number of results
depending on different valuation functions. Since these results are based on the in-
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ductive independence number, Theorem 3.3 improves virtually all of them by a logn
factor as we argue below. For instance, an algorithm was given in [37] for general
valuations that achieves an O(

√
k logn · Ipp (L)) = O(

√
k log2 n)-approximation. We

achieve an improved result by simply plugging in Theorem 3.3.
Corollary 5.2. Consider the combinatorial auction problem in the SINR set-

ting, for any fixed power assignment Pp with 0 < p ≤ 1. There exist algorithms
that achieve an O(

√
k logn)-factor for general valuations [37], a O(log(n) + log k)-

approximation for symmetric valuations and an O(logn)-approximation for Rank-
matroid valuations [36].

5.3. Dynamic Packet Scheduling. Dynamic packet scheduling to achieve net-
work stability is one of the fundamental problems in (wireless) network queuing theory
[54]. In spite of its long history, this fundamental problem has been considered only
recently in the SINR model (see [3, 44, 47]). The problem calls for an algorithm
that can keep queue sizes bounded in a wireless network under stochastic arrivals of
packets at transmitters. A measure called efficiency captures the worst-case fraction
of the optimal throughput a given algorithm achieves. We refer the reader to the
aforementioned papers for exact definitions and motivations related to this problem.

The state-of-the-art results for this problem (for performance guarantees in terms
of the parameter n) have been achieved recently and simultaneously in [3] and [44].
In spite of differences in the algorithms and assumptions made, both are based on the
scheduling algorithm of [45] and achieve a similar result.

To prove this result, we introduce another complexity measure.
Definition 5.3 ([45], Def. 1). The maximum average affectance Ap(L) of a link

set L is Ap(L) := maxS⊆L
ap
S

(S)
|S| .

Let χQ(L) be the minimum number of slots in a Q-feasible schedule of L and let
χ(L) denote the minimum number of slots in a P-feasible schedule of L.

Lemma 5.4. Let L be a set of links and P,Q be power assignments for L. Then,

AP(L) ≤ IPQ(L) · χQ(L) .

Proof. Let S be a set that maximizes AP(L), i.e., AP(L) = aPS (S)
|S| . Let v be a

link in L and let S′ = S \ {v}. Then, by the assumption about S,

AP(L) ≥ aPS′(S′)
|S′|

= aPS (S)− bPv (S)
|S| − 1 = |S|A

P(L)− bPv (S)
|S| − 1 .

Rearranging, we obtain that bPv (S) ≥ AP(L). In particular, this holds for the shortest
link w in S, and so by the definition of length-ordered affectance and its additivity,

(5.1) AP(L) = bPw(S) ≤ b̂Pw(S) ≤ b̂Pw(L) .

Let I1, I2, . . . , It be a partition of L into Q-feasible sets, where t = χQ(L). Then,
using the additivity of affectance and the definition of the interference measure, we
get that

max
v∈L

b̂Pv (L) = max
v∈L

t∑
i=1

b̂Pv (Ii) ≤
t∑
i=1

max
v∈L

b̂Pv (Ii) ≤
t∑
i=1

IPQ(L) = t · IPQ(L) .

Combining this with (5.1) yields the lemma.
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Our structural theorems imply the following bounds on the maximum average
affectance.

Corollary 5.5. For any set of links L and power assignment Pp with 0 < p < 1,
Ap(L) = O(χ(L) · log log ∆) (in convergent metrics) and Ap(L) = O(χp(L)) (in
general metrics).

The result in [3, 44] can be succinctly expressed as follows.
Theorem 5.6. [3, 44] There exists a distributed algorithm that for any link set

L achieves Ω
(

(1 + φ(L))−1 · 1
logn

)
-efficiency.

Since the best bound on φ(L) known was O(logn) [45], both papers claimed
Ω( 1

log2 n
)-efficiency. Results in this paper show that φ(L) = O(1) for non-weak links

(see second part of Corollary 5.5), which gives the following improved result:
Corollary 5.7. There exists a distributed algorithm that achieves Ω

(
1

logn

)
-

efficiency for any power assignment Pp (0 < p ≤ 1) and set L of non-weak links.
Since Corollary 5.5 also shows that φ(L) = Ap(L)

χ(L)
= O(log log ∆(L)), we also get

the following improved bound for power control:
Corollary 5.8. There is a distributed algorithm for non-weak links in a conver-

gent metric with efficiency Ω
(

1
log(n)·log log ∆(L)

)
, with respect to power control optima.

Appendix A. Missing Proof from Section 3.
Proposition 3.6 Let S be a 2-independent length-class and v be a link not nec-

essarily in S. Let u be the link in S with dvu minimum. Then, dvw ≥ dwu/6, for any
link w in S.

Proof. The reader might find Figure 4 helpful while reading the proof. Consider
a link w ∈ S. Let D := dvw and note that by the choice of u we have that dvu ≤ D.
By the triangle inequality and the choice of u,

duw ≤ duu + dvu + dvw ≤ 2D + duu .(A.1)

Similarly,

(A.2) dwu ≤ dww + dvw + dvu ≤ 2D + dww .

Now we recall the Def. 1.1 of 2-independence and apply it to u and w. Next we bound
dwu and duw by Bounds (A.2) and (A.1) to obtain that

4duudww ≤ duw · dwu ≤ (2D + duu) · (2D + dww) .

We know that duudww > 0, therefore (2D+duu) and (2D+dww) must be either both
> 0 or both < 0. This implies that D must be at least min(duu, dww)/2, which in
turn is at least max(duu, dww)/4, since the links are nearly-equilength. Thus we can
bound dww ≤ 4D in Bound (A.2) to obtain that dwu ≤ 6D.
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