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Abstract. We study several cost coloring problems, where we are given
a graph and a cost function on the independent sets and are to find
a coloring that minimizes the function costs of the color classes. The
“Rent-or-Buy” scheduling/coloring problem (RBC) is one that captures
e.g., job scheduling situations involving resource constraints where one
can either pay a full fixed price for a color class (representing e.g., a
server), or a small per-item charge for each vertex in the class (corre-
sponding to jobs that are either not served, or are farmed out to an
outside agency). We give exact and approximation algorithms for RBC
and three other cost coloring problems (including the previously studied
Probabilistic coloring problem), both on interval and on perfect graphs.
The techniques rely heavily on the computation of maximum weight
induced k-colorable subgraphs (k-MCS). We give a novel bicriteria ap-
proximation for k-MCS in perfect graphs, and extend the known exact
algorithm for interval graphs to some problem extensions.

1 Introduction

Consider the following scheduling scenario. You are given a collection of jobs,
some of which exclusive access to a specialized resource, e.g., a brain scanner.
The jobs have all been fixed, with known start and end times, and you have to
supply all those that ask with a brain scanner. You know that the minimum
number of scanners needed is exactly the largest number χ of jobs that will be
concurrently operating, But while you could go out to buy χ scanners, you also
have the option to rent them at a fixed price per job. The task is then to decide
which jobs to buy a scanner for and which ones to rent one for.

We can formulate this more generally as a graph coloring problem, where
jobs are nodes in the graph and edges corresponds to the use of a non-sharable
resource. More generally, we may assume that each job i requires a quantity wi

of a given non-sharable resource (in the example above, it may correspond to
the rent being a function of length of the job). We obtain the following problem:

Rent-or-Buy Coloring Problem (RBC):
Given: Graph G = (V,E), with vertex weights wv ∈ (0, 1].
Find: A proper vertex coloring C consisting of color classes I1, I2, . . . , It.



Minimize: f(C) =
∑

i f(Ii), where f(I) = min(w(I), 1) and w(I) =∑
v∈I wv.

In scheduling applications where jobs represent time intervals, the corresponding
graph is an interval graph. In ordinary graph coloring, we “pay” one unit for
each color that we start to use. The idea behind Rent-or-Buy coloring is that
one may often be able to take care of the smaller color classes cheaper, e.g., by
paying some elementwise “fine”.

We consider more generally cost coloring problems, where we have some non-
negative cost function f : 2V 7→ R+ on the independent sets of the graph. We
will assume anywhere in the paper that the cost of a coloring C is the sum of
the costs of the color classes, i.e. f(C) =

∑
I∈C f(I).

Intuitively, this corresponds to a scheduling scenario where the cost of a
resource is some function of the usage of the resource, when we view each color as
a (copy of a) resource. This can apply to many of the innumerable applications of
graph colorings. For instance, the cost of a classroom in a timetabling application
is not really a unit; different classrooms may have different costs, depending on
size, and depending on the amount of use. The cost of a frequency in frequency
allocation may depend on time- or space-limitations of the usage. The cost of
fulfilling server requests, e.g., for bandwidth allocation in networks, may depend
on the willingness to deploy servers, outsource some of the traffic (at a volume-
dependent cost), or to pay the indirect cost of refusing service.

The cost coloring framework is very general, which leads us to consider which
types of cost functions are natural and of practical interest. First, we usually
assume the function to be monotone, in that if you request more of a resource, it
won’t cost less. Second, most reasonable cost coloring functions have the property
that they depend only on the combined weight of the set, not the distribution
of the weights nor on which particular vertices participate in the set. We call
such functions separable, when the costs can be represented by a single-variable
function, i.e., abusing notation, when f(I) = f(w(I)), for any independent set
I. We focus on separable functions here, with one exception.

Third, as a consumer, one normally expects there to be an incentive to buy
in large quantities; i.e., that the residual unit cost goes down with request size.
This corresponds to the cost function being concave; a separable function f is
concave if f(x) + f(y) ≤ 2f((x + y)/2), for any x, y ∈ R. Not all real-life costs
obey concavity strictly speaking, as the large-quantity incentives can involve a
sequence of thresholds, but tend to nearly-concave.

Our objective in this paper is to address some of the most basic cost color-
ing problems. The very most basic one would be the ordinary Graph Coloring
problem, which has the trivially monotone, concave and separable cost func-
tion f(I) = 1. We shall be treating, in addition to RBC, the following natural
problems. Recall that the cost of a coloring is the sum of the osts of the color
classes.

Two-tiered rents with opening costs (TTR): This is a generalization of
RBC with two residual costs, c1 and c2. Once the weight of the class reaches a



certain threshold, the per-item cost changes to the second cost. Additionally,
we allow a fixed charge c (less than 1) for the non-zero use of any color, which
can represent a cost for “opening” or initiating the use of that resource. The
cost function f for each color class I is f(I) = c+min(c1 ·w(I), T )+max(c2 ·
(w(I)− T ), 0). We are not aware of previous work on TTC or RBC.

Threshold colorings: Suppose we have two modes of servicing (independent)
sets, depending on their size. E.g., we can either schedule a group by renting
a taxi, at a fixed price, or by renting a bus (that will definitely fit all), at a
higher fixed price. We seek as before a minimum cost schedule of everyone,
taking conflicts into account. The cost function f(w(I)) is now constant c1,
when w(I) is at most the threshold T , and a larger constant c2, when w(I)
is above the threshold.
A special case is when the above-threshold cost is too high to be ever cost-
effective, e.g. n-fold the below-threshold cost. We have then the bounded-
coloring problem, which models the case of scheduling conflicting unit-size
jobs with bounded number of machines. It is NP-hard on bipartite and in-
terval graphs [3].

Probabilistic coloring: In the Probabilistic coloring problem [18], we are
given a graph G with independent vertex probabilities pv ∈ [0, 1] and are
to find a coloring where the cost f(I) of a color class is the cumulative
probability f(I) = P (I) = 1 −

∏
v∈I(1 − pv). This was proposed to model

robustness in optimization, where one is presented a priori with a super-
graph of what will be used in the future. The cost of the coloring is then
the expectation of the number of colors actually used. This cost function
is both concave and monotone, but not separable. Probabilistic coloring is
NP-hard in bipartite graphs [18], split graphs [5], and interval graphs [12, 4],
but solvable in co-bipartite graphs [18], and co-interval graphs [13]. It ad-
mits a

√
ρGCn-approximation, where ρGC is the approximability of Graph

Coloring, a 3/2-factor in bipartite graphs [18], and 2-approximation in split
graphs [5].

Our Results and Techniques We can observe that applying ordinary coloring
will not give good approximations for these cost coloring problems, nor does the
usual approach of repeatedly coloring maximum independent sets. Instead, we
make a strong link to the problem of finding a maximum (weight) induced k-
colorable subgraph (k-MCS). RBC is in fact solved exactly by finding a maximum
k-MCS, for the right choice of k. For approximation, we present in Section 2 a
novel bicriteria approximation for k-MCS on perfect graphs, which allows us to
approximate RBC in Section 3 within a factor of 2.

In order to solve TTR, we modify the flow reduction of Arkin and Silverberg
[1] for weighted k-MCS in interval graphs to give an O(n2 log n)-time algorithm
to solve the following extension: given an interval graph and integers k and h,
find a maximum weight k-colorable subgraph whose removal leaves a h-colorable
subgraph. This allows us to solve TTR also optimally in interval graphs.

We then show in Section 4 that Probabilistic colorings are always within
a factor of e/(e − 1) from related RBC colorings. This gives then a complete



characterization of Probabilistic coloring, within constant factors, and improved
approximations for several classes of graphs.

As a third simple and natural cost function, we consider in Section 5 the
approximability of Threshold colorings. These are perhaps the simplest non-
concave but separable cost functions. Here we utilize another extension of the k-
MCS problems, one where a particular subset is constrained to be in the resulting
k-colorable subgraph, which we show to be solvable on interval graphs. We get
a 2-approximation for interval graph and 3.7-approximation on perfect graphs.

Related work Entropy coloring is a problem from information theory involving
the separable cost measure f(I) = w(I) ln(1/w(I)). It models transmission rate
with side information, and has applications in digital compression [4]. It is NP-
hard on interval graphs, hard to approximate within a Ω(n)-factor (its value is
always at most log n) [4], but polynomially solvable on co-interval graphs [13]
and co-bipartite graphs [4]

Gijswijt, Jost and Queyranne [13] recently introduced a general framework for
cost coloring problems that they call value-polymatroidal. It contains monotone
problems where moving vertices from a smaller class to a bigger class does not
increase the total cost, i.e., when f(I ∪ {v}) + f(J) ≤ f(I) + f(J ∪ {v}), for
any independent sets I, J with f(I) ≤ f(J). This class includes all the problems
treated in this paper, except Threshold coloring. It also includes the max coloring
problem [7, 19], which has the non-separable, monotone cost function f(I) =
maxv∈I wv. They give a polynomial time algorithm for all such problems on
co-interval graphs (complements of interval graphs).

In a companion paper [12], we study separable cost coloring problems, and
give approximation algorithms on perfect graphs. In particular, we show that
concave separable functions admit a robust approximation, in that there is an
algorithm that given a graph, produces a coloring that simultaneously approx-
imates any concave function on perfect graphs. We also show how to modify
these colorings to approximate (in a function-specifical way, necessarily) any
monotone separable cost function. In comparison, our results here are more spe-
cialized, but the approximation factors are better (e.g., 2 for RBC on perfect
graphs vs. 6 for any concave function, and 3.7 for Threshold coloring vs. 12 for
any monotone separable function).

Some other types of coloring problems with weights have been considered.
In the optimal chromatic cost problem (OCCP) [17], the cost of a color class
is linear in its size, but each class has a different multiplier specific. The sum
coloring problem [15] is a special case where the multipliers are the natural
numbers. These fall outside of our framework, which assumes that all colors are
equal.

Notation Let G = (V,E) be a graph given with vertex weights wv. Let n denote
the number of vertices. For a subset S ⊂ V , G[S] denotes the subgraph of G
induced by S. For a set S, let w(S) =

∑
v∈S wv, and let w(G) = w(V ).

A coloring is a partition of V into independent sets. A k-subgraph is an
induced k-colorable subgraph. We may overload the notation and refer to a



vertex subset S ⊂ V as a k-subgraph if G[S] is k-colorable. k-MCS refers to the
problem of finding a k-subgraph of maximum total weight, and Graph Coloring
refers to the classical vertex coloring problem, using the minimum number χ(G)
of colors.

2 Maximum k-Colorable Subgraph Problem

Our approach is heavily based on finding large induced subgraphs with small
chromatic number. Yannakakis and Gavril [21] showed that integer programming
formulation for weighted k-MCS on interval graphs satisfies total unimodularity
property, and is therefore polynomially solvable. Arkin and Silverberg [1] gave a
O(n2 log n) time solution via reduction to minimum cost flow. It was also shown
in [21] that k-MCS was polynomially solvable in chordal graphs for fixed k,
but NP-hard for k unbounded, even on the subclass of split graphs. Frank [11]
showed that unweighted k-MCS is solvable on comparability graphs. Saha and
Pal [20] showed weighted k-MCS solvable in permutation graphs. Further, it is
easy to compute on bipartite graphs, as we need either find a maximum weight
IS or a two-coloring, and can also be computed in f(k)n-time on partial k-trees.

2.1 Approximation of Maximum k-Subgraphs

The solution of the max k-subgraph problem is an important component of
approximation algorithms for numerous coloring problems, e.g., sum coloring
[15], sum multi-coloring, batch sum coloring [6], and co-coloring [10]. One would
hope to replace the subroutine by an approximation algorithm, for graph classes
where k-MCS is NP-hard. However, there are different types of approximations
possible. Let W be the weight of an optimal k-subgraph.

Primal: Find a k-subgraph of weight at least cW , for c largest possible.
Dual: Find a d · k-subgraph of weight at least W , for d smallest possible.
Complementary: Find a subgraph T such that V \ T induces a k-subgraph,

and the weight of at most f times that of a minimum such subgraph, for f
smallest possible.

The primal approximation does not suffice here, or in the abovementioned prob-
lems. For instance, suppose we are given a 3-colorable graph G with all wv = 0.2.
Then a 1.1-approximate 3-colorable subgraph still leaves 0.1n vertices uncolored,
for RBC cost of 0.02n = Ω(n), while the optimal solution has cost 3. Instead,
we need an approximation of the dual objective, which has unfortunately proved
difficult.

We develop here a bicriteria approximation in terms of the dual and the
complementary measures. We say that a vertex set S is a (t, s)-approximation
to k-MCS if it is a tk-subgraph and w(V \ S) ≤ s · w(V \ S∗), where S∗ is a
maximum k-subgraph. Namely, it gives a subgraph that requires t times as many
colors, and leaves behind up to s times the weight left by the optimal solution.



Theorem 1. There is an algorithm that, given a perfect graph G and integers
k and t, yields a (t, t

t−1 )-approximation to k-MCS.

Proof. Let an s-clique refer to an unweighted clique, i.e. a set of s mutually
adjacent vertices. Consider the following strategy:

Let G′ = G and w′
v = wv for each vertex v.

i← 1
while there exists a t · k + 1-clique Ci in G′ do

Let wi = minu∈Ci
w′

u.
Let w′

v ← w′
v − wi, for each v ∈ Ci.

Remove all vertices v with w′
v = 0 from G′.

i← i + 1
od
Let S be the remaining set of vertices in G′.
Output G[S].

Note that since there exists no tk+1-clique in G[S], and G is perfect, the resulting
subgraph G[S] is tk-colorable, establishing the first part of the claim.

Since w(S) ≥ w′(S), the weight outside S is at most the weight deleted in
the loop iterations, or

w(G \ S) = w(G)− w(S) ≤ w(G)− w′(S). (1)

The weight reduced from the cliques in G′ in each round are evenly spread over
the t · k + 1 vertices; thus, at most 1/t-fraction can belong to any k-subgraph,
including a maximum weight k-subgraph S∗. Hence, at least a (t− 1)/t-fraction
of the weight comes from outside S∗. Thus,

w(G)− w′(S) =
∑

i

wi(Ci) ≤
t

t− 1
[w(G)− w(S∗)] =

t

t− 1
w(G \ S∗).

Combined with (1), we have the second part of the claim.

This is a tight bound for this approach, as can be seen by adding to any
k-colorable graph a collection of t · k + 1-cliques, along with a single t · k-clique.

A generalization of this argument can be useful in some cases. It suffices
to change only the loop condition of the algorithm of the previous proof to
read “while the approximation algorithm finds a 2k-clique”. In particular, we
obtain a (4, 2)-approximation for circular arc graphs, and (2k, 2)-approximation
of intersection graphs of k-hypergraphs (ones with maximum edge size k).

Theorem 2. Let G be a hereditary class of graphs. Suppose there is an algorithm
that given number s and a graph in G either returns a clique of size s or a coloring
of size ρs. Then, there is a (2ρ, 2)-approximation of k-MCS in G.

Repeatedly finding large independent sets is a natural approach. While it does
not give a constant factor approximation, it can be used to get some non-trivial
bounds for hard classes of graphs. The following lemma is a slight strengthening
of an argument made numerous times before (see, e.g., [14]).



Lemma 1. Suppose the maximum independent set (MIS) problem can be ap-
proximated within a factor of ρ on a hereditary class of graphs. Then, there is
a (ρ log n, 1)-approximation of k-MCS. Further, if ρ = nΩ(1), then there is a
(O(ρ), 1)-approximation.

3 Rent-or-Buy Coloring (and TTR)

It can be quickly verified that ordinary colorings can be far off the mark under
the Rent-or-Buy measure. An optimal coloring can leave all colors balanced, for
a unit cost per color, while by using more colors, we may only need a single large
color class, with the rest in small, cheap classes.

Another approach was used for max coloring, where the vertex set was first
partitioned into weight classes [19]. However, this would reduce to ordinary col-
oring in the case of uniform weights, which again would not be sufficient. Thus,
a different approach is needed for RBC.

3.1 Exact Algorithms for Interval graphs

The following result shows that RBC is closely related to a well-known opti-
mization problem. A proof of a more general result is given in Lemma 2.

Theorem 3. Let G be a graph, and suppose we can compute a maximum weighted
k-colorable subgraph in G, for any k. Then, we can solve RBC in polynomial
time.

Corollary 1. RBC is polynomially solvable on interval, comparability, and bi-
partite graphs, as well as partial k-trees.

We now give an alternative flow formulation of k-MCS problem on interval
graphs, which allows for additional constraints on the remaining subgraph. We
call a vertex set S ⊂ V a (k, h)-subgraph if it is a k-subgraph and V \ S is
an h-subgraph. The (k, h)-MCS problem is that of finding a maximum weight
(k, h)-subgraph. Observe that a maximum weight k-subgraph is also a maximum
weight (k, h)-subgraph, for some 0 ≤ h < k.

Theorem 4. Let G be an interval graph and k and h be given. Then, a maximum
weight (k, h)-subgraph can be computed in time O((k + h)n log n).

Proof. We modify the construction of [1]. Recall that an interval graph can
be represented as a linearly ordered set of maximal cliques C1, . . . , Ct of sizes
q1, q2, . . . , qt. Let R be k + h. We assume that qi ≤ R for every i = 1, . . . , t since
otherwise G has no (k, h)-subgraph.

Construct a directed network H = (V,E) with vertices v0, . . . , vt. There is
an edge (vi−1, vi) of capacity R− qi and weight 0, for each i = 1, . . . , t. We call
these dummy edges, and let E1 denote the set of these in H. Also, for each vertex
v of weight wv that is contained in cliques Cj , Cj+1, . . . Cj+`, add an edge to H



from vj−1 to vj+` of capacity 1 and weight wv. We call these edges subgraph
edges, and let E2 denote the set of these in H. This completes the construction.
Observe that subgraph edges used by a 1-flow from v0 to vt in H correspond to
vertices in an independent set of G. Hence a k-flow in H gives a k-subgraph of
the same weight in G.

Now we show that a k-flow exists in H, and after removing the k-flow, H
still has an h-flow. This implies that we can obtain a maximum weight (k, h)-
subgraph of G by computing a maximum weight k-flow in H.

Let δ+(vi) (resp., δ−(vi)) denote the set of edges in H leaving (resp., entering)
vi. For a set F of edges, let c(F ) denote the sum of capacities of those in F .
In H, subgraph edges in δ+(vi) correspond to vertices v in G such that v 6∈ Ci

and v ∈ Ci+1. Similarly, subgraph edges in δ−(vi) correspond to vertices v in
G such that v ∈ Ci and v 6∈ Ci+1. Hence c(δ+(vi) ∩ E2) − c(δ−(vi) ∩ E2) =
qi+1 − qi holds for each i = 1, . . . , t − 1. Since c(δ+(vi) ∩ E1) = R − qi+1 and
c(δ−(vi) ∩ E1) = R − qi, we can observe that c(δ−(vi)) = c(δ+(vi)) for each
i = 1, . . . , t− 1. By the construction of H, c(δ+(v0)) = c(δ−(vt)) = R also hold.
Therefore, we can observe that H has a k-flow from v0 to vt. After removing a
k-flow from H, c(δ−(vi)) = c(δ+(vi)) still holds for each i = 1, . . . , t − 1, and
c(δ+(v0)) = c(δ−(vt)) = R− k = h. Hence we can still push an h-flow.

The number of vertices and edges in H is linear in n, the number vertices in
G. Each flow increase can be obtained in the time required for a shortest-path
computation in the residual graph [16].

Observe that in the time spent to compute the flow, we actually obtain a
series of values (kj , hj) for each kj + hj = R. Also, observe that a maximum
weight (k, h)-subgraph problem is solvable in bipartite graphs, since in this case
trivially k = 1.

Theorem 5. TTR is polynomially solvable on interval and bipartite graphs.

Proof. Observe that the two-tiered rent cost of an independent set without open-
ing costs can be viewed as selecting the smaller of two linear functions:

f(I) = c2w(I) + min((c1 − c2) · w(I), y0),

where y0 = (c1 − c2)T . Thus, the cost of the coloring C can be represented as
c2w(G)+

∑
I∈C min((c1−c2)·w(I), y0). Thus, it is equivalent to RBC after scaling

the weights by a factor of y0/(c1 − c2), and adding c2 · w(G) to the objective
function. The addition of constant terms to the objective function does not affect
the optimization of the problem.

With opening costs, we want also to minimize the number of colors used on
the non-full color classes. We therefore seek a k-subgraph, with the right value
of k, whose remaining graph can be colored with few colors. Hence, it suffices to
try all maximum (k, h)-subgraphs, for all k and h.

3.2 Approximation of Perfect Graphs

Lemma 2. Suppose we have a (t, t)-approximation algorithm for k-MCS. Then,
we can approximate RBC within a factor of t.



Proof. Let k′ be the number of colors with weight at least 1 in an optimal RBC
coloring and S∗ be the set of vertices in those colors. The cost of the optimal
solution is then k′ + w(V \ S∗).

Let S be a (t, t)-approximate solution to k′-MCS. Then, if we color S using
at most t · k′ colors, and the remaining vertices arbitrarily, we get a coloring of
cost at most t · k′ + w(V \ S) ≤ t(k′ + w(V \ S∗)). Thus, we have a performance
ratio of t.

By Theorem 1, we get a 2-approximation of RBC, but it applies more gen-
erally to TTR.

Corollary 2. TTR, with non-negative costs, is 2-approximable on perfect graphs,
even with opening costs.

Proof. Recall from Theorem 5 that TTR without opening costs is equivalent to
RBC after scaling. With opening costs, we want also to minimize the number of
colors used on the non-full color classes. The subgraph found in Theorem 1 is
trivially χ(G)-colorable, and if we color the remaining graph optimally, we use
at most 2χ(G) colors in total. Thus, our opening costs are at most twice that of
any coloring.

3.3 Hardness and Approximation of General and Split Graphs

For general graphs, we can obtain a bound using Lemma 1, which matches
the best approximation factor known for the ordinary graph coloring problem
[14].

Corollary 3. Let ρIS be the best possible approximation ratio of MIS on general
graphs. Then, RBC and TTC can be approximated within a factor of O(ρIS). In
particular, they can be approximated within O(n(log log n)2/ log3 n) [8].

RBC is clearly equivalent to Graph Coloring when all wv = 1. Therefore,
as a more general problem, it inherits all the hardness characteristics. However,
one may still ask how hard the problem is for other vertex weights. For instance,
the problem is trivial when w(G) ≤ 1, since any coloring has then the same cost.
From the results of Feige and Kilian [9], that were derandomized by Zuckerman
[22], we have the following.

Observation 6 RBC is NP-hard to approximate within a min(n, w(G)/nε)-
factor, and is trivially w(G)-approximable.

Essentially the same reduction from X3C (exact 3-set cover) as used on re-
lated problems [5, 13] shows the hardness of RBC on split graphs, a subclass of
chordal graphs.

Theorem 7. RBC is strongly NP-hard on split graphs with uniform weights.



Proof. Let X = {s1, s2, . . . , s3m} be a finite set and T = {e1, . . . , en} be a set
of triples, that is an input to X3C. Form a graph with vertex set X ∪ T , where
X is independent, T is a clique, and (si, ej) is an edge iff si 6∈ ej . Assign each
vertex the weight w = 1 − 1/(2n). Then, any coloring of cost less than n uses
only the minimum n colors, with each ei in a diferent class. The cost of such a
coloring is n − (n − t)/(2n), where t is the number of colors that contain more
than one vertex. Thus, the minimum cost of an RBC coloring is n−(n−m)/(2n)
iff (X, T ) admits a cover with m sets iff (X, T ) admits an exact cover.

This is complemented with a polynomial time approximation scheme (PTAS).

Theorem 8. RBC admits a PTAS on split graphs.

Proof. Let (U, V,E) be a split graph with independent set U and clique V . Let
ε > 0 be given and let k = 1/ε. Initially, assign each node in V to a different
color. Try for each subset S ⊂ V of size at most k the following: For each node
u ∈ N(S) = {u ∈ U : ∃v ∈ S, (u, v) 6∈ E}, assign u to the color of some
non-neighbor in S. Color the rest of U in a separate color.

Consider an optimal RBC coloring C, and let S∗ be the set of nodes from
U that participates in color classes of C of cost 1 (i.e., of weight at least 1). If
|S∗| ≤ k, then our solution is optimal when we try S = S∗. Otherwise, it holds
for any S ⊂ S∗ of cardinality k that the cost of C is OPT ≥ |S∗|+ w(U \S∗) ≥
k + w(U \ S). For such a set S, the cost of the algorithm is at most

|S|+w(U \S)+w(V \N(S)) ≤ (k+1)+w(U \S) ≤ (1+1/k)OPT = (1+ε)OPT.

Hence, one of the solutions found is within 1 + ε factor of an optimal RBC
coloring of the graph.

4 Probabilistic Coloring Problem

One of the useful features of Rent-or-Buy is that its colorings closely approx-
imate Probabilistic colorings. This is helpful, since RBC is much more amenable
to computation.

Theorem 9. Let C be a coloring of a graph G with vertex weights pv ∈ (0, 1]. Let
fRB(C) (fPr(C)) be the cost of C under the Rent-or-Buy measure (the probabilis-
tic coloring measure), respectively. Then, fRB(C) ≥ fPr(C) ≥ (1−1/e)fRB(C).

Proof. The first inequality follows from the definitions of the measures, that
P (I) ≤W (I), since by inclusion-exclusion it holds that

∏
v(1−pv) ≥ 1−

∑
v pv.

Let I be a color class under C. The cost P (I) of I under the probabilistic
measure is given by

P (I) = 1−
∏
v∈I

(1− pv) ≥ 1−
∏
v∈I

e−pv = 1− e−w(I).



If w(I) ≥ 1, then fRB(I) = 1 and we have that P (I) ≥ 1 − e−1 = 1 − 1/e.
Otherwise, fRB(I) = w(I). Observe that the function (1− e−x)/x is decreasing
in the interval (0, 1]. Hence, the ratio is maximized for w(I) = 1. Since the ratio
holds for each color class individually, it also holds for the sum of the color
classes.

These bounds are best possible. An independent set of weight 1 can consist
of a single node of weight 1, or n nodes of weight 1/n each. In both cases, the
RBC cost is the same, while the probabilistic measure results in cost of 1, in the
former case, and 1− 1/e + O(1/n), in the latter case.

Theorem 9 immediately implies that RBC and Probabilistic coloring have
the same approximation behavior, within this factor of 1.582.

Corollary 4. If RBC is ρ-approximable on a graph G, then Probabilistic color-
ing is approximable within a factor of ρ · e

e−1 ≤ 1.582ρ on G.

Combining this with our bounds on RBC of Corollaries 1 and 2 and , 3, and
Theorem 8, we obtain the following improved bounds on Probabilistic coloring.

Theorem 10. Probabilistic coloring is approximable within 1.582 on interval
and comparability graphs, 3.164 on perfect graphs, 1.583 on split graphs, n0.2111

on 3-colorable graphs [2], and O(n(log log n)2/ log3 n) on general graphs.

5 Threshold Coloring

We note that neither finding an ordinary coloring nor repeatedly finding a
maximum independent set leads in general to constant factor approximation.
Instead, one can treat the two costs separately. We use the solution of another
MCS-variant to obtain a better approximation.

Let Pre-(k,h)-MCS be a variation of (k, h)-MCS where we are additionally
given a set P that is required to be a part of the k-subgraph solution. This is
similar to precoloring-extension problems, except the actual colors of the nodes
in P are not prespecified.

Lemma 3. Pre-(k,h)-MCS can be solved in O(χ(G)n log n) time on an interval
graph G.

Proof. Use the construction of Theorem 4, and change only the weight of the
edges corresponding to vertices in P to a small enough value. The flow paths
will now never use those edges, if at all possible.

Recall that we can compute the solutions for all values of k and h in only
χ(G) flow computation, for a total time of O(χ2(G)n log n).

Theorem 11. Threshold coloring can be approximated within a factor of 2 on
interval graphs.



Proof. For each k and h, try the following approach, and use the one of smallest
cost. Compute, using the above lemma, the optimal (k, h)-subgraph containing,
as a preselected set P , the set of nodes with weight at least the threshold T .
Then, color the remaining h-colorable subgraph, and divide each class of size s
into ds/T e classes of size at most T each.

Suppose the optimal solution used k0 color classes of the larger cost c2,
leaving a h0-colorable subgraph of size L to be covered with classes of cost c1.
Then, the cost of that solution is at least k0 · c2 + max(h0, dL/T e) · c1. For these
values of k = k0 and h = h0, our solution uses k0 expensive classes, and colors
a subgraph of total weight at most L with the inexpensive classes. At most h0

of those classes are less than full, and at most bL/T c full. Hence, the total cost
of the algorithm solution is at most k0 · c2 + (h0 + bL/T e) · c1, or at most twice
the optimal.

Theorem 12. Threshold coloring can be approximated within a factor of ρ ≤ 3.7
on perfect graphs.

The proof is deferred to the appendix for lack of space.
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Proof of Theorem 12

Proof. Let us denote by R = c2/c1 the ratio between the two costs. For simplic-
ity, let us scale the costs so that c1 = 1. Observe that if R ≤ 3.7, then using an
optimal graph coloring yields an R-approximation for Threshold coloring. Thus,
we assume that R ≥ 3.7.

We first find an optimal graph coloring of the subgraph induced by vertices
of weight at least the threshold T . Since the optimal solution needs also to color
these vertices in classes of the same cost, the cost of these classes is at most
OPT , the cost of the optimal solution.

On the remaining graph G′, we try for each value of k the following approach
and retain the cheapest solution. Let t = 2.4293. Find a (t, t/(t−1))-approximate
k-MCS by Theorem 1, and color the t · k-subgraph with classes of cost R. Then,
find an optimal graph coloring of the remaining subgraph, and divide each color
into the fewest possible classes of size at most T .

Suppose the optimal solution used k0 color classes of the larger cost R, leaving
a subgraph of size L to be covered with classes of cost 1. That subgraph required
at least χ(G)−k0 colors, and also needed at least dL/T e classes of the small size.
Hence, the cost of the optimal solution is OPT ≥ k0 ·R+max(χ(G)−k0, dL/T e).
For this value of k = k0, our solution used t · k0 expensive classes, and colored
a subgraph of total weight at most t/(t− 1) ·L with the inexpensive classes. At
most χ(G) of those classes were less than full, and at most bt/(t−1) ·L/T c were
full. Hence, the cost of the algorithm’s solution is at most

OPT + t · k0 ·R + t/(t− 1) · L/T + χ(G).



Rewrite this as the sum of three terms: OPT , t/(t − 1) · (k0 · R + L/T ), and
[t − t/(t − 1)]R · k0 + χ(G). The first two terms are at most 1 + t/(t − 1) ≤
2.6997 times OPT . We can also verify as follows that the last term is at most
(R− 1) · k0 + χ(G) ≤ OPT . Namely, [t− t/(t− 1)] ·R ≤ R− 1 is equivalent to
R·(1−t+t/(t−1)) ≥ 1, which holds for R ≥ 3.7 since 1−t+t/(t−1) > 1/3.6991.


