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Abstract

We consider graph coloring problems where the cost
of a coloring is the sum of the costs of the colors, and
the cost of a color is a monotone concave function of
the total weight of the class. This models resource
allocation problems where the cost of a resource depends
on the use of the resource. The specific case of interval
graphs is of special interest as multi-criteria interval
scheduling. We give an algorithm for all perfect graphs
that yields a robust coloring: a particular solution
that simultaneously approximates all concave functions.
For graphs with uniform weights, we show how to
modify the solution to approximate any monotone cost
function. We complement these results with a number of
hardness results and some exact algorithms on restricted
classes of graphs.

1 Introduction

In interval scheduling, jobs are given with fixed start
and finish times, and the problem is to find a schedule of
all the jobs that is of minimum cost. The standard cost
function is the number of machines needed to process
the jobs, where a given machine can be assigned a
collection of disjoint intervals. This corresponds to
minimizing the number of colors in a proper coloring of
the corresponding interval graph. While the chromatic
number is arguably the most important parameter of a
coloring, it cannot possibly capture all practical cost
accounting situations. The goal of this paper is to
initiate the study of colorings where the cost of a color
is a monotone function of the sum of the vertex weights.

Interval scheduling is a form of resource allocation
problem, in which the machines are the resource. As
argued by Kolen et al. [?], operations management has
undergone a “transition in the last decennia from re-
source oriented logistics (where the availability of re-
sources dictated the planning and completion of jobs)
to demand oriented logistics (where the jobs and their
completion are more or less fixed and the appropriate re-
sources must be found).” The transition is caused both
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by increased competition and greater client-oriented fo-
cus, as well current logistics developments where pro-
duction is organized by supply chains. They suggest
that this implies a move from traditional scheduling to
interval scheduling. The need to marshal resources to
service exogenous requests also suggest a need to allow
for varying cost functions.

We consider here coloring problems, where the cost
of a color class is a function of its weight and the
cost of a coloring is a sum of the costs of the color
classes. When given an interval graph, this corresponds
to an interval schedule where the cost of a resource is
a function of the total weights of jobs assigned to that
resource. We are interested in concave cost functions:
the more we use a resource, the less each use of it
costs. This corresponds to the economic principle of
volume discounts. A common weaker assumption is for
a function to be sub-additive, which is when the cost
of a whole is never more than the sum of its parts; i.e.,
breaking a set into pieces will not make it cheaper. This
correspond to purchasing in chunks, i.e. “cheaper by the
dozen”.

Cost coloring applies to many of the innumerable
practical applications of graph coloring. For instance,
the cost of a classroom in a timetabling application is
not really a unit; different classrooms may have different
costs, depending on size and on the amount of use. The
cost of a frequency in frequency allocation may depend
on time- or space-limitations of the usage. The cost of
fulfilling server requests, e.g., for bandwidth allocation
in networks, may depend on the willingness to deploy
servers, outsource some of the traffic (at a volume-
dependent cost), or to pay the indirect cost of refusing
service.

Our results Our main result is algorithm that
finds an interval schedule that approximates any con-
cave cost function within a factor of 4. More generally,
we obtain a constant factor for all perfect graphs un-
der any sub-additive cost function. We actually get a
simultaneous approximation: the algorithm is oblivious
of the cost function, and approximates all sub-additive
cost functions simultaneously. For graphs with uniform
weights, we can modify the colorings (in a function-
specific way, necessarily) to approximate any monotone
cost function. We complement these results with a num-



ber of hardness results and exact algorithms on special
classes of graphs.

Some specific cost functions In a companion
paper [?], we consider a few specific cost coloring
problems. In each case, the cost of a coloring C' is a
sum of the costs of the individual colors: Cost(C) =
e J(D).

One is “rent-or-buy” coloring (RBC), where f(I) =
min(1,w(I)), which models the simplest case of either
buying a machine, or renting one at fixed price per
job. An extension would be to form a piecewise linear
function. If the slopes of the lines are decreasing,
the combined function is concave. The case of two
linear functions (TTR) was solved optimally on interval
graphs in [?] and a 2-approximation given for perfect
graphs.

Threshold colorings correspond to the case of a
discrete set of rates, depending on the size of the color

class. E.g., we can either rent a taxi, a minivan,
or a bus. Namely, we have a set of thresholds 0 =
X1,%2,...,x4 = 00, such that f(z) = f(2’) whenever

x; < x < 2’ < wiy1, for some 7. This results in
a non-concave function (within each rate bracket, the
price-per-item is decreasing), but can be sub-additive
if f(zit1) < f(x;) - [wig1/x;], for each i. A special
case of the single-threshold case is when the above-
threshold cost is too high to be ever cost-effective,
e.g. n-fold the below-threshold cost. We have then
the bounded-coloring problem, which models the case
of scheduling conflicting unit-size jobs with bounded
number of machines. It is NP-hard on bipartite and
interval graphs [?]. The case of a single threshold is
approximated within a factor of 4.78 on 3.7 on perfect
graphs [?].

The information-theoretic measure of a graph color-
ing known as chromatic entropy was introduced by Alon
and Orlitsky [?] in 1986. This relates to the minimum
achievable rate for (zero-error) coding with side infor-
mation, where a random variable X must be transmit-
ted to a receiver that already has some partial informa-
tion about X. Such entropy colorings also have applica-
tion to compression of digital image partitions created
by segmentation algorithms [?]. In our notation above,
this measure is fpn:(C) = > ;ccw(l) In(1/w(1)). It is
assumed that w(G) = 1. Observe that this is a strictly
concave function, but not monotone. Cardinal, Fiorini
and Joret [?] gave a number of results for Entropy color-
ing, including NP-hardness on weighted interval graphs.

Related work Gijswijt, Jost and Queyranne [?]
recently introduced a general framework for cost col-
oring problems that they call value-polymatroidal, that
includes all concave separable cost functions. It con-
tains monotone problems where moving vertices from a

smaller class to a bigger class does not increase the total
cost, i.e., when f(IU{v})+ f(J) < f(I)+ f(JU{v}),
for any independent sets I, J with f(I) < f(J). In
the case of uniform weights, value-polymatroidality co-
incides with concavity, but for non-uniform weights
it allows for some non-separable or non-concave func-
tions. This includes the Probabilistic coloring, as well
as the mazx coloring problem [?, ?], which has the non-
separable, monotone cost function f(I) = max,es w,.
It does not hold for Threshold coloring, or sub-additive
functions. Gijswijt et al [?] give a polynomial time al-
gorithm for any value-polymatroidal cost coloring on
co-interval graphs (complements of interval graphs).

Our approach is heavily based on finding large
induced subgraphs with small chromatic number.
Weighted k-MCS is known to be polynomially solvable
in interval graphs [?, ?] and more generally in compa-
rability and co-comparability graphs [?, ?]. It is also
easily seen to be solvable in bipartite graphs, and par-
tial k-trees. The problem is NP-hard in chordal (and
split graphs), but polynomial for fixed k. A bicriteria
approximation algorithm for perfect graphs was recently
given in [?], which we shall be using.

To deal with uncertainty, researchers have been in-
creasingly turning to robust optimization, where the
solutions are evaluated under a collection of scenarios.
Some directions that focus on the data uncertainty are
stochastic optimization [?] and demand-robustness [?].
The uncertainty can also involve the measure, as the
objective may be poorly characterized. With multiple
measures available, it is preferable to satisfy most or
all of them with a single solution, than to give indi-
vidual solutions for each measure. An example of such
robust approximations are 2-approximate solutions for
the classical scheduling problem under all norms [?, ?],
and v/2-approximation for weighted partial matchings
of all cardinalities [?]. The work of Goel and Meyerson
[?] is perhaps the most closely related to ours. In partic-
ular, they give a logarithmic approximations for max-
imizing all symmetric concave functions. This corre-
sponds to maximizing profit (or throughput) in resource
allocation, such as bandwidth allocation in networks.
Their scenario is very general and captures throughput
versions of our coloring problems. Additionally, their
technique of majorization is very similar to our main
approach. The approximate minimization of concave
functions has also been applied to facility location [?],
albeit in a function specific way.

Organization of the paper In Section 2, we give
a general schema for approximating cost coloring prob-
lems. We show this to give robust approximations of
all concave, and more generally sub-additive, separa-
ble cost functions. In Section 3, we show how to modify



these colorings to handle more general non-concave cost
functions, in the case of uniform weights. The result-
ing colorings are necessarily function-specific, but hold
for any monotone separable cost function. In Section
4, we give upper and lower bounds on approximability
of cost coloring general graphs. Finally, in Section 5
we give some hardness and limitation results, as well
as algorithms for some specific classes of graphs. All of
these results are given for abstract cost functions with
specified properties.

Note: We shall consider only monotone cost func-
tions in this paper, without explicit indication.

1.1 Notation Let G = (V, E) be a graph given with
vertex weights w,. Let n denote the number of vertices.
For a subset S C V, G[S] denotes the subgraph of G
induced by S. For a set S, let w(S) = ) .gwy, and
let w(G) = w(V).

A coloring is a partition of V into independent
sets. A k-subgraph is an induced k-colorable subgraph.
We may overload the notation and refer to a vertex
subset S C V as a k-subgraph if G[S] is k-colorable.
k-MCS refers to the problem of finding a k-subgraph
of maximum total weight, and Graph Coloring refers
to the classical vertex coloring problem, using the
minimum number x(G) of colors.

For a set S and vertex u, let S + u denote S'U {u}.

A set function f : 2V — R is monotone if f(S+u) >
f(S), for any set U and vertex u; separable, if f(S) =
f(T) whenever w(S) = w(T); and value-polymatroidal,
it f(S+u)—f(S) > f(T+u)— f(T), for any S, T with
f(T) > f(S). A separable set function f is represented
by a function f' : R — R if f(S) = f(w(S)) for any
S; we shall blur the distinction between a separable set
function and its representation. A separable function f
is sub-additive if f(x) = ming <, f(2') - [Z]; concave if
f((z+9)/2) = (f(x) + f(y))/2 for any z,y. Concave
separable functions are also value-polymatroidal; the
converse is not true in general, but holds in the case
of uniform weights.
and

2 Robust Colorings of Concave

Sub-Additive Cost Functions

We consider a general purpose algorithm that can
be applied to a wide variety of cost functions.
Consider the following algorithm.  Let ¢y =
g x(G)].
ACS(G)
Go — G
fori«— 0to fy —1do
Let B; be a maximum weight 2¢-subgraph in G;
Color G[B;] with 2¢ colors
Git1 — Gi\ B;

Color the remaining graph with at most x(G) col-
ors.

Observe that the last iteration of the loop involves
at most 2071 < x(G) — 1 colors, and the total number
of colors used up to that point was one less. Hence,
adding the last x(G) colors used, we have the following.

OBSERVATION 2.1. ACS uses at most 3(x(G) — 1) col-
ors.

THEOREM 2.1. Given a weighted interval graph, ACS
finds a coloring that simultaneously approximates any
concave cost function within a factor of 4.

We shall be needing the following lemma. A much
more general result was originally given by Hardy,
Littlewood and Polya [?] (see [?]).

LEMMA 2.2. Let f be a concave function. Let
TOy L1y - Tty Y05 Y1, Y2, - - -, Yt be non-negative wvalues
satisfying

t t
Zyi < ZI“ for each j =0,1,...,t.
i=j i=j

Furthermore, assume xo > x1 > --- > x;. Then,
t t
S Fw) <> fla).
i=0 i=0

Proof. Proof by contradiction. Assume that we have
a counterexample that is minimal in that none exists
for smaller ¢ or for yg — xg smaller. Then, yo >
xg, as otherwise a counterexample holds for a shorter
sequence. There must be a value ¢ > 0 and index
r€{1,2,...,t} such that

Yo —xo > €, and T, — Y, > €.
Set
yo—e€ ifi=0
yi=1R yr+e ifi=r
Yi otherwise

We have that yo > y{, > ¢ > 2, >y, > y,. Thus, since
f is concave and y{, + y.. = yo + Yr,

Fyo) + () > f(yo) + f(yr)-
Thus,
S Fw) =D f) =D fw).
1=0 1=0 1=0

Then, we have a counterexample with smaller difference
Y4 — o in the first coordinate, which is a contradiction.



Proof of Theorem 2.1: Let f be a concave cost function.
Concavity implies that f(z) < rf(x/r), for any r > 1
and any x.

Let B; be the set of the color classes used in
iteration i of ACS, for ¢ = 0,1,..., /¢y, whose number
|B;| is x (@), for i = £y, and 2¢, otherwise. Let b; be the
total weight of B;, i.e., the sum of the vertex weights.

Consider an optimal coloring of G with respect to
f, and assume without loss of generality that the colors
are numbered 0,1,...,Xopt in order of nonincreasing
cost (and, by monotonicity, by nonincreasing weight).
Let £ = [lg Xopt], and note that £ > ¢y = [lgx(G)].
For i > 1, let A; be the set of the colors numbered
2=l ..2" — 1 in the optimal solution, and let Ay
contain color class 0. Let a; be the weight w(A4;) of
A;, and let |A4;] be the number of color classes in A;.
Since we find a maximum weight b;-subgraph in each
iteration j, we have that

a0+a1+"'+aj§b0+b1+'”+bj’ V.

Thus,
(21) bj +bjpr+---+ b <aj+ajt1+ - +ap V.

Let ACS(B;) be the cost of the solution of the algorithm
on subgraph B;. By concavity, we have

ACS(B;) < |Bilf(bi/|Bil) < 2°- f(bi/2").
0,.

Let t = 2¢ = 2M8Xxeml  For h = .t let
s = sp = [lg(h + 1)], and define yp bs/2% as
representing a lower bound the average size of a color
class ¢ of ACS. Also, let z;, = as/2°. From (2.1), we
have, for each h that is a power of 2, that

(2.2) yn + yns1 + -ty < xp 4 Tpoa + o+ 20

Since it holds for h = 2/ and h = 271, for some f, and
since yor = Yorq1 = *++ = Yos+1_1 and Tor = Tosyg =
-+« = Zos+1_1, Equation (2.2) does hold for all values of

h. Thus, we can apply Lemma 2.2 to bound the cost of
the solution of ACS by

£ t

SO 2 f(b/2) = 3 fn)

=0 h=0

4
> ACS(B) <
=0

14

<) flan) =) 20 flai/2Y).
h=0

=0

The weight of any class in A; is at least that of
any class in A; 1, and thus at least their average size
a;j+1/2". Thus, the cost of the optimal solution is at

least
SN fw(D)

i I€EA;

OPT =

/-1
> flao) + 3 Al (@i /| Aia )
i=1

14
(2.3) = flao)+ Y 272 f(a;/2"7).
=2

By comparing with the bound on ACS, and using that
f(ap) > f(a1), we easily get a ratio of at most 4. U

Using algorithms for k-MCS on comparability
graphs [?] and co-comparability graphs [?], we can ob-
tain the same bounds on robustness for these graph
classes.

If we are willing to forego of polynomial computabil-
ity, our method and analysis extends to all graphs.

COROLLARY 2.1. For any graph, there exists a coloring
that simultaneously approximates every concave cost
Sfunction within a factor of 4.

We can also use the strategy of ACS even in some
cases where the k-MCS problem is NP-hard. We say
that a set S is an (s, t)-approximation to k-MCS if S is
s - k-colorable, and w(V \ S) < t-w(V \ §*), where S*
is a maximum k-MCS. Namely, it gives a subgraph that
requires ¢ times as many colors, and leaves behind up
to s times the weight left by the optimal solution.

We shall use the following recent result.

THEOREM 2.2. ([?]) There is an algorithm that, given
a perfect graph G and integers k and t, yields a (t, 75 )-
approximation to k-MCS.

THEOREM 2.3. Let G be a perfect graph and consider
the application of ACS on G with a bicriteria approzi-
mation for k-MCS. Then, the coloring produced by ACS
simultaneously approximates any concave cost function
within a factor of 6.

Proof. Our argument mimics the proof of Theorem 2.1.

Let f be a concave cost function. We find a (z,t)-

approximation to k-MCS, where z = 3/2 and t = 3.
We now have, in place of (2.1), that

4 14
Shi<t-> a;, §=0,1,...,L
i=j i=j

Also, the number of colors in B;, |B;|, is at most
22% = 3.2'71, By concavity, we bound the ACS solution
by

AN

ACS(B;) < |Bi|f(bi/|Bi]) < 22" f(b;/(22%))

3.2 f(bi/(3-270).



We now apply Lemma 2.2 with z;, = tas/(22°) =
as/2°71 and yp, = bs/(22%) = bs/(3 - 2°71), for h =
0,...,2% and s = s5,[1g(h/3)], to bound the cost of the
solution of ACS by

¢ ¢
D ACS(Bi) < > 3.2 f(bi/(3-271)
=0 i=0

4
< ) 3-271 fla/27).
=0

Then, a comparison with Inequality (2.3) gives a ratio
of 6.

Sub-additive cost functions: Recall that a cost
function f is sub-additive if the cost of a whole is never
more than sum of its parts; i.e., breaking an independent
set into pieces will not be cheaper w.r.t. f. When f is
separable, sub-additivity implies that

H

We say that a function f is p-approzimated by

another function f if, f(z) < f(z) < p- f(z) holds
for all x in the domain of f.

f(z) = min f(z')-

z' <z

LEMMA 2.3. Let f' be a sub-additive separable cost
Junction defined on the positive reals. Then, there is
a concave separable function [ that 2-approximates f'.

Proof. Let f be the concave hull of f', i.e. the tightest
function upper bounding f’/ which forms a concave
polyhedron with the z-axis. We claim that

(2.4) Vr e RT

To see this, let x,, be any point in R with f(a:m) >
f'(zm) and x; and x, be the hull points on either side
of x,,, i.e., the points such that z; < z,, < z, and
f(xm) is on the straight line from f(z;) = f'(x) to
f(xy) = f'(x,). The slope of that line is (f(x,) —
f'(x1))/(zr — 2;). Thus, using that x, — x; > z, — 2y,
f'(x) < f'(xm) < f'(x,) and z,, < ., we have that

; f'(@r) = f'(@1)

flom) = flay+ DTG )
< f’(u)%——fl(xr); f/(xl)a:m
< flam) + @) =S @n) - F@m)

Observe that for a < b < ¢, it holds that [c¢/a] <
[¢/b] - [b/a]. By definition of f’, we can verify that

(@) < f'(@m) - (fyﬂ as follows:

flan) = wrongigrf(wo)' K—; < xggignf(xo)' K_ﬂ
< min f(xo) Q;—T;L H—ﬂ
~ flaw)[Z
Thus,

Flam) < 7)1+ (| 22] <1) 22 <2 7o)

It is easy to see that Lemma 2.3 implies that a p-
robust approximation with respect to concave functions
yields a 2p-robust approximation with respect to sub-
additive functions.

THEOREM 2.4. ACS finds a coloring of weighted inter-
val graphs that simultaneously approximates any sub-
additive cost function f within a factor of 8.

Remark: We cannot expect to do much with arbitrary
(separable) cost functions, in the case of non-uniform
weights. Namely, it is easy to construct functions so
that even if the graph is empty, it is NP-hard to get any
reasonable approximation ratio. Consider for instance
the function

e ifz=1B
flz) = { 1 otherwise.

Then, by setting B = w(G)/3, it is equivalent to 3-
Partition to determine if there is a coloring of cost 3e,
while otherwise any coloring has cost at least 1. Thus,
setting € = 27P(") | for some polynomial p, it is NP-hard
to approximate cost coloring under f within 2°(") factor.
For uniform weights, this problem does not arise, since
there are only n possible weights.

3 Arbitrary Monotone Cost Functions

We can actually handle arbitrary monotone cost
functions in the case of uniform weights.

We say that a coloring C’ refines a coloring C' if
each class in C' is a union of classes in C’.

THEOREM 3.1. Let G be a graph with uniform weights,
and let f be any monotone cost function. Let C' be a
coloring found by ACS on G that is p-approrimate with
respect to any concave cost function. Then, there is a
refinement C' of C that is 2p-approximate with respect

to f.



Proof. Let w be the uniform vertex weight. Given f,
form the cost function f’ defined by
f(z) = min f(xo) - [x/zo].
w<lxo<x

Namely, we form C’ by refining each color class I of C'
into [w(I)/zo] classes of size at most g each, for the
best possible 2o < w(I). Observe that f’ is dominated
by f, or f'(z) < f(z), for all .

By Lemma 2.3, there is a concave function f that 2-

approximates f. Let C'? i (C;p ") be an optimal coloring

with respect to f (f), respectively. We can bound the
cost of our refined coloring by

F(C) < f(O)<FO) <p-f(CF) < p- f(OF)
< 2p- f1(CF) < 2p- F(CF).

COROLLARY 3.1. Let f be a monotone cost function.
In the case of wuniform weights, there is an algo-
rithm that finds colorings with respect to f that are 8-
approzimate on interval graphs and 12-approrimate on
perfect graphs.

A

The refined colorings depend on the actual function
f, rather than being robust in the sense of being
oblivious of f as in the case of sub-additive functions.
This is necessarily so, in that there are no colorings
that are robust for all monotone cost functions, even
in the uniform case. This holds for any class that
includes simple threshold functions. Assuming huge
super-threshold cost, no coloring can both approximate
threshold ¢ and threshold p - ¢ within less than /p.

4 Cost Coloring General Graphs

We give upper and lower bounds for arbitrary cost
coloring problems on general graphs.

There is a standard reduction to the MIS problem.
The following lemma is a slight strengthening of an
argument made numerous times before (see, e.g., [?]).

LEMMA 4.1. Suppose the mazimum independent set
(MIS) problem can be approxzimated within a factor of
p on a hereditary class of graphs. Then, there is a
(plogn, 1)-approxzimation of k-MCS. Further, if p =
nM) | then there is a (O(p),1)-approzimation.

Given the known solvability range of MIS on general
graphs [?], we have the following.

COROLLARY 4.1. Let prg be the best possible approz-
imation ratio of MIS on general graphs. Then, any
concave separable cost coloring problem can be approxi-
mated within a factor of O(prs). In particular, we get
a simultaneous O(n(loglogn)?/log® n) approzimation.

This matches the best approximation factor known
for the ordinary graph coloring problem [?].

We next prove a strong hardness result on general
graphs, that applies to individual cost functions.

CLAM 4.2. Let f be a concave cost function, possibly
dependent on n, the number of vertices. Let € > 0. Let
Z be the positive value for which

f@-nt=c)
f(#)
is minimized. Then, it is NP-hard to obtain an n'~¢/R-

approzimate coloring with respect to f, even in the case
of uniform weights.

R =

Note that the concavity is not an important restric-
tion, since any cost function for the uniform case can be
made approximately concave, by our manipulations.

Proof. Let G be a graph input to the Graph Coloring
problem. We assign each vertex the weight &/ ne, e =
€/2. Recall that any cost function becomes separable in
the case of uniform weights. From the hardness result of
Feige and Kilian [?] (and derandomized by Zuckerman
[?]), it is hard to distinguish between two cases: when
there is a coloring of G with n¢ colors, and when there
is no independent set with n¢ vertices. In the former
case, the cost of the coloring is by concavity at most
ne - f(&/n -n'=) =n . f(&-n'"¢ In the latter case,
no coloring has color classes larger than n¢, for a cost

of at least n'~¢ - f(2). Hence, the ratio between the two
is at least )
nl—e . f(ji‘) nl—e
ne - f(z-n'=¢) = R

5 Hardness and Exact Algorithms

In this section, we give a number of hardness re-
sults on different classes of graphs that hold for any
strictly concave function: strong NP-hardness for inter-
val graphs, split graphs, and degree-3 planar graphs.
On the positive side, we can give exact algorithms for
proper interval graphs, and for graphs with indepen-
dence number 2.

Limitations on robustness We first show a lim-
itation for robust approximations. It holds for merely
distinguishing two different ” Rent-or-Buy” functions on
uniformly weighted interval graphs. Note that this kind
of result is not dependent on a complexity-theoretic as-
sumption (like P # NP). It is plausible that poly-
nomially computable colorings can only satisfy weaker
robustness properties.

THEOREM 5.1. No coloring gives a c-approximation for
every concave separable function, for ¢ < 4/3.
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Figure 1: Construction showing the impossibility of
simultaneous approximation of better than 4/3

Proof. Consider the interval graph formed by the inter-
vals in Figure 1. There are 2t-s small intervals, arranged
in disjoint cliques of size ¢, and 2¢ mutually intersecting
large intervals. Each vertex is of unit weight.

Consider a coloring C' of this graph, that uses ¢ - ¢
colors, for some ¢ > 2. Only the (¢ — 2)t colors that
contain no large interval can contain 2s intervals; the
others can only contain s small ones and one large one.
Consider the two RBC problems, where the threshold
W is 1 and s, respectively. For the former, the ordinary
coloring problem, the approximation ratio of C' for that
measure is ¢/2. For the latter, the optimal solution is to
use t colors for the small intervals and 2t for the large
ones, for a cost of t - W 4 2t. The coloring C', however,
must have at least 2t — (¢ — 2)t = (4 — ¢)t colors with
s or more nodes, for a cost of at least (4 — ¢)tW. The
approximation ratio of C' for this measure is then at least
4—qW/(W+2)=4—q—O(1/W). For s sufficiently
large, this is 4 — ¢ — o(1). The larger of ¢/2 and 4 — ¢ is
4/3, attained when ¢ = 8/3.

Remark: The above construction shows the limits of
even asymptotic approximation.

We can also get a tighter bound of 1.5 on absolute
approximation. Setting ¢ = 1 in the proof above, we see
that there is no coloring of this 2-colorable graph with
less than 3 colors that has approximation ratio less than
2 — o(1) with respect to the other measure.

NP-hardness We observe that the strong NP-
hardness result of Cardinal et al. [?] for Entropy Color-
ing has wider applicability. Rather than duplicate their
proof here, we observe that the only property of entropy
colorings used in the proof is that of strong concavity.

PROPOSITION 5.1. Let f be a strongly concave separa-
ble cost function. Then, it is strongly NP-hard to find
an optimal coloring with respect to f on interval graphs.

Compare the above result with the polynomial
solvability of RBC and TTR on interval graphs [?]. Tt
shows that strong concavity is necessary.

Finally, we show the NP-hardness of another sub-
class of chordal graphs.

THEOREM 5.2. Let f be a strongly concave separable
cost function. Then, it is strongly NP-hard to find an
optimal coloring with respect to f on split graphs.

Proof. The reduction is the same as used by Yannakakis
and Gavril [?] for the maximum k-subgraph problem.

Consider an instance (X,S) of the set cover prob-
lem, where X is a base set and § is a collection of sub-
sets of S. Additionally, each set in S contains exactly k
elements. Let n = | X]|.

We form a split graph G on the vertex set V U U,
where the independent set V' contains a node for each
element of X, and the clique U contains a node for each
set of S. Additionally, there is an edge between v € V
and u € U iff the element corresponding to v is not
contained in the set in S corresponding to u. We assign
weights 1/n to vertices in V' and weight 1 to vertices in
U.

An exact cover of (X,S) with k sets corresponds to
a coloring C' of G, where |V'|/k color classes contain one
node in U and k nodes in V' each, for a weight of 1+k/n.
The remaining color classes contain one node of U each,
of weight 1 each. The total number of colors used is |U].
No independent set in G has weight more than 1+ k/n.
Thus, no coloring of GG has color classes of weight more
than 14 k/n or fewer than |U| color classes. By strong
concavity, any coloring of G other than C' has cost more
than C, with respect to f. Hence, determinining if there
is a coloring of cost at most
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is equivalent to determining if (X, S) has an exact cover,
which is NP-hard.

A concave function f is said to strictly concave at
x, if f(x) < ming <, f(a’) - (z/2'). A function f is
additive if f(z) = ¢ - x, for some constant c¢. A concave
cost function is said to be non-additive if, it is strictly
concave at some point x > 0. A concave cost function
is either additive, or non-additive.

THEOREM 5.3. Let f be a non-additive concave func-
tion.  Then, it is NP-hard to compute optimal f-
colorings on degree-3 planar graphs, even in the uniform
case.

Proof. We modify the NP-hardness reduction for sum
coloring planar graphs of [?]. Given a graph G, we form
a graph G’ by replacing each edge uv with a gadget on
six vertices: x,v, 2,[, in addition to u and v, with the
edges uy, zy, xl, rz,yz, zv. See Figure 2. Observe that
G’ is planar if G is, and of degree-3 if G is.
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Figure 2: Edge gadget for the hardness on degree-3
planar graphs

2/

We argue that there is an algorithm that reorganizes
any coloring C' of G’ to give a coloring C’ that satisfies
the following properties, where color i refers to the i-th
most frequent color of C: Each [ is colored 1, each z
is colored 2, each y and z pair is colored 1 and 3, and
each of the original nodes are colored 1 and 2 such that
those colored 1 form an independent set. In addition,
we can argue that the coloring C’ dominates that of C,
in that the number of nodes colored 1,...,7 in C’ is at
least that in C, for each ¢ = 1,2,3. Therefore, under
any concave cost function, the cost of C” is at most that
of C.

The number of nodes colored i in C” is: |I1] + 2|E)|
(t=1),n—|L|+|E| (i =2), and |E| (: = 3), where I;
is the independent set of nodes in G colored 1.

Given k, let the weight of each node be w =
%/(k + 2|E|). Then, by the strict concavity at &, there
is a coloring of cost at most f(&)+ f(w-(n—k+|E|))+
f(w|E]) if and only if G contains an independent set
of size k. By the NP-hardness of the independent set
problem in cubic graphs, we obtain the claim.

Exact Algorithms We can show that all cost
functions are easy on co-bipartite graphs, i.e., comple-
ments of bipartite graph, and more generally on graphs
with the independence number «(G) equal to 2. Note
that we make no requirement about separability or
monotonicity. The result generalizes the same results
shown for Probabilistic coloring [?] and Entropy color-

ing [?].

THEOREM 5.4. Let f be any cost function, and G be a
graph with «(G) = 2. Then, a minimum cost coloring
of G with respect to f can be computed in polynomial
time.

Proof. The collection of independent sets in G can also
be viewed as a (non-simple) graph H, which is the
complement of G along with all self-loops. We assign
to each edge in H (and each self-loop) a weight that
equals the cost of that independent set according to f.
A minimum cost coloring of G under f now corresponds
to a minimum cost edge cover of H, or a minimum
weight collection of edges that cover all the vertices.
It is not hard to see how to reduce an edge cover to

a minimum weight matching problem, in the case of
monotone costs. We describe here how to solve it even
when costs are not monotone, i.e., when the cost of a
doubleton set {u, v} is greater than that of the singleton

We form a complete weighted graph H’ containing
2n = 2|V(G)| vertices, V(G) = {v1,...,v,} and
U1, Uz, ..., U,. The edge-weights are given as follows.
The weight of (v;,v;) equals f({v;,v;}) if v; and v;
are independent in G, and oo otherwise. The weight
of (vi,u;) equals f({v;}), for each i, j, while the weight
of (uj,uj) is 0.

A maximal matching in H’ induces an edge cover
in H, by ignoring the dummy (u;) vertices. Since H’ is
complete, every maximal matching is perfect. Similarly,
a edge cover in H maps to a matchings in H’; in
fact, each permutation of the dummy vertices gives a
different matching, but of the same cost. Therefore, a
minimum cost perfect matching in H’ is equivalent to a
minimum cost edge cover in H. The former is solvable
in polynomial time [?].

The following result contrasts with the NP-hardness
for general interval graphs. It holds also for the subclass
of containment interval graphs. The proof idea is
borrowed from [?].

THEOREM 5.5. Let G be a proper interval graph with
uniform weights. Then, there is a polynomial time al-
gorithm to compute a coloring of G that simultaneously
optimizes all concave cost functions.

Proof. Compute a coloring Ii,I>,...,I, using the
greedy exact coloring algorithm for interval graphs. One
view of that algorithm is that it constructs independent
sets one at a time as follows: Find the interval with
the leftmost starting point, add it to the set, remove
all conflicting intervals from the graph, and repeat until
the graph is empty. Since the interval graph is proper,
that means that the leftmost-starting point rule is also
a leftmost-ending point rule, which yields a maximum
independent set. This implies that for each k, the color
classes Iy, Io, ..., I} form a maximum k-colorable sub-
graph. Thus, if Jy, Js, ..., Js is any other coloring, with
w(Ji) > w(J2) > -+ > w(Js), we have that

> w(Ji) zzw(n), j=1,2,....

1=j

By concavity and Lemma 2.2 we then have that
> Fw() =D fw(l)).

Hence, the greedy coloring is optimal with respect to f.



A simple example (path on four vertices, with the

end vertices of larger weight) shows that simultaneous
optimization does not extend to the case of non-uniform
weights.

6

Conclusions

We conclude with some open questions.

We have shown that for any weighted graph there
is a 4-robust coloring, while it is not possible to go
below 4/3. Can we close this gap?

Can we extend the result of Section 3 to non-
uniform weights?

Does the hardness for interval graphs extend to the
unweighted case?

Can we generalize the class of cost functions ap-
proximable on interval and perfect graphs, e.g.
allowing some form of non-separability, or sub-
additivity over the color classes?



